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Dislocations are at the heart of the plastic behavior of materials yet they are
very difficult to probe experimentally. Lack of a practical nonintrusive mea-
suring tool for, say, dislocation density, seriously hampers modeling efforts, as
there is little guidance from data in the form of quantitative measurements, as
opposed to visualizations. Dislocation density can be measured using trans-
mission electron microscopy (TEM) and x-ray diffraction (XRD). TEM can
directly show the strain field around dislocations, which allows for the
counting of the number of dislocations in a micrograph. This procedure is very
laborious and local, since samples have to be very small and thin, and is
difficult to apply when dislocation densities are high. XRD relies on the
broadening of diffraction peaks induced by the loss of crystalline order induced
by the dislocations. This broadening can be very small, and finding the dis-
location density involves unknown parameters that have to be fitted with the
data. Both methods, but especially TEM, are intrusive, in the sense that
samples must be especially treated, mechanically and chemically. A nonin-
trusive method to measure dislocation density would be desirable. This paper
reviews recent developments in the theoretical treatment of the interaction of
an elastic wave with dislocations that have led to formulae that relate dislo-
cation density to quantities that can be measured with samples of cm size.
Experimental results that use resonant ultrasound spectroscopy supporting
this assertion are reported, and the outlook for the development of a practical,
nonintrusive, method to measure dislocation density is discussed.

DISLOCATIONS MATTER: WHY?

Dislocations are line defects in a crystalline ma-
terial. Their existence explains why the ex-
perimental value of the shear stress needed to
plastically deform a crystal is several orders of
magnitude less than the theoretical value, obtained
on the basis of the shear stress needed to rigidly
slide one atomic plane past an adjacent one. They
are thus the basic building block of our current
understanding of the plastic behavior of materials.1

Now, suppose you have a piece of metal: how can
you know the number and position of dislocations?
There are a number of situations where this ques-
tion is critically important.

Ductile to Brittle Transition2

When loaded in tension, some materials will
break without previous deformation, i.e., will un-
dergo brittle fracture characterized by the sudden
propagation of a crack, while others will first
deform, because of a large proliferation of disloca-
tions, and only then will fail: they undergo ductile
failure. Interestingly, some materials, for example
bcc metals such as low carbon steels may present
different behaviors depending on temperature:
brittle at low temperatures, and ductile at high.
There is a transition, which can be more or less
abrupt, at a ‘‘transition temperature’’. The factors
that determine this ductile to brittle transition
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temperature (DBTT) are largely unknown at a
quantitative level, although they relate to a critical
property of structural materials. Additional factors
that matter include the strain rate and impurity
content.

Fatigue3

Materials cyclically loaded can fail after many
cycles, even though the amplitude of the load can be
thought of as very low in a static test. The gen-
eration of (micro)cracks, and their subsequent evo-
lution, including the effect of plasticity, has been the
object of extensive experimental research, for which
there exists very little modeling with quantitative
predictive power. Do microcracks initially coalesce
from dislocation pile-ups? If so, how? Do dislocations
nucleate from a crack tip? At what rate? How is the
ensueing crack dynamics affected? These are
examples of questions that probe the limits of the
fundamental understanding of fatigue.

Radiation Damage4,5

Neutron radiation of zirconium and its alloys,
widely used in nuclear power plants, generates
dislocation loops. Their nucleation, growth and
interaction with other defects have been studied for
decades because of the possible physical threats to
materials caused by radiation damage, such as
embrittlement, swelling and creep. Nevertheless, it
does not seem unfair to say that quantitative mod-
eling of these phenomena could greatly be advanced
by data obtained nonintrusively.6,7

Pattern Formation and Material Instabilities

Sometimes, dislocations arrange themselves in
patterns that may lead to undesired effects for a
material in service. For example, Al-Mg alloys for
the automotive industry are prone to the Portevin–
Le Châtelier effect,8,9 which generates stretcher li-
nes on the aluminum alloys sheets: under certain
regimes of strain rate and temperature, plastic
strain becomes localized in the form of bands. In
addition to cosmetic problems, this can also lead to
structural problems: embrittlement can be
increased and fracture toughness decreased, lead-
ing to unexpected failure. Why does this effect
happen? Is it possible to control it?

