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A quantitative genetic approach, which involves correlation of transcrip-
tional networks with the phenotype in a recombinant inbred (RI) population
and in selectively bred lines of rats, and determination of coinciding quantita-
tive trait loci for gene expression and the trait of interest, has been applied in
the present study. In this analysis, a novel approach was used that combined
DNA-Seq data, data from brain exon array analysis of HXB/BXH RI rat
strains and six pairs of rat lines selectively bred for high and low alcohol pref-
erence, and RNA-Seq data (including rat brain transcriptome reconstruc-
tion) to quantify transcript expression levels, generate co-expression modules
and identify biological functions that contribute to the predisposition of con-
suming varying amounts of alcohol. A gene co-expression module was identi-
fied in the RI rat strains that contained both annotated and unannotated
transcripts expressed in the brain, and was associated with alcohol consump-
tion in the RI panel. This module was found to be enriched with differentially
expressed genes from the selected lines of rats. The candidate genes within
the module and differentially expressed genes between high and low drinking
selected lines were associated with glia (microglia and astrocytes) and could
be categorized as being related to immune function, energy metabolism and
calcium homeostasis, as well as glial–neuronal communication. The results of
the present study show that there are multiple combinations of genetic fac-
tors that can produce the same phenotypic outcome. Although no single gene
accounts for predisposition to a particular level of alcohol consumption in
every animal model, coordinated differential expression of subsets of genes in
the identified pathways produce similar phenotypic outcomes.

Database

The datasets supporting the results of the present study are available at http://

phenogen.ucdenver.edu

Abbreviations

DABG, detection above background; FDR, false discovery rate; QTL, quantitative trait loci; RI, recombinant inbred; SNP, single nucleotide

polymorphism; WGCNA, weighted gene co-expression network analysis.
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Introduction

The rapid evolution of gene array technology from an

expensive process with limited scope to an inexpensive,

high throughput genome-wide interrogation of tran-

script levels has revolutionized genetic research. For

example, the Affymetrix rat exon array (Affymetrix,

Santa Clara, CA, USA) has over one million probe sets

that interrogate the RNA expression levels of not only

thousands of annotated protein-coding genes, but also

thousands of predicted and not yet validated RNA tran-

scripts. The ability to quantitatively measure the tran-

scripts produced from an individual’s DNA, generates a

ubiquitous molecular endophenotype that has been

shown to be of value in focusing the genetic analysis of

complex quantitative traits to biological pathways

important in the etiology of the trait of interest [1–3].
Although the technology related to gene arrays has

vastly improved over the past 20 years, the technologi-

cal drawbacks of using gene arrays such as the Affyme-

trix exon array platform include (a) different

hybridization efficiencies across samples as a result of

genomic variants [e.g. single nucleotide polymorphisms

(SNPs) and indels] in the probed regions [4] and (b)

annotation/interpretation issues related to different

results from multiple probe sets targeting the same gene,

or probe sets targeting more than one isoform of a gene.

To remedy these problems, we first utilized informa-

tion from high throughput DNA sequencing on rele-

vant samples to mask probes on the array that would

be sensitive to differences in hybridization efficiency as

a result of genetic variants within a probed region. We

then used deep high throughput RNA sequencing

information to identify known and novel transcripts

expressed in a specific tissue (e.g. brain). With compre-

hensive information on the tissue-specific transcrip-

tome, we evaluated and combined probe sets that

provide information on splice variants of protein-cod-

ing genes, as well as annotated and unannotated non-

coding transcripts expressed in the tissue, aiming to

‘clean’ the exon array data and improve the interpreta-

tion of expression estimates.

Once the use of our genetic and transcriptome infor-

mation produced reliable and informative RNA

expression levels from the exon array, we used this

information to examine a complex behavioral trait (i.e.

alcohol consumption). Alcohol consumption is consid-

ered to be the etiologic essential in the development of

alcohol addiction [5–7], and levels of alcohol consump-

tion by humans and other animals have been shown to

have a strong genetic component [8,9]. In studies of

concordance of alcohol consumption in monozygotic

and dizygotic human twins, heritability for both the

frequency and quantity of alcohol consumed varies

between 0.4 and 0.7 [10,11]. The quantitative pheno-

type of alcohol consumption in both humans and

rodents can be considered a polygenic trait [1,12–14],
with several areas of the genome contributing to this

phenotype.

Often with such polygenic, complex traits, the same

genomic variant or the identical combination of

genomic variants is not present in all individuals who

manifest a particular phenotype. Instead, there are mul-

tiple variants or combinations of variants that produce

the same diagnostic category. It is not a single genomic

variant that is directly responsible for variation in a

complex trait; instead, it is the effect of several, not

always identical, genomic variants on the function of

the biological pathway responsible for the phenotype

that is the determining feature of genotype–phenotype
relationships. One of the genetic tools for examining the

plausibility of such claims is selective breeding. Selective

breeding is a technique used to fix genetic elements that

contribute to a trait of interest at the same time as

hypothetically allowing for random recombination of

other elements in the selected lines [15]. By conducting

selective breeding under different selective pressures

and/or with a different gene pool in the progenitors

from which selection is initiated, one, in essence, can

produce selection and fixation of different genes, which

produce the same separation of phenotypes.

To our knowledge, there are currently six pairs of

rat lines throughout the world, selected for high and

low levels of alcohol consumption. Initial efforts to

identify common differentially expressed genes in par-

ticular brain areas of various pairs of high drinking

and low drinking lines have produced uninterpretable

results [16,17] and it has been suggested previously by

ourselves [18,19] and others [20] that one should con-

sider a search for responsible networks rather than

responsible genes.

But how does one identify relevant physiologic

networks? Common ontology or cell type enrichment

analyses may fall short when genes are under-anno-

tated or even unannotated, such as for many of the

noncoding transcripts identified in RNA-Seq datasets.

An alternative is to incorporate another useful rodent

model for examining complex traits [i.e. recombinant

inbred (RI) strains]. The use of RI strains is a well-

characterized and accepted technique for generating

QTL and other quantitative genetic information [21].

RI panels allow not only for quantitative genetic

analysis of behavioral phenotypes, such as alcohol

consumption, but also RNA expression levels. In RI

panels, the relationship between levels of expression of

various genes has also been used for segregation of
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genes into networks (modules) by means of co-expres-

sion analysis, and this approach has been validated by

studies demonstrating that modules of co-expressed

genes are often strongly enriched in functional cate-

gories, or related to particular cell types [22,23]. A

popular approach for deriving co-expression modules

using gene expression data is weighted gene co-expres-

sion network analysis (WGCNA) [24].

In addition to using these co-expression modules to

provide information about the physiologic function of

genes differentially expressed among selected lines,

they can be used to directly study the relationship

between module expression patterns and alcohol

consumption. To do this, the expression pattern of the

whole module is summarized using a quantitative fea-

ture: its ‘eigengene’ (the first principal component of

the gene expression matrix) [24]. The quantitative nat-

ure of the eigengene values allows for quantitative

genetic analysis, including genetic correlations with

alcohol consumption, and the use of quantitative trait

loci (QTL) analyses to identify regions of the genome

that control expression of the genes within the module.

