Nerve Excitability and Structural Changes in Myelinated Axons from Diabetic Mice

Por: Campero, M (Campero, M.)¹,²; Ezquer, M (Ezquer, M.)²; Ezquer, F (Ezquer, F.)²

EXPERIMENTAL AND CLINICAL ENDOCRINOLOGY & DIABETES
Volumen: 123
Número: 8
Páginas: 485-491
DOI: 10.1055/s-0035-1559606
Fecha de publicación: SEP 2015

Ver información de revista

Resumen

Objective: The mechanisms associated with nerve dysfunction and axonal loss in diabetes has not been fully clarified. Excitability and pathological aspects in nerves from diabetic mice were studied in order to explore the pathophysiology of diabetic neuropathy.

Methods: Myelinated nerve fibres from the sciatic nerve of BKS.Cg-m(+/+)Lepr(db)/J mice were studied by registering the CMAP controlled by an automated threshold tracking method. The sciatic nerve was also studied pathologically.

Results: Diabetic mice displayed longer latencies, higher thresholds and lower amplitudes compared to controls and had a rightward shift in the stimulus response curves. Strength-duration time constant was lower in diabetic mice but not reaching statistical significance (p=0.09). Diabetics displayed an increase in accommodation, with a smaller change in excitability in threshold electrotonus. Refractoriness, mean superexcitability and late subexcitability were reduced in diabetic mice. Diabetic mice had a larger number of myelinated fibres compared to controls (p<0.05), but larger than 9m were virtually absent, accounting for near 7% in control animals.

Conclusions: Db/db mice develop electrophysiological changes suggestive of membrane depolarization as the result of Na+/K+ pump impairment. Loss of large myelinated fibres might also contribute to the nerve excitability profiles in this model.

Palabras clave

Palabras clave de autor: db/db diabetic mice; nerve excitability; Na/K pump; myelinated fibers
KeyWords Plus: HUMAN MOTOR AXONS; NEUROPATHY; DYSFUNCTION; ABNORMALITIES; CONDUCTION

Información del autor

Dirección para petición de copias: Campero, M (autor para petición de copias)
Direcciones:

[1] Univ Chile, Dept Neurol & Neurosurg, Santiago, Chile
[3] Clin Las Condes, Dept Neurol, Santiago, Chile

Direcciones de correo electrónico: mcampero@clc.cl

Editorial
JOHANN AMBROSIUS BARTH VERLAG MEDIZINVERLAG HEIDELBERG GMBH,
RUEDIGERSTR 14, D-70469 STUTTGART, GERMANY

Categorías / Clasificación
Áreas de investigación: Endocrinology & Metabolism
Categorías de Web of Science: Endocrinology & Metabolism

Información del documento
Tipo de documento: Article
Idioma: English
Número de acceso: WOS:000361828600009
ID de PubMed: 26285066
ISSN: 0947-7349
eISSN: 1439-3646

Información de la revista
• Impact Factor: Journal Citation Reports®

Otra información
Número IDS: CS1MB
Referencias citadas en la Colección principal de Web of Science: 23
Veces citado en la Colección principal de Web of Science: 0