DISLOCATION DENSITY: WHAT IS KNOWN
AND WHAT ONE WOULD LIKE TO KNOW

Dislocations are line defects within a crystalline
structure, and their motion through the crystal
lattice is the major source for plastic deformation at
room temperature. Their influence on the properties
of a given material, particularly mechanical, are
most significant when they appear, as they often do,
in large numbers. Thus, a natural approach to
develop quantitative modeling is to introduce a
length scale, intermediate between the interatomic

spacing and the sample size (the ‘‘mesoscale’’),
where there are still many dislocations, and to
define the dislocation density as the total length of
dislocation contained within a given volume, divid-
ed by said volume. The units of dislocation density
are thus inverse length squared, or m�2, and it is, in
general, a function of position at the intermediate
length scale. The theoretical framework is con-
tinuum mechanics.

Dislocation density is a critical variable that de-
termines dislocation mobility, and the strength and
ductility of materials. As such, it has long been the
object of much modeling and analysis. An inroad
into the vast literature is provided by the recent
publications of Arsenlis et al.,10 Lee et al.,11 and
Leung et al.,12 A recurrent theme appears to be
that, although dislocation density is a variable that
figures prominently in the model building, it is a
variable that is most often probed only indirectly
through the consequences it has on standard me-
chanical tests. A direct way to measure dislocation
density would surely add considerable depth to any
modeling of plastic behavior. Now, although indi-
vidual dislocations can be studied in detail using
transmission electron microscopy, their collective
behavior is much harder to probe.

Standard Methods to Measure Dislocation
Density

Transmission electron microscopy (TEM) and
x-ray diffraction (XRD) are two complementary
techniques strongly developed in the previous cen-
tury that use the diffraction of waves to visualize
the structure of matter. Both techniques work
similarly: whereas XRD uses x-ray radiation, TEM
uses the wave behavior of electrons that can be
diffracted by an array of atoms. Nevertheless, the
distinct degree of interaction with matter produces
different levels of information that can be obtained
from each technique.

TEM

In conventional TEM, individual dislocations, or
groups thereof, are revealed by the strain of the
lattice around the core line, which produces a dis-
tinctive diffraction contrast due to the local dis-
placement of the planes. Under proper conditions,
the dislocations appear as a narrow line of opposite
contrast to the surrounded matrix in a TEM image
(see Fig. 1). This makes it possible to account for the
local density of dislocations with high precision and
to determine structural parameters such as the
Burgers vector, the dislocation character and the
glide plane.13

TEM can also reveal the local atomic structure
down to individual lattice sites, which has been the
most remarkable development of the last decades.
The first atomic arrays and individual dislocations
in an interface were visualized at the beginning of
the 1980s.14,15 During the following decades, the
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correction of lens aberration in the optical system of
electron microscopes have allowed sub-Ångström
imaging of atomic arrangement.16 The TEM ability
to visualize individual dislocations has been used,
notably, to directly observe dislocation motion un-
der tensile loading in the microscope, to elucidate
high-temperature plastic deformation mechanisms
in materials,17 and for the detailed study of planar
defects such as stacking faults and the interaction of
twin boundaries in nanotwinned films.18

Despite all the valuable information that can be
obtained from the atomic structure of, and inter-
faces between, different materials by TEM, an im-
portant consideration that must be kept in mind is
that this information comes from a very small por-
tion of material. The TEM sample has to be very
thin to be transparent to the electron beam, which
limits the visual field to a few micrometers under
the best of circumstances. Consequently, the deter-
mination of dislocation density in a reliable way
from a piece of material has always been a limita-
tion of TEM, because it involves many measure-
ments in order to have a statistically representative
value.19 Additionally, in highly deformed materials
where the dislocation density is high, the interac-
tion between the strain fields of the dislocations
make it very difficult to distinguish between indi-
vidual dislocations, limiting the applicability of this
technique. Furthermore, the preparation of TEM
samples from the bulk part of interest is necessarily
destructive, leading to the question whether the
dislocations are affected during the preparation
procedure.

XRD

X-rays interact relatively weakly with matter,
which implies that they can penetrate several mil-
limeters of material, but their spatial resolution is

low (typically several micrometers). X-rays are
therefore sensitive to long-range features, average
crystal structures, and average deviations from
long-range order, especially lattice strains and
stresses. In this sense, XRD has a better capacity to
measure the dislocation density in bulk samples
than TEM, but is still limited to a specially prepared
sample normally cut from the main piece. The in-
teraction of an x-ray beam with a perfect coherent
domain of crystals produces a diffracted beam in a
certain condition described by Bragg’s equation. A
single diffracted peak consists in several intensities
Ii measured at several angles 2hi distributed around
a maximum intensity at a certain Bragg angle. The
analysis of the diffracted peak consists in the ad-
justment to the measurement of a theoretical model
that adjusts the microstructural factors. Among
them, the most relevant are the dislocation density
that produces the lattice strain and the crystallite
size or coherent domain size.

