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ESTIMACIÓN DE ESTADÍSTICAS DE DETECCIÓN EN LA

CONSTRUCCIÓN DE MAPAS Y LOCALIZACIÓN

SIMULTÁNEA

El uso de Conjuntos Aleatorios Finitos (RFS por su sigla en inglés) tiene varias ventajas

respecto de los métodos tradicionales basados en vectores. Entre ellas están el incluir las es-

tad́ısticas de detección del sensor y la eliminación de las heuŕısticas tanto para la asociación

de datos como para la inicialización y eliminación de objetos en mapa. Para obtener los

beneficios de los estimadores basados en RFS en el problema de Construcción de Mapas y Lo-

calización Simultanea (SLAM por su acrónimo en inglés), las estad́ısticas de detección y falsa

alarma del extractor de caracteŕısticas deben ser modeladas y utilizadas en cada actualización

del mapa. Esta Tesis presenta técnicas para obtener estas estad́ısticas en el caso de carac-

teŕısticas semánticas extráıdas de mediciones láser. Además se concentra en la extracción

de objetos ciĺındricos, como pilares, árboles y postes de luz, en ambientes exteriores. Las

estad́ısticas de detección obtenidas son utilizadas dentro de una solución a SLAM basada en

RFS, conocida como Rao-Blackwellized (RB)-probability hypothesis density (PHD)-SLAM,

y el algoritmo multiple hypothesis (MH)-factored solution to SLAM (FastSLAM), solución

a SLAM basada en vectores. El desempeño de cada algoritmo al usar estas estad́ısticas es

comparado con el de utilizar estad́ısticas constantes. Los resultados muestran las ventajas

de modelar las estad́ısticas de detección, particularmente en el caso del paradigma RFS. En

particular, el error en las estimaciones del mapa, medido utilizando la distancia optimal sub-

pattern assignment (OSPA) a un mapa “ground truth” generado de forma independiente,

disminuye en un 13% en el caso de MH-FastSLAM y en un 13% para RB-PHD-SLAM al

modelar las estad́ısticas de detección. A pesar de que no se tiene un “ground truth” para

la trayectoria del robot, se evalúan las trayectorias visualmente, encontradose estimaciones

superiores para el método propuesto. Por lo tanto, se concluye que el modelamiento de las

estad́ısticas de detección es de gran importancia al implementar una aplicación de SLAM.
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THE ESTIMATION OF DETECTION STATISTICS IN

SIMULTANEOUS LOCALIZATION AND MAPPING

The use of Random finite sets (RFSs) in Simultaneous localization and mapping (SLAM) has

many advantages over the traditional random vector based approaches. These include the

incorporation of detection and clutter statistics and the circumvention of data association and

map management heuristics in the estimation process. To take full advantage of RFS based

estimators in feature based SLAM, the feature extractor’s detection and false alarm statistics

should be modelled and used in each map update. This thesis presents principled techniques

to obtain these statistics for semantic features extracted from two-dimensional laser range

data, and focusses on the extraction of circular cross-sectioned features, such as trees, pillars

and lamp-posts, in outdoor environments. The derived detection statistics are used within

an RFS based SLAM algorithm, known as Rao-Blackwellized (RB)-probability hypothesis

density (PHD)-SLAM, and the state of the art multiple hypothesis (MH)-factored solution to

SLAM (FastSLAM). The performance of each algorithm is compared using the derived, as well

as the usually assumed constant, detection statistics. The results from real experimental data

demonstrate the advantages of explicitly modelling feature detection statistics, particularly

in the RFS framework. Specifically, the error in the map estimates, measured by the optimal

sub-pattern assignment (OSPA) distance to an independently generated ground truth map,

diminish by 13% in the case of MH-FastSLAM and by 13% for RB-PHD-SLAM. Although

ground truth information for the robot trajectory is not available, the trajectory estimates are

visually evaluated and found to be superior for the proposed method. Therefore, modelling

detection statistics is found to be of importance when implementing SLAM applications.
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Chapter 1

Introduction

Simultaneous localization and mapping (SLAM) is a problem in robotics in which a robot

uses its available sensor measurements to estimate a map of the operating environment, while

concurrently determining its pose relative to the map. The general probabilistic approach

currently adopted by the mobile robotics community uses random vectors to represent the

robot and map state, and solves SLAM through stochastic filtering, or batch estimation [1].

Recently, a different representation has been introduced for feature-based maps using random

finite sets (RFSs) [2, 3], in which random vectors, typically representing the spatial location

of individual landmarks, are placed in a set whose cardinality (feature number) is also a

random variable.

There are several benefits in using a RFS-based filtering approach to estimate the map in

SLAM, compared to a vector-based approach. Typically in vector-based approaches, the cor-

respondence between measurements and landmarks is performed separately from the actual

filter, and is determined using heuristics (e.g., by comparing the measurement to landmark

likelihood with a preset threshold). These correspondences are required to determine which

landmark estimate is updated by which measurement. In contrast, under an RFS SLAM

framework, data association becomes a part of the landmark estimate update process for

which Bayes theorem is applied. Essentially, the RFS approach updates landmark estimates

by simultaneously associating them with every measurement, eliminating the need for heuris-

tics. Another benefit of RFS-based filtering is that it accounts for detection statistics (feature

probabilities of detection and false alarm). Finally, the RFS approach not only estimates the

spatial position of landmarks, but also the number of landmarks that have entered the field of

view (FoV) of the robot’s sensors. This is because the cardinality of a RFS is also a random

variable that is estimated. Therefore, to fully utilize the capabilities of RFS based filters,

modelling of a feature detector’s detection statistics is necessary.

In most RFS update stages, a feature’s probability of detection is a state dependent

quantity, which in the case of SLAM implies that it depends on the current robot’s pose and
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the position of that feature itself. However, principled methods that currently provide such

statistics calculate them based upon the measurements themselves, such as the well known

constant false alarm rate (CFAR) processors applied to radar data. Since the detection

statistics required by RFS-SLAM are state dependent and there is no concept of feature

to measurement association in RFS-SLAM, measurement based detection statistics, such as

those provided by CFAR detectors, cannot be directly applied in RFS techniques. This

thesis therefore addresses methods to estimate these statistics on a per estimated feature

basis, taking into account feature occlusions.

This thesis proposes a method of obtaining the detection statistics of a laser data feature

extractor, and its use in a RFS-SLAM implementation, known as probability hypothesis

density (PHD)-SLAM; an application of one of the simplest mathematical finite set statistics

(FISST) tools for estimation with RFSs, developed by Mullane, Vo, Adams, and Vo [2].

The contribution of this thesis is to demonstrate the implementation of PHD-SLAM with

commonly used 2D scanning laser range finders, as well as the importance of modelling sensor

detection statistics in a principled manner. A simple feature detection strategy is presented,

in which the expected and variable probabilities of detection associated with laser range data

are derived. Results of applying the laser based feature detector under a Rao-Blackwellized

(RB)-PHD-SLAM framework [2] are presented and compared with results obtained from the

same algorithm, with the usually assumed constant feature probabilities of detection within

the sensor’s FoV. Results from a state of the art SLAM solution, multiple hypothesis (MH)-

factored solution to SLAM (FastSLAM), are also shown for comparison purposes, both with

the derived detection statistics and with constant probabilities of detection.
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Chapter 2

Literature Review

This chapter presents the state of the art in SLAM methods and shows some of the work that

has been carried out, which includes detection statistics within state estimation framework.

It also briefly presents the concepts of random finite set (RFS).

2.1 Simultaneous Localization and Mapping

The SLAM problem is one of the fundamental problems in mobile robotics, and has been

considered by some to be the “Holy Grail” of mobile robotics [4]. A robot equipped with

exteroceptive sensors (and optionally proprioceptive as well) is tasked with estimating a map

of its environment as it transverses it, while concurrently estimating its pose within that

map. During the last two decades remarkable progress has been made on this problem and

this section reviews the SLAM problem and some of the most important advances.

2.1.1 SLAM Process Model Dynamics

SLAM is a state estimation problem, in which the best estimate of the robot trajectory

and map feature positions is sought over time, using all sensor measurements. In general,

the underlying stochastic system representing the robot’s pose component of SLAM using

non-linear discrete-time equations, is represented as:

xk = g(xk−1,uk−1, δk−1) (2.1)

zi
k = h(xk,m

j
k, ǫk) , (2.2)

where:

• xk represents the robot pose (spatial coordinates and orientation) at time-step k,
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• g is the robot motion model,

• uk is the the odometry measurement at time-step k,

• δk is the process noise at time-step k,

• zi
k is the i-th measurement vector at time-step k,

• h is the sensor-specific measurement model relating measurement and state in the

spatial domain,

• m
j
k is a random vector for the position of landmark j,

• ǫk is the spatial measurement noise

Traditional vector-based approaches to SLAM concatenate random state vectors that

model the robot and landmarks, in a single vector that is used for the estimation process:

mk ≡
[

m1
k,m

2
k, ...,m

m
k

]T
. (2.3)

Similarly, multiple measurements, corresponding to feature detections are also concatenated

as:

zk ≡
[

z1
k, z

2
k, ..., z

n
k

]T
. (2.4)

Furthermore, the generally complex data association problem needs to be solved so that i

and j correspond to the same landmark.

Within the RFS approach, the observed landmarks up to and including time-step k, are

defined as

Mk ≡ {m1
k,m

2
k, ...,m

m
k } , (2.5)

where the number of landmarks, |Mk| = m, is also a random variable. In general, the

landmark from which a measurement is generated is unknown. Furthermore, there is a

probability of detection, PD , associated with every landmark, implying that it may be

misdetected with probability 1 − PD. Measurements may also be generated from sensor

noise or objects of non-interest (clutter), with assumed known distributions. The set of all n

measurements at time-step k is defined as

Zk ≡ {z1
k, z

2
k, ..., z

n
k} . (2.6)
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With these definitions a new, set-based, measurement model can be defined:

Zk ≡ H(xk,Mk, ǫk) ∪ Ek , (2.7)

where Ek represents the clutter and ǫk represents the spatial noise of the measurements.