We have proposed that QTL overlap between a

module eigengene and a phenotypic trait provides

additional evidence showing that the functional char-

acteristics or cell types represented by the genes

included in the co-expression module play a role in the

phenotype of interest, when genetic correlation

between the eigengene and the trait has been estab-

lished [25].

In the present study, the RNA expression estimates

gathered with the ‘cleaned’ Affymetrix Rat Exon

Arrays were combined with genotype and behavioral

information in an extensive analysis that focused on

the identification of a common functional pathway

across both genetic models relevant to a predisposition

for high or low alcohol consumption/preference. In the

process, we generated a large volume of data on the

transcriptional characteristics of the rat brain and

mapped the expressed transcripts to strain-specific gen-

omes of rats. All of the genomic and transcriptome

information in its raw and analyzed forms is available

on our website (http://phenogen.ucdenver.edu).

Results

Identification of gene/isoform probe set clusters

DNA and RNA sequencing

Of the approximately 1.7 billion read fragments

(850 million paired-end reads) generated from the

DNA of the two progenitor strains, 1.6 billion (96%)

aligned with the rat reference genome. SNPs and small

indels were identified for each strain separately with

respect to the BN reference sequence (RGSC 5.0/rn5;

http://genome.ucsc.edu). As expected, fewer SNPs and

small indels (51 329 SNPs/66 470 small indels) were

identified in the genome of the BN-Lx strain because it

is a congenic of the BN reference strain [26]. In the

SHR strain, 3 578 145 SNPs/1 089 050 small indels

were identified compared to the reference BN genome.

The SNPs and small indels of the sequenced genomes

for BN-Lx and SHR strains are included in the genome

browser available at http://phenogen.ucdenver.edu.

For the RNA-Seq data, over 1.6 billion read frag-

ments (approximately 800 million paired-end reads)

derived from both polyA+-selected RNA and riboso-

mal RNA-depleted total RNA were generated across

the six brain samples (three BN-Lx rats and three

SHR rats). Of those, more than 1.2 billion aligned

with their respective strain-specific genomes. Combin-

ing the reconstructed transcriptomes from the total

RNA and from the polyA+ RNA, and from both

strains, resulted in 57 534 unique high confidence

transcripts (35 511 unique genes). The characteristics

of these transcripts and their overlap with current

annotation are provided as an interactive graphic at

http://phenogen.ucdenver.edu/PhenoGen/web/graphics/

transcriptome.jsp.

Over 4.1 million probe sequences from the Affyme-

trix Rat Exon Array 1.0 ST were downloaded from the

Affymetrix website (http://www.affymetrix.com). Of

these, 3 664 621 (89%) aligned perfectly and uniquely

with the reference BN rat genome and therefore were

retained for further consideration. In addition, 108 563

(3%) of the retained probes were eliminated because

they aligned with the rat genome in a region that

harbored a SNP or small indel identified in the DNA-

Seq data of the BN-Lx or SHR rats. The remaining

‘high integrity’ probes were summarized into 890 607

probe sets where at least three probes defined the probe

set. When these probe sets were aligned with the brain

transcriptome, we were able to create probe set clusters

that represent 18 253 genes, as well as 19 023 probe set

clusters for transcripts representing individual isoforms

expressed in rat brain (Fig. S1).

Identification of candidate genes associated with

a predisposition to alcohol preference/

consumption

Selected lines meta-analysis

The differential expression meta-analysis of the

selected lines was performed separately at the gene
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level and at the isoform-specific level. Of the 18 253

genes expressed in rat brain, according to the RNA-

Seq data, and interrogated by the array, 16 074 genes

were detected above background on the exon array in

the selected lines [detection above background

(DABG): P < 0.0001 in at least 5% of samples]. In

addition, 123 genes were (a) differentially expressed

[meta-analysis false discovery rate (FDR) < 0.05]

and (b) showed a consistent direction of differential

expression among individual line pairs that had

statistical evidence (P < 0.05) for differential expres-

sion. The top ten differentially expressed genes based

on the meta-analysis P values are shown in Fig. 1A.

In the isoform-specific analysis, 14 594 transcripts were

detected above background in the selected lines

according to the array data and 95 were differentially

expressed (meta-analysis FDR < 0.05) with the

direction of differential expression consistent in

pairs that had statistical evidence for differential

expression. The top ten isoforms based on the meta-

analysis P values are shown in Fig. 1B. Sixty-eight of

the differentially expressed genes were represented in

the list of differentially expressed isoforms. In other

words, in these cases, the isoform expression con-

tributed to the differential expression of the gene as a

whole.

Alcohol consumption in HXB/BXH RI strains

Average daily alcohol consumption measures varied

among strains in the RI panel (0.5–3.0 g�kg�1)

(Fig. S2). Average daily alcohol consumption in this

panel has a relatively high heritability (39%). The

set of 7430 SNPs that differed between RI strains

with alcohol consumption information and could be

placed in the rn5 version of the rat genome repre-

sented a high-density map for this panel (average

distance between SNPs = 0.37 Mb). After detailed

quality control, this high-density map was reduced

to 813 unique strain distribution patterns (i.e. haplo-

type blocks) across the 21 RI strains that had both

genotype and alcohol consumption information. The

bQTL analysis identified two peaks (Fig. 2) with

suggestive genome-wide P values based on 1000 per-

mutations (genome-wide P value threshold = 0.63;

LOD = 2.39) [27].

WGCNA for RI strains

The brain RNA expression data gathered on 21 strains

of the RI panel using the Affymetrix Rat Exon Array

1.0 ST were summarized into expression estimates for

genes and isoforms. Separately, gene expression values
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Fig. 1. Genes/isoforms differentially expressed between high alcohol consuming and low alcohol consuming selected lines of rats. Genes/

isoforms were ranked by P value from the meta-analysis including all six selected line pairs and the top ten genes (A) and isoforms (B) are

included. Each row of the heatmap represents a gene/isoform and each column represents a selected line pair. The top line of each box is

the log2 difference in expression (high consuming line – low consuming line). The bottom line is the P value for the difference in expression

related to that particular pair. The colors of the boxes are based on the log2 difference in expression.
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and isoform expression values that were detected

above background in more than 5% of samples were

subjected to WGCNA to identify co-expression mod-

ules. In the gene-level data, 364 modules were identi-

fied (median module size = 8 genes) (Fig. S3A) and, in

the isoform-level data, 582 modules were identified

(median module size = 7 isoforms) (Fig. S3B). The

first principal component of each module (i.e. the

eigengene) was calculated to represent the expression

of genes/isoforms in the module across strains. In

general, this eigengene captured a substantial portion

of the variation among the genes and isoforms within

each module (inter-quartile range: 61–70% in the

gene-level analysis and 61–71% in the isoform-level

analysis).

In the gene-level analysis, five modules were signifi-

cantly associated with alcohol consumption using the

combined P value (combined P < 0.01) (Table 1),

which combined information on the correlation

between the module eigengene and alcohol consump-

tion in the RI panel and information on the enrich-

ment of genes differentially expressed in the selected

rat lines within the module. In the isoform-level analy-

sis, five modules were significantly associated with
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Fig. 2. LOD profile of voluntary alcohol consumption in the HXB/BXH recombinant inbred panel. Strain means were used in a marker

regression to determine behavioral QTL for voluntary alcohol consumption in the two-bottle 24-h access paradigm. Two suggestive

(P < 0.63) QTL are labeled with their location, credible interval, LOD score, and genome-wide P value. The red line represents the LOD

threshold for a suggestive P value (2.39, genome-wide P = 0.63). The two insets are more detailed views of the two suggestive peaks.
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alcohol consumption using the combined P value

(combined P < 0.01) (Table 1).

