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Abstract Acoustic emission (AE) is very sensitive tominuscule
molecular changeswhich allow it to be used in a dynamic control
manner. The work presented here specifically investigates
approaching grit and workpiece interaction during grinding pro-
cesses. The single grit (SG) tests used in this work display that
the intensities from air, occurring in between the grit and work-
piece, show an increasing intensity as the grit tends towards the
workpiece with 1-μm increments. As the grit interacts with the
workpiece, a scratch is formed; different intensities are recorded
with respect to a changing measured depth of cut (DOC). In the
first instance, various AE were low tending towards high signal
to noise ratios which is indicative of grit approaching contact;
when contact is made, frictional rubbing is noticed, then
ploughing with low DOC and, finally, actual cutting with a
higher associated DOC. Dynamic control is obtained from the
AE sensor extracting increasing amplitude significant of elastic
changing towards greater plastic material deformation. Such con-
trol methods can be useful for grinding dressing ratios as well as
achieving near optimal surface finish when faced with difficult to
cut geometries. Two different materials were used for the same
SG tests (aerospace alloys: CMSX4 and titanium-64) to verify
that the control regime is robust and not just material dependent.
TheAE signals were then classified using neural networks (NNs)
and classification and regression trees (CART)-based rules. A

real-time simulation is provided showing such interactions
allowing dynamicmicro precision control. The results show clear
demarcation between the extracted synthesized signals ensuring
high accuracy for determining different phenomena: 3–1 μm
approaching touch, touch, slight plastic deformation and, increas-
ing plastic deformation. In addition to dressing ratios, the results
are also important for micron accuracy set-up considerations.

Keywords Acoustic emission . Feature extraction . Precision
control . Single-grit scratch . CART . Neural networks .

Simulations . Embedded controllers

Nomenclature
AE Acoustic emission
C Cutting
DOC Depth of cut
DSP Digital signal processing
FFT Fast Fourier transform
NN Neural network
P Ploughing
R Rubbing
STFT Short-time Fourier transform
SG4/SG Single-grit trial 4/single grit
T210-T212 Test 210-test 212
T51-T54 Test 51-test 54
CART Classification and regression trees

1 Introduction

When carrying out precision machining, there is a need to con-
trol processes through various feedback signals that should be
both accurate and sensitive to change. A sensor technology that
can be applied is that of acoustic emission (AE) extraction. With
such sensitive characteristics and its lack of standarisation, there
is a need to calibrate AE to other standarised energy quantities or
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daily calibrate against a reference phenomenon with a relatively
constant energy pattern, such as the breaking of a graphite fibre
pencil [1]. This was carried out during previous work [2] where
AE, sensitive to minute material interactions, were correlated to
force measurements. The force gives verification against AE
where measurements can differ significantly on a daily basis.
Such differences are apparently due to environmental conditions,
differences in material characteristics and the different applied
stresses for fracture to occur. The method presented in this work
looks at accurate correlation of approaching touch; such intensi-
ties increase as the grit gets closer to the workpiece (last 3μm the
growing phenomenon was noticed), surface touch (significant to
the rubbing phenomenon), slight plastic deformation (significant
to the ploughing phenomenon) with low depth of cut (DOC)
and, finally, plastic deformation with higher DOC (significant to
the cutting phenomenon). From such energy correlations, it is
possible to control processes within submicron accuracy.

Force sensors are very useful for extracting workpiece deflec-
tion and even stiffness characteristics; however, using the force
alone will only confirm the different levels of intensities relating
to touch and touch tending towards plastic deformation and not
that of approaching touch. Both AE and force sensors look at
similar conditions within the machining environment, but force
signals are used to verify AE in terms of slight touch tending
towards increasing plastic deformation. Discussions will be
made regarding certain limiting conditions that have to be taken
into consideration when carrying out miniscule grit to workpiece
interactions such as those seen in single-grit (SG) scratch tests.

Another important point to highlight is that the force sensor
requires more calibration time using standard weights and,
furthermore, requires fixture to the workpiece. On the other
hand, AE sensors can be fixed on by glue giving access to
difficult and inaccessible places.

The work presented in [3] looks at direct control where the
power signal is used for identifying when a change of tool
should take place. Again, power signals can give different
facets of information, where a rapid increase in peak energy
at a particular time interval can be significant to part/tool
breakage and, at the same time, give information to the loca-
tion of the tool’s malfunction, however, only increases are
found from contact and not that of approaching contact. The
power sensed signal is somewhat similar to that of AE as they
are both measuring energies, albeit it is a non-invasive extrac-
tion technique; so power can be used in conjunction with AE
as opposed to AE and force, where force is invasive from the
set-up perspective. Force and power only verify the growing
plastic deformation and not that of approaching touch; thus,
only AE can be used for this.