The distortion in the interplanar distances of the
crystal lattice produced by a dislocation is observed
as a peak broadening in the x-ray diffractogram,
which can be related to the strain field caused by
dislocations.20 The root-mean-square value of the
total strain �rms is described in terms of the mi-
crostructural parameters by the relationship

�rms ¼ b

ffiffiffiffiffiffiffiffiffi

pAq
2

r

; (1)

where b is the modulus of the Burgers vector, A is a
constant that depends on the effective cut off radius
of the strain field caused by a dislocation, and q is
the dislocation density in the coherent domain.21

The kinematical theory of XRD states that it is
possible to separate the effect of the crystal domain
size and of the lattice distortion effect from the peak
profile analysis. The classical Williamson–Hall
method allows for the determination of the crystal-
lite size D, and strain �rms, separately from the ad-
justment of the coefficients of a linear fit.22

Modifications to this model have been proposed to
give an account of the dislocation density consider-
ing the distortion of the lattice in the different
crystallographic planes,23–25 which has been used in
the study of processed deformed pure metals and
alloys, e.g., equal channel angular pressing (ECAP)
and cold-rolling.26,51 Compared to TEM, XRD mi-
crostructural analyses can be performed over a wide
range of samples of different morphologies, e.g.,
bulk polycrystals, deposited thin films, nanocrys-
talline powders and powder of microscopic single
crystals. Regarding the penetration of x-rays and
the lower manipulation of the samples prior to the
measurements, dislocation density obtained by XRD
is a more representative quantity than the values
obtained from TEM. According to Ungár,27 cur-
rently available x-ray diffraction techniques allow
access to dislocation densities as low as 100 m�2

and as high as 1018 m�2. Due to the capabilities of

Fig. 1. TEM image of the strain field of dislocations in an aluminum
1100 (99.0% pure) sample annealed at 673 K for 10 h..
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conventional diffractometers, samples of significant
size can be measured where the quantitative results
of the microstructural parameters are representa-
tive of a large volume size, from 1 up to 10 mm3.
Nevertheless, some limitations of measurable crys-
tallite size must be considered, related to the pre-
cision of the diffractometer goniometer.

ULTRASOUND

Ultrasound is widely used as a non-destructive
testing tool. The reason is that acoustic waves can
penetrate deep into a material. In addition, the en-
ergy they carry can be small enough not to disturb
the material at hand, and yet provide a signal when
it is scattered by a flaw or inhomogeneity in an
otherwise homogeneous material (Fig. 2). Finally,
the apparatus that is used can often be employed
not only in the laboratory but also in the field and
with pieces in service. Cracks, voids and bubbles are
examples of inhomogeneities that are routinely di-
agnosed with ultrasonic techniques. If the scatterer
is rigid, the scattering will be determined, to a first
approximmation, by the impedance mismatch and
the ratio between object size and wavelength. If the
scatterer, however, can be deformed, it will have, in
general, a number of resonant frequencies. Tuning
the acoustic frequencies to these eigenfrequencies
can greatly increase the scattered signal.

The question arises: would it be possible to use
ultrasound to monitor the presence—or absence—of
dislocations? For this idea to work, dislocations
would have to scatter sound, and we now turn our
attention to this question.

Why Should Dislocations Scatter Sound?

The fact that dislocations should scatter sound
was realized by Nabarro28 and Eshelby29,30 on the
basis of an analogy between elastic waves in inter-
action with dislocations on the one hand, and elec-
tromagnetic waves in interaction with electrons on
the other. To see this, think of the way x-rays in-
teract with matter: an incoming electromagnetic
wave hits an electron which oscillates in response;
as it oscillates, the electron generates secondary,
i.e., scattered electromagnetic waves. The reason
that this process, under the name x-ray diffraction,
is so useful as a materials characterization tool is
because, when many electrons are present, the
scattered wave carries information about the scat-
terer position.

Similarly, an incoming elastic wave that hits a
dislocation will cause it to oscillate in response and,
as it does, will generate secondary, scattered, elastic
waves (Fig. 3). However, the electromagnetic ana-
logy of Nabarro and Eshelby, while providing a
powerful picture to reason by analogy, could only be
translated into precise mathematical statements in
the case of screw dislocations in interaction with
anti-plane shear waves in two dimensions.

