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a b s t r a c t

It is shown that a single molecular magnet placed in a rapidly oscillating magnetic field displays the
phenomenon of quenching of tunneling processes. The results open a way to manipulate the quantum
states of molecular magnets by means of radiation in the terahertz range. Our analysis separates the time
evolution into slow and fast components thereby obtaining an effective theory for the slow dynamics.
This effective theory presents quenching of the tunnel effect, in particular, stands out its difference with
the so-called coherent destruction of tunneling. We support our prediction with numerical evidence
based on an exact solution of Schrödinger's equation.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Since a few decades molecular magnetic materials have arisen
as a new test ground for several phenomena in quantum behavior
of finite size magnetic systems [1–5]. Molecular magnets have
attracted attention due to their potential in the implementation of
several molecular spintronic devices [6–8]. The long spin co-
herence times displayed turn them into promising candidates in
the context of quantum computing, where the molecule spin is
used to encode q-bits [10,5,9].

The quantum mechanical degrees of freedom associated with
molecular magnets can be manipulated and controlled with great
accuracy by the application of external magnetic fields [2–5]. It has
been proposed [10] that suitable manipulation of molecular
magnets with time dependent magnetic fields can be used to
control the population of their quantum states thereby paving the
road toward an implementation of a quantum computation
scheme known as Grover's algorithm. Within the same framework
in this work we propose a way to control the quantum mechanical
state of a molecular magnet by means of a rapidly varying mag-
netic field. We will show that radiation within the range of
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terahertz frequencies can be used to quench the quantum state of
a molecular magnet thereby providing a useful tool for potential
applications. There is previous work relating radiation in the ter-
ahertz range with magnetic properties of materials, for example
terahertz radiation has been used to control the spin waves of
antiferromagnets [11,12] and in Ref. [13] hybrid magnetic struc-
tures have been used to generate radiation in the terahertz range.
Our predictions allow an extension of such control into the subject
of molecular magnets. We study the dynamics of the magnetiza-
tion of a molecular magnet exposed to circularly polarized ter-
ahertz radiation. In response to such perturbations the system can
display a quenching of the tunneling rate between energetically
equivalent states giving rise to a trapping of the quantum me-
chanical state. This effect is analogous to an interesting effect in
classical mechanics the trapping of a classical particle that can be
achieved by introducing a rapidly oscillating potential
V x t V x V x t, ,0 1( ) = ( ) + ( ) [14,15]. Under the action of such forces the
slow dynamics of the particle is trapped by an effective potential
V V x F m/ 2eff 0

2 2ω= ( ) + ( ) where F is the force associated with the
oscillating potential, F V x t,x 1= − ∂ ( ), ω its frequency and the bar
represents an average over an entire cycle of the oscillating force.
Based on those ideas it was proposed and demonstrated by Ka-
pitza [15] that a pendulum with a rapidly vibrating point of sus-
pension would be stabilized in the upward position. Once stabi-
lized the pendulum was shown to display small oscillations
around its new equilibrium configuration. The main result of this
paper is that a similar result holds for the quantum mechanical
state associated with the spin of a molecular magnet. In this sense
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Fig. 1. Schematics of the proposed arrangement. A rapidly rotating magnetic field,
h t
→

( ), in the plane induces a slow dynamics characterized by a stationary effective
field, Heff

→
. The direction of the effective magnetic field is perpendicular to the plane.

The slow dynamics is characterized by two degenerate classical ground states 1Ω̂
and 2Ω̂ . In general, there are oscillations between those states mediated by
quantum tunneling. However, for certain values of the parameters the quantum
mechanical oscillations between those two states are quenched.
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we can say that the prediction corresponds to a Kapitza effect in
Hilbert space. Instead of promoting transitions between states, the
high frequency radiation traps the state of the spin in a given
configuration keeping it from describing tunnel transitions into
other configurations. A quantitative statement of this effect is
encoded in the tunneling time (the time that it takes for the sys-
tem to tunnel from one minima to another) which is seen to di-
verge in certain circumstances. In response to the oscillatory dis-
turbance the tunnel effect is suppressed and the states are frozen
in a given configuration. A similar effect of suppression of tun-
neling has been reported in the literature concerning spins where
the effect is attributed to interference of Berry's phases of different
paths associated with tunneling. In this context the effect has been
dubbed quenching of the tunnel amplitude [26,3].
2. Effective slow dynamics

