Multi-Gaussian kriging: a practice to enhance delineation of mineralized zones by Concentration–Volume fractal model in Dardevey iron ore deposit, SE Iran

Peyman Afzal a,b,⁎, Nasser Madani c,d, Shahab Shahbeik a, Amir Bijan Yasrebi b

a Department of Mining Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
b Camborne School of Mines, University of Exeter, Penryn, UK
c Department of Mining Engineering, University of Chile, Santiago, Chile
d Advanced Mining Technology Center, University of Chile, Santiago, Chile

A R T I C L E I N F O

Article history:
Received 19 December 2014
Revised 13 June 2015
Accepted 21 June 2015
Available online 28 June 2015

Keywords:
Ordinary multi-Gaussian kriging (oMK)
Simple multi-Gaussian kriging (sMK)
Variance
Concentration–Volume (C–V) fractal modeling Dardevey

A B S T R A C T

The purpose of this study is to identify the effect of ordinary and simple multi-Gaussian kriging (oMK, sMK) estimation methods for the delineation of iron mineralized zones based on subsurface data using Concentration–Volume (C–V) fractal modeling in the Dardevey iron ore deposit, NE Iran. Spatial data analyses (variograms and anisotropic ellipsoid) were initially calculated for the Fe distribution. The C–V log–log plots based on the estimation methods represent the various mineralized zones via threshold values. Additionally, variance in the both methods was compared. The comparison and interpretation of the mineralized zones based on the C–V fractal modeling show that the methods are similar, but the enriched and highly zones resulted by the oMK have variances lower than the sMK method. Furthermore, the weakly and moderately mineralized zones have lower variances based on the sMK method. According to the comparison and variance, optimum threshold values for enriched, highly, moderately and weakly iron mineralized zones are 56%, 51%, 41% and 35%, respectively.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Fractal/multifractal modeling established by Mandelbrot (1983) has been widely applied in different geoscience branches especially in the spatial modeling of different mineralized zones and geochemical anomalies (e.g., Afzal et al., 2011, 2012; Agterberg et al., 1993; Carranza, 2008; Cheng et al., 1994; Cheng, 1999, 2007; Heidari et al., 2013; Li et al., 2002, 2003, 2004; Lima et al., 2003; Ma et al., 2014; Zuo et al., 2009, 2012, 2013; Zuo and Wang, 2015). The Concentration–Volume (C–V) fractal model proposed by Afzal et al. (2011) can be utilized to distinguish various mineralized zones with respect to the threshold values (breakpoints).

As a result, the C–V fractal model is considered as a proper method to describe spatial distributions of different attributes (ore elements in this scenario) within the various orebodies (Agterberg, 2012; Cheng and Agterberg, 2009; Sadeghi et al., 2012; Daneshvar et al., 2012; Yasrebi et al., 2014).

Geostatistical tools have been considered as a powerful technique for the purpose of uncertainty quantification where the mineral grade is greater than the specific thresholds as an application to delineate geochemical populations, mining, petroleum engineering and soil contamination (Benndorf and Dimitrakopoulos, 2013; Chilès and Delfiner, 2012; Emery, 2007; Mao and Journel, 1999; Pyrcz and Deutsch, 2014; Reis et al., 2003; Stegman, 2001; Subbey et al., 2004).