The main investigation objectives are:

& Characterise the different levels of phenomena: ap-
proaching touch, touch, slight plastic deformation (DOC
<0.5 μm) and plastic deformation (DOC ≥0.5 μm).

& Characterise the phenomena using both the time and
short-time Fourier transform (STFT) of the AE-extracted
signal correlated to horizontal SG scratch tests.

& Summarise the extracted information.
& Apply the procedure on two different materials: CMSX4

and Titanium-64.
& Verify such signals with dual AE sensors, set at equal

distances apart and, from sensor delay, determine the po-
sition of phenomena interaction.

& Classify different levels of the characterised phenomena.
& Produce a real-time simulation displaying changing energy

patterns as the grit tends towards higherDOC fromnear touch.

The remainder of this paper is organised as follows: first, AE
technology used for precisionmachining is introduced, followed
by an introduction to classifier technologies. CART is then
discussed for controlling precision machining with neural net-
works (NN) as the second verification. Then the experimental
set-up followed by AE-extracted signals and SG analysis. For
the final part, a simulation is presented using both classifiers for
possible embedded employment and finally, the conclusions.

2 AE technology used for precision machining

There is no recorded work to date that discusses AE used for
controlling the approaching and actual increasing contact; how-
ever, other work using AE can be seen in monitoring tool wear
with the addition of force signals, where both are introduced to a
supervised back-propagated ART-NN to distinguish salient AE
fast Fourier transform (FFT) features experienced during turning
insert tool wear [4]. Jemielniak investigates this further by cor-
relating AE measurements and insert wear, promoting more
generalised learning capabilities with adaptive biases between
both training and test data ensuring the NN does not get stuck in
local minima [5]. Other work investigates wavelet transforms
(WT) with a fuzzy-NN to determine the wear states from corre-
lated AE during drilling of 40Cr steel [6]. The insert wear mech-
anism has a defined cutting edge and can partially represent the
mechanism of SG cutting seen in grinding scratch tests. The
work presented in [7] predicts insert wear through NN models
using the input of time, where velocity, feed rate and cutting
force. Such work is useful for the one discussed in this paper
due to the parallels between SG and insert technology simula-
tion models. Not to mention that the work is correlated with
minute phenomena, and during a machining process, there are
many facets of information which can be used for different
control considerations. In [8], the estimation of cutting forces
is used to estimate the surface roughness for hard turning.When
looking at SG micro mechanics, some signals and material phe-
nomenon distinguish patterns in the surface roughness, namely
rubbing or rubbing with slight plastic deformation. From
discussing other literature, there is a direct relationship between
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force and AE, especially for verification of such small phenom-
enon, which is of particular interest to the work presented here.

Investigations shown in [9] look at wear mechanisms expe-
rienced during micro-milling, which quantifies how AE can be
used to distinguish such microscopic phenomena. [10] and [11]
investigates other precision machining processes where fuzzy
identification using extended subtractive cluster analysis and
least squares gives an adaptive filter capability that, when tuned,
can accurately measure material removal rates, giving the pro-
cess more accuracy against unwanted noise. The research
discussed in this paper utilises such ideas in identifying micro-
scopic features through experienced AE signals when the grit
approaches touch and touch with greater workpiece interaction,
generating plastic deformation. Moreover, the precision of AE
technologies applied to wear can also be translated for measur-
ing the distance between the tool tip and the workpiece; this is
important when considering micromachining operations. If the
AE is post-processed in a computationally affordable fashion,
such salient information can be used to control the distance in
real-time and to accurate levels.

The research presented in [12] is of particular interest as it
uses NN for the control of deviation errors based on the AE
measurements of flank tool wear when turning. This is where
vibrations give a trace to deviations away from the specific
CNC programme. These deviation errors are attributed to var-
ious parameters, such as a change in temperature, significant
to increased flank tool wear and, actuator backlash errors. The
work presented here aims to give a capability and be able to do
the same for the grinding perspective in controlling deviation
errors based on identified distances. Also, by using this sensed
feedback, deviation errors from various machining phenome-
na can be corrected by correlating the sensed distance with the
obtained CNC positioning.

AE is being increasingly used in industry due to the possi-
bilities to measure a change in minute phenomena. However,
as a robust calibration method for such developing technolo-
gies have not yet been accepted in terms of standarisation, so
far only best practices are being used [13]. Reciprocity cali-
bration have also been used in [1] for underwater acoustics,
and both Raleigh and longitudinal waves were measured from
the AE event. This is also summarised in [1], where spurious
waves do not make a huge significance to dominant waves
(Raleigh and longitudinal). In short, the AE elastic waves are
located in terms of the dominant energy bands.