We also examined the overlap between the module

eigengene QTL and the QTL for alcohol consumption

in the RI panel. Only one co-expression module in the

gene-level analysis (indianred4) and one module in the

isoform-level analysis (aquamarine1) passed this filter

(Table 1 and Fig. S4). Many of the genes and isoforms

are similar in these two modules. If a gene only had

one splice variant expressed in the brain, the expres-

sion estimate at the gene level and at the isoform-

specific level would be based on the same group of

probe sets and would only deviate slightly as a result

of normalization procedures. As a result of this over-

lap and because the eigengenes for the two modules

were highly correlated (correlation coefficient = –0.73,
P = 0.0002), we merged these two modules into one

candidate co-expression module for visualization

(Fig. 3).

In the combined module, a novel rat transcript

(orthologous to A930024E05Rik in mouse and

LOC101928346 in the human) was the most highly

connected gene (i.e. the hub gene). The expression level

of this novel transcript was highly heritable (r2 = 0.71)

in the RI panel, suggesting that its expression is under

tight genetic control. Because this gene is not yet

annotated in the rat genome, quantitative RT-PCR

was used to verify the genomic structure of the tran-

script and the differential expression of the gene

between the BN-Lx and SHR strains (detailed methods

and results are provided in Doc. S1). In the transcrip-

tome reconstruction, this gene consisted of two exons

(Fig. 4). Based on a manual examination of the RNA-

Seq reads and the correlation among probe sets from

the Affymetrix Exon Array, there was evidence that an

additional exon (from GENE 07345) could be included

in this transcript (Fig. 4 and Doc. S1). The expression

levels of three different fragments of the three-exon

version of transcript were quantified by quantitative

RT-PCR in the BN-Lx and SHR strains: (a) spanning

exons 1 and 2; (b) spanning exons 2 and 3; and (c)

spanning exons 1 and 3. Differential expression

between strains (higher in SHR) was verified for all

three fragments (all three P < 0.001). However, the

expression levels of the three fragments within a strain

were different. In both strains, the fragment spanning

exons 1 and 2 had the highest expression level and the

fragment spanning exons 1 and 3 had the lowest

expression level (Doc. S1), indicating that multiple iso-

forms of this transcript may be expressed in rat brain.

The clone produced from the primers that spanned

exons 1 and 3 was sequenced and aligned with the gen-

ome. The first exon of the clone matched the exon that

was not placed in GENE 07346 by the initial computa-

tional reconstruction. A large portion of this first exon

is also found in human and mouse. The second (mid-

dle) exon of the clone was part of the computationally

generated ‘gene’ and closely matched an exon from the

orthologous mouse gene. The exon junction between

the second and the third (final) exons matched pre-

cisely with the information from the reconstruction,

but this exon was not present in the orthologous

mouse gene (Fig. 4).

Characterization of common functional pathways

among candidate genes

Although common ontology enrichment-based analy-

ses can point one to general terms for annotating gene

function, knowledge/literature-based analyses often

uncover greater detail about functional pathways and

potentially narrow or broaden views about the role

that a particular transcript or pathway may play in the

predisposition to a complex phenotype such as alcohol

consumption. Knowledge/literature-based analyses are

currently most effective when focusing on the aggre-

gate of gene products, rather than on the individual

isoform, and the knowledge/literature-based analysis is

more easily applied to smaller sets of transcripts. The

present study aimed to identify, with some confidence,

the functional implications and interactions of the gene

products that came to our attention through WGCNA

(with the minimum module size reduced to capture

smaller modules) and gene products that were brought

to our attention through the meta-analysis of data

derived from the six lines of rats selected for high and

low consumption of ethanol.

In preparation for applying the knowledge/litera-

ture-based analyses, we combined results from our

gene-level and isoform-level analyses and focused on

gene products irrespective of isoform. In the selected

lines meta-analysis, we reduced the list of 123 differen-

tially expressed genes (FDR < 0.05) and 95 differen-

tially expressed isoforms (FDR < 0.05) to the 10 genes

and the 10 isoforms with the strongest statistical evi-

dence of association with alcohol consumption

(Fig. 1). Six gene products overlapped between the

two lists (gene level and isoform level); therefore, the

final set of candidates derived from the meta-analysis

of the selected lines consisted of 14 unique gene prod-

ucts. In the WGCNA analysis, the gene-level and the

isoform-level analyses had been combined to generate

the candidate co-expression module (Fig. 3). This set

of 18 candidate gene products was further reduced by

requiring that their RNA expression levels also be
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individually correlated (P < 0.05) with levels of alcohol

consumption in the RI panel. This additional criterion

that each transcript’s independent correlation of

expression levels with alcohol consumption levels elim-

inated eight gene products. These eight gene products

were noted to have the lowest intramodular connectiv-

ity within the candidate co-expression module (Fig. 3).

The 14 gene products from the selected lines study

were combined with the remaining set of 10 gene

products from the candidate co-expression module to

create a candidate gene set for knowledge/literature-

based analyses that contains 23 unique gene products

(Table 2). Oas1b was part of the 14 gene products

from the selected lines study and was part of the 10

gene products from the co-expression module. The

characteristics of each of the candidate genes, includ-

ing correlations among individual probe sets within

the gene/isoform cluster, are described in Doc. S2. Of

the 23 candidate genes, 12 had only one isoform in the

transcriptome reconstruction. Three of the candidate

genes had multiple isoforms, although only one of the

isoforms was significantly associated with alcohol con-

sumption (Cd74, Tgm2 and Nxph1). In two of these

three, the associated isoform was not the most highly

expressed isoform of the gene according to the RNA-

Seq data. These results may represent differences in

isoform function, in that only one isoform is associ-

ated with alcohol consumption. Eight of the candidate

genes had multiple isoforms, although they were only

associated with alcohol consumption at the gene level.

For most of these transcripts, the number of probe

sets that could distinguish isoforms was limited, with

some genes not having any probe sets that

distinguished isoforms or probe sets that could only

distinguish a minor isoform.

Using the GO database (http://www.geneontol-

ogy.org/GO.database.shtml), the most significantly

enriched biologic process category and the only GO

term among the 23 candidate genes to reach statistical

significance was immune response (P = 0.03). No GO

terms from either the cellular composition category or

the molecular function category were significantly

enriched. When our gene list was subjected to a KEGG

database analysis (http://www.genome.ad.jp/kegg), the

top category was antigen processing and presentation

(P = 0.003). The list of candidate genes was explored

further by identifying enrichment using brain-derived

lists compiled as part of the userListEnrichment func-

tion in the WGCNA R library [28]. Markers for three

brain regions (hippocampus, frontal cortex and

choroid plexus), four cell types (microglia, astrocytes,

neurons and interneurons) and three intracellular

domains (synaptic mitochondria, somatic mitochondria

and cytoplasm) were over-represented within the candi-

date genes in Table 2 (Bonferroni adjusted P < 0.05).