Selection of a proper estimation method is significantly critical for fractal/multifractal approach especially for the C–V modeling which behaves towards detection of threshold values for enhanced separation of geological populations. Linear geostatistics such as conventional approaches of kriging is unsuitable as a consequence of smoothing property which suffers from order relation problems and requires the variogram to be calculated in terms of cut-offs therefore; the results are unrealistic from the practical point of view (over and under estimation: Chilès and Delfiner, 2012; Cressie and Johannesson, 2001; Deutsch and Journel, 1998; Costa, 2003). Other alternatives covering non-linear spatial interpolation as indicators can be named as “disjunctive” and “multi-Gaussian kriging” which have been widely accepted due to no order relation problem and smoothing effect. Two forms of multi-Gaussian kriging called simple and ordinary were proposed for recoverable resource assessments and mapping the probabilities. The simple multi-Gaussian kriging assumes that the mean value is perfectly known through the region and then restricts its usage (Emery, 2008; Guibal and Remacre, 1984; Mare‘chal, 1984; Schofield, 1988). Conversely, ordinary multi-Gaussian kriging on the basis of unknown mean regarding mild assumption for driving an unbiased estimator was first coined by Emery (2006a,b). This model relies on the “pseudo” conditional distribution instead of “true” distribution which cannot assess the local uncertainty. In this respect, they don’t have the same
distribution as the true one which is a practical issue in the fractal modeling. To overcome this impediment, Emery (2008) proposed a new approach to substitute the unknown mean for random variable constant through the region and advantageously, the true conditional distribution could be met. This method is highly recommended in the case of some domains including trend in the variability of attribute under study whereas universal kriging is problematic in variogram analysis (Armstrong, 1984; Cressie, 1987; Matheron, 1971). However, in practice, the characterization of the attribute distribution influences results obtained by kriging (Deutsch and Rossi, 2014).

The main aim of this paper is to compare the accuracy and variance of different mineralized zones which were derived by the C–V fractal model based on ordinary multi-Gaussian (oMK) and simple kriging (Msk) interpolation methods in the Dardevey iron ore deposit, NE Iran.

2. Methodology

2.1. Multi-Gaussian kriging

Multi-Gaussian models are applicable in the sense of non-linear estimation and geostatistical simulation (Chilès and Delﬁner, 2012; Verly, 1984). The related assumption is with respect to normalization of underlying attribute to Gaussian random field regarding the mean 0 and unit variance. Simple kriging type of this approach implies that any estimation of a random field is still Gaussian with the mean and variance identical to the simple kriging spatial prediction. The related formula is as follows (David, 1970; Rivoirard, 1994; Verly, 1983):

\[f(Y_x)_{\text{oMK}} = \int f(x_{sk}) \tilde{g}(u)du \]

where:

- \(f(T_x) \) the function of standard Gaussian variable
- \(f(Y_x)_{\text{oMK}} \) simple multi-Gaussian kriging
- \(x_{sk} \) simple kriging estimation
- \(\tilde{g}(u) \) simple kriging variance
- \(g(u) \) The standard Gaussian pdf.

With respect to the assumption of constant mean, simple multi-Gaussian kriging is restricted and is not satisfactory. The crucial drawback is impractical evaluation in the case of inaccurate particularization.

Fig. 1. Location of studied area in structural map of Iran (Black Square; Stocklin, 1977).
of the mean. A substitution, which is more common in the practical consideration, is ordinary multi-Gaussian kriging for the sake of overcoming this condition. Emery (2006a,b,c) proposed the assumption of ordinary multi-Gaussian kriging to make the estimator more wide spread-used and robust to the non-stationary variability in the domain by replacing the unknown mean by random variable constant over the space. Some researchers recommended implementing the ordinary kriging but maintaining the simple kriging variance which is

Fig. 2. Geological and structural map of the studied area (Hasanipack et al., 2009).
comprehensively imprecise (Goovaerts, 1997; Journel, 1980). Emery (2006c) was warned against this point. Hence, the ordinary multi-Gaussian kriging can be defined as the follow:

\[
[f(Y_x)]^{MK} = \int f(y)g(y|x|data)\ dy
\]

(2)

where

\[g(y|x|data)\] is the Gaussian pdf with mean equal to \(y_x\) and variance \((\partial_y)^2 + 2\mu_x\)

\([f(Y_x)]^{MK}\] Ordinary multi-Gaussian kriging.

In order to implement the multi-Gaussian kriging, it is suggested to follow the consecutive procedures:

• Normal score transformation of the raw data
• Variogram analysis over the Gaussian variables
• Estimation of the Gaussian variables (simple or ordinary) and cross-validation
• Back transformation to the original database

2.2. C–V fractal model

The C–V fractal model proposed by Afzal et al. (2011) is used to delineate the different mineralized zones in order to characterize the

![Fig. 3. 2D (a), 3D drillcore location map (b) and sampling location for elevation 1574.11 m (c: Shaltbeik et al. 2014).](image)
distribution of major, minor or paragenesis elemental concentrations in relation to different types of deposits such as Cu porphyry, Pb–Zn with carbonate host rocks, orogenic and epithermal gold, coal seams and iron ores (e.g., Afzal et al., 2013, 2014; Delavar et al., 2012; Sadeghi et al., 2012; Yasrebi et al., 2013). This model is expressed in the following form:

\[V(\rho < \nu) = \rho^{a_1}; \quad V(\rho \geq \nu) = \rho^{a_2} \]

(3)

![Graphs showing distribution of Fe (%), trend analysis, and population analysis.](image)

Fig. 3 (continued).