In terms of using the calibrated AE data in a control capac-
ity, [14] investigates how the classifiers k-means and self-
organising maps (SOM) were used in segregating different
material failure reference tensile tests and recorded AE signa-
tures. Such AE is reduced in n-dimensionality to give rise time,
peaks and counts. A similar process is applied here to reduce
the obtained time-extracted AE signals, as well as the reduced
time–frequency information. Where research discussed here
uses, windows of 300 points calculating maximum, minimum

and kurtosis of the presented STFTsignal features. These sum-
maries are described graphically in Fig. 20 looking at the com-
puted parallel coordinates; note that the more elastic deforma-
tion phenomena are more significant when compared with the
plastic deformation phenomena due to much larger time steps
associated for emitted, less intensive energy phenomena.

Using the raw extracted time and translated time–frequen-
cy signal affords the user a very powerful input for working in
both real time and with good accuracy. Such control regimes
require the extension of using statistics to provide the salient
points which are significant for an expert controller to react to,
such as those seen by NNs and CART rules.

FFT have been used for condition monitoring in the past;
however, it does not give any time information of when the
event occurred, which is fundamental to the very nature of
spontaneously released transient elastic energy; instead, FFT
calculates the average frequency over the duration of the ex-
tracted signal and can be applied to a non-stationary AE sig-
nal, but it will not describe the transient phenomena in terms
of frequency resolution [15].

Instead, STFT allows observability in both time and fre-
quency domains by calculating FFT on equally spaced inter-
vals designated across the raw extracted time signal. There is a
trade-off between frequency and time resolution, which is
needed to accurately distinguish features in a noisy environ-
ment. That said, STFT still offers enough resolution when
required to characterise an AE signal for precision control
amongst other micro grinding phenomena [2].

For the work presented here, the time information is first
reduced in terms of max peak, back burst time to zero from
the identified max peak and kurtosis of the corresponding
peak. This is carried out for a given time interval (in this
case significant to 300 points, which was considered a good
signal window catering for the miniscule and the less
miniscule) for five maximum and five minimum peaks. This
rich salient data is then used for the classification of different
energies experienced during approaching and the actual in-
teraction between the grit and workpiece. Additionally, a
STFT is taken from the same interval from where ten max
points are taken in terms of frequency and amplitude to be
concatenated to the already summarised time data and then
input to the classifier.

3 Classifier technologies for intelligent control
of 1-μm accuracies

The following section looks at the classification of micron
precision phenomena for 1-μm accuracies. The two classifi-
cation techniques chosen are CART and NNs, where both
classifiers together give a robust account against outliers
and, potential unwanted signal noise. Firstly, CART is intro-
duced followed by NN.
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3.1 CART rule-based system for precision control

CART is a classification method similar to fuzzy clustering,
very useful in segregating n-dimensional data sets with the
added facet over most other classifiers: it produces transparent
rules. In addition, its suitability to handle n-dimensional data
is to be taken into account, especially considering that real-
time, computationally expensive, data reduction techniques
are unsuitable.

CART builds classification and regression trees for
predicting continuous dependent variables (regression) and
categorical predictor variables (classification) [16]. It achieves
its functionality by recursively splitting the feature space into
sets of non-overlapping regions and by predicting the most
likely value of the dependent variable with each region. By
generating a binary tree through recursive partitioning, it splits
the data into sub-nodes based on the minimisation of a hetero-
geneity criterion computed at the resulting sub-nodes. With
the CART algorithm, the tree is forwardly propagated, using
forward stepwise regression, for best purity of node split. The
best node split becomes the chosen value of partition (see
Eq. 1).

A good splitting criterion is

PRE ¼ Φ s; tð Þ
where PRE is the minimum production reduction error and s is
the split at any node t. The best purity measure looks at the
best unique minimal classification where impure would be to
have many unnecessary classes. For the CART algorithm, the
accuracy percentage of classification is used as the best purity
measure.

Misclassification error:

Qm ¼ 1

Nm

X

xi∈Rm

yi≠k mð Þð Þ ¼ 1−Pmk mð Þ ð1Þ

where yi is the output of the individual under test and k(m) is
the class category under test.

This method of classification is chosen because the tree
fitting methods are actually closely related to cluster analysis
[17]. This is where each node can be thought as a cluster of
objects, or cases, that are split by further branches in the tree.
Note that the top node covers the whole sample set and each
remaining node contains a subset of the original sample, and
so on as the split level increases [18].

A classification tree represents a set of nested logical if–
then conditions (similar to a decision rule-based system) for
the values of the feature variables, which allows the prediction
of the corresponding class.

CART can handle missing values by imputing such values
in obtaining the mean over the complete observations. The
produced CART model can be tested on a separately specified
test set. Additionally, the model can be saved and used

subsequently on additional test sets. The rules can be trans-
ferred into a system to work as an embedded controller. Note
that the same dataset size has to be applied to the classifier; if a
problem exists with the data, then zero padding is necessary
for introduction into the classifier.

Some points for discussion on best tree representations are
as follows:

& A very large tree may over fit the data.
& A small tree might not capture the important structure.