All of the categories above were utilized as ‘concepts’

defined by our candidate genes. We then proceeded to

utilize the modification of the Formal Concept Analy-

sis [29], which includes domain knowledge to explore

the relationships among the 23 candidate gene

products. The detailed results of this Concept Analysis

are included in Doc. S3 and summaries of the results

are provided in Fig. 5 and Table 3.

Discussion

The brain RNA-Seq data that we have gathered on

the BN-Lx/Cub and SHR/Ola rats (and that we have

made available on http://phenogen.ucdenver.edu)

complement and significantly extend the recently pub-

lished catalog of gene expression data from several

organs of the Fisher 344 rat [30]. We have recently

generated deep genome sequencing data for the F344

rat strain, which is currently available on our website

and was published with the sequenced genomes of 40

other commonly used inbred strains of rats [31].

Given the RNA-Seq information provided previously

Fig. 3. Connectivity within the co-expression module associated

with voluntary alcohol consumption. Each node represents a gene

and/or an isoform from the two co-expression modules that were

associated with alcohol consumption using a P value that

combined information from the correlation of the eigengene with

alcohol consumption and the enrichment of genes/isoforms within

module differentially expressed in the rat lines selectively bred for

high or low alcohol consumption. The size of the node is weighted

based on its intramodular connectivity within the merged co-

expression module. Nodes highlighted in yellow represent genes

identified in both the gene-level analysis and the isoform-level

analysis. The thickness of the line connecting two nodes (i.e. edge)

is weighted based on the magnitude of the correlation coefficient

between the two genes. Red edges represent a negative

correlation and blue edges represent a positive correlation.
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[30], one can perform the same process that we have

described in the present study for ‘cleaning’ the Affy-

metrix Exon Array data for use with the F344 strain,

and for characterizing probes on the array that can

identify specific expressed isoforms in the brain and

other organs.

One notable extension to the published data is our

inclusion of genome sequence and brain gene expres-

sion data across animals of different genetic

backgrounds. By sequencing the genomes of rat strains

that are the progenitors of the HXB/BXH RI panel of

rats, we were able to characterize a large number of

single base pair and indel polymorphisms in DNA

between the parental strains. These polymorphisms are

recombined in a diverse fashion across the RI panel

and can be imputed into a strain-specific map for this

RI panel [32] for quantitative trait analyses. The

DNA-Seq data, combined with RNA-Seq data, served

other purposes in the present study: (a) create a ‘mask’

to eliminate probes on hybridization-based gene

expression arrays (Affymetrix Exon Arrays) that

would produce erroneous results because of strain-

specific differences in DNA/RNA sequence and (b) to

aggregate and annotate probe sets based on the rat

brain transcriptome derived from the RNA-Seq data.

Through such a process, we generated a quantitative

dataset from the Affymetrix Exon Arrays that was

‘polymorphism independent’ across the HXB/BXH RI

panel, and made more definitive our search for path-

ways associated with a phenotype (levels of alcohol

consumption). We have summarized the DNA and

RNA sequencing data in the Results and the full data

files are available at http://phenogen.ucdenver.edu.

The data are also available in processed form through

a genome browser on our website. The final versions

of the masked Affymetrix Rat Exon Arrays are also

available for download at http://phenogen.ucden-

ver.edu.
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Fig. 4. Comparison of the transcriptome structure of novel rat transcript across mouse and human. The top box (Rat) is the genomic region,

chr12:40,902,059-40,918,309, in the RGSC 5.0/rn5 version of the rat genome. In the rat, the novel transcript is transcribed from the

negative strand. The numerical values of the coordinates have been reversed, 40 918 309 bp to 40 902 059 bp, so that the direction of

transcription (left to right in the graphic) is consistent across species. In this box, the transcript structure of three transcripts derived from

the transcriptome reconstruction using the polyA+-selected RNA is shown as the first series of tracks in black (e.g. GENE_07345.ISO_1).

GENE_07346 is the hub gene for the co-expression module (Fig. 3). The second series (grey) in this box is the exon organization of

GENE_07346 deduced from the PCR product sequence. The third series of tracks within this box indicate the genomic regions in the rat

that are orthologous to the A930024E05Rik gene in mouse. The labels on the right are the relevant mouse RefSeq ncRNA ID. The final

series of tracks in this box indicates the genomic region in the rat that is orthologous to LOC101928346 in humans. The label on the right is

the relevant human RefSeq ncRNA ID. The second box (Mouse) is the genomic region, chr5:122,988,841-123,005,091, in the GRCm38/

mm10 version of the mouse genome. The track within this box contains the A930024E05Rik gene as annotated in mouse. Regions that

were identified as orthologous to the rat are colored with the same colors used in the Regions Orthologous to Mouse A930024E05Rik in

the Rat box above. The third box (Human) is the genomic region, chr12:121,579,996-121,596,246, in the GRCh38/hg38 version of the

human genome. The track within this box is the LOC101928346 lincRNA annotated in human with the relevant human RefSeq ncRNA IDs

on the left. Regions that were identified as orthologous in the rat are colored with the same colors as in the Regions Orthologous to Human

LOC101928346 in the Rat box above. It should be noted that the GENE_07346 and orthologous regions in the other two species are

located between the Kdm2b and the Orai1 gene sequences. The figure was generated using the UCSC Genome Browser (http://

genome.ucsc.edu).
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By gathering high throughput RNA and DNA

sequencing data on a few strains, we were able to

vastly improve our large (over 300 samples) hybridiza-

tion-based expression array data gathered prior to the

explosion in efficiency of high throughput RNA

sequencing. For example, previous studies have

reported the detrimental effects of not accounting for

SNPs within regions targeted by probes from

hybridization arrays [4]. Such SNPs lead to false cis-

eQTL and could result in co-expression patterns

because of co-localization of genes rather than func-

tional relationships. As seen from the results of the

present study, the use of the reconstructed brain tran-

scriptome from the RNA-Seq data on the progenitor

strains identifies specific splice variants associated with

alcohol consumption when more than one splice

variant is detected in the brain. Also, the most highly

connected transcript within the co-expression module

associated with alcohol consumption is unannotated in

the current rat transcriptome. In a typical microarray

analysis, this probe set or probe set cluster may be

eliminated because of its annotation ambiguity. How-

ever, within the context of the reconstructed transcrip-

tome, we had an excellent starting point for

identification of transcript structure through PCR, and

we have been able to develop and refine a working

hypothesis on its function within the context of brain.

Using high throughput sequencing data, we were able

to improve the accuracy of microarrays with respect to

both RNA expression levels and the transcripts that

they represent.

With our improved methods for estimating expres-

sion from microarray studies, we made use of two

large expression data sets: (a) six pairs of rats selec-

tively bred for alcohol preference and (b) a RI rat

panel that displays a wide range of alcohol consump-

tion values. Our hypothesis is that there are multiple

genetic variants causing the same alcohol consumption

phenotypes. For example, all of the studies that have

compared genetic variants and differences in RNA

Table 2. Genes associated with a predisposition to variation in voluntary alcohol consumption.