Fig. 4. Fe (%) histogram (a) and Fe trend analysis for the north direction (b).
where, \(V(\rho < \upsilon) \) and \(V(\rho \geq \upsilon) \) indicate volumes (V) with concentration values (\(\rho \)) that are, respectively, smaller and greater than contour values (\(\upsilon \)), which define those volumes, and \(a_1 \) and \(a_2 \) are exponents. In the log–log plots, elemental concentration values versus volume, certain concentration contours (\(\upsilon \)) represent threshold values (breakpoints) which distinguish the mineralized zones in the different types of the ore deposit according to distinct geochemical processes. Threshold values recognized by the means of the C–V fractal model are likely to address the boundaries between different ore zones (Wang et al., 2013; Rahmati et al., 2015; Soltani et al., 2014).

To calculate \(V(\rho < \upsilon) \) and \(V(\rho \geq \upsilon) \) enclosed by a concentration contour in a 3D model, e.g., the original drillcore data of the ore element and corresponding concentrations were interpolated using the oMK and sMK estimation methods.

3. Geological setting of Dardevey deposit

The world-class Sangan iron skarn deposit is located in the Khaf–Kashmar–Bardaskan Volcano-Plutonic Metallogenic Belt (NE Iran) with a proven reserve of >1000 Mt iron ore and 53% Fe. Skarn mineralization happens at the contact of the 39.1 ± 0.6 Ma to 38.3 ± 0.5 Ma Middle Eocene syenite to syenogranite porphyry pluton with Cretaceous carbonate rocks (Malekzadeh Shafaroudi et al., 2013; Golmohammadi et al., 2015). The Sangan complex consists of several ore bodies such as Dardevey, Baghak, A, A', B, C and North. The Dardevey deposit is situated about 18 km NE of Sangan, as shown in Fig. 1. Dardevey iron ore includes a Fe skarn system and the metallic minerals in Dardevey deposit are magnetite, hematite, Goethite, pyrite, martite (Hasanipack et al., 2009).

The Dardevey deposit is located in the southern margin of the Upper Eocene SarNowasar granite (biotite-amphibole granite) and occurs in an east–west trending sequence of Upper Mesozoic sedimentary rocks. The Magnetite skarn is formed in the black limestone and dolomite (Jurassic–Lower Cretaceous). They are considered massive and in some localities, they are around t 200 m thick. Mineral paragenesis is magnetite ± hematite ± pyrite and some chalcopyrite ± garnet (anradite) ± actinolite ± chlorite ± philogopite calcite ± dolomite. The Dardevey deposit is Mg-skarn and the Mg content of agnetite is around 1.22–1.26%. At least four stages of skarn formation and ore deposition have been recognized within the area (stages I, II, III and IV a, b). Based on satellite images and field observation, the Dardevey deposit was displaced by a strike slip fault more than one Km from the Baghak deposit (Ghavi and Karimpour, 2010).

Exploration drill cores and surface magnetic surveys in the study area confirmed this motion and dips of the mineralized zone which are inclined towards the South (80°–85°). The recognition of a fault system and structural features are important because these may materially affect the assessment and exploration of other segments of the hidden ore body. In addition, the main structural features are two fault systems trending the NW–SE and E–W, as depicted in (Fig. 2: Ghavi and Karimpour, 2010).