Therefore, there is a trade-off consideration for the best tree
when thinking of the overall size:

& The optimal tree size should be adaptively chosen from
the data provided.

& Different stopping criteria can give different results, such
as when an impurity threshold is reached and the
branching and splitting is halted or a specified minimum
of branch level is achieved.

& Think of a pruning strategy that does not impact on the
overall tree classification accuracy.

3.1.1 Advantages of tree-based methods

Tree-based classifiers can cater for both categorical and or-
dered variables in a simple and natural way. Automated step-
wise variable selection with built-in complexity reduction en-
sures powerful and compact rules are found. CART provides
estimates for query samples based on the misclassification
rates, which gives the technique further confidence in its abil-
ity to accurately classify. Tree-based methods are invariant
under all monotone transformations for the individual ordered
variables. Such a paradigm is also robust to outliers and
misclassified points based on the training set. Finally, one of
the important reasons for being used here is its ability to give
easy to interpret outputs.

3.1.2 Limitations of tree-based methods

One important consideration is the high variance of output
based on its hierarchical nature to classify. A small change
in data may result in different splits, thus making such inter-
pretations precautious. Errors are made from the top node
filter all the way down to the lower nodes. Such limitations
have been reduced based on bagging averages and using ran-
dom forest techniques. All tests carried out using this tech-
nique were verified against test and unseen verification data
sets. With high classifications, added confidence in terms of
accumulated accuracy is achieved.
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3.2 NN for precision control

A large number of researchers have reported the application of
using NNmodels for the classification of phenomena of inter-
est when applied to tool condition monitoring ([19] and [20]).
Feed-forward NN models have been used for pattern recogni-
tion in image analysis and sound waves signal analysis. The
NN consists of a complex interconnection of units which are
also known as nodes or neurons. The general layout consists
of a set of neuron layers linked together through complex
connections. Such layout and features are known as the net-
work topology. This is applied to the extracted AE signals for
the classification of precision phenomena over cutting,
ploughing, rubbing and the most important for dynamic con-
trol: approaching touch.

A multilayer NN is required due to the complexity of the
data presented as summarised pre-processed signal data. This
type of data is not only non-linear but also n-dimensional.

The output of each neuron is a function of its inputs. Spe-
cifically, the output of the jth is described by Eqs. 2 and 3:

U j ¼
X

Pi⋅wi j

� � ð2Þ
ai ¼ F U j þ t j

� � ð3Þ

For every neuron j in a layer, each of the inputs Pi to that
layer is multiplied by a previously established weight wij.
These are all summed together, resulting in an internal value
Uj of the operation. This value is then biassed by a previously
established threshold value tj and sent through an activation
function F() (which can be either linear on non-linear), giving
that neuron an output Pj. This is done recursively until the
output nodes are reached, giving the NN output ai.

Equation 4 describes the output error obtained from each
neuron:

ME ¼ 1

Ω

XΩ

i¼1

ti−aið Þ2 ð4Þ

where ME is the mean squared error and ai is the ith output of
the network. The error function can be applied to the NN in a
batch training fashion at the end of the whole data presentation
or sequentially after each input–output pair.

For the back propagation algorithm, the weight and bias
update equations are as follows:

Δwk
i j ¼ α⋅

∂ME

∂wk
i j

ð5Þ

Δbki ¼ α⋅
∂ME

∂bki
ð6Þ

where α is the learning rate, whose value has a trade-off to
ensure it is small enough to gain a true convergence, but large
enough to separate the data space in adequate time. Eqs. 5 and
6 are iteratively changed across the network along with other
functions to provide learning sensitivity. This process of
weight and input, and error calculation propagates through
the NN to provide the segregation rules which separates the
data according to class (target vector). The b is a bias term
used to influence the training weights for NN training.

4 Experimental set-up

This paper obtains its results from a near noise-free environ-
ment; however, as previous research has displayed [21], with
the use of filters, such signals obtained during harsh environ-
ment can achieve good signal to noise ratios. Then they can be
calibrated against known signals and used for monitoring the
onset and the continuation of material failure. The work pre-
sented here uses a number of different signals obtained during
various experimental trials.

The proposed work outlined in this paper is based on work
discussed by [2], where intelligent correlation is made from
the signal input/output to the classifier system which essen-
tially is a CART set of rules and a four-layer NN (two hidden
layers to cater for the presented non-linear data).

Fig. 1 Ti64 experimental set-up in Makino A55 Machine Centre

Fig. 2 Sketch of horizontal scratch test rig
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The experiment carried out for this work consisted of SG
tests (see Figs. 1 and 2 for experimental setup). This is where
a grit is glued into a metal plate via a micron drilled hole that
is fixed within a rotating spindle and, with 1-μm advancing
increments, the SG tends towards the workpiece. Such tests
are used to simulate the micro-processes of grinding, giving
more information in terms of the low-level material interac-
tions. These tests can be used for controlling micro-
machining where AE signatures were achieved in terms of
approaching touch, slight touch (significant to rubbing),
touch with very low DOC (significant to ploughing) and
touch with higher levels of DOC (significant to cutting).

