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DIFFERENTIABILITY OF PALMER’S LINEARIZATION

THEOREM AND CONVERSE RESULT FOR DENSITY

FUNCTIONS

ÁLVARO CASTAÑEDA AND GONZALO ROBLEDO

Abstract. We study differentiability properties in a particular case of the
Palmer’s linearization Theorem, which states the existence of an homeomor-
phism H between the solutions of a linear ODE system having exponential
dichotomy and a quasilinear system. Indeed, if the linear system is uniformly
asymptotically stable, sufficient conditions ensuring that H is a C2 preserving
orientation diffeomorphism are given. As an application, we generalize a con-
verse result of density functions for a nonlinear system in the nonautonomous
case.

1. Introduction

The seminal paper of K.J. Palmer [19] provides sufficient conditions ensuring the
topological equivalence between the solutions of the linear system

(1.1) y′ = A(t)y,

and the solutions of the quasilinear one

(1.2) x′ = A(t)x + f(t, x),

where the bounded and continuous n× n matrix A(t) and the continuous function
f : R× R

n → R
n satisfy some technical conditions.

Roughly speaking, (1.1) and (1.2) are topologically equivalents if there exists a
map H : R× R

n → R
n such that ν 7→ H(t, ν) is an homeomorphism for any fixed

t. In particular, if x(t) is a solution of (1.2), then H [t, x(t)] is a solution of (1.1).
To the best of our knowledge, there are no results concerning the differentiability

of the map H and the purpose of this paper is to find sufficient conditions ensuring
that the map above is a preserving orientation diffeomorphism of class C1 (The-
orem 1) and C2 (Theorem 2), both under the assumption that (1.1) is uniformly
asymptotically stable.

As an application of our results, we will construct a density function for the
system (1.2) when f(t, 0) = 0 (Theorem 3), generalizing a converse result in the
autonomous case presented in [17].
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1.1. Palmer’s linearization Theorem. We are interested in the particular case:

Proposition 1 (Palmer [19]). If the assumptions:

(H1) |f(t, x)| ≤ µ for any t ∈ R and x ∈ R
n.

(H2) |f(t, x1) − f(t, x2)| ≤ γ|x1 − x2| for any t ∈ R, where | · | denotes a norm

in R
n.

(H3) There exist some constants K ≥ 1 and α > 0 such that the transition matrix

Ψ(t, s) = Ψ(t)Ψ−1(s) of (1.1) verifies

(1.3) ||Ψ(t, s)|| ≤ Ke−α(t−s), for any t ≥ s.

(H4) The Lipschitz constant of f verifies:

(1.4) γ ≤ α/4K,

are satisfied, there exists a unique function H : R× R
n → R

n satisfying

i) H(t, x)− x is bounded in R× R
n,

ii) If t 7→ x(t) is a solution of (1.2), then H [t, x(t)] is a solution of (1.1).

Morevoer, H is continous in R× R
n and

|H(t, x)− x| ≤ 4Kµα−1

for any (t, x) ∈ R × R
n. For each fixed t, H(t, x) is a homeomorphism of R

n.

L(t, x) = H−1(t, x) is continous in R×R
n and if y(t) is any solution of (1.1), then

L[t, y(t)] is a solution of (1.2).

Remark 1. The original Palmer’s result assumes that (1.1) has an exponential di-
chotomy property. The condition (H3) is a particular case considering the identity
as projector, which implies that (1.1) is exponentially stable at +∞. In addition,
let us recall that uniform asymptotical and exponential stability are equivalent in
the linear case (see [7] or Theorem 4.11 from [13]).

This result has been extended and generalized in several directions [4], [12], [15]
[20], [21], [26] but there are no results about the differentiability of x 7→ H(t, x). In
this article we provides sufficient conditions, described in term of Ψ(t, s), Df and
D2f , such that H is a Cp (p = 1, 2) preserving orientation diffeomorphism.

1.2. Density functions. Let us consider the system

(1.5) z′ = g(t, z) with g(t, 0) = 0 for any t ∈ R,

where g : R × R
n → R

n is such that the existence, uniqueness and unbounded
continuation of the solutions is verified.