Using a probabilistic framework and a filtering approach, the probability density functions

(PDFs)

p
(

x0:k,Mk

∣

∣

∣
Zk,u0:k

)

, (2.8)

p
(

x0:k,Mk

∣

∣

∣
Zk,u0:k

)

(2.9)

are sought by RFS and vector approaches respectively. In both cases the estimates are made

relative to the initial robot’s pose, at each time step.

2.1.2 Observability of SLAM

The first question that should be asked after formulating the SLAM problem is whether

it is actually solvable. In control theory observability is defined as the ability to estimate

the state of a system from its inputs and outputs. In 2001, Dissanayake, Newman, Clark,

Durrant-Whyte, and Csorba [4] provided a solution to the two-dimensional linear version of

the SLAM problem, with known initial pose, and proved its convergence. This implies the

observability of the problem. However, the observability of the linear version of the problem

cannot be applied to the real SLAM definition, which is highly non-linear. In 2006, Lee,

Wijesoma, and Ibanez Guzman [5] showed that the two-dimensional non-linear version of

SLAM with range bearing measurements and unknown initial robot pose is observable only

if at least two landmarks have known positions. Wang and Dissanayake [6] used Fisher’s

linear discriminant to show that a general way to calculate the observability of different non-

linear SLAM formulations. They used their method to confirm the results in [5] and show

that the solution to two-dimensional SLAM, with known initial pose and a range bearing

measurement model, is observable without the need for known feature positions.

It is important to note that all the results on the observability of SLAM have been

obtained using the vector-based formulation of SLAM, with known feature number and data

association. Therefore these results cannot be directly applied to the set-based definition of

the SLAM problem.

2.1.3 Vector based SLAM

Dissanayake, Newman, Clark, Durrant-Whyte, and Csorba [4] introduced a solution based

on the extended Kalman filter (EKF), EKF-SLAM, given known target number and data
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association. In the case of linear measurement and robot motion models they proved that

it will converge monotonically to the correct solution, for both the map estimate and robot

trajectory. The complexity of this algorithm is O(|z| |m|2), where |z| and |m| are the number

of measurements and number of landmarks respectively.

Thrun, Liu, Koller, Ng, Ghahramani, and Durrant-Whyte [7] introduced a solution to

SLAM by modifying the dual of the EKF, called extended information filter (EIF). In EIF-

SLAM instead of representing the posterior using its mean µ and covariance Σ it is repre-

sented using the information matrix H and information vector b, defined as:

H ≡ Σ−1 (2.10)

b ≡ µTH . (2.11)

In the paper the authors showed that the solution to EIF-SLAM in this form is naturally

sparse. By enforcing this sparseness the authors reduced the complexity of both the prediction

and the update steps to constant time. This considers the addition of a single measurement

at a time, making the complexity of the algorithm O(|Z|). However, significant computation

is required to recover the mean and covariance from the information matrix and vector. It

was shown shown that this new sparse EIF (SEIF) is more likely to become inconsistent (i.e.

overconfident) than its non sparse counterpart, but this did not seem to impact the results

of the experiments.

Montemerlo, Thrun, Koller, Wegbreit, et al. [8] introduced a RB-particle filter (PF)

solution to SLAM, called FastSLAM, by factoring the Bayes posterior into:

p
(

x0:k,Mk

∣

∣

∣
Zk,u0:k

)

= p
(

x0:k

∣

∣

∣
Zk,u0:k

)

p
(

Mk

∣

∣

∣
x0:k, Zk,u0:k

)

(2.12)

= p
(

x0:k

∣

∣

∣
Zk,u0:k

)

|Mk|
∏

i=0

p
(

mi

∣

∣

∣
x0:k, Zk,u0:k

)

. (2.13)

This implies that landmarks in the map are conditionally independent given the robot tra-

jectory. Therefore, instead of using a single EKF with a state vector of dimension |Mk|, each

particle uses a collection of |Mk| fixed dimension EKFs to track individual landmarks sepa-

rately. To do this the full trajectory has to be estimated, for which a particle filter is used.

Finally by storing the features in a K-D Tree they managed to reduce the computational

complexity of the algorithm to O(|Z| log(|M |))

Roller, Montemerlo, Thrun, and Wegbreit [9] proposed an improved version of FastSLAM,

called FastSLAM 2.0, in which the measurements are included in the proposal distribution

of the particle filter. This allows for a more efficient use of the particles, permitting either

the use of a reduced number of particles or the potential closure of longer loops.

Nieto, Guivant, Nebot, and Thrun [10] introduced a different modification to the Fast-
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SLAM algorithm by applying the Multiple Hypothesis Tracking concepts to deal with the

data association problem in SLAM. Multiple Hypothesis Tracking is a deferred decision

strategy in which multiple data association hypotheses are kept in anticipation that future

measurements will disambiguate the data association uncertainty. In this algorithm, called

MH-FastSLAM, when a particle determines that multiple hypotheses are possible it splits

into several particles, one for each possible data association, including a new feature and false

alarm hypotheses. After this, the regular weighting and re-sampling of particles is expected

to resolve the uncertainty at a future time.

Thrun and Montemerlo [11] proposed a different strategy to solve the SLAM problem,

called graph SLAM. This is also referred to in the literature as batch estimation and bundle

adjustment from computer vision. Graph SLAM consists of progressively building a graph

of soft constraints (referred in the paper as information constraints). In this graph each

measurement zi
k introduces a constraint between the landmark it represents and the robot’s

pose at time k, xk:

fk(z
i
k,xk) ≡ (zi

k − h(xk,m
j(i)
k ))TQ−1

k (zi
k − h(xk,m

j(i)
k )) , (2.14)

where Qk is the covariance of the measurement model, which is assumed to have additive

Gaussian noise. Similarly each movement of the robot introduces a constraint between two

contiguous poses of the robot xk and xk−1:

gk(xk,xk−1) ≡ (xk − g(uk−1,xk−1))
TR−1

k (xk − g(uk−1,xk−1)) , (2.15)

where Rk is the covariance of the motion model, which is also assumed to have additive

Gaussian noise. Using this graph the solution is obtained by minimizing the cost function

(2.16).

min
x0:k

xT
0Ω0x0 +

∑

k

∑

i

fk(z
i
k,xk) +

∑

k

gk(xk,xk−1) , (2.16)

where the xT
0Ω0x0 term is called an anchoring constraint, where Ω0 should be a positive

definite matrix, and it anchors the absolute coordinates of the map by locking the first pose

of the trajectory to [0, 0, 0]. The minimization problem can be solved in many ways, but in

the paper it was solved by linearising it and solving it in the information space. This way

not only the mode is recovered but also its associated covariance.

Collectively all the methods previously described suffer from the problem of being vector

based solutions to SLAM. This means that they have to rely on heuristics to solve both

the data association and map management problems. For this reason this Thesis will focus

on set based methods which rely on Bayes theorem to solve these problems, as well as the

7



conventional state estimation problem.

2.1.4 Random Finite Set based SLAM

Mullane, Vo, and Adams [12] introduced the concept of Random Finite Sets into the SLAM

problem. By recognizing that the SLAM state is more naturally represented by a set, instead

of a vector, they where able to include the data association and map management problems

into the Bayesian estimation paradigm. Previous solutions to the SLAM problem, such as the

ones described in the previous section, resolved these problems using heuristic approaches.

Chapter 3 will provide the details of RFS-based SLAM.

2.2 Random Finite Sets

Traditional Bayesian state estimation has previously been focused on vector states. In this

paradigm the problem is presented as having a prior distribution for the state vector x:

x ∼ p(x) . (2.17)

And the user is provided with a measurement vector z and its corresponding measurement

model:

z ∼ g(z|x) . (2.18)

Using both of these and Bayes Theorem, the posterior is obtained:

p(x|z) =
p(x)g(z|x)

p(z)
. (2.19)

To apply this theorem when either the length of the state vector or the data association

are unknown, heuristics with varying degrees of rigour are usually applied. In fact, Bayes

theorem can only be strictly applied when the dimension of the measurement and state

vectors, and the data association are known. When this is not the case, map management

heuristics are required to associate the state vector elements with the corresponding elements

in the measurement vector, so that Bayes theorem can be applied to the model with assumed

known data association.

Mahler [13] proposed a new paradigm for Bayesian estimation in these cases, by replacing

the state vector x with a RFS X . In this context it is natural to think of the size of

the set as a random variable. Also, by having no particular order, sets are well suited to

handle the data association in a rigorous way. To solve this problem Mahler [13] introduced

new tools to allow the propagation of random sets through Bayes theorem, called Finite Set
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Statistics. By using these concepts a variety of new filters have been introduced based on

various assumptions. These include the PHD, the cardinalized PHD (CPHD) [13] and the

cardinality balanced multi-target multi-Bernoulli (CB-MemBer) [14] filters.

2.2.1 Probability Hypothesis Density filter

In this section, a simplified version of the PHD filter will be introduced. Further details will

be presented in Chapter 3. In the PHD filter the state is assumed to be a Poisson RFS, this

means that the elements are independent and identically distributed, and that the cardinality

of the set follows a Poisson distribution:

|X| = r ∼
λr

r!
e−λ , (2.20)

where r is the cardinality of the set X and λ corresponds to both the mean and variance of

the distribution. The distribution of the set can then be modelled by its first moment vk(m),

called its intensity or PHD. This intensity function is similar to a probability distribution

but, instead of integrating to unity, it integrates to the mean of the number of randomly

varying elements within the set.

