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Abstract Digital communication systems are characterized by having a filter at the

transmitter and receiver sides to band limit the transmitted signals and diminish the effects

to intersymbol interference (ISI). The optimum parametric linear combination pulse is

evaluated at the transmitter and receiver sides by using different evaluation tools. The

proposed pulse is evaluated in terms of the bit error rate in the presence of symbol-timing

errors. Eye diagrams are presented to visually evaluate the susceptibility of the trans-

mission system to ISI, and the maximum distortion is determined as a numerical measure

of performance.

Keywords Bit error rate (BER) � Intersymbol interference (ISI) � Nyquist first criterion �
Parametric linear combination pulse (PLCP)

1 Introduction

The rapid growth of digital communication systems over the last years requires higher

error-free data rates and better bandwidth reuse. Current practical digital systems are band

limited; hence, system designers have to transmit higher error-free data rates within a fixed

limited bandwidth. Digital communication systems, with bandlimited channels, are char-

acterized by having a filter at the transmitter and receiver side [1]. At the transmitter side,

the data symbols, characterized as voltage levels or as impulses, are modulated and then

filtered to fulfill a certain bandwidth constraint. At the receiver side, we need to design a

filter that compensates for the distortion caused by the transmitter and the channel [1].

In a band limited digital communication system, channel distortion causes intersymbol

interference (ISI). The design of intersymbol interference (ISI) free band limited signals
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was a problem considered by Nyquist [1–3]. Nyquist’s first criterion guarantees that a

sequence of pulses, sampled at the optimum and uniformly spaced sampling instants, will

be ISI-free. Besides the ISI-free prerequisite, pulse shaping filters have to exhibit low

sensitivity to timing errors. In practical receivers, the presence of timing jitter causes the

actual sampling points to deviate from the optimal ones; hence, symbol timing errors are

produced. The prior implies that the tails of the filter must decay fast outside the pulse

interval in order to eliminate the undesired effects of jitter.

To meet the prior constraints, several Nyquist pulses have been reported. The most

popular ISI-free Nyquist pulse for distortionless transmissions is the raised cosine (RC)

pulse [2–5]. Further, the RC pulse has been proposed by the 3rd Generation Partnership

Project (3GPP) as the filter to be implemented at the user equipment (UE) and at the base

station (BS), for transmission and reception [4, 5]. The so called ‘‘better than’’ raised

cosine filter (BTRC), proposed in [6], and later derived in [3], outperforms the RC pulse in

terms of larger eye opening and smaller bit error rate (BER). In [7], a linear combination

between the RC pulse and the parametric linear pulse (PLP) was proposed to obtain a new

family of ISI-free Nyquist pulses. The family of pulses proposed in [7] is known as the

linear combination pulse (LCP). The LCP pulse was numerically optimized to outperform

the BTRC pulse in terms of a wider eye opening and a smaller BER [7]. Other superior ISI-

free pulses have been formulated, but will not be considered in this paper because they do

not have an explicit time-domain expression [8–11].

The main goal of this manuscript is to investigate the performance of the optimized

PLCP, originally derived in [12] for PAPR reduction, in terms of BER. The BER will be

evaluated in the presence of time sampling errors. Other tools will also be implemented to

evaluate the optimized PLCP. The maximum distortion and the eye opening of the opti-

mized PLCP will be evaluated, and will be compared with other existing Nyquist filters

with known explicit-time domain expressions.

2 Nyquist Parametric Linear Combination Pulses

Nyquist’s first criterion guarantees that a sequence of pulses sampled at the optimum

sampling instants will be ISI-free [2, 3]. Nyquist’s first criterion is given as

h pTð Þ ¼
1; p ¼ 0

0; p ¼ �1; �2; �3; . . .

(
; ð1Þ

where h(t) is the impulse response, and T is the symbol period. Whereas in the frequency

domain, the Fourier transform of (1) is given as follows

Xm¼1

m¼�1
H f þ m

T

� �
¼ T ; ð2Þ

where H(f) is the Fourier transform of h(t). The excess bandwidth of a Nyquist ISI-free

pulse is determined by the roll-off factor, 0 B a B 1, and T = 1/2B is the symbol

repetition rate for a bandwidth B[ 0.