Data collected from these experiments is then reduced in
terms of dimensionality and presented to two independent
classifiers to carry out expert classification. The SG experi-
ments give both micro-force and AE relationships for such
miniscule intensities, which are below and approaching that
of pencil fibre break tests.

Two materials were used (see Table 1 for material charac-
teristics) to see if a generic control strategy can be applied to
precision machining processes independent of the material
properties. Work seen in [2] looks at calibrated AE against

force data; however, for precision machining, there is a need
to pick up the approaching tool to the workpiece surface. For
example, for dressing a micro grinding tool, the DOC are so
small that there is a need to notice air/approaching touch and
slight touch for initial reference. Only AE sensors are capable
of sensing such minute interactions. Force sensors, only give
further information based on actual touch, whether that be slight
or touch tending towards increasingmaterial plastic deformation.

The experiments displayed in Fig. 1 were designed specif-
ically looking for different intensities between two AE sensors
and two different materials.

The SG scratch test experiments were carried out on a
specially designed test rig fixed within a Makino A55 Ma-
chine Centre as shown in Fig. 1. Aerospace materials CMSX4
and Titanium-64 were used for the SG tests to show classifier
robustness where all samples tested were polished to a high
surface quality, which increases the tests confidence with re-
spect to precision measurements. Roughness (Ra) across all
workpieces was measured between 0.02 and 0.03 μm.

The SGwas fixed to the plate in a protruding fashion, which
would ensure the SG was the first object to make contact with
the workpiece when controlled within a micron of accuracy.

Table 1 Summary of the
CMSX4 and Ti64 aerospace
materials

Property CMSX4 Titanium-64

Composition (WT%) Mo: 0.6, Cr: 7.0, Ti: 1.0, Al:
5.6, Co: 10, Ni: 67, Re: 3.0, W: 6.0

C: 0.08, Al: 5.50–6.75,
Fe: 0.30, H: 0.01

Density (kg/m3) 8690 4650

Hardness (HV) 520 349

Tensile strength (Mpa) 1090 950

Yield strength (Mpa) 990 880

Elastic modulus (Gpa) 18.5 109.6

Elongation (%) 10–12 14

Melting point (°C) 1395 1604

Poisson’s ratio 0.273 0.34

Thermal conductivity (W/mK) 12–63 6.7

Fig. 3 Raw time for CMSX4
material during SG test 210.
Intensities shown correspond to
touch and rubbing phenomenon
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The machine set-up consisted of both AE and force sensors
being attached in a manner to ensure maximum signal extrac-
tion. To provide a sealed medium for AE to vibrate from
workpiece/SG to the sensor, grease was applied in between
the AE sensor housing and workpiece holder rig. For monitor-
ing the force and AE, two computers were synchronised by
switch-driven digital acquisition cards (DACs).

The scratch tests were carried out by feeding a rotating
Al2O3 grit towards a flat horizontally placed workpiece as
shown by Fig. 2. With a micron incremental grit stroke, a
scratch groove was formed on the surface of the flat sample.

The average scratch depth has about 1 μm, which is a typical
value of grinding chip in high-efficiency grinding. The
scratching wheel rotational speed is 4000 rpm, with a feed
rate of 4000 mm/min under the down grinding condition
(see Fig. 2). During a single scratch action, the AE feature
frequency bands and intensities change over time. In short,
the mechanical AE propagation should be considered in both
time and frequency features. However, the prominent AE fea-
ture frequencies of the scratches are in the range of
100∼550 kHz, which are similar to the AE feature frequencies
in grinding tests experienced in previous work [22]. Not only

Fig. 4 Raw time signal for CMSX4 material during test 212 showing AE channel 1 (left) and AE channel 2 (right) for slight touch, touch and higher
levels of material interaction with more plastic deformation

Fig. 5 Raw time signal for Ti64
material during SG test 51
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the different mechanisms of plastic deformation incur chang-
ing frequency bands but also the approaching touch between
grit and workpiece as they tend toward each other.

An AE data acquisition system with two identical physical
acousticsWDAE (wide band fast response) sensors were used,
each with a frequency response range of 80 kHz to 1 MHz.
Both sensors were set up at equal distance apart (see Fig. 1).
The sampling rate was set to 5 MHz to ensure no aliasing
occurred when the signal was reconstructed using the Matlab
Signal Toolbox® (digital signal processing (DSP)) and all the
short-burst high-frequency information was obtained.

5 AE from SG scratch tests

In this section, the extracted AE signals are examined, where
both channels 1 and 2 can be compared against each other (see
Figs. 3, 4, 5 and 6).