Using this intensity the PHD filter’s prediction equation propagates the intensity through

time:

v−k (m) =

∫

ps,k(χ)fk|k−1(m|χ)v+k−1(χ)dχ

+

∫

βk|k−1(m|χ)v+k−1(χ)dχ+ vbk(m) , (2.21)

where:

• v+k−1(m) is the intensity of features at m at time k − 1 given all measurements up to

time k − 1,

• v−k (m) is the intensity of features at m at time k given all measurements up to time

k − 1,

• ps,k(χ) is the probability of a feature at state χ to survive to time k,

• fk|k−1(m|χ) is the state transition probability from state χ to state m,

• βk|k−1(m|χ) is the probability that a feature at state χ will spawn another feature at

m,

• vbk(m) is the intensity of the set of new features that might appear at m.
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In SLAM, however, features are usually considered to be static, permanent, and incapable of

spawning new features, so the prediction equation simplifies to:

v−k (m) = v+k−1(m) + vbk(m) . (2.22)

The measurement set, Z, is distributed according to a multi-target measurement model,

in which each element, m, in the state set X generates a measurement with probability

PD(m) and generates no measurement with probability (1−PD(m)). Clutter measurements

are assumed to have a known Poisson distribution. Therefore, the measurement set Z is

the union of the detection and the clutter sets. Using these assumptions, the PHD update

equation

v+k (m) = v−k (m)



1− PD(m) +

|Zk|
∑

i

PDh(zi|m)

κ(zi) +
∫

PDh(zi|m)v−k (m)dm



 (2.23)

has been derived [13]. In Equation (2.23), κ(zi) is the intensity of the false alarm set at the

position where measurement zi was obtained. In this update equation, v−k (m)(1− PD(m))

represents the possibility that features where misdetected while the second term represents

detections. To implement this update equation the intensity can be represented either using

sequential Monte-Carlo methods or a Gaussian mixture (GM)[13]. Sequential Monte Carlo

methods have the advantage of being able to deal with highly non-linear measurement models

while the GM-based implementation has a considerably reduced computational complexity,

but is only able to deal with mildly non-linear measurement models (by using the Extended

Kalman Filter to update means and covariances of each Gaussian Component). Because of

the potentially large size of the SLAM state, which can range from hundreds to millions of

features, only the GM-based solution will be used in this Thesis.

2.3 Detection Statistics for Feature Extractors

Within the autonomous robotic navigation literature, feature detection statistics are largely

ignored, and the uncertainty is considered to lie solely in the spatial domain; this is typically

modelled as range and bearing uncertainties [1, 15]. This implies that the probabilities of

detection of features that have been associated are assumed to be unity, and the probabilities

of false alarm of the associated measurements are assumed to be zero. The probabilities of

detection of unassociated features are considered to be zero, while the probabilities of false

alarms of unassociated measurements are assumed to be unity. In turn, it is then considered

the task of the external map management and association heuristics to “deal” with false

alarms and missed detections, before map estimation takes place. As can be seen from
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Equation (2.23) the RFS-based PHD filter method includes the probability of detection PD

and false alarm distribution κ(zi|xk) directly into the filter’s update step, making the feature

detector’s detection statistics an intrinsic part of the state estimation process and its solution.

Within the tracking community, detection statistics are considered to be of prime impor-

tance, however object detection probabilities are usually naively considered to be constant,

despite the fact that the varying relative positions of objects and the sensor, and any occlu-

sions typically have a large effect on that object’s detection probability [16]. Little attention

is given to the shape of a sensor’s FoV and the possibility of partial or total object occlusion,

and their quantified effects on the expected detection statistics. Therefore the modelling of

detection statistics, specifically for features derived from laser range finder data, is one of the

main contributions of this Thesis.

In [17], the requirement for a feature detector is removed by modelling laser range data, in

which multiple measurements can be produced, by single “extended” features. The number

of such extended feature measurements is modelled as a Poisson RFS. They model the prob-

ability of detection, including occlusions, using the estimated features. Although this can

be a good solution in tracking problems, in SLAM it is common for them to be unmodelled

objects that can occlude the sensor. This is why the model proposed in this Thesis uses laser

measurements, which are affected by modelled and unmodelled objects alike.

In [18], a modified PHD filter was introduced, that uses RADAR measurement amplitude

information together with its accompanying range value. The distribution of this amplitude

was modelled using one of the Swerling Models [19], which provide probabilistic models of

received power fluctuations when RADAR to target viewing aspect changes. In the chosen

model there is no dependency on the sensor position and the dependency on the environment

is modelled by a single constant parameter d, which corresponds to the signal to noise ratio

of the RADAR sensor:

pFA(a) = a exp

(

−a2

2

)

, a ≥ 0 (2.24)

pD(a) =
a

2(1 + d)
exp

(

−a2

2(1 + d)

)

, a ≥ 0 , (2.25)

where a is the received amplitude of the radar signal, pFA(a) and pD(a) are the distributions of

a for false alarms and targets of interest respectively. The inclusion of amplitude information

was accomplished in three different ways, namely by having prior knowledge of the value of

d, by estimating d along with the feature locations, and by having prior knowledge of the

distribution of d and marginalizing it out of the PHD update equation. In every case the
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modified PHD update equation is:

v+k (m) = v−k (m)(1− PD(d)) + v−k (m)

|Zk|
∑

i

PD(d)g
τ
a(a|d)h(zi|m)

κ(zi|xk)gτFA(a) +
∫

PD(d)gτa(a|d)h(zi|m)v−k (m)dm
,

(2.26)

where gτFA(a) and gτa(a|d) are the clutter and measurement likelihoods of the amplitude a to

occur given that a detection threshold τ was exceeded:

gτFA(a) =







pFA(a)∫
a>τ

pFA(a)da
a ≥ τ

0 a < τ
(2.27)

gτa(a|d) =







pD(a)∫
a>τ

pD(a)da
a ≥ τ

0 a < τ
. (2.28)

The difference with the standard PHD update from Equation (2.23) is the inclusion of these

likelihoods, which will augment the weight of measurements which are more likely to be true

detections rather than clutter.

Using the Cramer Rao lower bound1 [20] the authors showed that estimating d is im-

practical in the case of this particular sensor model. They also presented a reasonable prior

distribution for d and showed that, by marginalizing d using this distribution, the filter

performance in terms of the optimal sub-pattern assignment (OSPA) metric could be im-

proved compared to experiments which ignored the amplitude information. This d or its

prior distribution was also used to determine the probability of detection used in the PHD

filter.

Although this filter includes the information that is typically provided by radar detec-

tors, the requirement for the probability of detection of the filter is not removed. However,

this statistic is usually not provided. In this Thesis a method to obtain the probability of

detection in the case of LIDAR-based features will be presented. The incorporation of fea-

ture descriptor information within a feature detector, in a similar manner as in [18], will

also be implemented within a PHD SLAM framework and compared to the standard PHD

filter implementation, which ignores this information. Further analysis is required in order

to determine the distribution that would be analogous to Clark et al. [18]’s gτa(a|d) in the

feature detector used in this Thesis. This analysis will be performed in Chapter 5.

1The Cramer Rao lower bound is a theoretical limit for the covariance of any unbiased estimator. It is
equal to the inverse of the Fisher information matrix. An unbiased estimator that has a covariance equal to
the bound is said to be efficient. [20]
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Chapter 3

Random Finite Set SLAM

In this chapter, RFS-SLAM will be introduced along with the inclusion of the detection

statistics of the feature detector.

3.1 Rao-Blackwellized (RB)-Probability Hypothesis

Density (PHD) SLAM

The SLAM posterior PDF (Equation (2.8)) can be factored into the form [2, 8]

p
(

x0:k

∣

∣

∣
Zk,u0:k

)

p
(

Mk

∣

∣

∣
x0:k,Zk,u0:k

)

, (3.1)

such that the first term in (3.1) is a conditional PDF on the robot trajectory and can be

sampled using particles. The second term in (3.1) is the density of the map conditioned

on the robot trajectory. In the RFS-based approach, the map RFS is also assumed to

follow a multi-object Poisson distribution. This implies that features are independently and

identically distributed, while the number of features is Poisson distributed.

|Mk| = m ∼
λme−λ

m!
(3.2)

p
(

Mk = {m1
k,m

2
k, ...,m

m
k }
∣

∣

∣
|Mk| = m

)

= m!
m
∏

i=1

pm(mi) (3.3)

In (3.3), pm(·) is the spatial distribution for the features in the map. Note that the m! term

comes from the fact that a set includes all possible permutations of its elements. This allows

the PDF of the map RFS to be approximated by a time varying intensity function, vk:

vk = vk(m) = λpm(m) (3.4)
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The PDF is then approximated as follows:

p(Mk = {m1,m2 ... mm}) =

∏m
i=1 vk(mi)

exp(
∫

vk(m)dm)
(3.5)

In contrast to vector-based RB-PF approaches, which use the EKF to update the Gaussians

for individual landmarks, a PHD filter is used to update the map intensity function [2]. A brief

overview of the main steps in the RB-PHD filter now follows, highlighting the importance of

detection statistics.

3.1.1 Particle Propagation

At time-step k, the particles representing the prior distribution,

xi
k−1 ∼ p

(

x0:k−1

∣

∣

∣
Z1:k−1,u0:k−1

)

(3.6)

are propagated forward in time by sampling the motion noise, δi
k, and using the motion

model (2.1):

xi
k = g(xi

k−1,uk−1, δ
i
k−1) ∼ p

(

x0:k

∣

∣

∣
Z1:k−1,u0:k−1

)

(3.7)

This step is common to vector-based Rao-Blackwellized solutions to SLAM.

3.1.2 Prediction

For each particle, its map intensity from the previous update, vk−1, is augmented with an

arbitrarily small “birth” intensity vbk, according to the PHD filter predictor equation:

v−k (m) = v+k−1(m) + vbk(m) (3.8)

This “birth” intensity vbk(m) represents the number of new features that might appear at m

and is usually heuristically determined. This intensity is required to model the appearance

of new features.
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3.1.3 Map Update

The map intensity for each particle is updated with the latest measurements according to

the PHD filter correction equation:

v+k (m) = v−k (m)



1− PD(m) +

|Zk|
∑

i

PD(m)h(zi|m)

κ(zi|xk) +
∫

PD(m)h(zi|m)v−k (m)dm



 (3.9)

= v−k (m)(1− PD(m)) + v−k (m)

|Zk|
∑

i

PD(m)h(zi|m)

κ(zi|xk) +
∫

PD(m)h(zi|m)v−k (m)dm

In (3.9), the first term is a copy of v−k (m) scaled down by the factor (1−PD(m)) to account

for the possibility of missed detections. In the second term, note that instead of determining

data association based on heuristics, the PHD filter determines how much a measurement

should influence each landmark estimate.