4. Descriptive analysis

The dataset consists of 8456 samples with intervals of 2 m for each originating from 156 exploration drillholes (Fig. 3) and the Fe Green: Azimuth: -45, Dip: 0, (Horizontal)
Black: Azimuth: 45, Dip: 0, (Horizontal)
Blue: Azimuth: 0, Dip: 90, (Vertical)
grade has been assayed over the samples. The empirical histogram produced by cell de-clustering method to preserve the representativeness of the distribution to show that two populations are probable (Goovaerts, 1997: Fig. 3). Bimodality of the histogram analysis is perfectly undimmed in the distribution. One may be interested to separate more populations by fractal methodology. To implement any geostatistical methodology, it is of interest to check the variability of the underlying attribute over the region in which the trend exists. This issue is helpful for the good sense of decision on applying the simple or ordinary kriging, with the assumption of stationary. The most common practical technique is to consider the variability of the attribute versus the principal coordinates. As can be seen from the Fig. 4, the trend analysis in the north direction presents two distinct regions. This is consistent with the two populations obtained by the descriptive analysis of the histogram (Fig. 4). In the first population, the variability of the Fe fluctuates around a constant mean pretending the stationary while in the second population, the Fe grade depends on the location and increases with a mild slope, in which it presents non-stationary assumption. With respect to this trend analysis, one encourages applying simple and/or ordinary kriging (the trend in this random direction is presented to save the space). The goodness of the methodologies of estimation is discussed hereafter.

5. Spatial data analysis

Gaussian anamorphosis is incorporated for transferring de-clustered Fe variables to a standard Gaussian random field as the initial phase of multi-Gaussian kriging includes mean and variance close to zero and one, respectively. In order to analyze the spatial variability, the semi-variogram is calculated along the pre-specified main directions of anisotropy as can be seen in Fig. 5 (Horizontal: -45°, with the practical range of 250 m and 45 orthogonal to that direction with the practical range of 20 m and a vertical direction with the 20 m range). The five nested structures

<table>
<thead>
<tr>
<th>Table 1 Cross-validation parameters.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Ordinary</td>
</tr>
<tr>
<td>Simple</td>
</tr>
</tbody>
</table>

MSE: mean square error; MAE: mean absolute error; ME: mean error; MEDE: median error; STDE: standard deviation of error.

Fig. 6. Fe block models based on sMK (a) and oMK (b).

Fig. 7. Scatter plot between the real a predicted model (left: Ordinary and right: simple multi-Gaussian kriging) — black line: diagonal; red line: regression.
of nugget and spherical model (Sph) are fitted to the experimental semi-variogram. The estimated model of variogram is presented as follow:

\[\gamma(h) = 0.31 + 0.25\text{Sph}(20, 20, 11) + 0.16\text{Sph}(20, 20, 70) + 0.17\text{Sph}(20, 20, 180) + 0.04\text{Sph}(250, \infty, 250) + 0.07\text{Sph}(\infty, \infty, 250). \]

To implement the multi-Gaussian kriging in the case of both simple and ordinary, a block support of 10 × 10 × 12 m³ is defined with respect to geometrical shape of deposit and grid drilling dimensions (David, 1970) for the prediction of normalized Fe. Based on the 3D models, parts with Fe values higher than 50% occur in the NW and SE parts of the studied area which have been constructed by RockWorks software package (Fig. 6). The point support is deemed to preserve the primary variance of Fe. The search radii are set to 800, 800, and 400 in which two first ones are consistent with the horizontal and the last one with the vertical directions, respectively. Each block involves the prediction of mean grade above cut-off 0% to lunch the fractal analysis. This type of estimation provides the most compatible variability of Fe within the domains. Hence, these results are an input to the fractal analysis considering more populations.

Table 2

<table>
<thead>
<tr>
<th>Mineralized zone</th>
<th>Fe (%) thresholds based on oMK</th>
<th>Zone’s range for Fe (%: oMK)</th>
<th>Fe (%) thresholds based on sMK</th>
<th>Zone’s range for Fe (%: sMK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barren host rock</td>
<td>–</td>
<td>-24</td>
<td>–</td>
<td>-28</td>
</tr>
<tr>
<td>Very weak (A)</td>
<td>24</td>
<td>24–34</td>
<td>28</td>
<td>28–35</td>
</tr>
<tr>
<td>Weakly (B)</td>
<td>34</td>
<td>34–43</td>
<td>35</td>
<td>35–41</td>
</tr>
<tr>
<td>Moderately (C)</td>
<td>43</td>
<td>43–52</td>
<td>41</td>
<td>41–49</td>
</tr>
<tr>
<td>Highly (D)</td>
<td>52</td>
<td>52–56</td>
<td>49</td>
<td>49–52</td>
</tr>
<tr>
<td>Enriched (E)</td>
<td>56</td>
<td>>56</td>
<td>52</td>
<td>>52</td>
</tr>
</tbody>
</table>

