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Introduction

In their daily operation, electric power systems are subjected to
a variety of random perturbations sustained in time, due to the
dynamic behavior of consumption, temperature changes in the
wires, errors in the measuring instruments, changes in the net-
work’s topology, etc. Therefore, the randomness is present at all
times, and it is necessary to represent it as faithfully as possible
to capture the stochastic behavior of real systems.

Traditionally, there have been attempts from probabilistic the-
ory to analyze the stochastic dynamics of electric systems, orient-
ing the study to the analysis of contingencies and safety, see [1],
where the objective consists in assigning an occurrence probability
to a set of predefined events. Then, the probability that the system
will be stable is estimated from the probability distributions of the
elements that represent the random behavior.

In the context of dynamic stability, Refs. [2–4] analyze small
signal stability, assigning a probability value to the occurrence of
certain events. In [5] it is considered that consumption varies per-
manently in time, and an index is presented that allows the deter-
mination of the vulnerability of a system in studies of voltage
collapse from the time at which the system abandons the stability
region.

With respect to the probabilistic analysis of stability of small
perturbations, Refs. [6–12] show important advances in this area,
but the random effect is considered according to a stepwise type
of event, and the sustained variation in time is not considered.
To account for the above, Ref. [13] shows a theoretical develop-
ment based on Lyapunov exponents that allow the characterization
of the random phenomenon in electric power systems. However,
no numerical methods are presented for implementation in real
systems. In [14] numerical methods are reported to evaluate stabil-
ity in mechanical systems by means of Lyapunov exponents, but
the results shown cannot be extrapolated to large systems such
as electric power systems.

In the context of the model of random variations sustained in
time, white noise or Brownian motion, see [15], has been used to
represent the stochastic dynamics of electric systems. However,
this process is adequate for applications at the microscopic level,
and it is not a correct approximation to represent the macroscopic
phenomena existing in electric networks.

The present paper models the random perturbations sustained
in time which affect electric power systems, according to a partic-
ular stochastic process reported in [16]. It also proposes to use Lya-
punov exponents and the gains of the PSS controllers, to
characterize the stability of electric systems, defining the stability
region and stability radius of a system subjected to random pertur-
bations sustained in time.

The proposed methodology is applied to two IEEE test systems:
the three generator – nine bus and the ten generator – thirty-nine
bus systems. The rest of the paper is organized as follows: Sec-
tion ‘Literature review’ presents the mathematical model of linear
stochastic systems and the concept of Lyapunov exponents. Sec-

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijepes.2015.06.012&domain=pdf
http://dx.doi.org/10.1016/j.ijepes.2015.06.012
mailto:humberto.verdejo@usach.cl
http://dx.doi.org/10.1016/j.ijepes.2015.06.012
http://www.sciencedirect.com/science/journal/01420615
http://www.elsevier.com/locate/ijepes


726 H. Verdejo et al. / Electrical Power and Energy Systems 73 (2015) 725–733
tion ‘Model of the system’ introduces two indicators in order to
characterize random perturbations in power system operation
and presents a methodology for numerical estimation. Finally, in
Section ‘Methods’ the proposed methodology is applied to two
examples of multimachine power systems, highlighting the poten-
tial applications of the presented concepts.
Literature review

Different authors have made valuable proposals that allow ana-
lyzing the small signal stability of an electric power system sub-
jected to random perturbations self-sustained over time, [13,14]
and others. However, the fact is that the reported novel and impor-
tant methods are not directly applicable to international testing
systems, mainly because of the large number of dynamic variables
that represent the systems, and therefore the simulation of those
techniques presents numerical disadvantages. The work reported
in [15] shows important advances in this aspect, but the applica-
tion has been focused on the analysis of the stability of mechanical
structures.

Ref. [18] shows a method for tuning controlling parameters in
very large electric power systems, considering a stochastic
approach. The main objective of this work is to evaluate the sys-
tem’s response from the definition of performance indicators, con-
sidering that the perturbation that affects the system’s dynamics is
represented by means of an additive model self-sustained over
time. The purpose is to evaluate the impact of the gains of the con-
trollers of the machines on the cost of the energy losses under per-
manent regime, and in this way determine a better fit of the
parameters when required.

The work reported in [19] shows the results of analyzing the
small signal stability of electric systems subjected to multiplicative
stochastic perturbations through the calculation of Lyapunov
exponents. Three numerical methods are shown that allow deter-
mining a single Lyapunov exponent that allows generalizing the
analysis of classical deterministic eigenvalues.