3.1.4 Importance Weighting and Re-sampling:

The weighting and re-sampling of particles is the method used to update the robot trajectory

PDF after propagation (also known as the proposal distribution). This is given by

p
(

x0:k

∣

∣

∣
Z1:k−1,u0:k−1

)

. (3.10)

This has to to be updated to become a new PDF representing the robot trajectory after

measurement updates (or the target distribution),

p
(

x0:k

∣

∣

∣
Z1:k,u0:k−1

)

. (3.11)

Bayes rule allows the weighting distribution in terms of (3.10) and (3.11) to be expressed as

p
(

x0:k

∣

∣

∣
Z1:k−1,u0:k−1

)

p
(

x0:k

∣

∣

∣
Z1:k,u0:k−1

) = ηp
(

Zk

∣

∣

∣
x0:k,Z1:k−1

)

, (3.12)

in which η is a normalizing constant. Since (3.10) and (3.11) are sampled using particles,

the weighting distribution, defined as wk, is also sampled such that a weight is calculated for
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each particle. To solve (3.12), we use Bayes Theorem to express it as:

wk ≡ p
(

Zk

∣

∣

∣
x0:k,Z1:k−1

)

= p
(

Zk

∣

∣

∣
Mk,x0:k

) p
(

Mk

∣

∣

∣
Z1:k−1,x0:k

)

p
(

Mk

∣

∣

∣
Z1:k,x0:k

) . (3.13)

Equation (3.13) can be solved because the map RFS is assumed to be multi-object, Poisson

distributed. Note from (3.13) that the choice of the map, Mk, for which the expression is

evaluated in its general form is theoretically arbitrary since the left-hand side of (3.13) is

independent of the map. This has led to multiple solutions that adopt the empty-set strategy,

the single-feature strategy and multi-feature strategy in determining the particle weight in

(3.13). It was previously shown that the choice of the map can have a significant effect on the

performance of the filter and that the performance of the multi-feature strategy is superior

to the others [21]. This is achieved at the cost of an increased computational complexity.

The multi-feature strategy is adopted in this work.

Importantly, within the above four steps, the map update and particle weighting steps

require the knowledge of both the probability of detection of the feature detector and the

distribution (PHD) of its false alarms. These important requirements are the subject of

Section 3.4.

3.2 Gaussian Mixture implementation of RB-PHD

SLAM

The first order approximation of the set based Bayes filter, the RB-PHD filter, presented in

Section 3.1 is still intractable. This is because the intensity function of the map vk(m) is a

general function of the entire landmark state space. A representation of it would have one

degree of freedom for every possible value of the state vector (i.e., it would have to store

the value of vk(m) for every possible value of m), which is an infinite number. In practice

however, by approximating vk(m) with a Gaussian mixture the number of variables needed

to represent vk(m) becomes a finite number:

vk =
∑

i

ωi
kN
(

m
∣

∣

∣
µi

k,Σ
i
k

)

. (3.14)

In this section the implementation details of the Gaussian mixture implementation of RB-

PHD SLAM are demonstrated.
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3.2.1 Prediction

In order to maintain the Gaussian mixture form of the PHD of the map. The prediction step

of the filter requires the “birth” intensity to be a GM also:

vbk =

|Zk−1|
∑

i

ωBN
(

m
∣

∣

∣
µi

k,Σ
i
k

)

. (3.15)

With this, the prediction step of the filter of Equation (3.8) becomes:

v−k = v+k−1 +

|Zk−1|
∑

i

ωBN
(

m
∣

∣

∣
µi

k,Σ
i
k

)

. (3.16)

This means that the PHD prediction becomes the sum of the previously estimated GM and

the “birth” GM.

3.2.2 Map Update

In the case of the update step, the spatial measurement model h(zi|xk,m) can be approx-

imated using the EKF. This implies that vk(m) maintains its Gaussian form through the

update step shown in Equation (3.9), which becomes:

v+k (m) = (1− PD)v
−
k (m) +

|Zk|
∑

i

N−

k
∑

j

ω
i,j
k N

(

m
∣

∣

∣
µ

[i,j]
k ,Σ

[i,j]
k

)

. (3.17)

As in Equation (3.9) the first term is a copy of v−k with lowered weights to account for

the possibility of missed detections. The second term adds a new Gaussian for each pair

comprising a new measurement and an existing Gaussian in the intensity map. Also, as in

the previous definition, the PHD filter determines how much a measurement should influence

each landmark estimate. This is carried out by the weighting factor calculation:

ω
i,j
k =

PDω
j
kq
(

zi
k|µ

[j]
k ,Σ

[j]
k

)

κ+
∑N−

k

l=1 PDω
l
kq
(

zi
k|µ

[l]
k ,Σ

[l]
k

) , (3.18)

where q() is the measurement likelihood given a feature estimate, and κ is the clutter den-

sity, typically assumed constant over the FoV of the sensor and with a total mass (
∫

κ dm)

equivalent to the expected number of false alarms at time k. The mean and covariance pa-

rameters for each new Gaussian, created from measurement i and landmark j,
(

µ
[i,j]
k ,Σ

[i,j]
k

)

,

are determined using the EKF update step (note that other variants of the Kalman filter

(KF) would also be possible to use).
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3.2.3 Merging and Pruning of the Map

As can be seen from Equation (3.17), the number of Gaussians in vk(m) increases by a factor

of |Zk| + 1 with each update. If left unchecked this would imply an exponential growth in

Gaussian number. To account for this, Gaussians with small weights can be eliminated from

the intensity function, while Gaussians that are close to each other can be merged [3, 12]

This approximation is critical in limiting the computational requirement of the RB-PHD

filter [22].

3.3 Limitations

As mentioned before, the PHD filter is a first order approximation of the Bayes filter for

Random Finite Sets. Therefore it should have similar problems as its vector counterpart, the

alpha-beta filter when compared to the Kalman filter. Some of these limitations are [13]:

• Feature number estimates tend to be very unstable in the presence of false alarms and,

especially missed detections. In other words the PHD filter is forgetful and is more

responsive to new measurements than to estimated priors.

• There is a great loss of information by representing the full map distribution with only

its first moment. This can only be overcome by having a large enough signal to noise

ratio; i.e., having high PD and low clutter rate κ.

To overcome some of these difficulties a modification of the PHD filter, called the CPHD

was devised [13]. This filter keeps track of both the first moment of the distribution (the

PHD) and an estimate for the distribution of the total number of features, which can be

arbitrary instead of Poisson. This stabilizes the total number of features at the cost of an

increased computational complexity.

3.4 Detection statistics in RFS SLAM

In this chapter, the PHD filter was shown using a constant probability of detection PD and

false alarm density κ. In general, both can depend on the state of the robot and the state of

the environment:

PD = PD(m|xk,Γ) (3.19)

κ = κ(z|xk,Γ) (3.20)

Here, Γ represents the full state of the environment, including but not limited to, the sub-

section of it being estimated (i.e., the feature locations). PD(m|xk,Γ) is the probability of a
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Figure 3.1: A pentagon detector that is occluded by walls, its probability of detection will
not be constant. The yellow areas represent the zone where PD is non zero and its intensity
represents the value of PD

feature at m generating a measurement. κ(z|xk,Γ) is the PHD for spurious measurements.

For example, if the sensor being used is affected by occlusions then it may be the case that

not all objects that can generate occlusions are represented in the map. In SLAM applica-

tions the probabilities of detection associated with feature extractors are usually not known

and furthermore these probabilities cannot realistically be approximated by a constant value.

Figure 3.1 shows a hypothetical shape detector (as an example in the figure a pentagon de-

tector) that is occluded by walls. The value of PD associated with each pentagon is therefore

highly dependant on the state of both the robot and the environment. Even though the walls

may not constitute detections of interest they still affect the probability of detection of the

pentagons. The spatial distribution of false alarms is more complex to model since the source

of false alarms can vary depending on the environment. Given this lack of knowledge about

the false alarm distribution, approximating it by the least informative distribution; i.e., the

uniform distribution, is usually accepted as a reasonable assumption. The expected number

of false alarms can be estimated from real data or can be left as a parameter of the algorithm

to tune. In the PHD filter formulation, the probability of detection can have any general

shape. However, in the GM implementation of it, to maintain the GM form throughout

the update step of the filter, shown in Equation (3.9), PD can be assumed to vary slowly

compared to the covariance of the Gaussians (and therefore be approximated by a piecewise

constant function), approximated by another GM or a just a constant value.

3.4.1 Adding a buffer zone

Current implementations of the PHD filter are primarily concerned with the target tracking

problem, which, although similar to the SLAM problem, does not have the same requirements.
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In general it is not expected for a filter to continue tracking targets that have left the FoV

of the sensor. In the SLAM paradigm, however, it is of prime importance to keep these

estimates in order to continue the estimation process when the landmarks come back into

the robot’s FoV.

Given the PHD filter’s propensity to discard old information in favour of the current

measurements, as mentioned in Section 3.3, it frequently removes feature estimates that are

close to the edge of the FoV and are expected to have high probability of detection but are

not detected. This can occur either because there is an error in calculating PD or because of

the normal randomness of the process.

To account for this, a modification to the PHD filter is proposed. Feature estimates that

are close to the edge of the FoV (i.e., in the buffer zone) are prevented from generating less

weight (i.e., the sum of the weights generated by the Gaussian during the update step) than

they had before the update step, while still allowing their spatial estimates to be updated.

A Gaussian component is said to be in the buffer zone if its spatial uncertainty makes it

possible (for the real feature it represents) to be both in and out of the sensor’s FoV, this

means that its probability of detection is an unknown number in the [0, 1] interval. To deal

with this uncertainty, a heuristic method is implemented. For every Gaussian in vk that is

in the buffer zone, the total weight that the Gaussian generated is compared to its weight

before the update. If it is lower, the missed detection component is increased to compensate:

ω
j
k+ =



























(1− PD)ω
j
k− if

|Z|
∑

i=0

ω
i,j
k ≥ PDω

j
k−

ω
j
k− −

|Z|
∑

i=0

ω
i,j
k else

(3.21)

This heuristic, shown in Equation (3.21), tries to avoid the most destructive case, in which

the probability of detection is zero but the algorithm assumes it is a non-zero value. While the

heuristic intuitively makes sense, there are other alternatives to deal with this problem. These

include changing the filter for another RFS-based method, such as the CB-MemBer filter,

or using other heuristics. For example keeping the total weight generated by each Gaussian

constant (for the Gaussian components that are in the buffer zone). The performance of the

proposed heuristic will be evaluated in Chapter 7.
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Chapter 4

Inferring Detection Statistics for

Semantic Features

4.1 Estimating a Feature’s Probability of Detection

The aim of this chapter is to provide a quantified model of the probabilities of detection and

false alarm, corresponding to range based features. This model does not use any information

on the feature detector itself and can therefore be used with any detector that estimates

both the position and shape of an object. However, if only part of the model generates

range values, then predicting whether the feature will be detected becomes impossible in

the proposed approach. This means that models such as line detectors that do not provide

beginning and end points, or circle detectors that do not exclude arc segments cannot be

used together with the proposed method. Figure 4.1 shows the problem of modelling an arc

segment using a circle, the predicted range values using the model are not accurate and are

not useful for calculating the feature probability of detection.