In the general three-dimensional case, a number
of difficulties have to be dealt with as elastic waves
have three polarizations (acoustics being the longi-
tudinal one). Their propagation in a crystal is de-
termined by the anisotropy of the material whose
elastic properties are determined by, in the most
general case, 21 elastic constants. When the mate-
rial can be considered isotropic to a good ap-
proximation, only two constants remain and waves
have two speeds of propagation, one for acoustic and
the other for shear waves. In addition, it must be

Fig. 2. Flaws, voids, bubbles and inhomogeneities, in general in an
otherwise homogeneous material, scatter sound. This is due to the
impedance mismatch between the two materials. The monitoring of
the scattered wave provides information about, to start with, the
presence or absence of the inhomogeneity. Further treatment can
provide additional information about number, shape, distribution and
character.

Fig. 3. The basic scattering mechanism of sound by a vibrating
dislocation: a plane wave, which can have both longitudinal and
transverse components, with incident wave vector k i hits a disloca-
tion segment of length L. This segment is characterized not only by
this length but also by its orientation, and by the orientation of its
Burgers vector. In response to the incident wave, the dislocation
oscillates and, as it does, generates secondary scattered waves
characterized by a scattered wave vector ks.
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remembered that a dislocation is a line, in general a
closed curve, whose length need not be small com-
pared with an acoustic wavelength, and is endowed
with a property, called the Burgers vector, that
must also be taken into account. These difficulties
were overcome in the isotropic case by Mura31 and
by Lund,32 who gave complete formulations for the
emission of elastic waves by a dislocation loop in
arbitrary motion, and for the response of a disloca-
tion loop of arbitrary shape to an incoming plane
wave, respectively.

Granato–Lücke Theory: Strengths and
Limitations

In the 1950s, Granato and Lücke33,34 developed a
theory of mechanical damping and modulus change
due to dislocations which are both frequency- and
strain amplitude-dependent. This theory considered
a stress wave that travels through a solid which
contains pinned dislocations of length L with a total
length K of movable dislocation line per unit vol-
ume. Introducing a length scale, given by L,
naturally leads to a frequency-dependent (or wave-
length-dependent) attenuation and wave velocity.
By allowing, in addition, for the possibility of the
dislocations to break away from their pinning
points, the theory could account for the amplitude
dependence of losses. This model has been enor-
mously successful and to this day is the standard
tool to interpret many experimental results. How-
ever, as experiments have become more precise, its
limitations have become apparent, and efforts to use
it, for example, to understand thermal conductivity
properties, have been largely unsuccessful.35 From
a conceptual point of view, limitations include a
number of technical assumptions, for example about
the relative orientations of the various dislocation
segments. These assumptions have little qualitative
consequences, but do have quantitative conse-
quences. More broadly, the theory cannot distin-
guish between acoustic and shear waves, or between
edge and screw dislocations.

Recent Developments

In recent years, Maurel et al.36–47 have revisited
the issue of the interaction between elastic wave
and dislocations. They took full account of the vector
nature of this problem and used multiple scattering
theory. This section reviews these developments
and how they have led to a reasonable tool to mea-
sure dislocation density.

Ultrasonic frequencies are in the range of tens of
KHz to hundreds of MHz. For most materials, this
means wavelengths in the range of tens of cm to
tens of microns, safely larger than dislocation
length and inter-dislocation distance for many si-
tuations of interest.

Scattering by an Isolated Dislocation Segment

The basic scattering mechanism of sound by dis-
locations is shown in Fig. 3. An incoming wave hits
a dislocation that oscillates in response and, as it
does, generates secondary, scattered, waves. How
efficient can this process be? How much energy, say,
does a pinned edge dislocation segment take away
from an incoming plane wave? Quite generally, in
any scattering process, this is measured by the
scattering cross-section r, which is the ratio of the
total energy radiated away as secondary waves to
the energy per unit surface which is brought in by
the incoming plane wave:

r ¼ Total energy scattered awayð Þ
Incoming energy=areað Þ : (2)

The scattering cross-section r has units of surface.
The scattering cross-section for an acoustic wave of

wavelength k by an otherwise isolated dislocation of
length L, in the limit k � L that will hold for ultra-
sound, averaged over all possible orientations, is39

r ¼ aL2 L

k

� �4

; (3)

with a ¼ 10=ð37=2pÞ for a Poisson solid. A single,
isolated dislocation will generally produce an ex-
tremely small signal. Many dislocations, however,
can collectively generate a detectable signal.