As is common in the theoretical studies of molecular magnets
our study is based on the reduction of the electronic degrees of
freedom, to some effective low-energy Hamiltonian, based entirely
on localized spin degrees of freedom of the magnetic ions within
the molecule [16]. In this context, the total energy has two con-
tributions 0 1= + , one arising from the intrinsic anisotropy
[2], in the form

S S S . 1x z y0
2 2 2= − + ( − ) ( )

For > this Hamiltonian represents a quantum spin with easy
axis along the x direction and a hard axis along the z direction. The
case 0= has been previously studied in Ref. [17]. This Hamilto-
nian can be used as a model for describing the magnetic degrees of
freedom of several single molecule nanomagnets [2]. Among them
the most widely used ones are the Mn12–ac molecule [5] (with
S¼10, 0.55 K= and 0.02 K= ), the molecular complex Fe8
molecular magnet [3] (with S¼10, 0.29 K= and 0.05 K= ) and
Ni4 [23] (with S¼4, 0.75 K= and vanishingly small ). The spin
is perturbed by a circularly polarized time dependent external
field [12]:

h t S t Scos sin 2x y1 ω ω= − ( + ) ( )

Here ω is the frequency of the oscillation of the magnetic field in
the x, y plane and h g HBμ= with H being the amplitude of the
oscillating magnetic field and g the gyromagnetic ratio (of order
1 in the examples given). Regarding the geometry we can say that
it is dominated by the anisotropy terms in the Hamiltonian. To
apply our theory in the experimental setting the incident radiation
must be polarized in the plane perpendicular to the hard axis. In a
molecular magnet based crystal this can be achieved by selecting
the crystal orientation with respect to the incident light. In the
remaining parts of this paper we will address the problem of how
the spin responds to the perturbation in the limit of large ω.

In the special case of spin 1/2 all the anisotropic contributions
reduce to the identity. The resulting behavior has the characteristic
form of Rabi oscillations [21]. For higher spin the interaction be-
tween the magnetic moment and a radiation field is more complex
and has been addressed in several references. For instance in Ref.
[22] the effect of photon assisted tunneling events was reported in
Fe8 samples irradiated with circularly polarized light. In Ref. [23]
microwave spectroscopy was used to reveal quantum super-
positions of high spin states (S¼4) in Ni4.

It is possible to derive a general treatment of a quantum system
driven by rapidly varying potentials [24]. In general, the goal is to
find an effective equation for the dynamics spanned by the
Schrödinger equation:
i 3t Ψ Ψ∂ | 〉 = | 〉 ( )

As in the classical case [25], the dynamics of the wave vector can
be separated into two components, a fast one that varies in a
period of the potential and a slow one that evolves at a slower
pace. The method consists in an extension of the method of
multiple scales from classical mechanics into quantum mechanics.
We separate the slow and fast dynamics, by means of a unitary
transformation, and proceed to write an effective theory that
involves only the slow variables. The slow dynamics is affected
by the rapid motion and is described by an effective Hamiltonian.
We start from the time dependent Hamiltonian and perform a
time dependent unitary transformation i texp( ( )). The basic idea
is to absorb the time dependency of the Hamiltonian into the
operator t( ) and to obtain an effective time independent
Hamiltonian given by

⎛
⎝⎜

⎞
⎠⎟i

t
e e

e
e .