Definition 1. A density function of (1.5) is a C1 function ρ : R × R
n \ {0} →

[0,+∞), integrable outside a ball centered at the origin that satisfies

∂ρ(t, z)

∂t
+ ▽ · [ρ(t, z)g(t, z)] > 0

almost everywhere with respect to R
n and for every t ∈ R, where

▽ · [ρg] = ▽ρ · g + ρ[▽ · g],

and ▽ρ, ▽ · g denote respectively the gradient of ρ and divergence of g.
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The density functions were introduced by Rantzer in 2001 [23] in order to obtain
sufficient conditions for almost global stability of autonomous systems, we refer to
[3], [8], [10], [14] and [16] for a deeper discussion and applications. The extension
to the nonautonomous case has been proved in [18], [25]:

Proposition 2 (Theorem 4, [25]). Consider the system (1.5) such that z = 0 is

a locally stable equilibrium point. If there exists a density function associated to

(1.5), then for every initial time t0, the sets of points that are not asymptotically

attracted by the origin has zero Lebesgue measure.

Converse results (i.e., global asymptotic stability implies the existence of a den-
sity function) were presented simultaneously by Rantzer [24] and Monzón [17] in
the autonomous case by using different methods. In particular, in [17] the author
constructs a density function associated to the system

(1.6) z′ = g(z) with g(0) = 0,

where 0 is a globally asymptotically stable equlibrium and g : Rn → R
n is a C2

function, whose jacobian matrix at z = 0 has eigenvalues with negative real part.
Such construction has two steps: i) As u′ = Dg(0)u is globally asymptoti-

cally stable, it is well known that there exists a density function ρ(z) (we refer
to Proposition 1 from [23] for details). ii) A C2 preserving orientation diffeomor-
phism h : Rn → R

n is constructed, such that ρ̄(z) defined by

(1.7) ρ̄(z) = ρ(h(z)) detDh(z)

is a density function for (1.6).
To the best of our knowledge, there are few converse results in the nonau-

tonomous framework. A first one was presented by Monzón in 2006:

Proposition 3 (Monzón, [18]). If (1.1) is globally asymptotically stable, then there

exists a C1 density function ρ : R× R
n \ {0} → [0,+∞), associated to (1.1).

If we assume that

(H5) The function f satisfies f(t, 0) = 0 for any t ∈ R,

By Gronwall’s inequality, combined with (H4), it is easy to deduce that any solution
t 7→ φ(t, t0, x0) of (1.2) passing throuhg x0 at t = t0 verifies

|φ(t, t0, x0)| ≤ Ke{−α+Kγ}(t−t0)|x0|, for t ≥ t0

which implies the exponential stability of (1.2) at t = +∞.
This property prompt us to extend the Monzon’s converse result [17] to the

nonlinear system (1.2) by constructing a density function in the same way as in
(1.7), where ρ is defined by Proposition 3 and replacing h by H(t, x) defined in
Proposition 1.

The paper is organized as follows. The section 2 states our main results and its
proofs. The section 3 is devoted to prove the converse result and to construct a
density function for (1.2) and an illustrative example is presented in section 5.

2. Main Results

As usual, given a matrix M(t) ∈ Mn(R), its trace will be denoted by TrM(t)
while its determinant by detM(t), the identity matrix is denoted by I.

The solution of (1.2) passing through ξ at t0 will be denoted by φ(t, t0, ξ). It
will be interesting to consider the map ξ 7→ φ(t, t0, ξ) and its properties. Indeed,



4

if f is C1, it is well known (see e.g. [6, Chap. 2]) that ∂φ(t, t0, ξ)/∂ξ = φξ(t, t0, ξ)
satisfies the matrix differential equation

(2.1)





d

dt
φξ(t, t0, ξ) = {A(t) +Df(t, φ(t, t0, ξ))}φξ(t, t0, ξ).

φξ(t0, t0, ξ) = I.