The Averaged Effect of Many Dislocations

When an elastic wave interacts with many dislo-
cations, as in Fig. 4, computing the detailed wave
behavior can be daunting. However, the interfer-
ence pattern from all the multiple scattered waves
can arrange itself, on average, into a coherently
propagating result that, for propagation along the x

k K 

Fig. 4. In the absence of dislocations (left), and in an isotropic ma-
terial, an elastic wave propagates with a wave vector ka ¼ x=ca with
a ¼ L;T for longitudinal (L) or transverse (T) waves. In the presence
of dislocations (right), the interference pattern of the multiple scat-
tered wave arranges itself to give, on average, a coherently
propagating wave with an ‘‘effective’’ wave vector Ka that is a com-
plex quantity: the real part provides an effective phase velocity and
the imaginary part provides an attenuation coefficient. The latter has
two origins: from inner losses due to the viscous damping of the
dislocation motion, and from the incoherently scattered energy away
from the direction of incidence.
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direction in time t, can be described as a damped
harmonic wave of angular frequency x:

Uðx; tÞ ¼ U0e�aaxeixðx=va�tÞ: (4)

Here, U0 is an overall amplitude, aaða ¼ L;TÞ is a
damping coefficient and va is an effective speed of
propagation. Both quantities are different for lon-
gitudinal (L) and transverse (T) waves. Their pre-
cise expressions as a function of frequency have
been computed for a variety of dislocation arrange-
ments by Maurel et al.40

Of special interest, because of its simplicty both
from an analytical and experimental point of view, is
the low frequency limit x ! 0. In the following, we
restrict ourselves to edge dislocations. Results for
screws, as well as prismatic loops, are also available.45

a. Low frequency damping At low frequencies, a
remarkable result emerges:40 the ratio of damp-
ing for longitudinal to transverse waves due to
dislocations comes out to be independent of all
aspects of the dislocation distribution for a given
sample of material:

aT
aL

¼ 3

4

cL
cT

; (5)

where cL (resp. cT) is the speed of sound (resp.
shear) waves in the absence of dislocations. This
result provides an explanation for measurements
with polycrystalline copper,48 copper single crys-
tals49 and LiNbO3

50 that it had not been possible
to explain on the basis of the Granato-Lücke
theory because it does not distinguish longitudi-
nal and transverse polarizations.

b. Velocity of propagation at low frequencies Here, it
turns out that the dislocations induce a change in
the velocity of propagation both of longitudinal
and of transverse waves. In the latter case, and
for edge dislocations, it is40

DvT
cT

¼ 4

5p4
nL3 (6)

where DvT ¼ cT � vT is the difference between
the speed of propagation cTin the absence of dis-
locations and the speed of propagation vT in the
presence of dislocations, and n is the number of
dislocation segments of length L per unit volume.
The relationship of this quantity to the total
length of dislocation per unit volume K is given
by K ¼ nL

Equation (6) relates a change in the speed of
propagation of shear waves to the density of dislo-
cations that is causing the change. So, if the velocity
difference can be measured, a value for the dislo-
cation density is obtained automatically. To get
a feeling for the orders of magnitude involved, con-

sider a hypothetical dislocation density K � 1014

m�2 with length L � 100 nm. This gives, according
to (6), a fractional change in wave velocity at the 1%
level, well within current experimental capabilities.

Resonant Ultrasound Spectroscopy

Relationship (6) has been tested with satisfactory
results using resonant ultrasound spectroscopy
(RUS) by Mujica et al.51 This is a technique that
measures the resonance frequencies (i.e., the fre-
quencies of the normal modes of vibration) of a
sample of material.52 From these measurements
and an independent measurement of the sample
shape and density, the elastic moduli, and hence the
elastic wave velocities, can be inferred.