4
i i

i
i

eff = + ∂
∂ ( )

− −

To find the specific representations of eff and we write them as
power series in 1/ω:

1 1
5eff eff

0
eff
1

2 eff
2

ω ω
= + +

( )
+ ⋯

( )
( ) ( ) ( )

1 1
6

1
2

2

ω ω
= +

( )
+ ⋯

( )
( ) ( )

Expanding Eq. (4) and equating both sides order by order we
found recursive relations between i( ) and i

eff
( ) . The expression for

i( ) is found by enforcing that every term in the expansion of the
effective Hamiltonian be time independent. A lengthy, but
straightforward calculation leads to the following first contribu-
tions in the expansion for :

h tS tSsin cos 7x y
1 ( )ω ω= − − ( )( )

and

ih t S t Scos , sin , , 8x y
2

0 0( )ω ω= − [ ] + [ ] ( )( )

while for the Hamiltonian we obtain

h
S

2 9zeff
1

2
= − ( )

( )

and

h
S S S S

4
, , , , 10x x y yeff

2
2

0 0( )= [[ ] ] + [[ ] ] ( )
( )

Collecting the contributions up to second order we obtain an ef-
fective Hamiltonian:
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In the limit of small S/ ω, i.e. for sufficiently rapid variations of
the magnetic field, the effective Hamiltonian corresponds to the
original stationary contribution to the energy plus an effective
field pointing in the direction perpendicular to the plane of po-
larization of the magnetic field. For common molecular magnets
such as the ones described above the condition S/ a 1ω ̂ª¡ sets the
stage in a magnetic field oscillating in the terahertz range [5]. The
direction and magnitude of this effective field is independent of

0. We can explain the origin of this contribution in terms of the
following semi-classical argument. The equation of motion of a
spin in the absence of any anisotropy is simply given by the

Landau–Lifshitz equation, dS dt S h t/
→

=
→

×
→

( ), where h t
→

( ) corre-
spond to the oscillating magnetic field. The motion can be under-
stood as a succession of changes each of one is a precession around
the moving field. As shown in Fig. 2 the complicated sequence of
small precessions leads to a simple motion, a steady precession
around the z-axis. This can be associated with an effective field
pointing along the same axis. As shown in Eq. (12) this field is
generally present regardless of the base Hamiltonian.

This is not true for the following terms in the expansion. The
second order term depends explicitly upon the stationary Ha-
miltonian. A fundamental result of this paper follows after a direct
calculation of this second order term, it can be easily verified that
the contribution to order ω�2 merely shifts the values of the
constants and with a correction of order h /2 2ω( ) . Hereafter
we will denote those corrected values by ˜ and ˜ respectively. We
conclude that the effective theory describes a spin with corrected
anisotropy energies exposed to an effective magnetic field in the
direction perpendicular to the plane of polarization of the time
varying magnetic field. From this result we can infer several
properties of the slow dynamics described by the quantum states.

For spin 1/2 we can use our result in Eq. (12) in a direct way.
Since the Hamiltonian 0 reduces to the identity (a property of the
spin 1/2 operators) the evaluation of the effective Hamiltonian is
straightforward. We have a very simple result, namely

h
S

2
, 12zeff

2

ω
= − ( )

which provides a two level system with energy levels equal to
h /42 ω± . A system prepared in a mixed state will oscillate [21]

between the eigenstates with a frequency determined by this
splitting. For greater spins the anisotropy contribution plays an
essential role in the dynamics as we will show in the next section.
Fig. 2. Semiclassical origin of the effective magnetic field. (a) The spin precesses
around an initial field h1

→
. This precession is interrupted when the magnetic field

changes into h2
→

. Under the new field the precession axis is changed and a new
precessional motion is described. A second change into h3

→
changes once again the

precession axis. The net result of this sequence of changes is an effective precession
around the z-axis. (b) Exact solution of the Landau–Lifshitz equation for 5 hω = . The
exact results match the qualitative argument of panel (a). The results are consistent
with a precession around an effective magnetic field pointing in the z-axis.
3. Dynamical suppression of quantum tunneling

The slow dynamics reduces to the well-known problem of a
spin under the action of an external magnetic field, Heff , along the
hard axis, whose strength is given by g H h / 2B eff