Gene Gene description

Analysis where gene

was identified

Direction of association

with drinking

5830418K08Rik RIKEN cDNA 5830418K08 gene Selected lines Negative

Cd74 Cd74 molecule, major

histocompatibility complex, class II

invariant chain

Selected lines Negative

Coq5 Coenzyme Q5 homolog,

methyltransferase (S. cerevisiae)

Co-expression module Negative

Ctss Cathepsin S Selected lines Negative

Fbln1 Fibulin 1 Selected lines Positive

Fbxo45 F-box protein 45 Selected lines Negative

GENE_07345 Partial overlap with Orai1 and mouse

A930024E05Rik

Co-expression module Negative

GENE_07346 Homologous with mouse A930024E05Rik Co-expression module Negative

GENE_09839

GENE_09839.ISO_01

No annotation Selected lines Negative

GENE_18351.ISO_01 No annotation Selected lines Positive

GENE_27603 No annotation Co-expression module Negative

Ift81 Intraflagellar transport 81 homolog Co-expression module Negative

Maats1 MYCBP-associated, testis expressed 1 Co-expression module Negative

Nxph1 Neurexophilin 1 Selected lines Negative

Oas1b 2-5 Oligoadenylate synthetase 1B Selected lines and

co-expression module

Positive

P2rx4 Purinergic receptor P2X, ligand-gated ion

channel 4

Co-expression module Negative

Plcd4 Phospholipase C, delta 4 Selected lines Positive

RT1-CE10 RT1-CE10 RT1 class I, locus CE10 Selected lines Positive

Tgm2 Transglutaminase 2, C polypeptide Selected lines Positive

Tmem116 Transmembrane protein 116 Co-expression module Positive

Tmem14a Transmembrane protein 14A Selected lines Negative

Txnip Thioredoxin interacting protein Co-expression module Positive

Vps52 Vacuolar protein sorting 52 homolog

(S. cerevisiae)

Selected lines Negative
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expression levels among rat lines selected for alcohol

preference have not identified a common gene across

pairs of lines generated in different countries or even

pairs of lines generated from a similar starting popula-

tion at the same institution [16,17]. With differences in

selective pressure and starting genetic pool, no gene or

transcript was ‘fixed’ in the same manner in all six

selectively bred pairs, although, in all cases, alcohol

preference was altered as a result of breeding.

However, there were many genes/transcripts that were

fixed in more than one pair. If there was a single vari-

ant responsible for this phenotype, we would expect

the same genetic variant to be identified in all selected

line pairs. We therefore focused our attention on gath-

ering information on strong candidate genes from the

different rat models and then using these candidate

genes in aggregate to infer a functional pathway

involved in a predisposition to alcohol preference/

consumption.

In the RI panel, instead of observing two groups of

rats with extreme alcohol consumption behaviors,

alcohol consumption behaviors varied from high to

low with many values in between. RI panels provide a

useful tool for dissecting the effect of ‘causal’ variants

on different genetic backgrounds and in combination

with other causal variants with synergistic or opposing

effects. For example, the two progenitor strains of the

RI panel, SHR/Ola and BN-Lx/Cub, do not display

extreme alcohol consumption behaviors. Instead, many

RI strains consume less alcohol then either strain or

consume more alcohol then either strain. This indicates

that there are several causal variants for alcohol con-

sumption in this panel and that the recombination of

predisposing and protective variants determines the

Table 3. Candidate transcripts in functional categories derived from

formal concept analysis. (+) higher levels in high-drinking animals;

(�) higher levels in low-drinking animals.

Generating and

responding to

immune signals

Glial/neuronal

communication

Energy/redox/

calcium homeostasis

Ctss(–) P2rx4(–)

Txnip(+) Vps52(–) Plcd4(+)

P2rx4(–) P2rx4(–)

Nxph1(–) Maats1(–)

Fbln1(+) Coq5(–)

Cd74(–) Ift81(–) Tmem14a(–)

Oas1b(+) Fbxo45(–) Txnip(+)

Fbln1(+)

Tgm2(+) Tgm2(+) Oas1b(+)

Nxph1(–) Ctss(–)

Tgm2(+)

Summary: high

drinking rats have

lower innate

immunity

responsiveness

Summary: high

drinking rats have

lower purinergic

transmission, lower

GABA function,

higher glutamate

function

Summary: high

drinking rats have

lower glucose uptake

and ATP production;

lower cytosolic Ca2+

Fig. 5. Functional relationships among candidate genes for alcohol consumption. These cartoons illustrate the functions of and interactions

among the annotated candidate genes for alcohol consumption that are described in more detail in the text, Doc. S3 and Table 3. Functions

and interactions were derived from the Formal Concept Analysis and most candidate genes are expressed in glial cells (astrocytes and/or

microglia). Each panel of the figure represents one of the functional categories listed in Table 3. Candidate genes are shown in red.
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final phenotypic outcome. The RI panel contributed to

the identification of a functional pathway related to

alcohol consumption by first providing valuable infor-

mation about the co-expression of genes/transcripts.

Second, the panel provided information about expres-

sion QTLs. Third, the panel allowed for the direct

examination of genetic correlation between RNA

expression levels (via module eigengenes) and alcohol

consumption. We used the co-expression information

to identify modules of transcripts with similar expres-

sion patterns. Not only did this reduce the number of

comparisons needed, but also it provided insight into

the possible functional relationships between both

well-annotated genes and under-annotated or unanno-

tated RNA transcripts. We focused on co-expression

modules that were enriched for genes/transcripts iden-

tified in the selected line study (i.e. different genes

same pathway) and/or their expression, as measured

through their module eigengene, was correlated with

alcohol consumption.

We also included the criterion that the module

expression QTL had to overlap a behavioral QTL for

alcohol consumption. A number of studies have noted

that variation in gene expression is a more prevalent

mechanism underlying predisposition to complex

(multifactorial) phenotypes [33,34] than genotypic dif-

ferences that produce alterations in protein function.

A clear mechanism for genetic control of the abun-

dance of an RNA transcript is through polymorphisms

in the regions coding for regulatory elements (e.g. sites

for transcription factors and miRNAs, etc.). Such reg-

ulatory regions can control the expression of single

transcripts and/or coordinately control the function of

biological pathways [34].

In the HXB/BXH RI WGCNA, we changed the

commonly used minimum threshold for module size

from 30 to 5. We have used this adjusted threshold in

other analyses, including the evaluation of modules for

robustness, and have shown that even the smaller

modules were ‘highly’ preserved in bootstrap samples

[25]. However, to determine the sensitivity of the pre-

sent study with respect to this adjusted threshold, we

examined network results for gene-level data using the

default parameters in the WGCNA analysis. This set

of parameters identified 61 modules (compared to 364

using our original set of parameters). Using the

same method for combining P values, we identified

two modules with a combined P < 0.05. Although nei-

ther module had a significant module eigengene QTL,

one module did have a ‘suggestive’ module eigengene

QTL that overlapped a QTL for alcohol consumption.

This module of 58 transcripts contained seven genes

from Table 2. However, no gene ontology categories

or KEGG pathways were enriched in this module

(P < 0.05). Furthermore, neither of the associated

modules in this network indicated both a correlation

with drinking and an enrichment of differentially

expressed genes from the selected lines. By contrast,

our final candidate module in the gene-level data using

the smaller minimum module size was both correlated

with drinking in the RIs and enriched for differentially

expressed genes from the selected lines (i.e. a more

biologically robust result).