Moreover, it is proved that (see e.g., Theorem 4.1 from [11, Ch.V]) if f is Cr

with r > 1, then the map ξ 7→ φ(t, t0, ξ) is also Cr. In particular, if f is C2, we can
verify that the second derivatives ∂2φ(s, t0, ξ)/∂ξj∂ξi are solutions of the system of
differential equations

(2.2)





d

dt

∂2φ

∂ξj∂ξi
= {A(t) +Df(t, φ)}

∂2φ

∂ξj∂ξi
+D2f(t, φ)

∂φ

∂ξj

∂φ

∂ξi

∂2φ

∂ξj∂ξi
= 0,

with φ = φ(t, t0, ξ), for any i, j = 1, . . . , n.
Now, let us introduce the following conditions

(D1) f(·, ·) is C2 and, for any fixed t, its first derivative is such that
∫ t

−∞

||Ψ(t, r)Df(r, φ(r, 0, ξ))Ψ(r, t)||∞ dr < 1.

(D2) For any fixed t, A(t) and Df(t, φ(t, 0, ξ)) are such that

lim inf
s→−∞

−

∫ t

s

TrA(r) dr > −∞ and lim inf
s→−∞

−

∫ t

s

Tr{A(r)+Df(r, φ(r, 0, ξ))} dr > −∞.

(D3) For any fixed t and i, j = 1, . . . , n, the following limit exists

(2.3) lim
s→−∞

∂Z(s, x(t))

∂xj(t)
ei,

where x(t) = (x1(t), . . . , xn(t)) = φ(t, 0, ξ), ei is the i–th component of
the canonical basis of Rn and Z(s, x(t)) is a fundamental matrix of the
x(t)–parameter dependent system

(2.4) z′ = F (s, x(t))z

satisfying Z(t, x(t)) = I, where F (r, x(t)) is defined as follows

(2.5) F (r, x(t)) = Ψ(t, r)Df(r, φ(r, t, x(t)))Ψ(r, t),

Remark 2. We will see that the construction of the homeomorphism H considers
the behavior of φ(t, 0, ξ) for any t ∈ (−∞,∞). In particular, to prove that H is
a C2 preserving orientation diffeomorphism will require to know the behavior on
(−∞, t]. Indeed, notice that:

(D1) is a technical assumption, introduced to ensure that the homeomorphism
H(t, x) stated in Proposition 1 is a C1 diffeomorphism. It is interesting to point out
that, by using a result of p. 11 of [7], we know that |H [s, φ(s, 0, ξ)]| → +∞ when
s → −∞, this fact combined with statement ii) from Proposition 1 implies that
|φ(s, 0, ξ)| → +∞. In consequence, (D1) suggest that the asymptotic behavior of
Df(s, x) (when |x| → +∞ and s → −∞) ensures integrability.
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Moreover, let us note that appears in some results about asymptotical equiva-
lence (see e.g., [2],[22]).

(D2) is introduced in order to assure that H is a preserving orientation diffeo-
morphism. We emphasize that this asumption is related to Liouville’s formula and
is used in the asymptotic integration literature (see e.g., [9]).

(D3) is introduced to ensure that H is a C2 diffeomorphism. Notice that, as
stressed by Palmer [19, p.757], the uniqueness of the solution of (1.2) implies the
identity

(2.6) φ(s, t, φ(t, 0, ξ)) = φ(s, 0, ξ),

and this fact combined with x(t) = φ(t, 0, ξ) allows us to see that F (r, x(t)) is the
same function of (D1).

Theorem 1. If (H1)–(H4) and (D1)–(D2) are satisfied, then, for any fixed t,
the function x 7→ H(t, x) is a preserving orientation diffeomorphism. In particular,

if t 7→ x(t) is a solution of (1.2), then, for any fixed t, x(t) 7→ H [t, x(t)] is a

preserving orientation diffeomorphism.

Proof. In order to make the proof self contained, we will recall some facts of the
Palmer’s proof [19, Lemma 2] tailored for our purposes.