2μ ω= ( ). In this
way we see that the resulting Hamiltonian is well studied in
several contexts [2]. We can readily infer a number of properties
regarding the behavior of the quantum moment by exploiting this
analogy. We start by analyzing the classical limit. It is clear that the
ground state is doubly degenerate. Using spherical coordinates,

sin cos , sin sin , cosΩ θ ϕ θ ϕ θ^ = ( ), as shown in Fig. 1, we find the
two minima located at

h
S

cos
4 130

2
θ

ω
=

( ˜ + ˜ ) ( )

and 01,2ϕ = , π. The degeneracy of the classical ground states is
lifted by quantum fluctuations associated with the tunnel effect
between the two minima. The resulting energy splitting Δ be-
tween the two lowest lying states characterizes the tunneling time
by the relation T /Δ= ℏ . A detailed calculation of this splitting has
been made and the results are highlighted in Fig. 4. A state initially
prepared around one of the minima will oscillate, tunneling across
the energy barrier, into the other minima in a characteristic time T.
It is possible to find the tunneling time by direct diagonalization of
the effective Hamiltonian. The tunnel splitting Δ oscillates as a
function of the effective magnetic field. For certain specific values
of the effective field a phenomenon known as the suppression or
quenching of the tunnel effect can be observed. For those values of
Heff the tunnel splitting vanishes and the tunneling time diverges.
The state is, therefore, trapped in a given state. The quenching of
the tunneling processes, revealed by the reduction of the energy
splitting between the two lowest lying energy states, has an origin
that can be traced back to the interference between different
tunneling paths. Such behavior is better understood in terms of a
semiclassical analysis of the tunneling process as is given by the
instanton technique [26–29]. The origin of the oscillation of the
tunneling gap is the interference between Berry's phases asso-
ciated with complementary paths that accomplish the reversal.
The result is [26] Scos0Δ Δ Ω= ( ) where Ω is the solid angle
subtended by the complementary paths and 0Δ is a monotonous
function of h. Whenever S n2 1 /2Ω π= ( + ) for integer n the
splitting vanishes. It is important to note that the dynamical
suppression of the Rabi oscillations due to the rapidly oscillating
magnetic field arises due to the interference between tunneling
amplitudes associated with different reversal paths and is, there-
fore, different in origin from the well-known coherent suppression
of tunneling that has been predicted [30] in one dimensional
Fig. 3. Characteristic behavior of the projections 1
2Ω Ψ|〈 | 〉| and 2

2Ω Ψ|〈 | 〉| as functions
of time. The initial state is 1Ω| 〉 and in the slow dynamics regime the system
manifest well defined tunneling oscillations between the two classical ground
states. The tunneling time, defined as the characteristic time that takes the system
from one configuration to the other, is denoted by T. The slow dynamics is dressed
by very fast oscillations.



Fig. 4. Tunneling time is shown for spin S¼1, S 3/2= , S¼2, and S 5/2= as a function of the intensity of the magnetic field h h / 2eff
2 ω= ( ). The tunneling time, obtained

directly from the numerical solutions of Eq. (3), is represented by the dots. It is compared with the predictions from the effective theory given by Eq. (12). The effect of
quenching of the tunnel effect implies a divergence of the tunneling time as indicated by the arrows.
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systems. This expression makes explicit the oscillations of the gap
as a function of the external driving field. However, the most
important fact is that it emphasizes their origin in Berry's phase
interference of complementary paths that achieve the tunnel
reversal. For this reason, the effect is known as Berry's phase
interference quenching of the tunnel effect [26]. This semiclassical
argument ought to be contrasted with the exact diagonalization of
the Hamiltonian given in Eq. (12) for different values of the
magnetic field intensity, h. After a direct numerical diagonaliza-
tion, it is possible to calculate the energy gap between the two
lowest lying states. This gap is shown, for S¼1, S 3/2= , S¼2 and
S 5/2= , in the continuous lines in Fig. 4 where the tunneling times
are plot as functions of h / 22 ω( ). In those figures it is evident the
oscillatory behavior displayed by the gap and the quenching
associated with its zeroes (indicated by arrows). We conclude that
the effective slow dynamics of a spin under a circularly polarized
magnetic field will be described by oscillations between two states

