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Three-dimensional resistivity image of the magmatic system
beneath Lastarria volcano and evidence for magmatic
intrusion in the back arc (northern Chile)
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'Departamento de Geofisica, Universidad de Chile, Santiago, Chile, ?Centro de Excelencia en Geotermia de Los Andes,
Santiago, Chile, 3GNS Science, Lower Hutt, New Zealand

Abstract Lazufre volcanic center, located in the central Andes, is recently undergoing an episode of uplift,
conforming one of the most extensive deforming volcanic systems worldwide, but its magmatic system and
its connection with the observed uplift are still poorly studied. Here we image the electrical resistivity structure
using the magnetotelluric method in the surroundings of the Lastarria volcano, one of the most important
features in the Lazufre area, to understand the nature of the magmatic plumbing, the associated fumarolic
activity, and the large-scale surface deformation. Results from 3-D modeling show a conductive zone at 6 km
depth south of the Lastarria volcano interpreted as the magmatic heat source which is connected to a shallower
conductor beneath the volcano, showing the pathways of volcanic gasses and heated fluid. A large-scale
conductive area coinciding with the area of uplift points at a magma intrusion at midcrustal depth.

1. Introduction

The central Andes, located above the Nazca-South America subduction zone, is a prime example of a volcanic
province associated with convergent plate boundaries. The presently active magmatic arc in the study zone is
part of the Western Cordillera, which is located between the Precordillera region (fore arc) and the southern part
of the Altiplano-Puna high plateau. The location of these major units of the central Andes is shown in Figure 1.

The Central Volcanic Zone (CVZ) of the Andes (from 15°20'S, 72°30'W to 27°20'S, 69°W) comprises 50 active or
potentially active volcanoes distributed along a 1500 km arc between South Peru and Chile [Froger et al.,
2007]. Located in the southern part of the CVZ, Lastarria is an andesitic to dacitic stratovolcano, with a
summit elevation of ~5700 m, being part of a complex, N-S oriented polygenetic structure. The currently
active Lastarria volcano constitutes the main and youngest structure of the system and is formed by five
NW-SE aligned nested craters [Aguilera et al., 2008]. The permanent fumarolic activity at Lastarria is mainly
from (i) the northwesternmost craters (from crater rim and bottom) and (ii) the NW-SE trending fracture
system along the NW external flank of the Lastarria edifice. An important feature of this volcanic complex
is the Negriales eruptive fissure, which originated a lava field situated SW of the main volcanic structure
and composed of 0.6 + 0.3 Ma andesitic-to-dacitic lava flow succession [Aguilera et al., 2012].

The Lastarria-Corddn del Azufre volcanic zone (commonly termed “Lazufre”) draws the attention of the
international geosciences community due to a large-scale deformation signal detected through InSAR
(interferometric synthetic aperture radar) studies [Pritchard and Simons, 2002; Froger et al., 2007; Ruch et al.,
2008, 2009; Andersohn et al., 2009; Ruch and Walter, 2010]. In this volcanic zone, the Lastarria volcano
shows strong and persistent fumarolic activity, but no historic eruptions have been reported. Uplift of the
Lazufre volcanic zone started after 1998 and dramatically increased thereafter up to a rate of 3cm/yr,
affecting an area between 1100 km? [Ruch et al., 2008] and 1800 km? [Ruch et al., 2009].

In the subduction zone of the central Andes several high-conductivity zones have been detected using the
magnetotelluric method [e.g., Schilling et al., 1997; Brasse and Eydam, 2008; Lezaeta and Brasse, 2001; Diaz
et al, 2012]. These highly conductive anomalies were observed where shear zones are present and/or
magmatism has recently occurred, and their most common explanations are related to the presence of fluids
and/or partial melting. Fluids released from the slab facilitate partial melting at lower crustal, upper mantle
depths, by reducing the melting point of the rocks [Wyllie, 1988; Iwamori, 1998; Grove et al., 2012]. At shallow
depths, fluids may circulate in the crust without leading to partial melting, particularly in a brittle crust which
has been folded and fractured by tectonic deformation. This process results in a considerable electrical
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Figure 1. Study zone and location of sites. (left) The shaded zone represents the recent volcanic arc, part of the Central
Andean Volcanic Zone, and including several centers of historic activity. SA is the Salar de Atacama Basin. The blue
shaded zones represent some of the largest calderas in this area (CG: Cerro Galan, LE: Laguna Escondida, LP: La Pacana,
W: Wheelwright [de Silva, 1989; Ruch et al., 2008]). The red rectangle corresponds to the area shown in the figure to the
right. (right) Detailed view around Lastarria volcano. BBMT locations used in this work are shown in blue. Former broadband
and long-period station locations are shown as red triangles [Budach et al., 2013]. The shaded ellipse represents the main
surface deformation after Ruch and Walter [2010]. The color scale indicates meters above sea level.