Firstly, let us consider the system

z′ = A(t)z − f(t, φ(t, τ, ν)),

where t 7→ φ(t, τ, ν) is the unique solution of (1.2) passing through ν at t = τ .
Moreover, it is easy to prove that the unique bounded solution of the above system
is given by

χ(t, (τ, ν)) = −

∫ t

−∞

Ψ(t, s)f(s, φ(s, τ, ν)) ds.

The map H is constructed as follows:

H(τ, ν) = ν + χ(τ, (τ, ν)) = ν −

∫ τ

−∞

Ψ(τ, s)f(s, φ(s, τ, ν)) ds.

It will be essential to note that the particular case (τ, ν) = (t, φ(t, 0, ξ)), leads to

(2.7) χ(t, (t, φ(t, 0, ξ))) = −

∫ t

−∞

Ψ(t, s)f(s, φ(s, t, φ(t, 0, ξ))) ds.

In addition, (2.6) allows us to reinterpret (2.7) as

(2.8) χ(t, (t, φ(t, 0, ξ))) = −

∫ t

−∞

Ψ(t, s)f(s, φ(s, 0, ξ))) ds.

In consequence, when (τ, ν) = (t, φ(t, 0, ξ)), we have:

(2.9) H [t, φ(t, 0, ξ)] = φ(t, 0, ξ) + χ(t, (t, φ(t, 0, ξ)))

and the reader can notice that the notation H [·, ·] is reserved to the case where H
is defined on a solution of (1.2).

Having in mind the double representation (2.7)–(2.8) of χ(t, (t, φ(t, 0, ξ))), the
map H [t, φ(t, 0, ξ)] can be written as

(2.10) H [t, φ(t, 0, ξ)] = φ(t, 0, ξ)−

∫ t

−∞

Ψ(t, s)f(s, φ(s, 0, ξ)) ds,
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or

(2.11) H [t, φ(t, 0, ξ)] = φ(t, 0, ξ)−

∫ t

−∞

Ψ(t, s)f(s, φ(s, t, φ(t, 0, ξ))) ds.

The proof that φ(t, 0, ξ) 7→ H [t, φ(t, 0, ξ)] is an homeomorphism for any fixed t
is given by Palmer in [19, pp.756–757]. In addition, it is straightforward to verify
that (2.10) is a solution of (1.1) passing through H [0, ξ] at t = 0.

Turning now to the proof that φ(τ, ν) 7→ H(τ, ν) is a preserving orientation diffeo-
morphism for any fixed τ , we will only consider the case when (τ, ν) = (t, φ(t, 0, ξ))
by using (2.11). The general case can be proved analogously and is left to the
reader.

The proof is decomposed in several steps.
Step 1: Differentiability of the map φ(t, 0, ξ) 7→ H [t, φ(t, 0, ξ)].

Let us denote x(t) = φ(t, 0, ξ) for any fixed t. By using the fact that f is C1

combined with (2.1) and

(2.12)
d

dt
Ψ(t, s) = A(t)Ψ(t, s) and

d

ds
Ψ(t, s) = −Ψ(t, s)A(s),

we can deduce that:

(2.13)

∂H [t, x(t)]

∂x(t)
= I −

∫ t

−∞

Ψ(t, s)Df(s, φ(s, t, x(t)))
∂φ(s, t, x(t))

∂x(t)
ds

= I −

∫ t

−∞

d

ds

{
Ψ(t, s)

∂φ(s, t, x(t))

∂x(t)

}
ds

= lim
s→−∞

Ψ(t, s)
∂φ(s, t, x(t))

∂x(t)
.

In consequence, the differentiability of x(t) 7→ H [t, x(t)] follows if and only if the
limit above exists.
Step 2: (2.13) is well defined.

By (2.1), we know that ∂φ(s, t, x(t))/∂x(t) is solution of the equation:

(2.14)

{
Y ′(s) = {A(s) +Df(s, φ(s, t, x(t)))}Y (s)
Y (t) = I.

