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a b s t r a c t

This paper presents Barbalat-like lemmas for fractional order integrals, which can be used to conclude
about the convergence of a function to zero, based on some conditions upon its fractional integral. Some
examples in the context of asymptotic behaviour of solutions of fractional order differential equations,
indicate the potential application of these lemmas in control theory.
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1. Introduction

Barbalat Lemma is a fundamental result in asymptotic analysis
of differential equation solutions and thereby in control theory,
relating the convergence of an integral with the convergence of its
integrand. For instance, themajor theorems in adaptive control (in
the MRAC framework) rely on this Lemma and its Corollaries [1].

As expected, many publications have this Lemma as a main
element of their developments. Among them, relevant to our work
are those where a change in the hypothesis of original Lemma is
proposed [2] or this is applied in a somehow different context [3].

On the other hand, many techniques to study the properties of
solutions of integer order differential equations have recently been
generalized to the fractional order case, such as Laplace Transform,
Lyapunov functions and frequency methods [4].
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Then, two natural questions arise; is there an analogue of
Barbalat Lemma for fractional integrals? If so, has it any utility in
the analysis of solutions of fractional order differential equations
and in control theory? Partial responses to both questions were
given in [5]. The present work studies these questions and displays
the results in the following way: Section 2 provides the necessary
background to understand the answers to the first question which
are presented in Sections 3 and 4. Section 5 contains our answers
to the second question, while Section 6 is devoted to general
conclusions and to open questions arisen from precedent sections.

2. Preliminaries and notation

Some useful definitions and properties (taken mainly from [6]
except where indicated) are presented in this section for α > 0.

Definition 1 (Fractional Integral). The fractional integral of order α
of function f (t) on the half axis R+ is defined as

Iα f (t) =
1

Γ (α)

 t

0
(t − τ)α−1f (τ )dτ . (1)
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Also, we denote IαT f (t) =
1

Γ (α)

 t
T (t−τ)α−1f (τ )dτ and Iα

[0,T ]
f (t)

=
1

Γ (α)

 T
0 (t − τ)α−1f (τ )dτ when t > T .

In the following, n = [α] + 1 if α ∉ N and n = [α] otherwise,
where [α] denotes the integer part of the real number α.

Definition 2 (Caputo Derivative). The Caputo derivative of order α
of function f (t) on the half axis R+ is defined as

CDα f (t) = In−α f (n)(t). (2)

Definition 3 (Riemann–Liouville Derivative). The Riemann–Liou-
ville fractional derivative of orderα of function f (t) on the half axis
R+ is defined as

RDα f (t) =
dn

dtn
In−α f (t). (3)

Wewill denote CDα f (t) as Dα f (t) since we will be using mainly
the Caputo fractional derivative throughout the paper because
of its properties which will simplify our analysis. Also, by those
properties, equations with Caputo fractional derivative use initial
conditions of the function and its integer order derivatives –with a
clear physical meaning – and therefore, the majority of the results
found in control applications use Caputo‘s derivative andwewould
like to contribute with results in that direction. In the cases where
we use the Riemann–Liouville factional derivative we will use the
notation given in (3).

An analogue to the fundamental theorem of integer calculus is
stated in the next two properties for Caputo fractional derivative:

Property 4. If f belongs to Cn
[a, b], the space of continuous functions

that have continuous first n derivatives, then for all t ∈ [a, b]

IαDα f (t) = f (t) −

n
k=1

f (k)(0)
k!

tk. (4)

Property 5. If f belongs toL∞
[(a, b)], the Lebesgue space of bounded

functions in the interval (a, b), then for all t ∈ [a, b]

Dα Iα f (t) = f (t). (5)
The next property allows to give a semi group structure to the

set of operators Iα [7].

Property 6. Let α > 0 and β > 0. If f ∈ C[a, b] then for all t ∈

[a, b]

Iα Iβ f (t) = Iα+β f (t). (6)

Since our object of study is the generalization to the fractional
order case of the Barbalat Lemma and corollary [1], next we will
explicitly state the integer order versions of them.