Looking at Fig. 3, there can be confidence that air and
approaching touch is established as the nearer sensor (sensor
1) picks up the slight phenomenon but not the other sensor
(sensor 2). There is some pickup of the more intense air and
approaching touch, which is picked up by both sensors.
However, the further sensor has a lower intensity reading.

Fig. 6 Raw time signal for Ti64
material during test 54 showing
AE channel 1 (left) and AE
channel 2 (right) for slight touch,
touch and higher levels of touch
with more plastic deformation
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Fig. 7 STFT for CMSX4
material during test 210
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Figure 4 displays slight touch and different levels of plastic
deformation (significant of increasing DOC). Sensor 1 was
verified by sensor 2. Here, the aerospace material CMSX4 is
used for such tests.

Figure 5 displays approaching touch cases for the second
aerospace material Titanium-64. Here, the material interaction
phenomenon was more in a neutral position between both

sensors, confirming similar recorded intensities by both AE
sensors.

Figure 6 displays the final set of AE-extracted signals,
where greater stress of material interactions give a higher in-
tensity in recorded amplitude. Such results, seen with both
materials, display how such an idea can be used for precision
control during machining processes. The high intensities
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Fig. 8 STFT for CMSX4
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obtained by the Titanium-64 tests are based on having a lower
hardness level, which is significant of less material resistance,
thus allowing more plastic deformation (see Table 1).

Figures 7 and 8 look at the STFT representations of
Figs. 3 and 4, respectively, where the same signals are
translated into the frequency and time domains. From

the intensities recorded, it can be appreciated how the grit
to material interactions change. In Fig. 7 and the begin-
ning and end of Fig. 8, the very minute intensities can be
seen, significant to approaching touch and actual touch
(rubbing). Both figures look at the STFT reference to
the CMSX4 SG tests. Figure 8 starts off showing actual
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Fig. 10 STFT for the Titanium-
64 material during test 54

Fig. 11 AE vs force relationship
in SG tests
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touch (rubbing) tending towards ploughing and ultimately,
the cutting phenomenon.

Figures 9 and 10 look at the STFT representations of Figs. 5
and 6, respectively, for the SG tests using the Titanium-64 mate-
rial samples. Again, the intensities can be appreciated in terms of
the approaching grit/workpiece interactions. With the very min-
ute intensities, significant to approaching touch and actual touch
(rubbing) displayed in Figs. 9 and 10 shows the same phenom-
enon as Figs. 7 and 8, albeit using the material Titanium-64.

Figure 11 was used from previous SG trials, where a rela-
tionship was found between AE and SG scratch, tested on the

CMSX4 material samples. However, the load cell was located
immediately below for the carried out scratch trials. Such in-
formation gives an indication of the recorded AE levels
against that of force. Note that the CMSX4-extracted signal
was normalised taking into account the different distances from
each sensor to the scratch, while in the Titanium-64 case, thiswas
unnecessary since the sensors were equidistant to the scratch.

When the process of grit to workpiece interaction occurs,
AE is emitted as a material stress release process. This emitted
AE during the scratch may come from elastic or plastic shear
stress due to material removal or deformation mechanisms.

Fig. 12 SG4 test 212 hit 17, 3D
Mountains scratch
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The process of identification between the various mechanics
of different material removal rates or increasing DOC can be
found in similar research on cutting, ploughing and rubbing
performed in [23]. Such mechanics are significant to the
amount of material removed, where cutting has the most ma-
terial, then ploughing and, finally, rubbing, where no material is
removed and the phenomena is significant to touch. Both sensors
used not only verify each other but can also triangulate the position
where the phenomena are occurring based on their intensities.

Pencil break tests used in [13] and [24] also displayed a
large response time to what can only be described as a micro-

second fracture [23]. The Hsu–Heilsen pencil break calibra-
tion method is an international best practice where the break-
ing of a high polymer graphite pencil provides a localised AE
burst, which is analogous to a broadband step-release transient
wave. This extracted wave can be assumed as the sensor’s
characteristic amplitude and frequency response. This method
of AE sensor calibration has been used in grinding technolo-
gies before in [21] and [25]. Important points to take here are
that we can calibrate the AE energy against force and, on a
daily basis, obtain a normalised quantity to compare measure-
ments carried out under different environmental conditions or

x2 ≥ 0.003204

x11 < 0.0085452

x52 ≥ 0.3674

x2 < 0.0848

Fig. 16 Output classification for full tree CART rules for CMSX4 material

x8 ≥ 0.01511
x52 < 0.27021

Fig. 17 Output classification for full tree CART rules for Tit-64 material
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even different fixture damping mechanisms. Looking at
Fig. 12, it was noticed that the changing features of AE signal
intensities were similar to the shape of the produced grit
scratch.

Therefore, AE amplitude can correlate, in both time and
frequency domains, to different levels of grit/workpiece inter-
action, starting with levels of approaching touch.