conductivity enhancement provided that these are rich in minerals and that they find a pathway to
circulate, e.g., fault zones. Hydrothermal fluids, alteration zones containing clay minerals and magmatic
structures, found around active volcanic systems, are characterized by high electrical conductivity and have
been identified using geophysical methods sensitive to this parameter, as magnetotellurics. Several examples
can be found worldwide, where low-resistivity zones in volcanic environments have been interpreted as
hydrothermal fluids [Manzella et al., 2004; Ingham et al., 2009; Bertrand et al,, 2012] and magmatic conduits or
reservoirs [Aizawa et al., 2008; Ingham et al., 2009; Hill et al., 2009; Diaz et al., 2012].

2. Magnetotelluric Data and Analysis

The magnetotelluric method measures the natural fluctuations of the Earth'’s electric and magnetic fields to
obtain information of the resistivity distribution of the subsurface [Chave and Jones, 2012]. In frequency
domain, the transfer function between horizontal electric (E) and magnetic field vector (H) is expressed as
the complex impedance tensor Z, which is defined as E=ZH. Similarly, the transfer function between
horizontal magnetic field components and the vertical magnetic field component (H,) gives the induction
vector K, defined by H,=KH [Wiese, 1962]. In this work, real parts of the induction vectors point away from
conductors (Figure 2) according to the convention of Wiese [1962].

The impedance tensor can be distorted by localized near-surface small-scale inhomogeneities; however,
the phase relations are unaffected by these heterogeneities and provide direct information about the
lateral and vertical resistivity changes at depth. We present the data therefore in the form of the phase
tensor [Caldwell et al,, 2004] which is defined as ® =X""Y with X and Y being the real and imaginary parts
of the complex impedance tensor Z, respectively. The phase tensor is graphically represented by an ellipse
with its principal axes (®,ax and O, respectively). By plotting maps of phase tensor ellipses and induction
vectors at different periods, main resistivity structures can be identified in the data before modeling.

Broadband magnetotelluric (BBMT) data at 30 locations in a period range of 0.001 s to 512 s were measured
during field campaigns in February-March 2013 and February 2015, forming a circle around Lastarria volcano
and extending as a profile to the SE, with an ~1-2 km site separation (Figure 1). The stations have been
deployed in this manner trying to surround Lastarria volcano with a circular array and a profile that
approaches to the maximum deformation area, always considering the difficulties to access different parts
of the study area, in a very remote region of the Andes.
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Figure 2. Induction vectors and phase tensor ellipses for periods of (a) 0.06s, (b) 1.4, (c) 325, and (d) 372s. Ellipses have
been normalized by their major axis (Omax); the color scale shows @i Induction vectors point away from conductors,
according to Wiese [1962].

Phase tensor ellipses calculated for four periods are shown in Figures 2a-2d. At very short periods, 0.06 s, the
high @, values show a near-surface conductive layer extending in a wide area around the volcano.
Induction vectors indicate different directions for shorter periods and are particularly influenced by the
volcanic edifice and shallow conductive structures close to the volcano. At 1.4s high @, values around
the volcano are caused by conductive structures close to the volcanic edifice, whereas resistivity increases
farther away from the volcano; large induction arrows northwest of the edifice also indicate a conductive
structure close to the volcano.

At periods between 5s and 32s the phases are generally lower, indicating increasing resistivity at depth.
However, the low @, values and the very strong ellipticity of the sites northwest of the crater together
with the large magnitude of the real induction arrows pointing northwest suggest a large deeper
conductor south of the volcano.

For longer periods (e.g., 372 s), the induction arrows at the stations surrounding Lastarria volcano are aligned,
pointing to a N-NW direction, and their magnitudes decrease to almost zero for the stations placed on the
Puna. This behavior suggests the presence of a large-scale conductive anomaly to the southeast of the
volcano, while no low-resistivity structures seem to be present directly below it at large depths.