Lemma 7. If f (t) : R+
→ R is a uniformly continuous function

for t ≥ 0, such that limt→∞


∞

0 |f (τ )|dτ exists and is finite, then
limt→∞ f (t) = 0.

Corollary 8. If f ∈ L2
∩ L∞ and ḟ is bounded, then limt→∞ f (t)

= 0.

Perhaps, one of the most important applications of the Barbalat
LemmaandCorollary in adaptive control theory is its use in proving
the convergence of the identification error (in a identification
scheme) and the convergence of the control error (in a directmodel
reference adaptive control scheme). See for instance Sections 3.3.1
and 3.3.2 in [1], respectively.

In what follows, the results are stated for initial condition at
t = 0, but they can be easily generalized to initial condition at
t = a by a change of variable t −→ (t − a).
3. Results for α ≥ 1

In this section a generalization of the Corollary of Barbalat
Lemma is presented for α ≥ 1 using conditions on the fractional
order integral rather that on the integer integral.

Lemma 9. Let f be a non negative uniformly continuous function. If
for all t ≥ 0, Iα f (t) < C with C a positive constant and an integer
p ≥ 1, then f converges to zero.

Proof. We will proceed by contradiction. Let us suppose that f
does not converge to zero. Then, by negation of the definition of
convergence, ∃ϵ > 0 and there exists an increasing divergent se-
quence (ti)i∈N such that f (ti) > ϵ. Since f is uniformly continuous
∃δ > 0 such that ∀i ∈ N if |t − ti| < δ then |f (t) − f (ti)| ≤ ϵ/2.
Therefore if t ∈ ([ti, ti + δ]) then |f (t)| = f (t) = |f (ti) − f (ti) +

f (t)| ≥ f (ti) − |f (ti) − f (t)| > ϵ/2.
Let p(t) be a function null in every point except when t ∈

([ti, ti + δ]) where its value is ϵ/2.
By definition Γ (α)Iα f =

 t
0 (t − τ)α−1f (τ )dτ and therefore

Γ (α)Iα f =

 t−1

0
(t − τ)α−1f (τ )dτ +

 t

t−1
(t − τ)α−1f (τ )dτ .

Since f is a positive function, we have

Γ (α)Iα f ≥

 t−1

0
(t − τ)α−1f (τ )dτ .

Since (t − τ)α−1
≥ 1 for 0 ≤ τ ≤ t − 1 and since f (t) ≥ p(t) for

every t , we can write

Γ (α)Iα f ≥

 t−1

0
f (τ )dτ ≥

 t−1

0
p(τ )dτ ≥

[nt ]
1

ϵδ/2

where nt = max {i : ti ≤ t − 1}. Taking limit when t → ∞ we
obtain

∞ > Γ (α)C ≥ Γ (α)Iα f ≥

 t−1

0
p(τ )dτ → ∞

which contradicts the assumption that Iα f is bounded. Therefore,
f converges to zero, as t tends to infinity. �

Remark 10. For α = 1 this Lemma implies Corollary 8 (and there-
fore is its generalization). In fact, since f is a bounded functionwith
bounded derivative (by hypothesis of Corollary 8), f and f 2 are uni-
formly continuous functions, and since f ∈ L2 then f 2 ∈ L1,
whereby applying Lemma 9, one have f 2 converges to zero, and
in particular, f converges to zero. For α = 2 Lemma holds only
for f ≡ 0 because I2f = I1I1f and since I1f is an increasing func-
tion, I2f is unbounded (f being uniformly continuous). For similar
reason, the same conclusion can be derived for α > 2.

Remark 11. Since Iα f can be expressed in terms of tα−1
∗ f ,

where ∗ denotes the convolution operator, the Lemma can be thus
extended: if the convolution g ∗ f is uniformly bounded where g is
a monotone increasing non negative function (g(t) = 0 for t < 0)
and f is a positive uniformly continuous function, then f converges
to zero at infinity.