Our series of filters led us to one co-expression mod-

ule generated from the combination of gene-level and

isoform-specific analyses. This particular co-expression

module also highlighted several of the benefits of using

the high throughput sequencing data to inform the

microarray analysis. First, the genes within the module

were not all physically located near one another on the

same chromosome. Therefore, we can conclude that

SNPs within the probed regions are not artificially cre-

ating the observed co-expression patterns (i.e. not all

genes have a cis-eQTL). Second, several of the tran-

scripts were only included in the module because we

could estimate the isoform-specific expression of those

transcripts. More traditional ways of analyzing the

data would have combined expression estimates from

all isoforms of the gene, and the association with alco-

hol consumption would have been lost. Finally, several

unannotated transcripts were contained in the module,

including the most highly connected gene/transcript

within the module. The transcriptome reconstruction

provided additional information about the transcribed

sequence of this gene and the inclusion of this tran-

script in this co-expression module gave us insight into

possible functions of this transcript (Doc. S1).

Returning to the hypothesis that there are several

ways to disrupt or alter the functional pathway

responsible for variation in alcohol preference, the

next step in our analysis was to identify a common

function among the candidate genes identified in the

different rat models. Accordingly, we needed to iden-

tify annotated genes with strong evidence for associa-

tion with alcohol consumption. The goal was to start

with our strongest evidence, with the knowledge that

we are not trying to exhaustively identify every gene

involved in the pathway, however we are trying to

establish the identity of the involved pathway. We

took the top genes from the selected lines meta-analy-

sis and the genes from our candidate co-expression

module that were individually correlated with alcohol

consumption to begin our search of shared ontology

and common annotated pathways. Using that informa-

tion as a starting point, we did an in-depth literature

review of the candidate genes (modified Formal Con-
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cept Analysis) to identify function, cellular location

and interacting partners.

Overall, one can categorize the functions of the

annotated proteins encoded by the ‘candidate genes’

into three major categories (with a number of gene

products being included in more than one category,

reflecting the significant cross-talk among these func-

tional categories). The gene products are primarily

associated with glia (microglia and astrocytes) and

Table 3 lists the genes in each functional category: (a)

Generating and Responding to Immune Signals; (b)

Glial/Neuronal Communication; and (c) Energy,

Redox and Calcium Homeostasis. Document S3

describes the functional characteristics of each gene

product that align it with a particular category, and

the relationships among these gene products are illus-

trated in Fig. 5. In summary, with respect to the

Immune Signaling category, Txnip and P2X4 proteins

influence the function of the NLRP3 inflammasome

and modulate its caspase-dependent production and

release of IL-1b and IL-18. Reactive oxygen species

both activate Txnip transcription and promote the dis-

sociation of Txnip from thioredoxin, allowing Txnip

to perform functions such as activation of NLRP3.

Cathepsin S, through proteolytic cleavage of fractalk-

ine, which resides on neuronal membranes, produces a

peptide that binds to and activates the CX3CR1 recep-

tor located on both microglia and neurons, leading to

release of interleukins [35]. The product of Cd74 is

part of a functional complex including the chemokine

receptor, CXCR4. This complex can interact with the

MIF protein produced in astrocytes and microglia to

generate increases in the release of tumor necrosis

factor-a, IL-8 and IL-1b.
Txnip not only participates in the innate immune

response, but also is intimately involved in the energet-

ics of microglia and astrocytes (Energy, Redox and

Calcium Homeostasis) via its inhibition of glucose

uptake [36]. Because glutamine, produced from gluta-

mate by the glial glutamine synthetase, inhibits the

transcription of Txnip and increases glucose uptake

[36], Txnip can be considered as a key factor that

modulates energy balance in glia. Also within the cate-

gory of Energy, Redox and Calcium Homeostasis,

Plcd4 and the P2X4 receptor proteins are implicated in

control of cytosolic calcium levels [37,38].

Mitochondrial ATP production and the resultant

changes in NADH/NAD ratios are influenced by the

products of other candidate genes in the category of

Energy, Redox and Calcium Homeostasis (Maats,

Coq5 and Tmem14a). Transglutaminase 2 (Tgm2;

expressed in neurons and glia) couples receptors to the

activation of Plcd, which is involved in inositol 1,4,5-

trisphosphate and Ca2+ signaling. Tgm2 is also

involved in maintaining the integrity of the mitochon-

drial respiratory complex 1 and 2 and maintaining

ATP production [39]. The ATP produced by the mito-

chondria has numerous roles in the cell, and also func-

tions as a transmitter in purinergic signaling (as a

ligand for the P2X4 receptor on glia and neurons).

Furthermore, ATP is a substrate for the oligoadenylate

synthetase (Oas1a), which generates 20-50 oligoadeny-

lates that are mandatory activators of RNAse L [40].

Oas1a activity is inhibited by Oas1b, which is the pro-

duct of a candidate transcript, and recent evidence

suggests that RNase L activation is an important com-

ponent of the innate immune response [41]. Therefore,

Oas1b can also be included in the Immune Response

Category, as can the proteins that affect intracellular

Ca2+ levels, because Ca2+ can activate the NLRP3

inflammasome [42].

With regard to Glial/Neuronal Communication, the

interaction of cathepsin S and fractalkine was noted ear-

lier. Purinergic receptor signaling is again evident in this

category through the redundant presence of P2rx4. This

is complemented by the presence of Vps52. The product

of Vps52 is a component of the endosome/Golgi/lyso-

some receptor recycling system that is involved in the

rapid recycling of the P2X4 receptor occurring in neu-

rons and glia. Fbln1 codes for fibrulin, a small extracel-

lular matrix protein, which binds to fibronectin. The

fibrulin/fibronectin complex on the surface of glial cells

(particularly microglia) promotes microglial activation,

including increased transcription of P2rx4 and increased

delivery of this receptor to the cell surface [43]. The pro-

tein product of Tgm2 also promotes the interaction of

fibronectin with other proteins [44].

Neurexophylin 1 [45], a candidate in the Glial/Neu-

ronal communication category, is present in neurons,

and is processed to neurexin1a, which promotes the

development of GABAergic synapses [46]. Other pro-

teins generated by transcripts in the Glial/Neuronal

Communication category include the ubiquitin ligase

scaffolding protein Fbxo45, as well as Ift81. Fbxo45 is

linked to glutamatergic transmission through its inter-

actions with the cytokine-inducible form of nitric oxide

synthetase, influencing glutamate release in neurons

and astrocytes [47]. Fbxo45 also plays a direct role in

inhibiting glutamatergic vesicle fusion with synaptic

membranes and glutamate release [48]. Ift81 is a criti-

cal component of cilium formation in astrocytes and

neurons [49]. This protein is affected by cytosolic

Ca2+ levels [50], and the cilium is positioned to sense

physical and biochemical extracellular signals, such as

nutrients, and, in certain instances, modulate consum-

matory behavior [51].
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The summary above indicates not only that several

of the candidate gene products function within more

than one category, but also that several of the candi-

date gene products can affect the same outcome by

different mechanisms (e.g. Txnip and Cathepsin S both

modulate the release of IL-1b from glia) and several of

the candidate gene products impact steady-state

cytosolic calcium concentrations and calcium respon-

sive reactions. These observations reinforce the fact

that, in different rat strains or lines, one can find

differential expression of unlike genes, which, however,

generate a similar neurobiological and behavioral

outcome.