Fig. 8. C–V log–log plots obtained via the means of Mok (a) and Sok (b) estimation methods.
All estimation methodologies require some technique to assess the underlying quality. Here, leave-one-out cross-validation is performed for the mean grade above 0% (Journel and Huijbregts, 1978). In this approach, each data is removed and re-estimated by the neighborhood data. Fig. 7 shows that both methods are performing satisfactorily with respect to the statistics on the cross-validation errors as summarized in Table 1, while the scatter diagrams between true and estimated Fe grade are shown in Fig. 7. Small mean error and the slope regression tending to 1 suggest that both methods do not present bias estimation.

6. Fractal modeling

Fe mineralized zones were separated based on the results obtained by the oMK and sMK using C–V fractal modeling. According to the C–V log–log plots, six and seven populations for Fe were distinguished based on the oMK and sMK estimation methods respectively, as depicted in Fig. 8. The fitted lines (segments) were obtained based on least-square regression method (Spalla et al., 2010). This regression was calculated with respect to R² values which vary between 0 and 1. If R² values are high and near to 1 so the segment has been better fitted (Davis, 2002). The barren host rocks have Fe values lower than 28% and 24% (based on oMK and sMK) obtained via the C–V log–log plots which occur in the marginal parts of the area (Table 2 and Fig. 9). Additionally, enriched zones derived via the sMK and oMK are higher than 52% and 56% which are present in small parts of the central, SE, W and NW parts of the area, as depicted in Table 2 and Fig. 9. According to the sMK and oMK interpolated results, the highly iron mineralized zones have Fe values 48–52% and 51–56% which occur in the central, SE, W and NW parts of the studied deposit (Fig. 9).

Consequently, the variances of different Fe populations derived via fractal modeling show that there is a similarity between trends of the variances’ variations (Table 3 and Fig. 10). Variances derived

Table 3

<table>
<thead>
<tr>
<th>Mineralized zone</th>
<th>oMK variance</th>
<th>Zone's range for Fe (%: oMK)</th>
<th>sMK variance</th>
<th>Zone's range for Fe (%: sMK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barren host rock (A)</td>
<td>234.84</td>
<td>24–28</td>
<td>248.90</td>
<td>24–28</td>
</tr>
<tr>
<td>Very weak (B)</td>
<td>279.93</td>
<td>24–34</td>
<td>275.34</td>
<td>28–35</td>
</tr>
<tr>
<td>Weakly (B)</td>
<td>268.90</td>
<td>34–43</td>
<td>262.70</td>
<td>35–41</td>
</tr>
<tr>
<td>Moderately (C)</td>
<td>198.20</td>
<td>43–52</td>
<td>215.21</td>
<td>41–49</td>
</tr>
<tr>
<td>Highly (D)</td>
<td>118.40</td>
<td>52–56</td>
<td>121.70</td>
<td>49–52</td>
</tr>
<tr>
<td>Enriched (E)</td>
<td>58.85</td>
<td>>56</td>
<td>61.74</td>
<td>>52</td>
</tr>
</tbody>
</table>

Fig. 9. Fe distribution at the level of 1574.11 m based on oMK (a) and sMK (b) and 3D model of C–V fractal modeling for oMK (c) and sMK (d).
via the oMK are lower than that for sMK in the moderately (41–49%), enriched (>56%) and highly (52–56%) Fe mineralized zones however; the values of variance within other mineralized zones are lower on the basis of sMK including barren host rocks (<24%), weakly (35–41%) and very weak (28–35%). As a result, this can be considered as criteria for optimization of mineralized zones’ determination by the C–V fractal/multifractal modeling.