Corollary 12. Let us suppose that f is a bounded function in
C [α]+1(R+) and f (k)(0) = 0 for k = 0, 1, . . . , [α] + 1. If Dα f is
positive and uniformly continuous then Dα f → 0.

Proof. It is a straightforward consequence of previous lemma by
applying Property 4. �

The next proposition is a mathematical observation.
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Proposition 13. Let f be a positive continuous function. If for all
t ≥ 0, Iα f (t) < C with C a positive constant then Iα f converges
as t → ∞.

Proof. Since f is a positive function, Iα−1f is also positive function.
By Property 6 we can write Iα f = I1Iα−1f and therefore Iα f
becomes an increasing function. Finally, since Iα−1f is bounded, it
will converge as t → ∞. �

4. Results for 0 < α < 1

This section presents results obtained for α < 1. In this case a
direct generalization of the Corollary of Barbalat Lemma is not true
as it is shown in the next proposition (the technical proof is given
at the Appendix).

Proposition 14. There exists a non negative uniformly continuous
function f such that Iα f (t) < C, for all t ≥ 0, with C a positive
constant, but f does not converge to zero as t goes to infinity.

Nevertheless, one can assure at least the statement given in the
next proposition.

Proposition 15. If f is a non negative bounded function and Iα f <
C ∈ R, then lim inft→∞ f = 0.

Proof. Weprove it by contradiction. Let us assume that lim inft→∞

f = l > 0 which exists because f is bounded, then there exist an
arbitrary small ϵ > 0 and T = T (ϵ) > 0 such that f ≥ l − ϵ > 0
for all t > T . Therefore for t > T , C > Iα f ≥ Iαg = (l −

ϵ)(t − T )α + BT → ∞ as t → ∞ (where g takes the value of
l − ϵ for all t > T and the value of f (t) for each t < T , and
BT = Iα

[0,T ]
g(t) =

1
Γ (α)

 T
0 (t −τ)α−1g(τ )dτ which is positive when

t > T ), that is a contradiction. �

Even for Lp functions, since limα→0 Iα f = f for almost every
point [7], if limt→∞ Iα f = L ∈ R and L is not zero, f does not
converge to zero when f is a continuous function. Hence, if L is not
zero, one cannot expect a general result for every 0 < α < 1 with
hypotheses independent of α.

Thereby, we will make a stronger assumption (Proposition 13
does not necessary apply for α < 1 because fractional integral of a
non negative function can eventually decrease, so the convergence
of the fractional integral cannot be assured from its boundedness)
namely f a positive function and limt→∞ Iα f = L ∈ R, and we will
seek for extra conditions assuring limt→∞ f = 0.

Also, it should be noted that if L ≠ 0, If = I1−α Iα f → ∞

(by Property 6). Thereby if limt→∞ Iα f = L and f is positive then
f ∉ L1. Thus this case effectively will extend the class of functions
with bounded integer integral such that the function vanish at
infinity to functions not in L1 but having convergent α-integral
such that the function vanish at infinity.

Next, we remind the Lemma proved in [5]

Lemma 16. If f is a uniformly continuous function from R+ to R+

and limt→∞ Iα f (t) = 0 then limt→∞ f (t) = 0 for 0 < α ≤ 1. The
case α = 1 is only possible if f (t) = 0 for all t .

4.1. Extensions of Lemma 16

For the proofs of the lemmas of this subsection, we will first
state and prove two interesting properties.

Property 17. If f is a bounded function that vanishes for all t > T
then Iα f → 0 and Dα f → 0 as t → ∞. Moreover, Iα f will be a
uniformly continuous function and if Dα f is continuous, Dα f will be a
uniformly continuous function.
Proof. Since f is a bounded function vanishing for all t > T , we
can write

|Iα f | ≤ |fmax| Iα[0,T ]
1. (7)

Resolving the integral we get |Iα f | ≤ C(tα − (t − T )α) =

Ctα(1−(1− T
t )

α)whereC is a constant defined in termsof |fmax| and
Γ (α). Rewriting tα as 1/t−α to use L’Hôpital’s rule, the asymptotic
behaviour when t goes to infinity is given by |Iα f | ≤ Ctα−1 which
implies that |Iα f | → 0 and therefore Iα f → 0 as t → ∞.