A regional geoelectrical strike can be calculated for the whole data set using the algorithm of Smith [1995]. At
short periods no clear strike direction can be found, while for longer periods (89s-5125), a regional strike of
N30°E has been obtained. The 3-D nature of the data at the period ranges that define the crustal structures
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Figure 3. (a) Location map of the cross sections shown in (b) red lines and (c) blue lines. BBMT sites are marked as blue circles.
(Figure 3b) NS and WE sections of the 3-D inversion model crossing Lastarria volcano. The black triangles are the broadband
MT stations. (Figure 3c) NW-SE and SW-NE cross sections through the inversion model. The outline of conductive layer C1 is
marked by the red dotted line.

requires a 3-D interpretation of the data. Analysis of the phase tensor skew angle f which is a measure for the
asymmetry of the phase tensor shows that the data are strongly influenced by 3-D structure with very large
beta values particularly in the period range between 5 s and 30 (see Figure S1 in the supporting information).

3. Three-Dimensional Modeling

The 3-D inversion algorithm WSINV3DMT described by Siripunvaraporn et al. [2005] was used to model the
measured data. The algorithm is based on the data space Occam'’s inversion and searches for a smooth
model with minimum structure that fits the data to a given error level. For the 3-D case, all the elements of
the impedance tensor (Z) are significant, and therefore, this method considers the inversion of its four
components, plus two elements of the geomagnetic transfer function (for details of the inversion and
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hypothesis testing, see Text S1 in the
supporting information). Data at four
periods per decade were used in a
period range of 0.02s and 370s for
the BBMT data and from 30s to
3000s for the long-period magneto-
tellurict (LMT) data. Topography was
not included in the 3-D inversion
process; however, the effect of the
topography in the broadband data
was tested using forward modeling

(code of Mackie et al. [1994]) and
Figure 4. Real induction vectors from measured (blue) and modeled (red)  considered not significant in the
data for a period of 178s. Outlines of conductor C1, C2, and C3 are shown
in red, and resistive R1 is shown in blue. Laguna Azufrera (LA) is marked in
cyan. The dashed line outlines the area of uplift. The model of the BBMT data gave

interesting results around the Lastarria
volcano, which are well resolved until 10 km depth. In particular, the use of induction arrows in the forward
modeling process showed that the presence of a large-scale conductive anomaly below 5 km depth, SE of
Lastarria volcano, was necessary to fit the data for the longest periods. In order to reach larger depths and
try to relate the Lastarria volcano and the Lazufre deformation source, the LMT data from Budach et al. [2013]
were included in the 3-D inversion process, considering a broader grid reaching larger depths (see
supporting information for details of the 3-D modeling).

period range of interest.

The final model, resulting from 3-D inversion and forward modeling, shown in Figure 3 obtained a
normalized RMS error of 2.8. For examples of the data fit, see Figure S2 in the supporting information.
Close to the Lastarria volcanic edifice, where most of the BBMT stations were placed, the result of the
3-D inversion and hypothesis tests indicates the presence of two conductive anomalies (C1 and C2). The
anomaly marked as C1 is highly conductive with values between 1 and 10 Qm, extending down to 1 km
below the surface and around the volcanic edifice (see Figures 3b and 3c). The spatial distribution of this
anomaly, with highest conductivities on the western flank of Lastarria volcano, is consistent with the
fumarolic activity in this area. The second conductive zone marked as C2 is located to the south of
Lastarria volcano reaching 7-8 km in depth and ~5 to 10 Qm (see Figures 3b and 3c). Conductor C2 is
located mainly outside the data coverage, and therefore, the sensitivity of the data to C2 has been
assessed by hypothesis testing (Figure S3 in the supporting information). Beneath the volcano from
1.5km is a resistive (1000 2m) body (R1 in Figure 3), extending until 5 to 10km in depth below the
Lastarria volcano and its close surroundings.

A third conductive anomaly in the southeast (C3 in Figure 3c) was suggested by the long-period induction
arrows and the LMT data available. Although the inversion model generally fits the data well, and the LMT
soundings allow for better resolution at depth, the exact location of this large conductive anomaly and its
shape are still difficult to resolve. Hypothesis testing (Figure S3 in the supporting information) however
confirmed that conductor C3 is required by the data. The result shown in Figures 3 and 4 corresponds to a
highly conductive structure (~1Qm) extending between 5 and 15 km (for additional sections through the
inversion model, see Figure S4 in the supporting information).