As shown in Figure 4.2, given an estimate of the robot’s location and the location and

other attributes, such as the shape, of features (i.e., a SLAM estimate), the number of range

points that the feature is expected to return can be estimated. This point estimation process

is a sensor modelling technique referred to as ray tracing in the robotics literature [15].

Comparing estimated and measured distances allows expected range values to be labelled as

either occluded or unoccluded. The number of estimated unoccluded points per feature can

be considered to be a critical descriptor which determines the proportion of the landmark

that is in the FoV of the sensor, similarly to the concepts of the Swerling models [19] applied

in the radar literature which use the signal to noise ratio d as the critical descriptor. In other

words it is assumed that the number of unoccluded points np(m,xk) is a sufficient statistic
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Figure 4.1: An arc segment (red line) that has been modelled using a circle (blue area). The
yellow points represent predicted range values using the model.

of PD(m):

PD(m|xk,Γ, np(m,xk)) ≈ PD(m|np(m,xk)) (4.1)

As carried out in [18] this dependency can be calculated by integrating the variables used by

the detector over the detectable area. Unlike a radar detector, which uses only the returned

power for detection decisions, a general feature detector can use several quantities to make its

decision. Equation (4.2) shows the probability of detection of a range based feature extractor

that uses a descriptor d to make its decision:

PD(m|np(m,xk)) =

∫

n>nmin,d∈dvol

p(n,d|np)dn dd , (4.2)

where n is the number of actual returns from the target, d is a descriptor used by the

detector to make its decision, nmin is the minimum number of range points required to make a

detection, and dvol is the multi-dimensional volume in the descriptor space where the detector

will decide to return a feature. One method to estimate the probability of detection is to

estimate the multivariate distribution, p(n,d|np), and the using Equation (4.2) to determine

PD, however, the high dimensionality of the problem means that a large amount of data is

required. A simpler method is to estimate PD(m) directly from the measurements. If the

type of distribution of p(n,d|np) is known only its parameters need to be estimated and

therefore the former method is preferable, but since the that information is not available, the

latter method will be adopted in this Thesis.

The analysis in this section demonstrates that feature probabilities of detection can be ex-

perimentally quantified based on the number of unoccluded points, np(m,xk), via statistical
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Figure 4.2: Analysis of range data from a circular shaped feature. Based on the SLAM state
estimate, the range sensor beams that would hit the feature, if not occluded, can be deter-
mined (red and hollow circles). Beams with range values several times the range standard
deviation shorter than expected (red points) are discarded from the detection probability
analysis. The remaining (hollow) points are used to estimate the feature’s probability of
detection.

analyses on laser range data sets. Initially, a dataset is required from an environment where

the ground truth positions of features are known, via independent means. A simple way to

achieve this is through the use of features identifiable by humans - i.e. semantic features.

4.1.1 An application to the random matrix measurement model

In the context of [17] discussed in Section 2.3, the method to calculate number of unoccluded

range values proposed in this chapter can be used to estimate the mean of the proposed

extended feature RFS, allowing the probability of detection to be a constant value. In [17],

the requirement for a feature detector is removed by modelling laser range data, in which

multiple measurements can be produced, by single “extended” targets. The extended target

model is called a random matrix and was initially proposed by Koch [23] within the target-

tracking community. In this model an extended target is modelled using an extended state

mi
k,

mi
k =

{

xi
k,X

i
k

}

, (4.3)

where xi
k is referred to as the kinematic state and X i

k is referred to as the extension state.

The target process model is defined as

xi
k+1 =

(

F k+1|k ⊗ Id

)

xi
k +wk+1 , (4.4)
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where ⊗ is the Kronecker product1, F k+1|k is an s × s state transition matrix with (s − 1)

being the order to which the dynamics are modelled, Id is the identity matrix of dimension

d (with d being the number of dimensions of the target state space), and wk+1 is Gaussian

random noise with covariance W k+1,

W k+1 = Qk+1|k ⊗X i
k . (4.5)

The measurement model is then defined as

z
j
k = (HK ⊗ Id)x

i
k + ek , (4.6)

where ek is white Gaussian noise with covariance equal to the target extension matrix X i
k.

Each target generates a Poisson rate γ(mi
k) number of measurements according to this model.

And the clutter measurements are modelled as a Poisson RFS with a uniform distribution

over the field of view.

To use these measurement and process models the extension state X i
k has to be esti-

mated along with the kinematic state xi
k. To accomplish this the Gaussian inverse Wishart

distribution [24] is used to estimate the extended state mi
k. Using this distribution the

Gaussian inverse Wishart PHD filter is defined. In this filter, the intensity function v+k (m)

is approximated as a mixture of Gaussian inverse Wishart distributions,

v+k (m) =
∑

i

ωi
kN
(

x
∣

∣

∣
µi

k,Σ
i
k ⊗X

)

W−1
(

X
∣

∣

∣
νi
k,Ψ

i
k

)

, (4.7)

where each Gaussian inverse Wishart component is defined by its weight (ωi
k), Gaussian dis-

tribution parameters (mean µi
k and covariance Σi

k), and inverse Wishart parameters (degrees

of freedom νi
k and scale matrix Ψi

k), and corresponds to a Gaussian distribution, N (·|·, ·),

to model the kinematic part of m, x, and an inverse Wishart distribution, W−1 (·|·, ·), to

model the extension part, X. Under these assumption the prediction step becomes

v−k+1(m) =
∑

i

ωi−
k+1N

(

x
∣

∣

∣
µi−

k+1,Σ
i−
k−1 ⊗X

)

W−1
(

X
∣

∣

∣
νi−
k+1,Ψ

i−
k+1

)

, (4.8)

where the values of the parameters of the predicted Gaussian inverse Wishart distributions

are calculated according to the process model (Equation (4.4)). The specific equations can

1The Kronecker product for two matrices, A and B, of dimensions n1×m1 and n2×m2 respectively, pro-

duces a result matrix of dimension n1n2×m1m2 and is defined asA⊗B =







A[1][1]B · · · A[1][m1]B
...

. . .
...

A[n1][1]B · · · A[n1][m1]B






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be found in Appendix A. The update step becomes

v+k+1(m) =
(

1−
(

1− e−γ(m)
)

PD(m)
)

v−k+1(m)

+
∑

p∠Zk

∑

U∈p

∑

i

ω
i,U
k+1N

(

x
∣

∣

∣
µ

i,U
k+1,Σ

i,U
k−1 ⊗X

)

W−1
(

X
∣

∣

∣
ν
i,U
k+1,Ψ

i,U
k+1

)

, (4.9)

where p∠Zk means that p is a partition of the measurement set and the summation is

over all possible partitions, U ∈ p means that U is one of the non-empty elements of p,

and the updated parameters are calculated from the previous parameters using the measure-

ment model and the probability of detection PD(m), clutter rate κ and average number of

measurements per feature γ(m) (see Appendix A).

In [17] the authors propose a variable probability of detection that accounts for occlusions

caused by estimated targets by reducing the probability of detection of targets behind them.

The mean number of measurements per target is modelled assuming that every target is of

the same size. The method proposed in this Thesis can be used to estimate an expected

number of measurements that includes the modelling of occlusions, either from estimated

targets or from unknown sources, allowing the probability of detection parameter of the filter

to be set to a constant value. To accomplish this, ray tracing algorithm be performed on

ellipses calculated from the position an covariance of the random matrix. A 95% confidence

ellipse would be a reasonable method to obtain such ellipses. Then the estimated number

of unoccluded points np can be used as the mean of the extended feature RFS used. The

probability of detection can then be set to a constant value or even one, leaving all missed

detections to be modelled by the probability that a Poisson distribution of mean γ(m) will

generate zero measurements.

4.2 Estimating Probabilities of False Alarm

In the case of the probability of false alarm, it is infeasible to theoretically model every

possible range scan that does not contain a semantic feature. Importantly, the statistical

representation of false alarms in RB-PHD-SLAM is a Poisson random set, which only requires

an estimate of their expected number. In a manner similar to the probabilities of detection

outlined above, the statistical analysis of range based data, known to not contain the chosen

semantic features, can yield an informative estimate of the probability of false alarm. This

data can be obtained by either taking a scan in an environment known not to contain the

features of interest or by identifying and removing real detections from a dataset. Finding

an environment without features of interest that is representative of the environment where

the robot will be expected to operate can be difficult. Therefore the approach taken in this

Thesis is to remove the true detections from a real dataset. This can be accomplished by
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obtaining a dataset with known robot poses and feature positions and removing detections

that are close to the feature positions. A statistical analysis on the rest of the detections can

then be performed. Given the Poisson limitation of the PHD filter, only the average number

of false alarms is required. The clutter intensity κ, is determined as the average number of

false alarms divided by the area of the sensor’s FoV.

These concepts of estimating a features detection and false alarm probabilities will be

applied to a laser range finder based circle detector in Chapter 6. The next chapter introduces

the circle detector itself, in the context of well known feature detectors within the robotics

field.
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Chapter 5

Laser Based Features and Their

Detection Statistics

This chapter provides a brief overview of the main feature detection algorithms applied to

range data and, at the same time, highlights the known problems in their application to data

in which the chosen feature types yield few returns per scan. A simple circular feature detector

will then be presented, which can be applied in outdoor scenarios in which approximately

circular cross-sectioned features such as trees, pillars and lamp posts are abundant. This

circular feature detector is an extension of that proposed by Dissanayake, Newman, Clark,

Durrant-Whyte, and Csorba [4], and is applied to laser range scans.