For the Caputo derivative part, note that f is constant after time
T and therefore its derivative vanishes after time T . Then we can
use the same argument as above to show that Dα f goes to zero as
t goes to infinity.

Furthermore, since f is bounded, then Iα f is uniformly continu-
ous (in fact, it is Hölder-α [7]). Since Dα f is a continuous time func-
tion and it is convergent to zero at infinity, then Dα f is uniformly
continuous. �

Property 18. Let f be a bounded function, if Iα f → L as t → ∞

then IαT f → L as t → ∞, for any T > 0.

Proof. According to notations given in Definition 1, Iα f can be
written as

Iα f − Iα
[0,T ]

f = IαT f . (8)

Then the result will follow from Property 17 and algebra of
limits. �

The next Lemma is a simple extension of Lemma 16

Lemma 19. Let f be a bounded function and, after a time T , it is
uniformly continuous and non negative (non positive) function. If
Iα f → 0 as t → ∞, then f → 0 as t → ∞.

Proof. Using Property 18 the result is straightforward, since
Lemma 16 is also valid when initial time is T ≠ 0 [5]. �

Corollary 20. Let Dα f (t) be a uniformly continuous function in
C1(R+) that changes sign up to time T ≥ 0. If f (t) → f (0) as
t → ∞, then Dα f (t) → 0 as t → ∞.

Proof. By Property 4, we can write IαDα f (t) = f (t) − f (0). Since
f (t) converges to f (0), then IαDα f (t) converges to zero as t → ∞.
Thus, Dα f (t) satisfies the hypothesis of last Lemma and therefore
Dα f (t) → 0. �

Now we will state the main extension of Lemma 16

Lemma 21. Let f be a bounded uniformly continuous function in
C1(R+), the space of continuous functions that have continuous first
derivative, such that Iα f → L as t → ∞. Then we can state the
following:

(a) Iα f is decomposable as Iα f = δT +δ with δ(0) = 0, δ(∞) = 0
and δT is a differentiable function with δT (0) = 0 and δT (t > T ) = L.

(b) If Dαδ does not change sign after a finite time (or vanishes after
a finite time) then f converges to zero as t → ∞

(c) If f is a positive function then f converges to zero as t goes to
infinity.

Proof. (a) Since f is bounded and Iα f goes to L at infinity, there
exist a continuous function δ̄ [7] so that Iα f = δ̄ with δ̄(0) = 0 and
δ̄(∞) = L. Then, if we define δ = δ̄ − δT the result follows.

(b) Since f is bounded, by α-differentiating Iα f = δ̄ and using
Property 5, we can write

f = DαδT + Dαδ. (9)

By Property 17, we can assure that DαδT converges to zero and
that it is uniformly continuous. Since f and DαδT are uniformly
continuous functions in C1(R+), then Dαδ is uniformly continuous
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in C1(R+). Since δ(0) = 0 and δ(∞) = 0, by using Corollary 20 it
can be concluded that Dαδ goes to zero as t → ∞ and therefore
f → 0 as t → ∞.