4, Discussion and Conclusion

From the 3-D modeling and inversion of magnetotelluric data at and around Lastarria volcano, a
conductive layer C1 beneath the summit can be identified, which is interpreted as alteration products
and fluids of a hydrothermal system. This feature is in agreement with Ruch et al. [2009], with a very
shallow source obtained through inversion of INSAR data. From geochemical analysis of thermal fluid
discharges, considering isotopic composition and geothermometry, Aguilera et al. [2012] proposed a
conceptual model for the Lastarria fumarole system. In this model, the fumarole gases are inferred to
originate from magma degassing at depths between 7 and 15 km [Froger et al., 2007], which constitutes
the main fluid source for fumarolic vents in Lastarria area. Aguilera et al. [2012] suggest that two primary
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fluid types are discharged: (1) superheated vapors and (2) gases produced at hydrothermal conditions by
boiling of a shallow water aquifer. The alteration products (clay) and high temperatures of this boiling
aquifer explain the low resistivities (~1 Qm) that characterize conductor C1. The northern part of C1
reaches the Laguna Azufrera (see Figure 4), that could be one of the drains of the hydrothermal system
of the Lastarria volcano, leaving a sulfur-rich area observed in the surface (southern part of the Laguna).

The conductive zone C2 extending to the south-southwest of Lastarria and reaching depths of 7-8 km
beneath the surface is interpreted as ascending magmatic fluids which provide the heat source for the
shallow hydrothermal and fumarolic system. Interestingly, C2 anomaly does not extend to the north of the
volcanic edifice, but to the south, where the Negriales eruptive fissure is located, which supports its
interpretation as magmatic source. A small-scale magma chamber or magmatic conduit directly below the
Lastarria edifice would be difficult to resolve; therefore, the presence of this kind of structures cannot be
discarded. The interpretation of C1 and C2 anomalies as hydrothermal and magmatic reservoirs shows a
remarkable agreement with results of a seismic noise tomography in the Lazufre area, recently published
by Spica et al. [2015], considering both location and extension of these features.

A rather unexpected feature is the highly resistive body R1 beneath Lastarria volcano. However, since the
current magmatic system seems to be located to the south of the volcano, we suggest that the resistor is
a plutonic body formed at earlier stages of the building of the volcano. This kind of resistive structures has
been observed in different volcanic settings, as shown in Aizawa et al. [2014], where similar structures
were found below the Kakuto caldera, close to currently active volcanic centers, or the resistive structures
observed below Quetena volcano and Vilama caldera by Comeau et al. [2015]. In both cases the resistive
structures were interpreted as solidified magma chambers and crystallized intrusions.

The deeper anomaly C3 is placed beneath the central part of the large-scale surface deformation area,
coincident with the model suggested by Ruch et al. [2009], and with the upper part of the large-scale
conductive anomaly suggested by Budach et al. [2013], using long-period MT data along a profile crossing
the Lazufre area farther south of Lastarria. The shallower part of C3 has resistivities of approximately 5Qm
at 5km, reaching lower resistivities (0.1 Qm) at greater depth, and it lies in the zone of maximum tensile
stress proposed by Ruch et al. [2009]. These authors proposed a sill source at a depth of 12-14km, in good
agreement with our results. This kind of crustal magmatic reservoirs has been proposed in other large
deformation areas in the Andes, such as Uturuncu volcano, where a magmatic reservoir in the lower crust
is proposed [Comeau et al., 2015], and in the Laguna del Maule system, where a much larger uplift rate
seems to be related to a shallow magmatic reservoir [Singer et al., 2014].

The presence of large-scale conductive anomalies in the back arc of the Altiplano and the Puna have been
observed in several works in the central Andes [e.g., Brasse et al., 2002; Diaz et al., 2012; Budach et al., 2013;
Comeau et al., 2015] and have been associated with intracrustal magma reservoirs fed by ascending partial
melts. Given the coincidence with the area of uplift the interpretation of a currently forming large
magmatic reservoir seems likely. However, to determine the continuation of this highly conductive
anomaly below the Puna and its possible connection to the magmatic system of Lastarria volcano, more
long-period MT data are needed in order to improve the data coverage in the whole area and constrain
the presence of large-scale structures.
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Erratum

In the originally published version of this article, Figure 2 appeared incorrectly. The error has since been
corrected, and this version may be considered the authoritative version of record.
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