Table 3 categorizes the differentially expressed tran-

scripts that may predispose animals to high drinking.

If the characteristics of the pathways in which the

identified gene products participate drive alcohol con-

sumption, then alcohol may in some way interact with

these pathways. When one considers how alcohol can

interact with glial/neuronal communication, immune

system function, and brain energy/redox and calcium

dynamics, one has to carefully dissociate studies that

measure the pathologic consequences of high levels of

chronic ethanol intake from the impact of the ‘normal’

range of alcohol consumption on the brain networks

that we have identified. Although the direct effects of

ethanol on several systems identified by our studies

have been examined (e.g. effects on the NLRP3

inflammasome complex) [52], the reported effects

occurred under conditions where ethanol levels were

much higher than those found in rats voluntarily

consuming ethanol.

On the other hand, acetate, the metabolite of etha-

nol, may be a particularly important factor that affects

the systems identified by our analysis. Acetate is

formed in the liver from ingested ethanol released into

the circulation and is found in significant quantities in

the brain of rats and humans, even after low levels of

ethanol exposure [53,54]. Acetate is converted to

acetyl-CoA and metabolized via the TCA cycle pri-

marily by astrocytes in the brain [55]. Acetate metabo-

lism through the TCA cycle contributes to the

synthesis of GABA, neurotransmitters glutamate/glu-

tamine, ATP and lactate in astrocytes [56], which can

all be released to modulate neuronal excitability and

metabolism. Given the higher levels of Txnip expres-

sion in the high ethanol consuming rats, the Txnip

could diminish glucose uptake into astrocytes, and the

acetate derived from ethanol could ‘rescue’ astrocytic

metabolism [57] and enhance the production of both

GABA and glutamine/glutamate, as well as ATP, all

of which play important roles in the genetic predispo-

sition for variation in alcohol consumption [19].

Acetate can also affect the link between cellular

(and particularly glial) energy metabolism, redox state

and calcium homeostasis. Acetate can promote cal-

cium release from mitochondria into cytosol [58] and

reduction of cytosolic calcium requires energy in the

form of ATP. The inherent differences in expression of

transcripts related to energy metabolism and calcium

homeostasis in the high versus low-drinking animals,

in turn, interact with a myriad of effectors that influ-

ence brain function.

With regard to neuroimmune systems, alcohol

drinking behavior may join a number of cognitive

disorders (Alzheimer’s dementia, schizophrenia) and

mood disorders (major depressive disorder, general-

ized anxiety disorder) that have been related to (mal)-

function of neuroimmune systems [59,60]. The role of

neuroinflammation and the immune system in alcohol

consumption has been a focus of recent research [61–
63]. Blednov et al. [64] found that the administration

of lipopolysaccharide to mice normally consuming

high levels of alcohol resulted in a further increase in

alcohol consumption, although lipopolysaccharide did

not affect alcohol consumption in a strain with low

levels of alcohol consumption. Again, acetate

becomes a factor when considering these results. Soli-

man et al. [65] have demonstrated that acetate can

ameliorate lipopolysaccharide-induced astrocyte acti-

vation and cytokine release. Is alcohol drinking

increased to reduce inflammation, or is a lower activ-

ity of the innate immune system promoting drinking?

Our data suggest that, within the ‘normal’ range of

function, the innate lower function of the immune

mechanisms related to cytokine release, the

MIF•CD74/CXCR2/CXCR4 signaling system and the

cathepsin S/fractalkine/CX3CR1 system, may well

diminish the levels of alcohol intake in a free choice

situation.

It should be stressed that the present studies aimed

to examine the brain transcriptional landscape to

generate information that is predictive of levels of free

choice ethanol consumption and not the result of alco-

hol consumption. Whether the same transcriptional

networks are important in the escalation of ethanol

consumption once alcohol intake has been initiated

remains to be examined. Our previous work [66] does,

however, indicate that the same bQTL, along with

others, can be identified when examining changes in

drinking by the HXB/BXH RI panel after 15 weeks of

ethanol consumption and, interestingly, chronic etha-

nol consumption increases acetate production and

brain acetate uptake in both rats and humans [57,67].

With respect to the translational relevance of the

present study, three of the candidate transcripts that
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we identified (TXNIP, OAS1, PLCD4) were differen-

tially expressed in postmortem hippocampal tissue of

alcoholics compared to controls [68]. Additionally, a

transcript identified as LOC101928346 with sequence

homology and syntenic location similar to that of our

module hubgene has been identified in humans (NCBI

Reference Sequence: XR_247876). In work conducted

on the post-mortem brain, the question of whether dif-

ferentially expressed transcripts are involved in the

predisposition (risk) for high levels of ethanol con-

sumption, or are a result of alcohol consumption,

remains unresolved. The results of the present study

provide evidence that these transcripts and the path-

ways with which they are associated may mediate the

predisposition (risk) for variation in alcohol consump-

tion in animals including humans (i.e. are inherently

expressed at different levels, rather than being altered

in their abundance by chronic consumption of

ethanol).

Materials and methods

Overview

The main goal of the present study was to identify func-

tional pathways related to a predisposition to alcohol pref-

erence/consumption. To reach this goal, the analysis was

split into three major steps: (a) identification of high integ-

rity gene and isoform probe set clusters (Affymetrix Rat

Exon 1.0 ST Array) based on the rat brain transcriptome;

(b) identification of candidate genes associated with a pre-

disposition to alcohol preference/consumption in RI strains

and selected lines; and (b) characterization of common

functional pathways among candidate genes (for a detailed

work flow, see Fig. S1).

Identification of gene/isoform probe set clusters

To generate high integrity probe set clusters that were

specific to genes and individual isoforms expressed in the

brain, we generated high throughput sequencing data on

both DNA and brain RNA in two common inbred rat

strains (SHR/OlaIpcvPrin and BN-Lx/CubPrin rats; here-

after called SHR/Ola and BN-Lx/Cub rats) that not only

represent genetic extremes among laboratory rats [69], but

also represent the two progenitor strains of the HXB/BXH

recombinant inbred panel [32] utilized in our alcohol con-

sumption studies. The DNA sequence information provides

guidance for the elimination of individual probes whose

hybridization efficiency is compromised by SNPs or small

insertions or deletions in our samples. The RNA sequence

information provides guidance for construction of probe

set clusters that represent genes expressed in rat brain and

probe set clusters that estimate the expression of individual

isoforms in rat brain.