(c) We define

(Dαδ)+(t) =


Dαδ if Dαδ ≥ 0
0 if Dαδ < 0


. (10)

Similarly we define (Dαδ)−(t). Therefore we can write

Dαδ(t) = Dαδ+(t) + Dαδ−(t). (11)

Since f is a positive function then DαδT + Dαδ > 0. And since
DαδT goes to zero as t goes to infinity, (Dαδ)−(t) also converges
to zero. We will prove that (Dαδ)+(t) will also converge to zero
as t goes to infinity. In fact, since Dαδ is uniformly continuous, it
follows that (Dαδ)+(t) is uniformly continuous and since δ(0) = 0
and δ(∞) = 0 we can define a function δ̂ such that (Dαδ)+(t) =

Dα δ̂(t), in particular we have Dα
[δ − δ̂] = 0 or Dα δ̂ = 0 with

the initial condition δ̂(0) = 0 and, by integrating and applying
Proposition 14, the solution δ̂ decay to δ or to zero respectively,
whereby δ̂(∞) = 0, and applying part (b) (Dαδ)+ = Dα δ̂
converges to zero. Therefore, Dαδ(t) converges to zero and, by
Eq. (9), f converges to zero asymptotically. �

Remark 22. If α = 1 then DαδT = 0 for t > T . Thus f converges to
zero asymptotically by Part (b). Consequently, Lemma 21 includes
the case of the original Barbalat Lemma [1].

4.2. Alternative hypothesis

We will work with a Hölder continuity condition on the func-
tions, which seems more natural than uniform continuity for frac-
tional integrals as can be inferred from themany results in chapter
3 of [7]. In particular, we will need the following subspace.

Definition 23. We define Hλ
α as the subset of the Hölder-λ space

of functions with asymptotic behaviour faster than t−α .

Let function g be defined by Iα f = g with g(0) = 0 and g(∞) =

L. If f is bounded then f = Dαg . Since Dαg(t) = I1−α ġ(t), f
converges to zero if and only if ġ(t) has a vanishing 1−α fractional
integral. An instance of the last condition is ġ = O(exp(−t)). The
following lemma gives a sufficient condition for the convergence
of f .

Lemma 24. Let us assume that Iα f = g with g(0) = 0 and g(∞) =

L. If f is bounded and ġ ∈ Hλ
α with 0 < λ < α then f converges to

zero as t goes to infinity.

Proof. Since by hypothesis g converges to L as t goes to infinity
and ġ is uniformly continuous because it is Hölder-λ, by applying
the integer Barbalat Lemma in its differential form [1], we conclude
that ġ converges to zero as t goes to infinity. It was proven in [7]
that the behaviour of a function in Hλ when t goes to infinity is

I1−α ġ ∼ ġ(0)
tα

1 + t
+ ġ(∞)

t1+α

1 + t
. (12)

Therefore, since ġ(∞) goes to zero faster than t−α , f converges
to zero as t goes to infinity. �

Remark 25. Amore familiar condition on g for the convergence of
f is that ġ ∈ Hλ

∩L1, because if the previous integral (18) does not
converge to zero then ġ ∉ L1. Also, the statement of Lemma can
be restated in terms of RD1−α f instead of ġ . Hence, an equivalent
condition on f will be that RD1−α f ∈ Hλ

α , besides the convergence
of its fractional integral.
Remark 26. For the case when α = 1, the differential version of
the original Barbalat Lemma implies that ġ goes to zero under the
assumption of uniform continuity and, together with the assump-
tion that limα→1 I1−α ġ = ġ , f will go to zero asymptotically.

Corollary 27. Let us suppose that f converges to L as t goes to infinity,
and for λ < α, ḟ ∈ Hλ

α . If Dα f is a uniformly continuous function in
C1(R+) then Dα f goes to zero when t goes to infinity.

Proof. It follows from the fact that when t goes to infinity IαDα f =

f (t)− f (0) → L− f (0). Then Lemma 24 can be readily applied. �

4.3. Unbounded case

So far, we have restricted our analysis to bounded functions.
The next proposition relaxes this constraint and gives convergence
conditions for functions in the following space:

Definition 28. Let C(R+, R+) the space of continuous func-
tions from R+ to R+. We define the C1−α(R+, R+) space as
C1−α(R+, R+) =


f ∈ C(R+, R+)|f (t)tα ∈ C(R+, R+)


.

Lemma 29. Let f be a positive function in C1−α(R+, R+). If Iα f
monotonically converges to a limit in R+, i.e. Iα f = g is such that
ġ ≤ 0 for all t > t0, then f converges to zero asymptotically.