Ref. [23] uses the Lyapunov exponent to define stability radii in
electric systems subjected to random perturbations self-sustained
over time, using the numerical methods reported in [19]. This work
shows a methodology that allows determining the maximum per-
turbation size that a system can resist without losing stability.
However, the analysis is made on a test system that considers a
generator connected to an infinite busbar.

Ref. [26] uses the methods reported in [19] to define perfor-
mance indicators in linear stochastic systems subjected to random
perturbations that are represented by a multiplicative model.

The present paper follows the guidelines of previous papers. A
method is shown that allows determining stability radii and
regions in multimachine electric systems subjected to random per-
turbations self-sustained over time. The perturbations are repre-
sented by means of a multiplicative model in which the stability
radii and regions are determined from the calculation of Lyapunov
exponents.
Model of the system

Basic concepts

A system of linear differential equations, with constant coeffi-
cient matrix, can be written in the form

D _x ¼ ADx in Rd: ð1Þ

To analyze the stability of the linear system (1) it is necessary to
determine the real parts of the eigenvalues of the matrix A. The sys-
tem will be asymptotically and exponentially stable if and only if all
the real parts of the eigenvalues are negative. However, this result is
not valid for systems that vary in time as follows (see [20])

D _x ¼ AðtÞDx in Rd: ð2Þ

In this context, it becomes necessary to consider a different
approach to stability studies, and the theory of Lyapunov exponents
allows this problem to be solved.

Let us consider a linear system in which the variation is stochas-
tic and is sustained in time

D _x ¼ AðntÞDx in Rd; ð3Þ

where nt represents the random and time-varying effect, by means
of a Markov-type stochastic process. If we denote the solution of (3),
for an initial condition x0 2 Rd, by uðt; x0; ntÞ, then the exponential
growth behavior of the linear system is given by the Lyapunov
exponents

kðx0;xÞ ¼ lim sup
t!1

1
t

log uðt; x0; ntðxÞÞk k: ð4Þ

In this case, x is an element of the probability space on which the
differential stochastic Eq. (3) is defined. Note that the trajectory
uðt; x0; ntðxÞÞ is (exponentially) stable if and only if its Lyapunov
exponent satisfies kðx0;xÞ < 0. In general, the stochastic linear sys-
tem (3), with ergodic perturbation, will have up to d Lyapunov
exponents.

Model of the stochastic perturbation

To model the perturbation nt , use is made of the results of Refs.
[16–18], where it was shown that the Ornstein–Uhlenbeck process
can be used to represent random phenomena present in electric
power systems. Considering that in general those perturbations
are restricted in size, the model used here consists of

nq
t ¼ q � sinðgtÞ; q P 0; ð5Þ

where

� gt is a stationary solution of the stochastic differential equation
known as Ornstein–Uhlenbeck equation
dgt ¼ �agtdt þ bdWt in R1: ð6Þ

Here Wt denotes the standard 1-dimensional Wiener process.
The parameters a and b must be estimated from real measure-
ments of the phenomenon that one wants to model. In this paper
we use a ¼ b ¼ 1, a particular case of the perturbation model
reported in Ref. [16].

� q is a parameter that models the amplitude of the effect of the
perturbation, i.e. for q ¼ 0 we have the unperturbed system (1).
� Wt denotes Brownian Motion.

Uniqueness of the Lyapunov exponent

Let us consider the stochastic linear system (3) with perturba-
tion given by Eqs. (5) and (6), under the conditions reported in
Ref. [21]. Then the system has a unique Lyapunov exponent for
each perturbation size q > 0, given by

kðqÞ ¼ lim sup
t!1

1
t

log uðt; x0; n
q
t ðxÞÞ

�� ��; ð7Þ

for every initial condition x0 2 Rd n f0g, with probability 1 (almost
surely). This means, in particular, that the system (3) is asymptoti-
cally (and exponentially) stable with probability 1 for the perturba-
tion of size q if and only if kðqÞ < 0.
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Computation of the Lyapunov exponent

To compute numerically the Lyapunov exponent given by Eq.
(7), we set a time interval ½0; T�, and consider n initial conditions
fxi

0; i ¼ 1; . . . ;ng together with m realizations of the noise

fn j
t ; t 2 ½0; T�; j ¼ 1; . . . ;mg. For every trajectory of the noise and

for every initial condition we get an approximation of the Lya-
punov exponent given by

k jðiÞ :¼ 1
T

log uðT; xi
0; n

j
t Þ

���
���: ð8Þ

We are using a second-order scheme to solve Eq. (6), and a
fourth-order Runge–Kutta scheme to solve (3). Averaging Eq. (8)
over the number of initial conditions and of realizations of the pro-
cess, we get a numerical approximation of the Lyapunov exponent
as

k � 1
n �m

Xn

i¼1

Xm

j¼1

k jðiÞ: ð9Þ

For further details on the numerical method used see [19].