By (2.12),(2.6) and (2.14), the reader can verify that Z(s, x(t)) = Ψ(t, s)
∂φ(s, t, x(t))

∂x(t)
is solution of the x(t)–parameter dependent matrix differential equation

(2.15)





dZ

ds
=

{
Ψ(t, s)Df(s, φ(s, 0, ξ))Ψ(s, t)

}
Z(s)

Z(t) = I.

A well known result of sucessive approximations (see e.g., [1],[5]) states that

Z(s, x(t)) = I −

∫ t

s

F (r, ξ) dr +

+∞∑

k=2

(−1)k

(∫ t

s

F (r1, ξ) dr1 · · ·

∫ t

rk−1

F (rk, ξ) drk

)
,

where F (r, ξ) is defined by (2.5). Moreover, we also know that

||Z(s, x(t))|| ≤ exp
(∣∣∣
∫ t

s

||F (r, ξ)|| dr
∣∣∣
)
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and (D1) implies that (2.13) is well defined.
Step 3: x 7→ H [t, x(t)] is a preserving orientation diffeomorphism.

Notice that the continuity of ∂φ(s, t, x(t))/∂x(t) for any s ≤ t (ensured by Theo-
rem 4.1 from [11, Ch.V]) implies the continuity of ∂H [t, x(t)]/∂x(t) and we conclude
that H [t, x(t)] is a diffeomorphism.

The Liouville’s formula (see e.g., Theorems 7.2 and 7.3 from [6, Ch.1]) says that

detΨ(t, s) > 0 and det
∂φ(s, t, x(t))

∂x(t)
> 0 for any s ≤ t

and (D2) implies that these inequalities are preserved at s = −∞, and we conclude
that x(t) 7→ H [t, x(t)] is a preserving orientation diffeomorphism. �

Remark 3. As t 7→ H [t, x(t)] is solution of (1.1), the uniqueness of the solution
implies that

(2.16) H [t, φ(t, 0, ξ)] = Ψ(t, 0)H [0, ξ].

Remark 4. The matrix differential equation (2.14) can be seen as a perturbation of
the matrix equation

(2.17)

{
X ′(s) = A(s)X(s)
X(t) = I

related to (1.1). In addition, (2.17) has a solution s 7→ X(s) = Ψ(s, t).
Notice that Ψ(t, s)X(s) = I while Theorem 1 says that s 7→ Ψ(t, s)Y (s) exists at

s = −∞. This fact prompt us that the behavior of (2.14) and (2.17) at s → −∞ has
some relation weaker than asymptotic equivalence. Indeed, in [2],[22] it is proved
that (D1) is a necessary condition for asymptotic equivalence between a linear
system and a linear perturbation.

Theorem 2. If (H1)–(H4) and (D1)–(D3) are satisfied, then, for any fixed

t, the function x 7→ H(t, x) is a C2 preserving orientation diffeomorphism. In

particular, if t 7→ x(t) is a solution of (1.2), then, for any fixed t, x(t) 7→ H [t, x(t)]
is a C2 preserving orientation diffeomorphism.

Proof. Let us denote x(t) =
(
x1(t), . . . , xn(t)

)
= φ(t, 0, ξ). As in the previous re-

sult, the proof will be decomposed in several steps:

Step 1: About ∂2H [t, x(t)]/∂xj(t)∂xi(t).
For any i, j ∈ {1, . . . , n}, we can verify that

∂2H

∂xj∂xi

[t, x(t)] = −

∫ t

−∞

Ψ(t, s)D2f(s, φ(s, t, x(t)))
∂φ(s, t, x(t))

∂xj

∂φ(s, t, x(t))

∂xi

ds

−

∫ t

−∞

Ψ(t, s)Df(s, φ(s, t, x(t)))
∂2φ(s, t, x(t))

∂xj∂xi

ds,

where xi = xi(t) and xj = xj(t).
Now, by using (2.2) and (2.12), the reader can verify that

∂2H

∂xj∂xi

[t, x(t)] = −

∫ t

−∞

d

ds

{
Ψ(t, s)

∂2φ(s, t, x(t))

∂xj∂xi

}
ds

= lim
s→−∞

Ψ(t, s)
∂2φ(s, t, x(t))

∂xj∂xi
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and the existence of ∂2H [t, x(t)]/∂xj(t)∂xi(t) follows if and only if the limit above
exists.
Step 2: ∂2H [t, x(t)]/∂xj(t)∂xi(t) is well defined.