Proof. Since f is positive and ġ ≤ 0, then Iα f = g is bounded from
below and not increasing. Therefore Iα f will converge as t goes to
infinity.

On the other hand, since ġ is less than or equal to zero, we can
write d

dt I
α f ≤ 0 or equivalently

RD1−α f ≤ 0. (13)

Applying Lemma 2.12 in [8] (in this case h ≡ 0 and therefore
hypothesis of Lemma 2.12 trivially hold) we can write

0 ≤ f (t) ≤
f0

Γ (1 − α)
t−α (14)

with f0 = Γ (1 − α) limt→0 f (t)tα . Therefore f converges to zero,
as t goes to infinity. �

5. Applications

In this section we will give several examples to illustrate the
application of the proposed results.

5.1. Example 1

Let us consider the following integral equation (with degener-
ate kernel) defined by

Iα f = g(t, f ). (15)

Let us assume that g(t, f ) converges to limit L as t goes to
infinity. If α ≥ 1 and f is a positive uniformly continuous function,
then f converges to zero as t goes to infinity by Lemma 9. If 0 <
α < 1 and g as required in Lemma 19 or Lemma 21 Part (b) or
(c), then f goes to zero as t goes to infinity. For instance,we can
choose g(t, f ) = f (0) − g(t)f (t) with g(t) vanishing at infinite,
g(0) = 1 and such that f is positive and uniformly continuous from
an arbitrary finite time t1 ≥ 0 and on.

On the other hand, by taking g(t) = A + Ct−β with 0 < α <
1, where C is a real positive constant and A is a real constant,
the equation has convergent solutions to zero if f is positive and
belongs to C1−α(R+, R+). This is because the derivative of t−β is
negative for positive β . The rest follows from Lemma 29.
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5.2. Example 2

Let the fractional equation be defined as

RDα f = h (16)

with 0 < α < 1. Eq. (16) can be rewritten as d
dt I

1−α f = h. By the
notation of Lemma 24 we have ġ = h. If h is a bounded function
such that the integral I1−α f converges as t goes to infinity (if h
changes sign up to time T and the integral I1−α f is bounded, g will
be monotone). If h ∈ Hλ

∩ L1 with λ < α then f vanishes as t goes
to infinity.

5.3. Example 3

Let us consider the fractional order equation Dβx = f (x, t)with
f (0, t) = 0.

LetW (x(t)) be a uniformly continuous function with respect to
time and let us assume that there exists a positive constant C such
that (locally) holds:

W (x) ≥ C ∥x∥2 (17)

for all t > T > 0, for some T . Let us suppose thatW (x(t)) satisfies
for some 0 < α < 1
RDα

[W (x)](t) ≤ 0. (18)

If RDα
[W (x)](t) ∈ Hλ

α then the trajectory x(t) starting from any
x(0) in a vicinity of the origin converges to zero as t goes to infinity.

Proof. Since Dα
R [W (x)](t) ≡

d
dt I

1−αW ≤ 0 and 0 ≤ W , I1−αW is
bounded from below and not increasing, so it converges as t goes
to infinity. Applying Lemma 24, W converges to zero as t goes to
infinity. Since 0 ≤ C ∥x∥2

≤ W (t) then it follows that ∥x∥2
→ 0

i.e. x → 0. �

5.4. Example 4

It is shown in [1] that many adaptive problems can in general
be expressed by an error equation of the type e = φTw with the
output error being e = y − y∗ where y and y∗ are the actual and
the desired output, respectively; φ = θ − θ∗ is the parametric
error with θ an estimate of the unknown true parameter θ∗ and
w is the information signal. That is the so called Error Model of
Type I equation. Bymeans of simulations and based on the gradient
method for the objective function e2 when α = 1, it was proposed
in [9], to adjust parameters using the following adaptive law

Dαφ = Dαθ = −ew. (19)

Though this scheme has become relatively popular in recent
applications, there is actually no analytic proofs of its effectiveness.
We will show that in the set of uniformly continuous bounded
functions, the set of functions w that makes e converge to zero, is
more restrictive when α < 1 with respect to the case when α = 1.