With the different energy signatures occurring from the SG
interacting within the workpiece, the STFT provides a good
solution for separating different material removal mechanisms
for precision control (energy consumed during surface defor-

mation). However, in the rubbing case, there is only surface
friction [26]. Therefore, this suggests that different AE signa-
tures should be apparent between the two different phenome-
na (approaching touch and touch). Further to this, approaching

touch has very different characteristics yet tending towards
touch signatures, albeit with lower intensities.

Figures 13 and 14 show the different levels of approaching
touch significant of sensor detection from 3 μm to actual
touch. Figure 13 displays the time-based AE signatures
3 μm to touch and Fig. 14 displays the corresponding STFT
plots. Further to Fig. 13, it can be seen that as the phenomena
of grit and workpiece get closer, so do the intensities of AE
increase.

It is often overlooked that grit too has wear mecha-
nisms associated with SG scratch tests. The extracted
AE is predominately based on the scratch deformation;
however, there are grit mechanisms where such phenom-
ena is difficult to distinguish from AE signals. Looking at
Fig. 15, it can be seen that before and after the CMSX4
SG scratches 2 images (see Fig. 15 top left and centre),
the grit wore more flat where 7 μm of material was re-
moved in the form of removed chip. It was also noticed
that at the beginning of the scratches (1–11), there is more
of the obtained area of scratch cross section and less

Table 2 NN parameters for
classification Parameter Value

Hidden layers 2

Input size 72

Transfer function Tan-sigmoid

Output function Linear

Epochs 1000 for (1)

Time: 20 min.

Learning rule Gradient descent with adaptative learning rate (traingda)

Learning rate 0.1−9

Momentum 0.7

NN training performance (SSE) 3.79×10−3

Training 272 cases comprising all 5 phenomena

Fig. 18 Output classification for
NN (CART rules verification).
Results with 50 % of unseen and
50 % seen data
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material pileup (see Fig. 15, middle for longitude corre-
sponding scratch profile) whereas towards the end of the
scratches (15–21), the same DOC is maintained albeit with a
reduced cross-sectional area and higher material pileup (towards
the end of the individual scratch length) which is due to the
increased grit wear flat (see Fig. 15, bottom for longitude corre-
sponding scratch profile). Looking at Fig. 15 top right, the plan
view of the grit gives the diameter of the grit material as well as
identified chip removal from SG process. The Titanium-64 grit
wear mechanisms results were similar to CMSX4; however,
over a similar range of scratches, less wear was recorded:
4.5 μm, and such results are consistent with other work
[27–29]. Looking at the images of Fig. 15, there were no micro
chippings or fractures recorded, only wear which is consistent
with the scratch and grit profiles and further verifies the concept
for approaching touch control.

6 Classification of micron-phenomena

Within this section, both CART and NN results are provided.
Section 6.1 displays the CART rules, based on if and elseif
and its associated results. Section 6.2 displays the architec-
ture and results of the NN classifier as a backup verification
method.

6.1 CART results

The following tree listing displays the full rule-set achieved
from CART for controlling micron precision phenomena.

The results achieved by this method give an easily trans-
ferable rule set for use in an embedded controller. Moreover, it
is also transparent in terms of which features of the signal are

more salient than others. The output results were based on 272
test cases for establishing the rules, then tested against 75
cases with 50 % of the data relating to unseen cases. The
classification accuracy obtained was 96%, which gives a high
confidence as a method for the control of precision machining
using AE signals. Figures 16 and 17 give output CART rules
for CMSX4 and Titanium-64 SG tests, respectively.

6.2 NN results, verifying CART classifications

The following results are based on NN classification, which
are used to support and verify the results obtained by CART.
The second verifier classifier used is the dual classification
system within the embedded controller on section 7 which is
a NN to ensure a more robust decision-orientated system and is
less sensitive to outliers as seen with a single classifier system.

The NN architecture that was used in this section is
displayed in Table 2. The results achieved by this method
verify the CART rules, see Fig. 18, which is representative
of the same test and data set used during the CART classifi-
cation results. CART rules were chosen over NNs as the NN
output is considered as an output from a black box classifier,
thus non-transparent in showing the transient salient features.
The output results were based on 272 test cases for establish-
ing the rules and then tested against 75 cases with 50 % of the
data relating to unseen cases. The classification accuracy ob-
tained was 84 %, which again gives a high confidence albeit
less than the accuracy given by the CART rules, which is less
susceptible to achieving local minima and sensitive towards
outliers as they determine their classification based on segre-
gating different portions of the overall data set (similar to
fuzzy clustering) and not summated output that is tested

Fig. 19 Simulation for control of micron precision phenomena using a NN and CART rules
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against the overall error amounts reference to actual minus
desired output (back propagation rule).