By using (2.1) and (2.12), we can see that s 7→ Ψ(t, s)∂φ(s, t, x(t))/∂xi is a
solution of (2.4) passing through ei at s = t. In consequence, we can deduce that

Ψ(t, s)
∂φ(s, t, x(t))

∂xi

= Z(s, x(t))ei

and

Ψ(t, s)
∂2φ(s, t, x(t))

∂xj∂xi

=
∂Z

∂xj

(s, x(t))ei.

By (D3), the last identity has limit when s → −∞ and ∂2H [t, x(t)]/∂xj∂xi is
well defined and continuous with respect to x(t). �

Remark 5. A careful reading of the results above, shows that our methods can be
generalized in order to prove that H is a Cr diffeomorphism with r ≥ 2.

3. Density function

As we pointed out in subsection 1.2, (H1) implies that (1.1) is uniformly asymp-
totically stable, which is a particular case of global asymptotical stability. Now, by
Proposition 3, there exists a density function ρ ∈ C1(R × R

n \ {0}, [0,+∞)) asso-
ciated to (1.1). By following the ideas for the autonomous case studied by Monzón
[17, Prop. III.1] combined with the function ρ, we state the following result:

Theorem 3. If (H1)–(H5) and (D1)–(D3) are satisfied, then there exists a

density function ρ̄ ∈ C(R× R
n \ {0}, [0,+∞)) associated to (1.2), defined by

(3.1) ρ̄(t, x) = ρ(t,H(t, x))
∣∣∣
∂H(t, x)

∂x

∣∣∣,

where H(·, ·) is the C2 preserving orientation diffeomorphism defined before, x is

any initial condition of (1.2) and | · | denotes a determinant.

Proof. In spite that in the previous sections, the initial condition and the determi-
nant were respectively denoted by ξ and det(·), the notation of (3.1) is classical in
the density function literature. The reader will not be disturbed by this fact.

We shall prove that (3.1) satisfies the properties of Definition 1 with g(t, x) =
A(t)x+f(t, x). Indeed, ρ̄ is non–negative since ρ is non–negative andH is preserving
orientation. In addition, ρ̄ is C1 since H is C2.

The rest of the proof will be decomposed in several steps:
Step 1: ρ̄(t, x) is integrable outside any ball centered in the origin.

Let B be an open ball centered at the origin. By using H(t, 0) = 0 and statement
(i) from Proposition 1, we can conclude that H(t, B) is an open and bounded set
containing the origin. In consequence, for any fixed t, the outside of B is mapped
in the outside of another ball centered at the origin and contained in H(t, B).

Let Z be a measurable set whose closure does not contain the origin. The
property stated above implies that H(t,Z) is outside of some ball centered at the
origin. Now, by the change of variables theorem, we can see that

∫

Z

ρ̄(t, x) dx =

∫

Z

ρ(t,H(t, x))
∣∣∣
∂H(t, x)

∂x

∣∣∣ dx =

∫

H(t,Z)

ρ(t, y) dy.
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Finally, as ρ(t, ·) is integrable outside any open ball centered at the origin, the
same follows for ρ̄(t, ·).
Step 2: ρ̄(t, x) verifies

(3.2)
∂ρ̄

∂t
(t, x) + ▽ · (ρ̄g)(t, x) > 0 a.e. in R

n.