In the scalar case, Eq. (19) takes the form Dαφ = −φw2.
Based on Theorems of Chapter 6 of [10], it is easily proved that the
solutions for α < 1 can be expressed as φ(t) = φ(0)− Iα[φw2

](t)
and that they do not change sign. Without loss of generality, by
the linearity of Eq. (19), we will suppose that φ(0) > 0. Then
it follows that for all 0 < φ(t) < φ(0), thereby Iα[φw2

](t) <
φ(0)Iα[w2

](t) < 1/2φ(0) where we have chosen, by using the
proof of Proposition 14, a uniformly continuous function w that
does not converge to zero such that Iαw2(t) < 1/2 for all t > 0
(specifically,w2

:= (f /(2C))with f and C given by Proposition 14).
Whereby, φ(t) ≥ φ(0)(1 − Iαw2). Since φ(t) ≥ 1/2φ(0) we have
that e = φw does not converge to zero. In the vector case, we take
w̄T

= (w, 0, 0, . . . , 0), whereby e = φ1w and the reasoning is
similar to the given above.
On the other hand, for α = 1, by defining 2W = φTφ it
follows that Ẇ = −e2 ≤ 0. Then, by integrating, it follows that
the solution and its derivative are bounded (thus φ is uniformly
continuous) and

 t
0 e2dτ is bounded. Since w is bounded and

uniformly continuous by hypothesis, this implies that e is bounded
and uniformly continuous and then e2 is uniformly continuous, and
by applying Lemma 9, it follows that e converges to zero.

By using the same function (and assuming differentiability of
the information signal) 2W = φTφ for α < 1 and applying
properties of Caputo derivative given in [11], it follows thatDαW ≤

−e2 ≤ 0, thereby we have bounded solutions and Iαe2 turns out
to be also bounded. But, by Proposition 14, this is not enough to
conclude convergence of e even if it were uniformly continuous.
However, by applying Proposition 15, we have that lim inf e2 = 0.

Since φ = φ(0) − Iαφw2, if φ converges, Iαφw2 necessarily
converges. In order to apply Lemma 21 to conclude that e2 =

φw2 converges to zero, e should be differentiable and uniformly
continuous; the latter is not hard to prove it but the former requires
an extra differentiability condition upon the input w.

Therefore, in order to assure the convergence of the error to zero
(effectiveness of the adaptive scheme (9)), a stronger condition
must be imposed on the set of signals w() than just uniform
continuity, when adaptation with α < 1 is used.

6. Conclusions

Some extensions for the fractional order case of the traditional
Barbalat Lemma for the integer case, have been discussed
throughout the paper. The analysis was separated for the cases
when α ≥ 1 and when 0 < α < 1.

For α ≥ 1 the extensions are stated only for the Corollary
of Barbalat Lemma. To consider a generalization of the original
Barbalat Lemma one needs toworkwith functions of arbitrary sign
but whose integrals have limits at infinity. This would lead to a
proper generalization of the Barbalat Lemma.

For 0 < α < 1 there is no a straightforward extension for the
Corollary of Barbalat Lemma. We derived conditions on the inte-
grand and on the convergence of its fractional integral to assure
convergence of the integrand. However, these conditions seem to
be quite restrictive for general applicability. The study of the con-
verse of fractional Barbalat Lemma, namely given a function f van-
ishing at infinity, to find conditions on f such that its fractional
integral converges at infinity or to impose conditions on the in-
tegrand other than uniform continuity, could provide some keys in
searching more general extensions.

In this study we mainly used the Caputo derivative in our
developments, because there are many results of stability for
fractional order dynamical systems that employ this definition and
because it simplifies Property 4 for the case α < 1. Nevertheless
other definitions of fractional derivative could be considered in the
Corollaries and similar results could be also obtained.

