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While spoof plasmons have been proposed in periodic arrays of sound-hard inclusions, we show

that they also exist when inclusions are penetrable. Moreover, we show that their wavelength can

be tuned by the impedance mismatch between the inclusion material and the surrounding medium,

beyond the usual effect of filling fraction in the array. It is demonstrated that sound-soft materials

increase the efficiency in the generation of sub-wavelength plasmons, with much lower wave-

lengths than sound-hard materials and than a homogeneous slab. An application to the generation

of acoustic spoof plasmons by an ultra compact array of air/polydimethylsiloxane inclusions in

water is proposed with plasmon wavelength tunable up to deep sub-wavelength scales. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4929497]

The notion of spoof plasmons has been introduced by

Pendry and co-workers in the context of electromagnetic

waves propagating in structured surfaces1,2 (see also Ref. 3 in

the context of acoustics) as an alternative to the original sur-

face plasmons, which require negative permittivity. These are

waves being guided in the vicinity of a structured sound hard

surface and vanishing exponentially when going away from

the surface. In acoustics, surface plasmons are not easy to pro-

duce since this requires negative mass density, which is not

available for natural materials. On the contrary, acoustic spoof

plasmons can be produced, and their study has been limited to

the case of arrays or gratings made of sound-hard materials.4,5

This is because most natural materials are stiff with respect to

air or water, resulting in large impedance mismatches. In the

context of applied mathematics, spoof plasmons are called

guided waves, existing in arrays of scatterers associated to the

Neumann boundary condition.6 These waves are inherently

limited to kSP/k> d/‘ (with ‘ the array width, d the array pe-

riod, and kSP and k the wavelengths of the plasmon and of the

incident wave), which requires long inclusions, or wires, to

reach low values of kSP.7 On the other hand, guided waves by

a homogeneous slab are known to exist and it is a limiting

case of a structured array for a material filling fraction u equal

to unity. In this case, the resulting “plasmon” wavelength is

given by the contrast in the sound velocity kSP/k> c1/c0 for

sound velocity of the material, c1, lower than the one of the

surrounding medium, c0.

With the development of man-made materials, it is now

possible to design materials with independent control of the

mass density and of the bulk modulus,8–10 including ultra-

light and ultrastiff materials.11 In this paper, we consider an

array of sound-penetrable inclusions and we show that the

wavelength of the plasmons can be tuned by the mismatch of

bulk modulus between the inclusions, B1, and the surround-

ing medium, B0. Indeed, the plasmon has a wavelength

which scales typically as kSP=k ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
q1=q0

p
c1=c0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
B1=B0

p
,

where q0 and q1 are the densities of the surrounding medium

and of the inclusions, resulting in possibly very small plas-

mon wavelength. It is useful to note that the limit of unit fill-

ing fraction, u! 1, corresponding to a layer of sound soft

material, is singular, and this will be described.

To begin with, we consider the wave equation

r � 1

q x; yð Þ
rp x; yð Þ

 !
þ x2

B x; yð Þ
p x; yð Þ ¼ 0 (1)

in the geometry depicted in Fig. 1, with k ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffi
q0=B0

p
the

wavenumber in the surrounding medium and k1 ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffi
q1=B1

p
in the inclusions, x being the wave frequency. We define the

ratio of the sound velocities and of the acoustic impedances

a � c0

c1

; q � q0c0

q1c1

(2)

between the surrounding medium and the inclusions. For lay-

ered media, homogenization theory predicts an equivalence

with a homogeneous but anisotropic medium, with an

FIG. 1. (a) Geometry of the array and (b) equivalent birefringent layer.
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effective bulk modulus B and a density tensor, defined by its

principal densities qx and qy
12

r � 1=qx 0

0 1=qy

� �
rp

� �
þ x2

B
p ¼ 0 (3)

with

q0

qx

¼ u
q

a
þ 1� u;

qy

q0

¼ u
a
q
þ 1� u;

B0

B
¼ uaqþ 1� u:

8>>><
>>>:

(4)