7. Post processing of the multi-Gaussian kriging

Prior to analysis on the local variability, it is of interest to review the produced estimated maps of oMK and sMK with their variances (Fig. 11). Separating the Fe populations by the C–V fractal modeling can characterize each domain entirely. The proper application of the multi-Gaussian kriging evaluates the tonnage, metal quantity and...
mean grade above the specified threshold (e.g., >24% entitled “Con-

venience of Fe mineralization”: Fig. 12). These maps are one of the most
effective mineral inventory information and are advantageous at dif-
ferent stages of ore body evaluations. They also provide an intuitive as-
sement of resources on the basis of exploratory data in the
tment methods are proper interpolation methods with several facili-
ties such as assessing the tonnage, metal quantity and mean grade
above the specified threshold, which are used for fractal/multifractal
modeling. Comparison between results obtained by the C–V fractal
modeling based on the oMK and sMK estimated data reveals that the
variances of different mineralized zones are similar however; the
appropriate variances belong to enriched and highly iron mineralized
zones. Moreover, the moderately and weakly mineralized zones on
the basis of sMK have variance values lower than that in oMK data.

8. Conclusion

Results obtained by the study show that multi-Gaussian kriging esti-
mation methods are proper interpolation methods with several facili-
ties such as assessing the tonnage, metal quantity and mean grade
above the specified threshold, which are used for fractal/multifractal
modeling. Comparison between results obtained by the C–V fractal
modeling based on the oMK and sMK estimated data reveals that the
variances of different mineralized zones are similar however; the
appropriate variances belong to enriched and highly iron mineralized
zones. Moreover, the moderately and weakly mineralized zones on
the basis of sMK have variance values lower than that in oMK data.

Acknowledgment

The authors would like to thank Prof. Xavier Emery for his permis-
sion for using his programs and Mr. Ravanbakhsh Amiri as the executive
manager of the Iran East Iron Ore Company (IEIOC) for authorizing
the use of the Dardevey exploration dataset and Mrs Mania Qumarys
for her contribution to the reserve estimation. The authors also would like
to acknowledge Mr. Farzan Rafia, Mr. AliReza Shivaei, Mr. Ali Hooman
Arabshahi, Mr. Mohammad Seydi and Mrs. Mona Zandi, managers and
personnel of Kavoshgaran Consulting Engineers Company for their valu-
able remarks.

References

Afzal, P., Dadakar Alghalndish, Y., Khakzad, A., Moarefvand, P., Rashidnejad Omran, N.,
2011. Delineation of mineralization zones in porphyry Cu deposits by fractal
Afzal, P., Dadakar Alghalndish, Y., Moarefvand, P., Rashidnejad Omran, N., Asadi Haroni, H.,
2012. Application of power–spectrum–volume fractal method for detecting hypogene,
supergene enrichment, leached and barren zones in Kahang Cu porphyry deposit.
Afzal, P., Dadadahzadeh Ahari, H., Rashidnejad Omran, N., Alyari, F., 2013. Delineation of
gold mineralized zones using concentration–volume fractal model in Qolqoleh gold
deposit, NW Iran. Ore Geol. Rev. 35, 125–133.
Afzal, P., Alhoseini, S.H., Tokhmechi, B., Kaveh Alhangaran, D., Yasrebi, A.R., Madani, N.,
Wetherell, A., 2014. Outlining of high quality coking coal by Concentration–Volume
fractal Model and Turning Bands Simulation in East–Parvadeh Coal Deposit, Central
Elboud, J., Tang, X. (Eds.), 24th APGeo symposium proceeding, Montreal, Canada,
pp. 42–53.
Benndorf, J., Dimitrakopoulos, R., 2013. Stochastic long-term production scheduling of
49 (1), 68–81.
Handbook of Exploration and Environmental Geochemistry vol 11. Elsevier, Ams-
derdam, pp. 1–351.
Cheng, Q., 2007. Mapping singularities with stream sediment geochemical data for
prediction of undiscovered mineral deposits in Geju, Yunnan Province, China. Ore
Geol. Rev. 32, 314–324.
York.
lication of concentration-volume fractal method in induced polarization and resistivity
data interpretation for Cu–Mo porphyry deposits exploration, case study: Nowchun
York, pp. 1–638.