5.1 Why Semantic Features?

It is possible to incorporate raw range finder decisions into a SLAM algorithm. Various

mapping algorithms achieve this via scan matching techniques [25]. In scan matching the

relative pose of a laser scan with respect to another scan, usually the previous one, is found

by minimizing an error measure between both scans. Most of these techniques rely on

non-linear optimization algorithms that usually require a good initial estimate of the robot

pose to converge to the correct solution. They also have accumulative error, meaning that

pose estimates will diverge eventually. This is dealt with by periodically applying global

optimization algorithms.

The reasons why most SLAM algorithms do not attempt to process every laser range value

are as follows. Firstly, contrary to many radar and sonar devices, commercially available laser

range finders usually internally process the received power values to provide range decisions

at distinct bearing angles, instead of providing the entire received power array (A-scope) at

predefined range increments. This means that such devices make their own hypothesis test

on a per A-scope basis, and provide only the final decision of this test, yielding a single range
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decision. Under favourable operating conditions, these range decisions typically correspond

well with the true distances to objects, however they are still prone to the problems of false

alarms and missed detections under sub-optimal target/environmental conditions. These

include dust or fog in the air, resulting in clutter measurements, and reflective surfaces that

generate artefacts. Secondly, because of the high angular resolution of laser range finders,

they usually provide the user with a multitude of range decisions, far in excess of which most

SLAM algorithms can process.

These two facts have advocated the compression of laser range data into so called high

level, and typically semantic, features. This is to minimize the negative impact of individual

false alarms and missed detections and simultaneously keep SLAM input data levels manage-

able. High level features are also usually more salient (i.e., distinct), which makes it easier

to solve the data association problem. This can be performed as part of the Bayesian state

estimation problem (as in the RFS based methods), or separately from the Bayesian state

estimation problem, using heuristics (as in most vector based solutions).

5.2 Current Laser Range Based Feature Detectors

Global detectors, such as random sample and consensus (RANSAC) and the Hough trans-

form, have been applied to laser range data, mostly to extract lines [26]. In this context,

a global feature detector simultaneously uses all the available sensor information to extract

features. In the case of laser sensors, this would be the entire scan. These methods have

several advantages, such as tolerance to partial occlusions and the ability to detect larger

objects. However, they rely on many feature inliers being available within the laser data sets.

Local feature detectors examine only a small section of the data at a time, potentially missing

larger or partially occluded features. However, they usually have a much lower computational

complexity than their global counterparts.

Núñez et al. [27] demonstrated a detector capable of extracting both line segments and

circular curves from a scan using a curvature measure. Other laser point based feature

detectors include the recursive split and merge algorithm [28] and Gauss-Newton extraction

algorithm [29]. These algorithms were designed to work with indoor scans where circles

are usually observed at close range, from man-made objects such as pillars and furniture.

However, the environment where the experiments for this Thesis were conducted has very

few such features and therefore these detectors were not implemented.

Despite the varying degrees of mathematical rigour in state of the art feature detection al-

gorithms, global detectors have been shown to not improve the results enough to compensate

for their increased computational complexity, compared to local detectors [26]. Dissanayake,

Newman, Clark, Durrant-Whyte, and Csorba [4] presented a simple detector which seeks

clusters of points and assigns a circle to represent these, with diameter equal to the distance
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between the first and last points of the cluster. The detector presented was shown to perform

well enough for SLAM applications in an outdoor environment similar to the one used in this

Thesis. Given the low complexity and effectiveness of the algorithm it was chosen as a basis

for the feature detector used in this Thesis. This algorithm will be augmented in the next

section, for the robust detection of circular cross sectioned objects including pillars, trees

and lamp posts. Both the estimation of the detection statistics explained in Chapter 6 and

the improvements proposed in the following section are generic and can be applied to any

semantic feature detector.

5.3 Detection of Circular Objects

The circle based detector of [4] is extended here by, replacing it’s heuristic estimation of the

parameters of the circle by a non-linear optimization approach, which should give a circle

that fits more closely to the data. Also an additional step has been added to remove some

of the false alarms produced by the algorithm.

The detector works in 3 steps: Clustering; circle fitting; and false alarm reduction.

5.3.1 Clustering

The first step of the algorithm is to segment the laser scan into a collection of simple clusters

of closely spaced points. To obtain these clusters the whole scan is processed in the order in

which data was collected. If the Euclidean distance between two consecutive points is greater

than a threshold, a break between clusters is declared.

5.3.2 Circle Fitting

A circle is fitted to each cluster by minimizing the mean squared error of the fit as shown in

Equation (5.1).

minimize
xc,yc,rc

∑

i

(
√

(xi − xc)2 + (yi − yc)2 − rc)
2 , (5.1)

where (xc, yc, rc) is the center and radius of the circle and (xi, yi) are the coordinates of each

laser range point in the cluster. This optimization problem is the same as the one presented

in [29] but is solved using the Levenberg-Marquardt algorithm, which has been shown to be

more robust to bad initialization and high non-linearities than the Gauss-Newton method

[30]. To initialize the algorithm the mean point position is used as the circle center and its

radius is set as half the distance between the first and last point.
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5.3.3 False Alarm Reduction

At this stage, every cluster has an associated, fitted circle. Cluster pruning is then necessary,

in which clusters and their corresponding circles are removed based on a detection theoretic,

statistical analysis of their parameters.

Each cluster is characterized by three parameters, which are expected to differ in circular

cross sectioned objects from the rest of the clusters:

• Fitting Error for the circle fit (FE)

FE =
∑

i

(
√

(xi − xc)2 + (yi − yc)2 − rc)
2 (5.2)

• Radius of the detected circle (rc)

• Convexity (c) of the circle. This is a measure of the difference between the distance

from the robot to the center of the fitted circle and the mean of the points (See Figure

5.1) and is given by

c =
√

(xr − xc)2 + (yr − yc)2

−

√

√

√

√(xr −
1

n

n
∑

i

xi)2 + (yr −
1

n

n
∑

i

yi)2 (5.3)

This is expected to differentiate circular objects from circular arcs, for which the circular

model does not fully apply and will therefore impede the ray tracing algorithm from

estimating the laser measurements (the relevance of this can be observed in Chapter

6). Circular arcs that are convex with respect to the robot will still produce detections,

but an effective way to eliminate such errors was not found.

To achieve false alarm reduction, based on the above parameters, concepts from detection

theory can be applied [31]. Histograms representing correctly and falsely detected circular

features were generated with respect to each of the above parameters. This required the

generation of ground truth information within a test area, containing the true centers and

radii of circular sectioned objects, such as trees. This test area comprised a ground truth

map of a park area near the Universidad de Chile.

Naturally, the generality of such an environment is questionable, in terms of the circular

features contained within it. However, since the SLAM experiments were to take place

in an environment containing a significant number of trees, this environment was deemed

sufficiently general. In general, if the sought features are based on any type of semantic

information, detectors for those semantics can be tuned in a similar manner, using ground
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Figure 5.1: If the mean of the laser returns (red point) is further away from the robot than
the center of the estimated circle (orange point) then the object does not form a convex
circular cross section with respect to the robot’s location.

truth data sets from environments known to contain a significant number of the type of

feature sought.

Within the park environment, multiple 2D laser scans from different positions were

recorded and approximately manually aligned to form an initialization for the iterative clos-

est point (ICP) [32] algorithm, which in turn generated a more exact alignment of the data.

This resulted in a registered 2D point cloud of the Park. Point clusters were then manually

extracted and compared to the actual environment to determine if they corresponded to ac-

tual circular sectioned features. Based on positive matches, the cluster centers and actual

features radii (measured by hand) were noted. This resulted in a list of circular feature

(typically tree trunk) center coordinates and their respective radii. ICP [32] also determined

the position at which each scan was recorded.

After the ground truth list was attained, the laser range finder and circular feature de-

tector were used to automatically detect multiple circular sectioned features, at multiple

locations, based on the procedure outlined in Sections 5.3.1 and 5.3.2 within the test area.

From these multiple detections, the histograms in Figures 5.2, 5.3 and 5.4 were generated.

These histograms could be used directly to achieve false alarm reduction. From each his-

togram it is evident that the application of appropriate, independent detection thresholds

on the fitting error, radius and convexity measure could be applied so as to reject the false

alarms which correspond to feature parameters outside of the bounds that contain the detec-
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Figure 5.2: Histogram for the fitting error. Note: The tail for the false alarm distribution is
very long and not all of it is shown in this

tions. However, care is necessary before the application of such a simplistic treatment, since

any correlation between these parameters must first be determined.

To make use of such correlations standard techniques such as Fisher’s linear discriminant

[33] or Hotelling ellipsoids [31] can be used to discard some of the false alarms. After com-

paring these two methods, higher detection rates, for given false alarm rates (i.e., superior

receiver operating characteristics (ROCs)) were noted for the Hotelling ellipsoidal method.

Therefore, the Hotelling ellipsoidal method is adopted here. Figure 5.5 shows the ROC

curve, which shows that for any given number of false alarms the Hotelling ellipsoid method

produces a higher number of true detections.

Hotelling Ellipsoid Method

This method fits a multivariate Normal distribution to the detected circle’s parameters and

uses the distribution parameters to create a confidence ellipsoid, as shown in Figure 5.6.