Classical homogenization assumes that the typical size of the

microstructure (say, the spacing d) is much smaller than the

wavelength. Notably, this means that any resonances occur-

ring within the unit cell is disregarded. Such resonances may

appear if kd> 1 and this is the usual limitation of the homog-

enization process. For a penetrable array, the wavenumber

inside the inclusions is k1¼ ak and resonances may also

occur for k1d values larger than unity. This is a well known

problem of double limit in the homogenization theory,

mainly in electromagnetism where penetrable non-magnetic

materials have magnetic permeability l¼ 1/B¼ 1 and large

permittivity j�j13–15 (typically a metal approaching perfect

conducting condition), which makes 1/k1 to vanish. In acous-

tics, this limit is less problematic, since materials have rela-

tively small variability in sound velocity (usual sound

velocities differ typically by a factor of 10) and the variation

of impedance is attributable to the variation in the mass den-

sity (typical variations can be on the order of 103). Thus, it is

possible to conceive sound-soft materials with finite values of

q1/B1 and thus of 1/k1. Therefore, one possible way to move

from sound-hard to sound-soft materials, and the one that

we consider in the following, is along a trajectory with finite

(constant) a and varying q from the limit of sound-hard mate-

rial (q! 0) to the limit of sound-soft materials (q!1).

Resonant guided waves, as spoof plasmons, are the reso-

nant modes that propagate along the y-direction while being

evanescent in the x-direction. Thus, to exhibit these modes,

an evanescent wave is sent from x< 0 with total wavenum-

ber k and a component ky of the wavenumber along y, with

ky> k. In the homogenized problem, ky is conserved in x� 0

and the wavefield can be written as

pðx < 0Þ ¼ eikyy½ei
ffiffiffiffiffiffiffiffiffi
k2�k2

y

p
x þ Re�i

ffiffiffiffiffiffiffiffiffi
k2�k2

y

p
x�;

pð0 � x < ‘Þ ¼ eikyy½aeikex þ be�ikex�;

pðx � ‘Þ ¼ Teiðkyyþ
ffiffiffiffiffiffiffiffiffi
k2�k2

y

p
xÞ

8>><
>>: (5)

with ke ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB0=BÞðqx=q0Þk2 � ðqx=qyÞk2

y

q
, the component

of the wavenumber along x in the birefringent guide, with

the convention that eikex refers to a wave propagating

alongþ x. The problem is easy to solve and guided waves

are found by means of divergences in the reflection and

transmission coefficients, R and T, respectively. We report

the expression of R

R ¼ n2 � 1

n� i tan ke‘=2ð Þ nþ i= tan ke‘=2ð Þ ; (6)

where n � qx

ffiffiffiffiffiffiffiffiffi
k2�k2

y

p
q0ke

is the ratio of the impedances between

the external medium and the birefringent material. Resonant

guided waves follow two branches and we report the disper-

sion relation of the first branch

n ¼ i tan ke‘=2 (7)

which is obtained for ky¼ kSP.

At this stage, we can remark that the waves guided in

the birefringent slab have to be propagating. Indeed, if it is

not the case, ke is imaginary, and thus the right hand side

term in Eq. (7) is real negative, while n is real positive. Thus,

resonant guided waves propagate in the birefringent medium

with wavenumber ke along x, and with wavenumber kSP

along y, and are evanescent in the surrounding medium.

Using the expressions for the effective parameters,

Eq. (4), the dispersion relation can be written in terms of the

parameters (a, q) (and the filling fraction u)

n ¼ f a; qð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

y

n2
ek2 � k2

y

s
;

ke ¼ g a; qð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

ek2 � k2
y

q
8>>><
>>>:

(8)

with ne the refractive index along x

ne �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uaqþ 1� uð Þ ua

q
þ 1� u

� �s
(9)

and

f a; qð Þ �
uq

a
þ 1� u

� ��1=2 ua
q
þ 1� u

� �1=2

;

g a; qð Þ �
uq

a
þ 1� u

� �
ua
q
þ 1� u

� �" #�1=2

:

8>>>>><
>>>>>:

(10)