In discussing the obtained results further, if the AE sensor
is set up and calibrated correctly, then this sensor can be used
as a sensitive accurate sensing capability. A second sensor is
usually added to the sensing capability due to the lack of
standardisation based on its characteristic sensitive changing
nature. Nevertheless, if measures are taken to ensure consis-
tent stable results, then AE can be used as a single entity.

Looking at Figs. 13 and 14, some AE signatures are more
intense than others; this is due to the profile grit shape and the
corresponding workpiece surface profile where peaks and
troughs can be identified. This is where AE can be used in
3D 3 sensors or more to give in situ scanning capabilities en-
suring greater precision. The size of the grit can change from

increased wear mechanisms of material interactions; however,
the grit, which was of size 60 with manufacturing information
Tyrolit XA 60 E13 VIPER grinding wheel is an open, soft-
medium grade grit, which can be intensionally changed based
on a laser ablation process [30]. Such tailored grit changes can
be used for specialist micron geometries. It should also be noted
the SNR are smaller for approaching touch compared to actual
touch and increasing plastic deformation.

7 Real-time controller of micron phenomena

Figure 19 displays the top-level simulation for the proposed
real-time precision machining controller. The input sequence
for sensor 1 is a block, where 14 more signals varying in

(a) Parallel coordinates of summary data set variables 1 to 62.

(b) Parallel coordinates of summary data set variables 63 to 72.

Fig. 20 Classification results for
summarised data set where 0 is
noise, 1 is air, 2 touch, 3 is low
DOC and 4 is high DOC. a
Parallel coordinates of summary
data set variables 1 to 62. b
Parallel coordinates of summary
data set variables 63 to 72
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intensity from noise to highDOC (cutting plastic deformation)
are applied sequentially to the double-decision classifier sys-
tem. Within this block, the data is converted from the raw AE
signal to a rich summarised data set based on the five maxi-
mum and five minimum peaks, their corresponding time-step,
the kurtosis of each peak and, finally, the added ten STFT
calculated peaks.

This summarised data is based on a 300-point-lengthwindow
sequentially concatenated across the whole extracted signal of
interest. Once summarised, the data is sent to both classifiers

(CART and NN) to determine whether they are noise (0), ap-
proaching touch (1), touch (2), low DOC (3) or high DOC (4).

To obtain such high classifications as seen in section 6.1,
the rules need to be translated in the correct fashion as well as
in the correct order. This ordering can give rise to problems in
terms of the correct priorities and support against any ambi-
guities (as found between noise, approaching touch and
touch). Parallel coordinates (as seen in Fig. 20) are used to
make pre-segmentations and in collaboration with the trans-
lated CART rules affords a robust classification capability.

Fig. 21 Output from the merged
CART and NN classification
giving precision AE control
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the merged CART and NN
classification giving approaching
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Figure 21 displays the output of the merged classifiers giv-
ing the accurate precision control, and the only misclassifica-
tions were seen between the 0 and 1 phenomena transition;
however, as such sources are changing in terms of micron
perturbations and increasing as the phenomena changes from
approaching touch to touch, such transitions are expected.
More importantly, the classification of phenomena 1 and 2,
relating to near touch and actual touch, respectively, gives a
good account and pertinent to the work discussed in this paper.
Figure 22 displays a static output test for approaching touch
and touch which is considered key to the work presented here.

The extra results displayed in Figs. 13 and 14 can easily be
implemented in this model however have to be driven inde-
pendently as more misclassification will be apparent with sim-
ilar added dimensional data corresponding to differing output
states. Having segmented intelligence is the preferred route
when requiring high levels of robustness and accuracy (see
Figs. 21 and 22 for examples of this). To ensure a more robust
system the RMS value can be added to ensure data is less
reactive to sudden change such as spikes seen with sensitive
peak to peak data sets.

8 Conclusions

The method of precision control through AE was made robust
while using a summarised data extraction technique on the raw
time extracted signal and its corresponding STFT frequency
analysis. When using such reduced data, the grinding process
on both materials tested can be controlled in terms of micro
precision. The dynamic control is provided from sensing dis-
tances of 3-μm away from the surface to actual touch. The
work discussed here shows the differences in AE intensities
(time and STFT) which is significant of different SNRs which
can also be used for rapid real-time control environments.

Such micron precision control is becoming more important
as geometrical accuracies become more demanding (turbine
root-forms now have 0.5-μm tolerances) andmicro applications
are becomingmore common to industry (e.g. micro pumps seen
in medical devices). Moreover, it becomes almost impossible to
see if accuracies have been achieved unless a high-powered
microscope is used offline. In addition, there are many control
problems investigating industrial robots to move large weights
with precision, and the work presented here can be extended to
such scenarios. Lastly, the methodology presented here looks at
AE sensor control used in situ, which has direct usability and
transferability to industry. The results displayed by the CART
rules give a robust account for use in real-time systems.
Coupled with NNs, outliers and misrepresented structures are
considered less of a problem, giving further confidence to reli-
ability and confident industrial use.
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