Model of the electric power system subject to sustained stochastic
perturbations

An Electric Power System can be described by a set of differen-
tial algebraic equations (DAE) in the form:

_x ¼ f ðx; yÞ ð10Þ
0 ¼ gðx; yÞ;

where

� f ðx; yÞ represents differential equations: machines and
controllers

� gðx; yÞ represents algebraic equations: power flow and network

equations

In order to obtain the equivalente linear system, we use the tra-
ditional approach given by [22]:

D _x ¼ ADxþ BDy ð11Þ
0 ¼ CDxþ DDy; ð12Þ

where A; B; C and D are matrices defined in [22]. From a determin-
ist point of view, all components in these elements are constant.
The classical linear stability criteria consider compute eigenvalues
from (13):

D _x ¼ ðA� B � D�1 � CÞDx ¼ AsysDx: ð13Þ

For a fixed steady state operation point matrix Asys is constant and
we have three options:

� When the eigenvalues have negative real parts, the original sys-
tem (10) is asymptotically stable
� When at least one of the eigenvalues has a positive real part, the

original system (10) is unstable
� When the eigenvalues have real parts equal to zero, it is not

possible to say anything in the general

If we consider that any of matrices defined in (13) depends on
time, the classical approach it is not useful. In order to analyze
EPS under sustained random perturbations we will use Lyapunov
exponents.

In the present paper it is considered that the perturbations
affect the dynamics of the generating units. In particular, we have
that the currents in the d� q axes and the voltage of the excitation
system vary according to the form
Id0 ¼ Iss
d0 � ð1þ q � sinðntÞÞ

Iq0 ¼ Iss
q0 � ð1þ q � sinðntÞÞ ð14Þ

Efd0 ¼ Ess
fd0 � ð1þ q � sinðntÞÞ;

where

� Iss
d0 and Iss

d0 are the currents in the permanent regime on the d� q
axes,

� Ess
fd0 is the voltage of the excitation system in the permanent

regime,
� q is the size of the perturbation.

According to conditions defined in (14), the equivalent system
can be described by a stochastic linear system in the form of (3).

Methods

For small perturbation stability studies, an electric system in a
deterministic environment can be described according to Eq. (1)
(see [22]). Considering that there are random variations sustained
in time, around a stable operation point the electric system is
described in the form of Eq. (3). In this context the stability analysis
by means of the calculation of eigenvalues is not valid, since the
system is variant in time. Using Lyapunov exponents as in (7)
one obtains the following criterion for stability: The randomly per-
turbed system (3) is asymptotically (and exponentially) almost
surely stable if and only if k < 0, see, e.g., [20] or [21].

The Lyapunov exponent as a function of the parameters of the PSS
controllers

In the operation of electric systems one of the applications of
PSS (Power System Stabilizer) controllers has been to improve
the permanent regime stability. This is achieved by introducing
damping into the system, causing the real parts of the critical
eigenvalues to be as far as possible from the origin. Given that
the parameters of the PSS controllers have direct influence on
the location of the real parts, and that the (unique) Lyapunov expo-
nent expresses the largest exponential growth rate of the system,
we expect that the tuning of the PSS will have an influence on
the value of the Lyapunov exponent.

Considering that the system’s stability will depend on the vari-
ation sustained in time and on the parameters of the PSS con-
trollers, we have that the dynamic behavior will be given by

D _x ¼ Aðnt;KÞDx in Rd; ð15Þ

where

� nt is the perturbation that characterizes the random behavior
sustained in time, and
� K is the set of parameters that defines the PSS controllers. If the

system has n PSS controllers, and if the gain of each PSS can be
adjusted, then for the dimension of the parameter we have
K 2 Rn.

To analyze the stability of system (15), the Lyapunov exponent
will be determined numerically. In the present paper this concept
is used to present the ideas of stability region and stability radius.