It is our goal to describe the guided waves in our homoge-

nized problem for q going from zero to infinity. Thus, one

has to choose a to ensure the existence of solution, which is

satisfied if a� 1. In the limiting case q ! 0 of sound-hard

inclusions (with ke ! k and n! i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

y=k2 � 1
q

=ð1� uÞ in

Eq. (7)),

kSP ¼ k½1þ ð1� uÞ2 tan2 k‘=2�; (11)

we recover the usual dispersion relation,2,3 since the array is

equivalent to a grating by symmetry. In the limit q ! 1 of

sound-soft inclusions, the dispersion relation becomes

kSP ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u 1� uð Þ

p ffiffiffiffiffi
B0

B1

r
� 1� u

k‘

" #
k: (12)

Note that the dominant term, corresponding to kSP ’ nek
with ne /

ffiffiffiffiffiffiffiffiffiffiffiffiffi
B0=B1

p
, is close to the light line, or sound line,

of the birefringent waveguide. Thus, kSP/k can reach very

high values, well beyond the relative refractive index a¼ c0/c1

of the inclusions. Therefore, a structured array of the

inclusions can support the spoof plasmons with wavelength

084104-2 Cordero et al. Appl. Phys. Lett. 107, 084104 (2015)
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much smaller than a simple layer of the same material.

Below, we confirm our prediction by comparing the homoge-

nized problem with direct numerical calculations.16

We consider the configuration of Fig. 1(a) with

‘ ¼ 3d; u ¼ 0:7, and a¼ 1.25. In order to satisfy the large

wavelength approximation within the first Brillouin zone, we

vary kd and kyd between zero and p/2. The reflection coeffi-

cient jRexj as a function of k and ky is reported in Fig. 2

(upper panel) and compared with the reflection coefficient R
in the homogenized problem of Fig. 1(b), Eq. (6) (lower

panel), for q¼ 10�6, 10�1, 10, and 102. The agreement is

excellent in all cases.

In Figs. 2(a) and 2(b), the dispersion relation of the

spoof plasmon in the array is visible by means of diverging

jRexj and jRj, respectively (red zones). As expected, the

spoof plasmons take place in the regions of the (ky, k)-space

below the sound line of the air (k< ky) and above the sound

line of the birefringent layer (nek> ky). In the homogenized

problem, ne is close to infinity for q! 0 and the correspond-

ing sound line is reduced to k¼ 0 (the wave is always propa-

gating in the slab with wavenumber k along x). Increasing q
toward unity first produces a slope increase of the sound line

nek¼ ky (with maximum value being ðuaþ 1� uÞ, leading

to a transparent effective medium if a¼ 1). Nevertheless, the

plasmon wavenumber remains almost unchanged during this

first phase, with kSP/k� ‘/d. Increasing further q produces a

slope decrease of the sound line of the slab, but here the

spoof plasmon follows the sound line of the birefringent

waveguide, resulting in an increase of kSP/k.

FIG. 2. Reflection coefficient in the

(ky, k) space for different impedance

ratios q (color scale is in log scale).

The upper panels show jRexj in the

exact calculations, Fig. 1(a), and the

lower panels show jRj, Eq. (6), in

the homogenized calculation, Fig.

1(b). The black dashed line represents

the sound line of the air, k¼ ky. The

white dashed line corresponds to the

sound line of the birefringent wave-

guide, nek¼ ky.

FIG. 3. Dispersion relation as a function of the impedance ratio q for

kyd¼ 1, evidenced by the divergence of jRexj in the array of inclusions (red

zones). The dispersion relation of the guided wave in the homogenized prob-

lem k¼ kSP, Eq. (7), is indicated in white dashed line.

FIG. 4. Example of possible set-up. (a) Guided waves by a layer of air in

water (u ¼ 1). (b) Spoof plasmon in a structured array of air inclusions in

water. In practice, air can be encapsulated in PDMS; d¼ 0.5 mm and

‘¼ 0.1d or ‘¼ d.

FIG. 5. Exact reflection coefficient jRexj as a function of k/kSP at f¼ 20 kHz

(k¼ 7 cm for d¼ 0.5 mm) for ‘¼ 0.1d (solid lines) and ‘¼ d (dashed lines).