Firstly, by using the Liouville’s formula (see e.g., [11, Corollary 3.1]), we know
that

∂

∂η

∣∣∣
∂φ(τ + t, t, x)

∂x

∣∣∣
∣∣∣∣∣
τ=0

= ▽ · g(t, x),

where η = τ + t. Now, it is easy to verify that:

∂ρ̄

∂t
(t, x) + ▽ · (ρ̄g)(t, x) =

∂

∂η

{
ρ̄(τ + t, φ(τ + t, t, x))

∣∣∣
∂φ(τ + t, t, x)

∂x

∣∣∣
}∣∣∣

τ=0

=
∂

∂η

{
ρ(τ + t,H [τ + t, φ(τ + t, t, x)])

∣∣∣
∂H [τ + t, φ(τ + t, t, x)]

∂φ(τ + t, t, x)

∣∣∣
∣∣∣
∂φ(τ + t, t, x)

∂x

∣∣∣
}∣∣∣

τ=0

=
∂

∂η

{
ρ(τ + t,H [τ + t, φ(τ + t, t, x)])

∣∣∣
∂H [τ + t, φ(τ + t, t, x)]

∂x

∣∣∣
}∣∣∣

τ=0
.

Secondly, a consequence of (2.16) is

H [τ + t, φ(τ + t, t, x)] = Ψ(τ + t, t)H(t, x),

which implies:

∂ρ̄

∂t
(t, x) + ▽ · (ρ̄g)(t, x) =

∂

∂η

{
ρ(τ + t,Ψ(τ + t, t)H(t, x))

∣∣∣
∂Ψ(τ + t, t)H(t, x)

∂x

∣∣∣
}∣∣∣

τ=0

= A1(τ + t, x) +A2(τ + t, x)
∣∣∣
τ=0

,

where A1(·, ·) and A2(·, ·) are respectively defined by

A1(τ + t, x) =
∂

∂η

{
ρ(τ + t,Ψ(τ + t, t)H(t, x))

}∣∣∣
∂Ψ(τ + t, t)H(t, x)

∂x

∣∣∣

=
{∂ρ
∂η

(τ + t,Ψ(τ + t, t)H(t, x))+

▽ρ
(
τ + t,Ψ(τ + t, t)H(t, x)

)
A(τ + t)Ψ(τ + t, t)H(t, x)

}

∣∣∣
∂Ψ(τ + t, t)H(t, x)

∂x

∣∣∣
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and

A2(τ + t, x) = ρ(τ + t,Ψ(τ + t, t)H(t, x))
∂

∂η

{∣∣∣
∂Ψ(τ + t, t)H(t, x)

∂x

∣∣∣
}

= ρ(τ + t,Ψ(τ + t, t)H(t, x))

∂

∂η

{∣∣∣
∂Ψ(τ + t, t)H(t, x)

∂H(t, x)

∣∣∣
∣∣∣
∂H(t, x)

∂x

∣∣∣
}

As

A1(t, x) =
{∂ρ
∂η

(t,H(t, x)) + ▽ρ(t,H(t, x))A(t)H(t, x)
}∣∣∣

∂H(t, x)

∂x

∣∣∣

and

A2(t, x) = ρ(t,H(t, x))TrA(t)H(t, x)
∣∣∣
∂H(t, x)

∂x

∣∣∣,

we can conclude that

∂ρ̄

∂t
(t, x) + ▽ · (ρ̄g)(t, x) = A1(t, x) +A2(t, x)

=
{∂ρ
∂η

(t,H(t, x)) + ▽ · ρ(t,H(t, x))A(t)H(t, x)
}∣∣∣

∂H(t, x)

∂x

∣∣∣,

which is positive since is the product of two positive terms. The positiveness of the
first one is ensured by Proposition 3, while the second follows by Theorem 1.
Step 3: End of proof.

As we commented before, the existence of density function associated to (1.2)
is based on the homeomorphism H constructed by Palmer (Proposition 1) and the
existence of the density function ρ(t, x) associated to (1.1) constructed by Monzón
(Proposition 3). Proposition 1 and Theorem 2 ensure that H is a C2 preserving
orientation diffeomorphism while the previous steps state that (3.1) is indeed a
density function associated to (1.2) and the result follows. �

3.1. An application to nonlinear systems. Let us consider the nonlinear sys-
tem

(3.3) x′ = g(t, x)

where g is a C2 function satisfying

(H1’) g(t, 0) = 0 and |g(t, x)| ≤ µ̃ for any t ∈ R and x ∈ R
n.