Stability region

Since the gains of the PSS controllers are expected to be the
parameters that have a direct influence on the exponential growth
behavior of the system, the stability region is determined by calcu-
lating the Lyapunov exponents for different combinations of gains
and perturbation size. The gains are obtained by varying around
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the tuning obtained based on traditional techniques. As a function
of the above, the following parameters are, therefore, considered
(for n ¼ 1)

Kij ¼ ðKPSSi
;qj; kijÞ with ð16Þ

KPSSi
¼ ki � KPSSnom ; ki 2 ½kmin; kmax�

qj 2 ½qmin;qmax�;

where

� KPSSnom : nominal gain of the controller obtained from traditional
tuning techniques,

� ki: factor that modifies the nominal gain of the controller,
� kmin: minimum value that modifies the nominal gain of the

controller,
� kmax: maximum value that modifies the nominal gain of the

controller,
� qj: perturbation size,
� kij: Lyapunov exponent for gain KPSSi

and size of the noise qj.

Once the Lyapunov exponents are computed numerically, a sur-
face in Rnþ2 is obtained using the values fðki;qj; kijÞ;
ki 2 kmin; kmax½ �n;qj 2 qmin;qmax½ �g. Drawing the level surfaces for
different values of the Lyapunov exponent, we obtain the stability
regions of (15). In particular, the region under the surface for
k ¼ 0 in k� q-space is the (asymptotic and exponential) stability
region of the system, see the illustration in Fig. 1 for n ¼ 1.
This region consists of combinations of ðki;qjÞ 2 ½kmin; kmax��
½qmin;qmax� that lead to stable operating conditions despite sus-
tained random perturbations of size qj.

Stability radius

Theoretically, the stability radius of a linear stochastic system
(3) is defined as r :¼ inffq P 0; kðqÞ > 0g, compare [23]. If the
system depends on a parameter K 2 Rn as in (15), one considers
the stability radius

rK :¼ inffq P 0; kKðqÞ > 0g;

for each parameter value K. Here kKðqÞ denotes the Lyapunov expo-
nent of the system (15) for each K. If the goal of the system design is
to maximize the size of a random perturbation that the system can
sustain without becoming unstable, then we are looking for

rmax :¼ maxfrK ;K 2 Rng; ð17Þ

and we set the controller gains to the values K� of the parameter
K 2 Rn at which this maximum is attained. In practice, the number
of machines, and hence the dimension n of the parameter space can
be relatively large, so that visualization and intuition about stability
Fig. 1. Stability region and radius.
radii can be difficult to achieve. For this reason, this paper presents
an approximation of the maximal stability radius as follows.

Once the stability region has been obtained numerically, it is
possible to define the (numerical) stability radius for each value
KPSSi

of the PSS gains as

ri :¼ inffqj P 0; kij > 0g:

In other words, for each value of the system parameter K ¼ ki we
obtain one stability radius ri. In the illustration of Fig. 1 this maxi-
mal stability radius occurs for a value of KPSSi

¼ 1:4 � KPSSnom .
In practice, stability region and stability radius can be estimated

by varying the parameters of a single PSS controller, keeping the
others fixed. We define for PSS controller l 2 f1; . . . ;ng

rmaxðlÞ :¼ maxfri; k
l
i 2 ½kmin; kmax�g

where kl
i varies only for the lth controller: ð18Þ

In other words, rmaxðlÞ is the (computed) optimal stability radius if
only the lth PSS controller is used, and the corresponding gain value

kl� achieves this optimal radius. To account for parameter settings at
all n controllers, we approximate the overall optimal stability radius
via the ‘critical stability radius’ rmaxglobal

as

rmaxglobal
:¼ minfrmaxðlÞ; l ¼ 1; . . . ;ng: ð19Þ

Intuitively, Eq. (19) gives the maximum perturbation size that the
system can support when it is in the critical condition kij � 0 for

each PSS controller, using the gain values ðk1�
; . . . ; kn�Þ obtained in

(18).

Application to electric power systems

The following test systems were studied as applications

� System I: Three-machines nine-bus system described in [24]
� System II: Ten-machines thirty-nine bus system described in

[25]

To get the nominal gain parameter values for Eq. (16) we use
the values reported in Refs. [24,25]. Below we present the stability
regions and stability radii obtained by applying the proposed
methodology to the test systems considered.