What Mujica et al.51 did was to take a piece of
commercially 1100 pure aluminum (99.0% pure)
and cut it into five pieces. One was left as control,
two were cold-rolled at either 33% or 43% of the
initial diameter of the as-received material, and the
other two were annealed at 673 K, one for 5 h and
the other for 10 h. It is well known that longer an-
nealing leads to lower dislocation density and
stronger cold-rolling leads to higher dislocation
density. The challenge is to turn these qualitative
statements into quantitative ones. From each of the
five pieces, presumably with different dislocation
densities, one portion was set aside for RUS testing
and a second for XRD. Figure 5 shows the results of
measuring the speed of transverse waves using
RUS and the dislocation density obtained with XRD
using the Williamson–Hall plot mentioned in the

Fig. 5. RUS and XRD as tools to measure dislocation density
compared and contrasted51: Sample 3 is the as-received material.
Samples 1 and 2 were annealed at 673 K for 10 and 5 h, respec-
tively. Samples 4 and 5 were cold-rolled at 33% and 43%, respec-
tively. The horizontal axis shows the result obtained from the
broadening of diffraction peaks induced by the presence of disloca-
tions; it can distinguish two different densities within the five analized
samples. The vertical axis is the respective speed of shear waves; it
can distinguish four values within the same five samples. Equation
(6) establishes the difference in dislocation density between the
various samples.
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‘‘XRD’’ section. Of the five samples, RUS can dis-
tinguish four and XRD can distinguish two.

Equation (6) relates the difference in the speed of
shear waves vT to the the difference of dislocation
density, defined as nL3, between two samples. Here,
L is the average length of the dislocation segments
between two pinning points that allow for string-
like vibrations, as described in the ‘‘Why Should
Dislocations Scatter Sound?’’ section, and n is the
number of such segments per unit volume. Thus,
nL3 is dimensionless. This is a slightly different
definition of dislocation density from the usual one,
where dislocation density K is the ratio of total
dislocation line length contained in a given volume
divided by the said volume. K has dimensions of
inverse surface (interpreted as the number of dis-
location crossings of a surface per unit area). Both
definitions can be related through nL3 ¼ KL2. Ap-
plying these considerations to the data of Fig. 5
gives a difference between high and low values of
DðnL3Þ � 1 and DK � 5 � 109 mm�2, yielding an
average value for dislocation segment length be-
tween pinning points of L � 10 � 20 nm, a not un-
reasonable value.

CONCLUSION AND OUTLOOK

Ultrasound interacts with dislocations, and this
effect can be analyzed in great detail. It turns out
that the interaction with a single dislocation is ex-
tremely weak, but, at the densities available in the
plastic regime of many materials, dislocations col-
lectively generate an effect that is measurable with
current technology. This raises the hope for a non-
intrusive characterization tool for the plastic behav-
ior of materials which has significant advantages
over current techniques such as XRD and TEM.

The hope has been fulfilled, as it has been estab-
lished, using RUS, that ultrasound can be used to
measure dislocation densities on the order of 1015

m�2 in the laboratory.51 The relative changes in the
speed of shear waves these dislocations induce are
at the level of 1%, in agreement with order of
magnitude estimates obtained from the theoretical
framework. These measurements have been ob-
tained with a RUS apparatus that determines the
wave velocity with an accuracy of 0.1%.

The experiment of Mujica et al.51 provides a proof-
of-concept. Since ultrasonics is such a well-devel-
oped technology, and wave velocities can be mea-
sured with a high accuracy, a natural development
should be to test these results in an environment
that is still controlled, but is less artificial. For ex-
ample, it should be interesting to monitor the speed
of sound of a piece of metal undergoing a standard
tension test. This could provide, in situ, a detailed
picture of the evolution of dislocation density as a
function of applied tension. A successful outcome of
this test would be a significant step forward in the
development of a practical and portable probe of
dislocation density.

The theory reviewed in the ‘‘Recent Develop-
ments’’ section, and successfully tested by Mujica
et al.,51 relies on the linear description of acoustic
wave behavior, always valid for small enough wave
amplitudes. However, it is comparatively easy with
current technology to increase a signal to reach a
nonlinear regime, where higher harmonic gen-
eration and resonance frequency shift are two
striking and characteristic phenomena.53 Indeed,
nonlinear ultrasonic response has been shown to be
a very sensitive probe in a number of situation.54

Could nonlinear ultrasound resonance spectroscopy
be a more sensitive tool to detect dislocation density
than its linear counterpart? Quantitative analysis is
here more involved, but preliminary results are
encouraging.55

Finally, the results quoted in the ‘‘Recent Devel-
opments’’ section deal with the coherent propaga-
tion of elastic waves in the presence of many
dislocations in the low-frequency limit. There are at
least two additional directions to move forward: (1)
going to shorter wavelengths could provide a handle
not only on the average dislocation length between
pinning points but also on the statistical distribu-
tion of said lengths, and (2) a study of the incoherent
wave propagation could lead to interesting insights
into the role of dislocations on thermal conductivity.
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