To prove convergence of fractional integrals of an arbitrary
positive function is harder than in the integer case, where it is
enough to show that the function belongs to L1. This is because its
fractional integral does not have the monotony property as in the
integer case. One way to prove convergence in this general case is
to have information about the sign of the 1−α Riemann–Liouville
derivative of the function and about the boundedness of the
integral.

For applications in control theory, the examples discussed in the
paper give conditions for guaranteeing convergence of variables in
a fractional controlled system, for which the controller is designed
to modify the original equations in order to fulfil the required
conditions.
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Appendix

A.1. Proof of Proposition 14

Proof. Let p(t) be a function null at every point except in the
intervals [ti, ti +δ]where it takes the value 1 (aperiodic pulse) and
(ti)i∈N is a divergent increasing sequence to be specified and δ is a
fixed positive real to be specified.

Note that for each t and for all τ ≤ t , p(τ ) can be written as

p(τ ) =

n
i=1

pi(τ ) (A.1)

where n = max {i : t ≥ ti} and pi(t) is a function 0 at every point
except in the interval [ti, ti + δ] where it takes the value 1.

For every i, we have Iαpi(t) < C1 where C1 is a positive real
constant. In fact, if t < ti then Iαpi(t) = 0; if ti ≤ t ≤ ti+1
then αΓ (α)Iαpi(t) = (t − ti)α ≤ δα and if t ≥ ti+1 then
αΓ (α)Iαpi(t) = (t − ti)α − (t − ti − δ)α ≤ δα , because for
every i and for t ≥ ti+1, Iαpi(t) is strictly monotone decreasing
since d

dt [(t − ti)α − (t − ti − δ)α] < 0.
By Property 17, for every i, Iαpi(t) → 0 as t → ∞. Therefore,

by definition of convergence, there exists Ti such that for all t > Ti,
Iαpi(t) < 1

i2
. Wewill define ti+1 such that ti+1 > Ti. In this way, we

construct a divergent increasing sequence (ti)i∈N. For instance, let
t1 be arbitrary positive real number and ti+1 = Ti + 1 and a fixed δ
so that δαα−1Γ (α)−1

= 1, then necessarily Ti + 1 < Ti+1 because
Ti+1 > ti+1 since the condition for Ti+1 is Iαpi+1(t) < 1

(i+1)2
≤ 1

but Iαpi+1(ti+1 +δ) = 1. For the same reason, the pi do not overlap
each other. Therefore ti+1 − ti > 1 and thus (ti)i∈N is an increasing
sequence. Moreover, ti → ∞ as i → ∞.

Hence, for any t ∈ R+ there exists n ∈ N so that tn+1 ≤ t ≤

tn+2. Thus, by linearity of the integral operator, we can write

Iαp(t) = Iα


n
i=1

pi(t) + pn+1(t)



=

n
i=1

Iαpi(t) + Iαpn+1(t). (A.2)
Then because of the construction of ti it follows that

Iαp(t) ≤

n
i=1

1
i2

+ Iαpn+1(t) ≤ 2 + C1. (A.3)

Thereby, we have a bounded, positive, not vanishing at infinite
function p, whose fractional integral remains bounded.

Let f (t) be a positive triangular function so that for all t > 0,
f (t) ≤ p(t). For instance, let f be null at every point except in the
intervals [ti, ti + δ/2] where the function is 2δ−1(t − ti) and in the
intervals [ti + δ/2, ti + δ] where the function is 2δ−1(ti + δ − t).
Then, f is a uniformly continuous function because it is Lipschitz
of constant 2δ−1. Therefore f is a bounded, positive, not vanishing
and uniformly continuous function such that

Iα f ≤ Iαp ≤ 2 + C1 < C (A.4)

which proves Proposition 14. �

Remark 30. From the proof, a stronger condition than uniform
continuity, namely f a Lipschitz function, is not enough to assure
convergence of f to zero.
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