The figure shows the distribution of the three variables for the case of true detections and

a corresponding 99.9% confidence ellipsoid representing a multivariate Normal distribution,
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Figure 5.3: Histogram for the detected radius. Note: The tail for the false alarm distribution
is very long and not all of it is shown in this figure.

based on the parametric data mean µ and covariance Σ. This ellipse can be obtained by

applying a threshold to the squared Mahalanobis distance of the data to the estimated mean,

µ, and covariance, Σ,

(µ− x)TΣ−1(µ− x) = γ . (5.4)

The value of the threshold γ (i.e., the size of the ellipse) can be determined using the fact that

the square of the Mahalanobis distance has a χ2 distribution and looking at the appropriate

table. The Hotelling Ellipsoidal method will reject any measurement that falls outside of

the ellipse. To accompany the method of estimating the detection statistics explained in

Chapter 4 a technique similar to Clark et al. [18] is now applied. In addition to rejecting

false alarms, the multivariate Gaussian model allows the parameter vector to be used as an

amplitude value for the measurement, as carried out in [18] with a Rayleigh distribution. By

using the multivariate Gaussian to model true detections, and a uniform distribution in the

detectable volume for false alarms we can determine equivalent distributions to ga and gFA,
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Figure 5.4: Histogram for the Convexity measure. Note: The tails for the false alarm distri-
bution are very long and not all of it is shown in this figure.

respectively.

g
γ
FA(x) =















1
∫

(µ−x)TΣ
−1(µ−x)<γ

1 dx
if (µ− x)TΣ−1(µ− x) ≤ γ

0 if (µ− x)TΣ−1(µ− x) > γ

(5.5)

gγx(x|Σ, µ) =



















N (x|µ,Σ)
∫

(µ−x)TΣ
−1(µ−x)<γ

N (x|µ,Σ) dx
if (µ− x)TΣ−1(µ− x) ≤ γ

0 if (µ− x)TΣ−1(µ− x) > γ

(5.6)

These distributions can then be directly applied, along with the detections statistics deter-

mined in Chapter 4, to the modified PHD filter update from Equation (2.26). The application

of this method in RB-PHD-SLAM will be evaluated in Chapter 7.

Using the features extracted by this detector a SLAM solution can be implemented. The

next chapter will address how the detection statistics of this detector are obtained.
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Figure 5.5: ROC curve for Fisher’s linear discriminant (blue line) and Hotelling ellipsoid (red
line) methods. The Hotelling ellipsoid method shows a superior performance.

Figure 5.6: A Gaussian approximation of the detections can be used to generate an ellipse
to remove much of false alarms and keep most of the detections.
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Chapter 6

On-Line Determination of Detection

statistics

This chapter will show the results of applying the method described in Chapter 4 to the

detector presented in Chapter 5 using the ground truth dataset to obtain detection proba-

bilities. The idea, shown in Equation (6.1), is to approximate the probability of detection of

a feature given all available information by the probability of detection given the value of a

single parameter, in this case the number of unoccluded points

PD(mi|Mk,xk) ≈ PD(mi|np = Np(Mk, ~xk)) , (6.1)

where:

• np is the number of unoccluded points,

• Np() is the function that estimates np via ray tracing

The circular feature detector (from the previous chapter) was applied to the scans col-

lected from the park data set. By using the known poses of the robot and landmark, every

measurement was associated with it’s closest feature. If the distance between these mea-

surements and their closest associated features was larger than one meter, the measurements

were deemed to be false alarms.

The associated measurements were used to determine the probability of detection of the

algorithm conditioned on the number of unoccluded points. First, the expected number of

unoccluded points for each feature-robot pose pair was calculated based on the estimated

robot pose and feature positions. For every possible number of unoccluded points, a different

number of data points (i.e., instances where that specific number of unoccluded points was

calculated) were obtained. By determining the fraction of these data points that resulted in
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Table 6.1: The number of unoccluded points greatly influences the probability of detection.
The amount of data points used to calculate PD is also shown.

Np(Mk, ~xk) PD Number of data points
0 0.0014 273025
1 0.0244 62025
2 0.0696 28582
3 0.3595 19423
4 0.7562 10374
5 0.8854 6909
6 0.8987 4185
7 0.7824 2656
8 0.7607 1404
9 0.7679 1133

real detections the probability of detection for each detected feature was determined (Equa-

tion (6.2)).

PD(mi|np) ≈

Ns
∑

j=0

∑

m∈Mj

Np(m, ~xj) = np ∧ C(m, j)

Ns
∑

j=0

∑

m∈Mj

Np(m, ~xj) = np

, (6.2)

where:

• Ns is the total number of scans in the dataset,

• C(m, j) is an indicator function that shows whether feature m was detected at time j.

As can be seen in Table 6.1 the probability of detecting a circular object (in this case a tree)

is highly dependant on the number of unoccluded points. It should be noted that there is less

data for high number of unoccluded points, so for higher number of unoccluded points the

uncertainty of the estimated PD will be higher. To avoid using the values of PD calculated

with only a few data points, in the RFS-SLAM implementation, if more than six points

were not occluded, then the probabilities of detection were replaced with the probability of

six unoccluded points. For a low enough number of unoccluded points the probability of

detection is expected to drop to zero. This is enforced by replacing the probabilities that

were lower than 10% with a zero. Otherwise, any filter that uses this information would

continuously expect to observe the features that are out of the FoV and slowly remove them

from the map. Figure 6.1 shows the result of calculating the probability of detection for a

0.1 meter radius feature over the entire FoV of the robot. The red points show the laser scan

which produced occlusions while the color scale represents PD. Note that, in the absence of

occlusions, the number of point returns that can hit the feature, and therefore the probability
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of detection, reduces slowly with distance. Additionally, occlusions produce a sharp decrease

in the probability of detection behind them.
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Figure 6.1: Probability of detection for a specific laser-scan and a feature radius of 0.1 meters.

6.1 Implementing the buffer zone

As described in Section 3.4.1, adding a buffer zone at the edge of the FoV is expected to

improve the results of the RFS SLAM algorithm because of the poor performance of the

PHD filter with low PD and with PD mismatches. In order to achieve this for the proposed

method for calculating PD the following definition for the buffer zone, where the rule from

Equation (3.21) will be applied, is proposed:

• Any point where 0 < PD < 0.5 is considered to form part of the buffer zone.

• PD is calculated in several positions along the direction perpendicular to the robot-

landmark line. Then if this collection of probabilities contains both zero and non-zero

values the landmark is declared to be in the buffer zone and the maximum probability

is used.
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These two rules define a buffer zone which is expected to cover the edge of the FoV of the

robot (i.e., the areas close to transitions between PD = 0 and PD > 0). Figure 6.2 shows the

probability of detection calculated using this new process, while in Figure 6.3 the shape of the

buffer zone can be seen in white (i.e. within the white area the rule from Equation (3.21) is

applied). As can be seen from Figure 6.3 the buffer zone covers areas close to the edge of the

FoV. Occlusions from large or close objects still make the probability of detection approach

zero for the space behind them. Objects that are narrow or far away produce occlusions that

are covered completely by the buffer zone and therefore the probability of detection behind

them does not decrease. A performance evaluation of using this method will be provided in

Chapter 7.

20 0 2020

0

20

0.0

0.4

0.8

Figure 6.2: Probability of detection for a specific laser-scan and a feature radius of 0.1 meters,
using a buffer zone.

Unlike the probability of detection, false alarms are typically modelled in a much simpler

fashion. A uniform false alarm distribution is generally considered appropriate [13]. Therefore

only the distribution for the number of false alarms per laser scan is necessary, which does

not require any SLAM map estimates. Accordingly, the false alarm histogram, obtained by

plotting the number of times a particular false alarm number occurs over Ns scans, is shown

in Figure 6.4 where a continuous Poisson distribution is also fitted to the data. The PHD
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Figure 6.3: The shape of the buffer zone for a specific laser-scan and a feature radius of 0.1
meters can be seen in white.

filter assumes this type of distribution for the number of false alarms, therefore it must be

used even if other distributions would be more appropriate to model the number of false

alarms. To evaluate the goodness of fit of the Poisson distribution to the actual data, a

Pearson’s Chi Squared test [34] was used. This test rejected the hypothesis that the data

comes from a Poisson distribution (with a p-value of 2.24× 10−240 and a significance level of

0.05). Nevertheless, the Poisson distribution must be used in order to apply the PHD filter.

The average number of false alarms Nfa per laser scan was estimated to be 6.18 false alarms

per scan.
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Figure 6.4: Histogram for the false alarms. A Poisson distribution is fitted to the data.
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Chapter 7

Experimental Results

This chapter will show a comparison between RB-PHD-SLAM and a state of the art SLAM

solution, Multi-Hypothesis FastSLAM [10]. Both algorithms use either a constant probability

of detection, within the 40m radius FoV of the laser range finder, or the derived detection

statistics, in order to determine the benefits of using the state dependent detection statistics.

The robotic platform for collecting the experimental dataset was a Clearpath Husky A-200

robot equipped with a Sick LD-LRS-1000 laser range finder. The Husky’s wheel encoders

provided odometry measurements, u0:k−1, for the motion model in Equation (3.6). The

experiments were conducted in the same environment where the detection statistics were

determined, albeit with a different dataset. This provides the best estimate of the real

detection statistics that will be encountered in the experiments.

The environment used to conduct the experiments was Parque O’Higgins, located in

Santiago de Chile’s downtown area. Figure 7.1 shows the section of the park in which the

experimental dataset was collected. The area of the park used had an abundance of trees,

and the roads where the robot moved consisted of dirt tracks. The trees do not have perfectly

circular trunks. A satellite image of the environment used can be seen in Figure 7.2.

Figures 7.3, 7.4, 7.7, and 7.8 show the performance of RB-PHD-SLAM andMH-FastSLAM.

The map estimates are represented by plotting an ellipse representing the covariance (3-sigma

ellipse) of each Gaussian in the GM, v+k (Equation (3.9)), in the case of RB-PHD-SLAM.

For MH-FastSLAM an ellipse is plotted for every feature in the state vector. Estimated

vehicle trajectories are constructed using the current position for the particle xi
k (Equation

(3.7)) with the highest weight wk (Equation (3.13)) at every time step. The red dashed line

represents the dead reckoning trajectory while the red stars show the ground truth positions

of landmarks determined using manually initialized ICP (as decribed in Section 5.3.3). A

superior SLAM performance is indicated in Figures 7.3 and 7.7, in which the vehicle tra-

jectories contain less errors than the assumed constant detection probability based results

shown in Figures 7.4 and 7.8. The quality of the associated map estimates, in terms of cir-
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Figure 7.1: Environment used to conduct the experiments.