Three machine – nine bus system

Adjustment of the controllers gains
As reported in [24], the nominal gains obtained for the con-

trollers are the following

K1
PSSnom

¼ 50; K2
PSSnom

¼ 5; K3
PSSnom

¼ 3:

Three cases are considered in this paper:

� Case A: vary K1
PSS via K1

PSSi
¼ ki � K1

PSSnom
with ki 2 ½0;12�, keeping

K2
PSSnom

and K3
PSSnom

fixed, and consider q 2 ½0;1�,
� Case B: vary K2

PSS via K2
PSSi
¼ ki � K2

PSSnom
with ki 2 ½0;12�, keeping

K1
PSSnom

and K3
PSSnom

fixed, and consider q 2 ½0;1�,
� Case C: vary K3

PSS via K3
PSSi
¼ ki � K3

PSSnom
with ki 2 ½0;12�, keeping

K1
PSSnom

and K2
PSSnom

fixed, and consider q 2 ½0;1�.

For each of these three cases, the Lyapunov exponents were
computed according to Eq. (9), and the corresponding level curves

were obtained. The Figs. 4–6 show the kKl
� 0 level curves for

l ¼ 1;2;3, the stability regions underneath these curves, and the



Fig. 2. Three-machine nine-bus system.

Fig. 3. Ten-machine thirty-nine bus system.
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optimal single controller stability radius rmaxðlÞ with the corre-

sponding optimal gain value kl�
; l ¼ 1;2;3.

Figs. 4–6 show that the optimal gain settings are different from
the nominal parameter values if maximal stabilization against sus-
tained random perturbation is the design goal. Specifically, we
obtain from these figures

K1� 	 35; K2� 	 31; K3� 	 10:
But note that gain variations K1
PSS and K2

PSS for controllers 1 and 2
have a substantial influence on the stability region, i.e. on stability
under sustained perturbation, while variation of K3

PSS at controller 3
does not affect the stability region in a substantial way.

Figs. 4–6 show the (computed) maximal individual stability
radii to be

rmaxð1Þ 	 0:6; rmaxð2Þ 	 0:61; rmaxð2Þ 	 0:59;



Fig. 6. Stability region and radius for Case C (three machine system).

Table 1
Real part closest to the origin.

Case Light load Normal load Heavy load

Original setting �0.1007 �0.1007 �0.1005
New setting �0.1016 �0.1016 �0.1013

Fig. 4. Stability region and radius for Case A (three machine system).

Fig. 5. Stability region and radius for Case B (three machine system).
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hence Formula (19) leads to the common maximal stability radius
rmaxglobal

as
rmaxglobal
	 0:59:
This means that random perturbations of the kind (5) do not desta-
bilize the system, as long as the noise size satisfies q < 0:59.
Analysis of the eigenvalues
If maximal stabilization against sustained random perturbation

is the design goal, we have obtained:
K1� 	 35; K2� 	 31; K3� 	 10:

The system is now subjected to light, normal and heavy loading
conditions in the same way as in [24]. Then the eigenvalues are cal-
culated and those closest to the origin are identified (critical val-
ues). Table 1 shows the real parts of the critical eigenvalues.
Dynamic response analysis
This section presents the dynamic response of the system that is

being studied under a three-phase fault, considering the two tun-
ing options described above as ‘Original Setting’ and ‘New Setting’.

A three-phase fault is applied to bus 9 (see Fig. 2) at t ¼ 1 s, and
it is cleared at Dt ¼ 0:1 s. Fig. 7 shows the velocity curves of machi-
nes 1, 2 and 3 for this scenario. It is seen that the response of the
system with ‘New Setting’ is a slightly better than using the ‘Orig-
inal Setting’.

The transient and steady state stability analyses verify that the
combination of parameters of ‘New Setting’ presents better perfor-
mance than the ‘Original Setting’.
Ten machine – thirty-nine bus system

Adjustment of the controllers gains
As reported in [25], the nominal gains obtained for the con-

trollers are the following

K5
PSSnom

¼ 12:258; K7
PSSnom

¼ 10:981; K9
PSSnom

¼ 19:758:

Three cases are considered here:

� Case A: vary K5
PSS via K5

PSSi
¼ ki � K5

PSSnom
with ki 2 ½0:2;4�, keeping

K7
PSSnom

and K9
PSSnom

fixed, and consider q 2 ½0;1�,
� Case B: vary K7

PSS via K7
PSSi
¼ ki � K7

PSSnom
with ki 2 ½0:2;4�, keeping

K5
PSSnom

and K9
PSSnom

fixed, and consider q 2 ½0;1�,
� Case C: vary K9

PSS via K9
PSSi
¼ ki � K9

PSSnom
with ki 2 ½0:2;4�, keeping

K5
PSSnom

and K7
PSSnom

fixed, and consider q 2 ½0;1�.