According to [13], the linear combination of two pulses that comply with Nyquist’s first

criterion ensures that the resulting pulse will be ISI-free. In [12], a linear combination

between two ISI-free parametric linear pulses (PLP) was proposed. In general, the PLP

pulses and the BTRC pulse can be derived by applying the general parametric family of
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pulses defined in [3; Eq. (5)], in which n C 0 is a parameter that defines pulses with

different decay rates [3]. The impulse response of the derived PLCP is described as follows

[12]

h tð ÞPLCP¼ lh tð ÞPLPn¼1
þ 1� lð Þh tð ÞPLPn¼2

; ð3Þ

where l is the constant that corresponds to the linear combination, and it is defined for all

real numbers [12, 14]. The linear combination constant adds an additional degree of

freedom to design a pulse less sensitive to timing errors. The explicit time-domain ex-

pression of the PLCP pulse is given as

h tð ÞPLCP¼
sin psð Þ
ps

� 4 1� lð Þ sin2 pas=2ð Þ þ pals sin pasð Þ
p2a2s2

; ð4Þ

where s is the normalized time (s = t/T), and a is the roll-off factor. The pulse defined in

(4), evaluated for t = 0, and for any value of l, is equal to one. Additionally, the PLCP,

evaluated for p = ±1, ±2, ±3,…, and for any value of l, is always equal to zero.

Therefore, the proposed family of pulses in (4) fulfils Nyquist’s ISI-free criterion, previ-

ously described in (1).

In [12], the PLCP pulse was optimized for PAPR reduction for the single carrier

frequency division multiple access (SC-FDMA) system. It was found that the optimum

linear combination constant is equal to 1.60. Therefore, in this paper we will evaluate the

proposed pulse with l = 1.60, for different roll-off factors and sampling timing errors to

further validate the implementation of the optimum PLCP in digital communication

systems.

The impulse response of the optimum PLCP and the other pulses used for comparison

are plotted in Fig. 1. In most of our simulations we used a roll-off factor of 0.35, which is a
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Fig. 1 Impulse response of the proposed pulse and other existing pulses with a roll-off factor a = 0.35
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typical value used in literature [3, 6–13]. It can be seen that the ISI-free condition holds for

the optimum PLCP. The proposed pulse has the smallest relative magnitudes in its two

largest side lobes compared to those of the other evaluated pulses. The prior implies that

the undesired effects of jitter will be diminished, and the optimum PLCP will be less

sensitive to timing errors, resulting in a lower BER [3, 7–11]. Further, PAPR reduction can

be achieved by minimizing the amplitudes of the two largest sidelobes [12, 15, 16]. It can

be seen that the optimum PLCP has basically the same impulse response as the optimum

LCP pulse. In [7], it was found that the optimum LCP pulse has a linear combination

constant, c, equal to 1.70. Therefore, in this manuscript we will evaluate the LCP pulse

with c = 1.70.

3 Performance Evaluation

In this section, we evaluate the performance of the proposed pulse by using several

practical tools. The performance of the optimum PLCP will be compared with other

Nyquist pulses with known explicit time-domain expressions.

One of the tools implemented to analyze the performance of the proposed pulse is the

eye diagram, which is a mean of visually evaluating the vulnerability of the transmission

system due to ISI [1, 10]. We initially generated 104 uniform random data points and

implemented binary phase shift keying (BPSK) digital modulation. Next, we up sampled

the transmitted sequence by inserting additional zeros. Later, we convolved the up sampled

transmitted sequence with the pulses used for evaluation. Finally, we overlapped the time

domain samples to plot the eye diagrams. The corresponding eye patterns are depicted in

Figs. 2 and 3. For the sake of clarity and lack of space, only the outer and inner contour

boundaries have been generated, corresponding to maximum and minimum distortion,

Fig. 2 Inner and outer contour eye diagram boundaries eye of the PLCP and other existing pulses with a
roll-off factor a = 0.35
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respectively. Observe in Fig. 2 that the BTRC and the proposed pulse exhibit a much wider

eye opening than the parametric linear pulses (mainly PLP for n = 2) and the RC pulse;

hence, a lower BER is expected because these pulses deal better with ISI. This is despite

the fact that the proposed optimum pulse and the BTRC pulse decay as t-2, while the PLP

pulse, for n = 2, and the RC pulse decay as t-3. Nevertheless, a lower decay rate is not

always a disadvantage as long as the amplitudes of the two largest side lobes are dimin-

ished [3, 13, 17]. In Fig. 3 we plotted the outer and inner contour eye diagram boundaries

of the optimum PLCP, LCP, and the traditional RC pulse. It can be seen that the eye

diagram of the proposed PLCP pulse is almost identical as the one of the optimum LCP,

and exhibits a much wider eye opening than the RC pulse.