The black lines show the results for an air waveguide (Fig. 4(a), u ¼ 1): kSP

’ k/4. Red and green lines show the results for a structured array of rectan-

gular air inclusions in PDMS (Fig. 4(b)): for u ¼ 0:9, kSP ’ k/20, k/40 and

for u ¼ 0:8, kSP ’ k/20, k/60.

084104-3 Cordero et al. Appl. Phys. Lett. 107, 084104 (2015)
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This scenario is further illustrated in Fig. 3, which shows

the behavior of jRexj as a function of k and q, for fixed

kyd¼ 1. The transition is visible between q< 1 where the

plasmon (red peak k¼ kSP) remains stuck to the sound line

of the air k¼ ky, and q> 1 where the plasmon wavenumber

kSP follows the sound line of the birefringent slab (ky¼ nek).

It is important to note that the latter sound line has no physi-

cal meaning in the real problem. The dashed white line

shows the dispersion relation for the guided waves in the ho-

mogenized problem, Eq. (7). The agreement in the position

of the spoof plasmon in the (q, k‘) space is excellent between

the exact calculation (by means of the divergence of jRexj in

red in Fig. 3) and the analytical dispersion relation of the

trapped waves in the homogenized problem (the dispersion

relation k¼ kSP in white dashed line in Fig. 3). Notably, the

scaling law predicted in Eq. (12) is confirmed with the plas-

mon wavenumber scaling as kSP=k / ffiffiffi
q
p

.

We have said that sound soft materials for waves are

now available and we end with an example of possible

experiments. An excellent candidate for sound soft material

is air in water (Fig. 4), for which q ¼ qwatercwater=qaircair ’ 4

�103 and a¼ cwater/cair ’ 4. Polydimethylsiloxane (PDMS),

which has similar acoustical properties than water, provides

a way to encapsulate air.17–19 We numerically consider two

configurations: an array of rectangular inclusions of air

(encapsulated in PDMS, Fig. 4(b)) and, for comparison, a

layer of air encapsulated in the PDMS (Fig. 4(a)). Realistic

dimensions are d¼ 0.5 mm with ‘¼ 0.1d or ‘¼ d; for the

array, we use u ¼ 0:8 and u ¼ 0:9 (the waveguide corre-

sponds to u ¼ 1Þ, for frequencies f¼ 20 kHz (k¼ 7 cm in

water). This allows to avoid Mie resonances20 and Minnaert

resonances,17–19 and thus, only the contrast in the materials

is concerned.

Figure 5 reports the variation of the reflection coefficient

jRexj as a function of ky. When the layer of air is used, the

spoof plasmon simply corresponds to a wave guided within

the layer of air being given by kSP ’ ak ’ 4 k. For the arrays

of air inclusions, kSP is tuned by changing the filling fraction

u and the width of the array ‘, in agreement with our homog-

enized prediction, Eq. (12). Figure 6 shows the sub-

wavelength plasmon fields realizing kSP	 k/20, k/40, and

k/60. It is worth noting that realizing such subwavelength plas-

mons using metallic wires would require much larger dimen-

sions of the structures. This is because one has to use ‘ being

scaled by the working frequency k‘	 p to get large relative

kSP/k ’ ‘/d (Eq. (11)). In the presented cases, this would

require ‘¼ 35 mm and d¼ 1.75 mm (SP1), d¼ 0.87 mm

(SP2) and d¼ 0.5 mm (SP3).

In summary, we have reported a way to design ultra

compact arrays supporting sub-wavelength plasmons (in

the presented examples, k‘	 10�2–10�3, leading to plas-

mons with tunable wavelength up to k/100). Such arrays

have promising applications in imaging and wave propaga-

tion control at deep sub-wavelength scale in water, and can

be built using microfluidic techniques to encapsulate air

cavities in polymer materials. Besides, the plasmon excita-

tion does not find its origin in cavity resonances, resulting

in a broadband validity of the dispersion relation. Finally,

tunable acoustic metamaterials based on such soft inclu-

sions are possible owing to the proven sensitivity of cavities

in gel matrix to external shears or to external magnetic and

electric fields.
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