(H2’) |g(t, x1)− g(t, x2)| ≤ L|x1 − x2| for any t ∈ R.

Corollary 1. If:

(G1) The linear system y′ = Dg(t, 0)y is exponentially stable and its transition

matrix satisfy

||Φ(t, s)|| ≤ Ke−α(t−s) for some K ≥ 1 and α > 0.

(G2) The Lipschitz constant L satisfies

L+ ||Dg(t, 0)|| ≤ α/4K for any t ∈ R,
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(G3) The first derivative of g is such that
∫ t

−∞

||F̃ (r, ξ)||∞ dr < 1

for any fixed t, with

F̃ (r, ξ) = Φ(t, r){Dg(r, ϕ(r, 0, ξ)) −Dg(r, 0)}Φ(r, t),

where ϕ(r, 0, ξ) is the solution of (3.3) passing through ξ at r = 0.
(G4) For any fixed t, Dg(t, 0) and Dg(t, ϕ(t, 0, ξ)) are such that

lim inf
s→−∞

−

∫ t

s

TrDg(r, 0) dr > −∞ and lim inf
s→−∞

−

∫ t

s

TrDg(r, ϕ(r, 0, ξ)) dr > −∞

for any initial condition ξ.
(G5) For any fixed t and i, j = 1, . . . , n, the following limit exists

lim
s→−∞

Z̃(s, x(t))

∂xj(t)
ei,

where x(t) = ϕ(t, 0, ξ) and Z̃(s, x(t)) is a fundamental matrix of

Z̃ ′ = F̃ (s, x(t))Z̃.

then there exists a density function ρ̄ ∈ C(R×R
n\{0}, [0,+∞)) associated to (3.3).

4. Illustrative Example

Let us consider the scalar equation

(4.1) x′ = −ax+ h(t) arctan(x),

where a > 0 and h : R → R+ is bounded and continuous. In addition, we will
suppose that

(4.2) r 7→ h(r)e−ar is integrable on (−∞,∞).

It is easy to see that (H1)–(H2) are satisfied with µ = ||h||∞π/2 and γ = ||h||∞.
Notice that that (H3) is satisfied since Ψ(t, s) = e−a(t−s) and (H4) is satisfied

if and only if 4||h||∞ ≤ a.
Moreover, (D1) is satisfied if for any solution r 7→ φ(r, 0, ξ) of (4.1)

(4.3)

∫ ∞

−∞

h(r)

1 + φ2(r, 0, ξ)
dr < 1.

It is interesting to point out φ(t, 0, ξ) is unbounded and have exponential growth
at t = −∞. Now, it is easy to note that

lim
s→−∞

−as = +∞,

which implies that

lim inf
s→−∞

−

∫ t

s

{
− a+

h(r)

1 + φ2(r, 0, ξ)

}
dr > −∞

for any fixed t, and (D2) is satisfied.
Letting f(t, x) = h(t) arctan(x) and noticing that

Z(s, x(t)) = exp
{
−

∫ t

s

Df(u, φ(u, t, x(t))) du
}
,
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and
∂φ(s, t, x(t))

∂x(t)
= exp

{
a(t− s)−

∫ t

s

Df(u, φ(u, t, x(t))) du
}

with x(t) = φ(t, 0, ξ). Consequently, a straigthforward computation shows that
(D3) is satisfied if and only if

Z(s, x(t))
[ ∫ t

s

exp
(
a{t− u} −

∫ t

u

Df(r, φ(r, t, x(t))) dr
)
D2f(u, φ(u, t, x(t))) du

]
,

has limit when s → −∞.
Finally, (4.2) and (4.3) imply that (D3) is satisfied since the function

u 7→
h(u)e−a(u−t)φ(u, t, x(t))

(1 + φ2(u, t, x(t)))2
=

h(u)e−a(u−t)φ(u, 0, ξ)

(1 + φ2(u, 0, ξ))2

is integrable on (−∞, t] for any t ∈ R.
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