As for the three machine system, for each of the three cases
shown, the Lyapunov exponents were computed according to Eq.
(9), and the corresponding level curves were obtained. The figures

below show the kKl
� 0 level curves for l ¼ 5;7;9, the stability



Fig. 7. Velocity evolution of the machines, in per unit, of the three-machine nine-bus system under a three-phase fault of bus 9.

Fig. 8. Stability region and radius for Case A (ten machine system). Fig. 9. Stability region and radius for Case B (ten machine system).
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regions underneath these curves, and the optimal single controller
stability radius rmaxðlÞ with the corresponding optimal gain value

kl�
; l ¼ 5;7;9.
Fig. 8 shows that the gain of the PSS controller at machine 5 has

almost no effect on the stability region. The level curve for kK5
� 0

is flat and the stability radius has a value of rmaxð5Þ 	 0:29, inde-
pendent of the values for K5

PSS.
Figs. 9 and 10 show that for the PSS controllers at machines 7

and 9 the stability region (and hence the stability radii) do not
depend on the values for K7

PSS, and for K9
PSS, respectively, within cer-

tain gain intervals. These intervals are ½0;K7
PSScrit
� for PSS controller
7, and ½0;K9
PSScrit
� for controller 9. Beyond those critical values, how-

ever, the stability radii drop rapidly: The critical values are
K7

PSScrit
	 34, and K9

PSScrit
	 28, with stability radii rmaxð7Þ 	 0:28

and rmaxð9Þ 	 0:28, leading to rmaxglobal
	 0:28. Note that the nominal

values K5
PSSnom

and K7
PSSnom

are well within the gain intervals for

which the level curves kK5
� 0 and kK7

� 0 are flat, while for the
PSS controller at machine 9 the nominal gain K9

PSSnom
¼ 19:758 is

quite close to the critical value K9
PSScrit

	 28. For higher values of this
controller gain the system has no stability reserve against random
perturbations.



Fig. 10. Stability region and radius for Case C (ten machine system).

Table 2
Real part closest to the origin.

Case Light load Normal load Heavy load

Original setting �0.0073 �0.0073 �0.0072
New setting �0.0074 �0.0074 �0.0073

Fig. 11. Velocity evolution of the machines, in per unit, of the 10-
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Analysis of the eigenvalues
From the previous section we know that the PSS controller at

machine 5 has almost no effect on the stability region, and at
machines 7 and 9 the stability regions do not depend on the values
for K7

PSS, and for K9
PSS, as long as the gains are smaller than the crit-

ical gains K7
PSScrit

	 34, and K9
PSScrit

	 28. As an example, we consider
K5� 	 18; K7� 	 15; K9� 	 25:

The system is now subjected to light, normal and heavy loading
conditions in the same way as previous system (three machines).
Then the eigenvalues are calculated and those closest to the origin
are identified (critical values). Table 2 shows the real parts of the
critical eigenvalues.

The results shown in Table 2 are consistent with the fact that for
this example gain parameters (within certain intervals) do not
affect the stability regions and hence the stability radii of the
system.
Dynamic response analysis
This section presents the dynamic response of the system that is

being studied under a three-phase fault, considering the tuning of
‘Original Setting’ and ‘New Setting’.

A three-phase fault is applied to bus 29 (see Fig. 3) at t ¼ 1 s,
and it is cleared at t ¼ 1:1 s. Fig. 11 shows the velocity curves of
machines 5, 7 and 9 for this scenario. It is seen that the response
of the system with ‘New Setting’ is very similar to the ‘Original
Setting’.
machine 39-bus system under a three-phase fault of bus 29.
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Conclusions

This paper proposes using Lyapunov exponents to study the sta-
bility of electric power systems that are subjected to random per-
turbations sustained in time. Based on the numerical computation
of the Lyapunov exponent for different sizes of the perturbation
and for different values of the PSS controller gains, two concepts
called ‘stability region’ and ‘stability radius’ are proposed: the for-
mer involves determining an operating zone in which the system,
subjected to random perturbations sustained in time, can operate
without losing its stability; the latter corresponds to the maximum
size of the perturbation that a system can withstand without
becoming unstable. These two new concepts allow for more flexi-
ble operation of electric power systems, considering that operators
would have available a range of possible parameters and perturba-
tions under which the system would operate without collapsing.

In future work we propose to calibrate the Ornstein–Uhlenbeck
perturbation model (6) with real measurements of the perturba-
tions that affect the dynamics of the generators.
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