1Ω| 〉 and 2Ω| 〉, where 1,2Ω correspond to the unit vector with polar
angles ,0 1,2θ ϕ( ). Here, the state Ω| 〉 corresponds to the spin
coherent state oriented along the direction of Ω [16]. Those
oscillations correspond to tunneling events. Furthermore, it can
be concluded that those oscillations are quenched for certain
values of the amplitude of the oscillating magnetic field. In the
next section this prediction will be contrasted with exact numer-
ical results.
4. Comparison with exact results

We now contrast the predictions made so far with exact nu-
merical results. To that end we solve numerically the time de-
pendent Schrödinger equation Eq. (3). To characterize the slow
dynamics generated by the Schrödinger equation we have pre-
pared the state initially in the ket 1Ω| 〉 and let it evolve. We have
computed the projection of the state vector tΨ| ( )〉 on the kets 1Ω| 〉
and 2Ω| 〉 with typical behavior shown in Fig. 3 where we plot

1
2Ω Ψ|〈 | 〉| and 2

2Ω Ψ|〈 | 〉| . We see that the projection on the initial
state 1Ω| 〉 starts at its maximum value, one, and then it is reduced
to zero.
Meanwhile the projection on the second state describes the
opposite behavior. We remark that the oscillation in the amplitude
is accompanied by a rapidly oscillatory component that corres-
ponds to the fast dynamics. This behavior, reminiscent to that of a
two level system, corresponds to the quantum tunneling between
the states described by the states 1Ω| 〉 and 2Ω| 〉. The characteristic
time T that takes a transition from one state to the other corre-
spond to a direct quantification of the tunneling time. This time
can be inferred directly from the numerical solution. For different
values of the field we calculate such tunneling time. The results,
for S¼1, S 3/2= , S¼2 and S 5/2= , are displayed in Fig. 4.

In the different calculations we have chosen units in which
1= and selected a value for 0.1= . For the numerical cal-

culations we have selected the driving frequency as 50 /ω = .
The results are in evident agreement with those obtained from the
effective theory. This provides strong evidence in favor of the va-
lidity of the effective Hamiltonian (Eq. (12)) to describe an im-
portant aspect of the complicated dynamics displayed by the
system. These exact results show that the tunnel effect is effec-
tively quenched by the time dependent magnetic field for certain
values of the field intensity and frequency. This quenching is made
manifest by a divergence of the tunneling time associated with
quantum transitions between the two degenerate classical ground
states.
5. Discussion

In this paper we have presented a detailed study of the dy-
namics described by a quantum spin when exposed to a rapidly
varying magnetic field. The problem is analogous to the pendulum,
proposed by Kapitza, with a rapidly oscillating suspension point.
Just like in Kapitza's pendulum the motion of the quantum states
is decomposed into two components. We have a rapid behavior
whose characteristic time is given by the external potential and a
slow contribution. The slow dynamics is affected by the rapid
motion and is described by an effective Hamiltonian. By per-
forming this separation in a systematic fashion we have proved
that the slow dynamics is accounted for by an effective
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Hamiltonian that has a Zeeman-like contribution in the direction
perpendicular to the plane of polarization of the magnetic field.
The effective Hamiltonian displays the interesting effect of geo-
metric-phase induced quenching of the tunnel effect that can be
used to freeze the quantum states in well defined configurations.
Just like Kapitza's pendulum trapped in the vertical position, un-
stable when the driving force is absent, the spin of the molecular
magnet is trapped in a given quantum state. In this sense we talk
about a Kapitza effect in Hilbert space. This effect provides a tool
to control the quantum states by means of high frequency fields.
For a typical molecular nanomagnet our analysis sets the desired
frequencies in the terahertz range. In addition we have presented
numerical evidence, based on a direct solution of the Schrödinger
equation, that confirms the predictions of the effective description.
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