Figure 7.2: Satellite image of the environment used to conduct the experiments.
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Figure 7.3: RB-PHD-SLAM results in a park environment. The vehicle traversed an approx-
imate “figure eight” shape along the dirt track shown in the superimposed satellite images.
The blue circles represent the spatial feature estimates, stars represent the ground truth map,
the blue line is the estimated robot trajectory and the red dashed line corresponds to dead
reckoning.
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Figure 7.4: RB-PHD-SLAM results in a park environment with constant PD.
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Figure 7.5: RB-PHD-SLAM results without using a bufferzone as described in Section 3.4.1

cular feature location and number, is also better in Figures 7.3 and 7.7 than in Figures 7.4

and 7.8. In the latter cases, the mismatch between the real and estimated probabilities of

detection causes features to be removed from the map soon after they leave the FoV of the

robot laser range finder. By comparing Figure 7.3 with Figure 7.7 it is possible to see that

trajectory-wise both filters performed similarly well, while the maps differ significantly. The

RB-PHD-SLAM filter has a much smaller map with very few false features. On the other

hand, MH-FastSLAM generates a map with a lot more features several of them being false.

In Figure 7.6 the results from using target amplitude feature are shown. When compared

with the results in Figure 7.3, the performance is slightly decreased, both in the trajectory

and map estimates. Figure 7.5 shows the performance of the RB-PHD-SLAM without using

the buffer zone proposed in Section 3.4.1. As can be seen both the map and trajectory are

less accurate compared to the proposed method from Figure 7.3.
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Figure 7.6: RB-PHD-SLAM results using target amplitude feature [18] as described in Section
5.3.3.

To evaluate the mapping results quantitatively the OSPA distance was used, the OSPA

distance has been used in the multi-target tracking community as good measure of the dis-

tance between two sets, taking into account both spatial and cardinality error [35]. It is

important to note that the ground truth map contains several tree trunks that have a small

diameter and were detected either never or very few times, therefore it is expected for all

SLAM algorithms to have a high mapping error due to the tree trunks that were never

detected. Figure 7.9 shows the OSPA distance for each of the algorithms described above.

Both RB-PHD-SLAM and MH-FastSLAM perform considerably worse when using a constant

value for the probability of detection, with MH-FastSLAM outperforming RB-PHD-SLAM

in this case. When using the proposed model for PD the error of both algorithms are con-

siderably lower, with MH-FastSLAM, RB-PHD-SLAM (without using a buffer zone), and

RB-PHD-SLAM using target amplitude feature having very similar errors. Finally the use
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Figure 7.7: MH-FastSLAM results in a park environment.

of a buffer zone lowers the error of RB-PHD-SLAM even further and slightly outperforms

MH-FastSLAM.
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Figure 7.8: MH-FastSLAM results in a park environment with constant PD.
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Chapter 8

Conclusions

The importance of modelling detection statistics within real SLAM experiments has been

highlighted in this Thesis. A simple semantic feature based detector was presented, together

with detection theoretic based methods for the evaluation of each feature’s probabilities of

detection and false alarm. The methods presented can be used with any feature detector that

estimates the shape of an object. The techniques were applied to a simple circle detector,

for use in environments in which multiple circular cross sectioned features were expected.

The derived detection statistics were used in the RB-PHD-SLAM as well as MH-FastSLAM

frameworks, in a park environment, in which the primary circular sectioned features were

trees. The results demonstrated superior SLAM estimates for both frameworks, in terms

of vehicle trajectory, feature number and location estimates (measured visually and using

the OSPA distance) when the derived probability of detection model was compared with a

typical implementation which assumed constant detection statistics within the sensor FoV.

The introduction of the proposed detection statistics into both MH-FastSLAM and RB-PHD-

SLAM decreased the OSPA distance between the map estimate and the ground truth map

by 13% and 17%, respectively. A clear advantage of using RB-PHD-SLAM was expected but

not found. A buffer zone in which Gaussians are prevented from diminishing their weights

was implemented to handle the edge of the FoV in the RB-PHD-SLAM algorithm, and was

shown to increase the performance of the filter, further decreasing the OSPA distance by 5%.

The target amplitude feature PHD filter was also implemented, but the amplitude informa-

tion added to the filter proved unhelpful. This could be because the chosen descriptor vector

distributions are not sufficiently different between true detections and false alarms within

the detection volume, unlike amplitude values for radar based feature detectors, in which

measurements with higher amplitudes are less likely to be clutter. The author expects to

obtain better results by applying newer RFS-Based filters such as the Cardinality Balanced

Multi-Target Multi-Bernoulli filter [14].
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Glossary

CB-MemBer cardinality balanced multi-target multi-Bernoulli. 9, 20

CFAR constant false alarm rate. 2

CPHD cardinalized PHD. 9, 18

EIF extended information filter. 6

EKF extended Kalman filter. 5, 6, 14, 17

FastSLAM factored solution to SLAM. v, vii, viii, 2, 6, 7, 42, 46–49, 51

FISST finite set statistics. 2

FoV field of view. 1, 2, 11, 17, 20, 21, 26, 37–39, 42, 46, 51

GM Gaussian mixture. 10, 17, 19, 42

ICP iterative closest point. 31, 42

KF Kalman filter. 17

MH multiple hypothesis. v, vii, viii, 2, 7, 42, 46–49, 51

OSPA optimal sub-pattern assignment. v, 12, 47, 50, 51

PDF probability density function. 5, 13–15

PF particle filter. 6, 14

PHD probability hypothesis density. iii, v, vii, viii, 2, 9–12, 14–20, 24–26, 34, 38–40, 42,

44–48, 51, 52

RANSAC random sample and consensus. 28
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RB Rao-Blackwellized. iii, v, vii, viii, 2, 6, 14, 16, 18, 25, 34, 42, 44–48, 51

RFS random finite set. iii, vii, viii, 1–5, 8, 9, 11, 13, 16, 18, 20, 23–25, 28, 37, 38, 51

ROC receiver operating characteristic. v, 32, 35

SEIF sparse EIF. 6

SLAM simultaneous localization and mapping. iii, v, vii, viii, 1–8, 10–14, 16, 18–21, 23, 25,

27–30, 34, 37, 38, 42, 44–48, 51
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Appendix A

The Gaussian inverse Wishart PHD

filter

In this appendix the specific equations used in of the Gaussian inverse Wishart PHD filter

of [17] are shown. As explained in section 4.1.1 the prediction step of the filter is:

v−k+1(m) =
∑

i
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(A.1)

where the values of the parameters of the predicted Gaussian inverse Wishart distributions

are calculated according to the process model

µi−
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(
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k (A.2)
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As can be seen from the equations the Gaussian part of the prediction step is identical to

the Kalman filter prediction step, while the inverse Wishart part proposed is an increase

in uncertainty, according to the decay constant τ , with no changes to the mean of the

distribution. The update step in the filter is

v+k+1(m) =
(

1−
(

1− e−γ(m)
)

PD(m)
)

v−k+1(m)

+
∑

p∠Zk

∑

U∈p

∑

i

ω
i,U
k+1N

(

x
∣

∣

∣
µ

i,U
k+1,Σ

i,U
k−1 ⊗X

)

W−1
(

X
∣

∣

∣
ν
i,U
k+1,Ψ

i,U
k+1

)

(A.6)

where p∠Zk means that p is a partition of the measurement set and the summation is

over all possible partitions, U ∈ p means that U is one of the non-empty elements of p,
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and the updated parameters are calculated from the previous parameters using the measure-

ment model and the probability of detection PD(m), clutter rate κ and average number of

measurements per feature γ(m):

µ
i,U
k+1 = µi−

k+1 +
(

Ki,U ⊗ Id

)

ǫi,U (A.7a)

Σi,U
k−1 = Σi−

k−1 −Ki,USi,U
(

Ki,U
)T

(A.7b)

ν
i,U
k+1 = νi−

k+1 + |U| (A.7c)

Ψi,U
k+1 = Ψi−

k+1 +N i,U +G[U] (A.7d)

ω
i,U
k+1 =

ωp

dU
e−γ(µi

k
)

(

γ(µi−
k+1)

κ

)|U|

PD(µ
i−
k+1)L

i,Uωi−
k+1 (A.7e)

where

Ψ̄
[U]
k =

1

|U|

∑

Ψ
i
k∈U

Ψi
k (A.8a)

G[U] =
∑

Ψ
i
k∈U

(Ψi
k − Ψ̄

[U]
k )(Ψi

k − Ψ̄
[U]
k )T (A.8b)

Si,U = HkΣ
i−
k−1H

T
k +

1

|U|
(A.8c)
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k−1H

T
k

(

Si,U
)−1

(A.8d)

ǫi,U = Ψ̄
[U]
k (Hk ⊗ Id)µ
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k+1 (A.8e)

N i,U =
(
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)−1

ǫi,U
(

ǫi,U
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(A.8f)
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∏

U∈p dU
∑

p′∠Zk
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U ′∈p′ dU
′

(A.8g)

dU = δ|U|,1 +
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i

e−γ(µi
k
)

(

γ(µi−
k+1)

κ

)|U|
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define the parameters of equation A.7.
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Appendix B

Monte Carlo Runs

In this appendix all the Monte Carlo runs that were computed for this thesis are shown, the

most representative run of each set is shown in chapter 7.

B.1 PHD Filter
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Figure B.1: PHD Filter result 1.
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Figure B.2: PHD Filter result 2.
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Figure B.3: PHD Filter result 3.
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Figure B.4: PHD Filter result 4.
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Figure B.5: PHD Filter result 5.
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B.2 MH-FastSLAM
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Figure B.6: MH-FastSLAM result 1.
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Figure B.7: MH-FastSLAM result 2.
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Figure B.8: MH-FastSLAM result 3.
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Figure B.9: MH-FastSLAM result 4.
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Figure B.10: MH-FastSLAM result 5.
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B.3 PHD Filter without a buffer zone
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Figure B.11: PHD Filter with no buffer zone result 1.
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Figure B.12: PHD Filter with no buffer zone result 2.
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Figure B.13: PHD Filter with no buffer zone result 3.
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Figure B.14: PHD Filter with no buffer zone result 4.
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Figure B.15: PHD Filter with no buffer zone result 5.
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B.4 PHD Filter with Constant PD
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Figure B.16: PHD Filter with constant PD result 1.

B.5 PHD Filter with amplitude feature
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Figure B.17: PHD Filter with constant PD result 1.
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Figure B.18: PHD Filter with constant PD result 2.
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Figure B.19: PHD Filter with constant PD result 3.
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Figure B.20: PHD Filter with constant PD result 4.
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Figure B.21: PHD Filter with constant PD result 5.
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B.6 MH-FastSLAM with Constant PD
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Figure B.22: MH-FastSLAM with constant PD result 1.
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