The maximum distortion experienced by each pulse is a more quantitative measure of

performance. It indicates the magnitude of the largest possible ISI sample at any given

instant [8, 11]. In all cases, the maximum distortion, which occurs at t/T = ±0.5, is smaller

for the optimum PLCP and the optimum LCP, as depicted in Table 1. For comparison

purposes, the maximum distortion was evaluated with different roll-off factors. It can be

seen that the proposed optimum PLCP filter has the minimum maximum distortion for a

Fig. 3 Inner and outer contour eye diagram boundaries of the PLCP, LCP, and RC pulse with a roll-off
factor a = 0.35

Table 1 Maximum distortion to
ISI

Pulse a = 0.35 a = 0.50

RC 1.6966 1.4786

BTRC 1.5065 1.3342

PLP (n = 1) 1.5443 1.3545

PLP (n = 2)
LCP

1.7470
1.4778

1.5304
1.3128

PLCP 1.4816 1.3108
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roll-off factor a = 0.5. For the case of a roll-off factor equal to 0.35, the optimum PLCP

pulse has a similar minimum maximum distortion as the optimum LCP pulse, and out-

performs the other pulses evaluated.

The last step of the evaluation process involves the calculation of BER in the presence

of time sampling errors. The BER is the most important metric of performance because it

considers the effects of synchronization, distortion, and noise. The error rates have been

computed according to [17] for binary antipodal signals, and 29 interfering symbols.

Let g represent the jitter timing error. If the probability density function of the jitter

timing error is defined as f(g), then the expected error probability due to ISI is defined as

E Pe½ � ¼
Z

Pe gð Þ f gð Þdg; ð5Þ

where Pe[g] is the error probability to ISI for a certain Nyquist pulse, and timing error g.
Considering the case of additive white Gaussian noise (AWGN) in the channel, and binary

antipodal signaling (BPSK), the error probability to ISI can be evaluated using the fol-

lowing truncated Fourier series [17]

Pe gð Þ ¼ 1

2
� 2

p
�

XM
m¼1

m¼odd

exp �m2w2=2ð Þ sin mwg0ð Þ
m

� � YN2

k¼N1

k 6¼0

cos mwgkð Þ: ð6Þ

In (6), M represents the number of coefficients considered in the approximate Fourier

series, w = 2p/Tf where Tf is the period used in the series, and N1 and N2 indicate the

number of interfering symbols before and after the transmitted symbol. Whereas gk =

p(kT ? g), p(t) is the Nyquist pulse implemented, and T is the symbol period. A system

signal-to-noise ratio (SNR) of 15 dB has been assumed, while different roll-off factors and

sampling time errors were implemented to evaluate the performance of the optimum

PLCP. The parameters used to evaluate the expression given in (6) for different Nyquist

pulses are given in Table 2, and comply with the ones implemented in [7, 13, 17].

The obtained results are tabulated in Table 3. In general, it can be seen that by in-

creasing the time sampling errors, the BER also increases. This is because when the

received signal is sampled off center, ISI is produced and the BER increases [3]. The

optimum PLCP yields smaller BERs compared to those of the other evaluated pulses, for

different roll-off factors and timing jitter. However, the optimum PLCP pulse doesn’t

always outperform the optimum LCP pulse in terms of BER. A reason for this could be that

Table 2 Simulation parameters
Parameter Value

M 31

Tf 30

Interfering Symbols 29

SNR 15 dB

Channel AWGN

Modulation BPSK

Roll-off factor a = 0.35, 0.50

Symbol timing errors t/T = ±0.05, ±0.1, ±0.2, ±0.25
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the optimum PLCP has been optimized for different performance evaluations, as well as

for PAPR reduction [12].

Overall, the proposed pulse exhibits an improved performance in terms of BER and

maximum distortion. Moreover, the optimum PLCP outperforms the BTRC and LCP pulse,

which are the best-known pulses with an explicit time-domain expression. A feasible

option for implementing the proposed optimum PLCP would be to implement it as a finite

impulse response (FIR) digital filter, as described in [18]. Consequently, the implemen-

tation of the proposed pulse is a viable option for digital communication systems with band

limited channels.

4 Conclusion

In this manuscript, we evaluated the performance of the optimum PLCP at the transmitter

and receiver side from different practical perspectives of interest. The proposed pulse

exhibits the largest eye opening, and possesses the minimum maximum distortion com-

pared to those of the other evaluated Nyquist filters with known explicit-time domain

expressions. The optimum PLCP produces a smaller BER compared to those of the the

other evaluated pulses, for different roll-off factors and timing offsets. Overall, the opti-

mum PLCP outperforms the RC pulse, which is the pulse proposed by the 3GPP group.

Further, the optimum PLCP and LCP pulses perform similarly.
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