Identification of candidate genes associated with a

predisposition to alcohol preference/consumption

With the newly defined gene and isoform probe set clus-

ters for the Affymetrix Rat Exon 1.0 ST array, we esti-

mated RNA expression levels in two rat populations: the

HXB/BXH RI panel and the six pairs of selectively bred

rat lines. We used a meta-analysis approach to identify

genes/isoforms differentially expressed among high and

low alcohol consuming selected lines. We utilized

WGCNA [24] to identify co-expression modules using

gene expression data from the RI strains. To identify

modules associated with alcohol consumption/preference,

we relied on the convergence of evidence from (a) enrich-

ment of genes/isoforms differentially expressed in the

selected lines; (b) genetic correlation of the module eigen-

gene with alcohol consumption in the HXB/BXH panel;

and (c) overlap of the QTL for the module eigengene with

a QTL for the alcohol consumption behavior measured in

the HXB/BXH RI panel. This required several individual

analyses and, in many of these analyses, we used ‘liberal’

thresholds for statistical significance (see below). We argue

that the strength of the entire collection of data and the

combined analyses is that data from several sources are

used and convergence of evidence (even marginal evi-

dence) instills confidence in the results.

Characterization of common functional pathways among

candidate genes

The genes/isoforms with the most statistical evidence for

association (i.e. lowest P values) with alcohol consump-

tion in the selected lines were combined with genes/iso-

forms from the candidate co-expression module in the RI

panel to form a list of candidate genes that represent the

shared functional pathway responsible for predisposition

to alcohol preference/consumption in rats. From this list

of candidate genes, we utilized the modification of the

Formal Concept Analysis [29], which includes domain

knowledge (PubMed-derived information) to explore the

relationships among the candidate gene products (BT

acted as the ‘domain expert’). To initiate this analysis,

we first identified ‘concepts’ through functional and cell

type enrichment analyses using the GO database (http://

www.geneontology.org/GO.database.shtml), the KEGG

database (http://www.genome.ad.jp/kegg/) and brain-

derived lists compiled as part of the userListEnrichment

function in the WGCNA R library [28]. The brain-

derived lists include markers for brain region-specific

expression, cell type-specific expression and expression

specific to an intracellular domain.
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Detailed methods for identification of gene/

isoform probe set clusters

DNA-Seq

Genomic DNA was extracted from 25 mg of homogenized

brain tissue from males of the progenitor strains of the RI

panel (SHR/Ola and BN-Lx/Cub; 70–90 days old) using

the DNeasy Blood and Tissue kit (Qiagen, Valencia, CA,

USA). Samples were precipitated with sodium acetate to

further purify and concentrate DNA. Quantity and quality

of DNA samples were determined with a Nanodrop

(Thermo Fisher Scientific, Wilmington, DE, USA) and Agi-

lent BioAnalyzer 2100 (Agilent Technologies, Santa Clara,

CA, USA), respectively. One microgram of genomic DNA

in 53 lL of 19 Tris-EDTA was sheared using the S220

Covaris Instrument (Thermo Fisher Scientific). A 300-bp

peak was targeted using a duty factor of 10%, peak

incident power of 140, 200 cycles per burst and 80 s in

duration at 6 °C. One microgram of sheared DNA was

then used for sequencing library construction. The Illumina

TruSeq DNA Kit (Illumina, San Diego, CA, USA) was

used to prepare each library in accordance with the manu-

facturer’s instructions. The DNA in the libraries was quan-

tified using an Invitrogen Qubit Fluorometer (Life

Technologies, Grand Island, NY, USA) and an Agilent

BioAnalyzer 2100. In total, 5 pmol of each library was

sequenced per individual lane using 100 cycle paired-end

reads on an Illumina cBot and HiSeq2000 (Illumina) in

accordance with the manufacturer’s instructions. Each

library was sequenced in duplicate in two lanes on a V3

flow cell. Paired-end 100-nucleotide Illumina reads were

trimmed to 80 nucleotides. The reads were aligned to the

RGSC 5.0/rn5 version of the rat genome using BOWTIE2

[70]. SNP and small indel calls were made using a sam-

tools/bcftools [71] pipeline and were filtered for quality

(quality score ≥ 10 and supported by ≥ 3 quality reads)

and homozygosity (SNPs/indels with heterozygous calls

were discarded).

RNA-Seq

RNA-Seq was performed on two separate RNA frac-

tions: polyA+-selected RNA and ribosomal RNA-depleted

total RNA. Total RNA was isolated from brain samples

of three rats per progenitor strain (SHR/Ola and BN-Lx/

Cub; 70–90 days old) using either the RNeasy Midi Kit

with additional clean-up using the RNeasy Mini Kit (Qi-

agen) for the ribosomal RNA-depleted total RNA prepa-

ration or the miRNeasy Mini and RNeasy MinElute

Cleanup Kits (Qiagen) for the polyA+ RNA preparation,

in accordance with the manufacturer’s instructions. The

RNeasy Midi Kit protocol isolates and purifies large

RNAs (> 200 nucleotides) only. The miRNeasy Mini

and RNeasy MinElute Cleanup Kits separate the total

RNA into a large RNA fraction (> 200 nucleotides) and

a small RNA (< 200 nucleotides) fraction. The small

RNA fraction was analyzed separately (data available at

http://phenogen.ucdenver.edu), although only the results

from the large RNA fraction are reported here. The

quality of extracted total RNA (> 200 nucleotides) was

assessed on an Agilent Bioanalyzer. Ribosomal RNA was

depleted from total RNA (> 200 nucleotides) using the

Ribo-Zero Magnetic Kit (Epicentre Biotechnologies,

Madison, WI, USA) in accordance with the manufac-

turer’s instructions. The polyA+ RNA was isolated using

oligo-dT magnetic beads.

RNA-seq libraries prepared from the polyA+ fraction

were constructed using the Illumina TruSeq RNA Sample

Preparation kit from 1 lg of RNA in accordance with the

manufacturer’s instructions. Library quality was assessed

using the Agilent Bioanalyzer. For sequencing on the Illu-

mina HiSeq2000, samples were multiplexed over three lanes

of the flowcell (two lanes with three samples each and one

lane with all six samples).

For the total RNA (ribosomal-RNA depleted RNA)

sequencing, libraries were constructed using the Illumina

TruSeq RNA Sample Preparation kit at the elution-frag-

mentation-priming step, in accordance with the manufac-

turer’s instructions. Library quality was assessed using the

Agilent Bioanalyzer. Six samples were sequenced using an

Illumina HiSeq2000 over five lanes (three lanes with two

samples per lane and two lanes with three samples per lane;

each sample was included in two lanes).

Prior to alignment, reads were de-multiplexed and read

fragments were trimmed for adaptors and for quality

(http://www.bioinformatics.babraham.ac.uk/projects/trim_

galore). Reads were eliminated if the trimmed length of

either read fragment was < 20 nucleotides. Reads were

aligned with their respective strain-specific genomes derived

from our DNA sequencing using BOWTIE2/TOPHAT suite of

tools [72] with the default settings.

Transcriptome reconstruction

A genome-guided transcriptome reconstruction was exe-

cuted for each progenitor strain using data from the total

RNA preparation and the polyA+ fraction separately

with the CUFFLINKS algorithm and software [73]. Prior to

merging the transcriptomes, ‘high confidence’ transcripts

were identified. A ‘high confidence’ transcript had an esti-

mated FPKM (fragments�kb transcript�1�million frag-

ments mapped�1) > 1 within at least one strain, and the

transcript was longer than 350 nucleotides. High confi-

dence transcripts were merged across strains and across

the RNA preparation methods into one transcriptome,

using cuffmerge from the CUFFLINKS suite [74]. The

merged transcriptome was compared with both the

Ensembl database (Rnor_5.0.71) and the RefSeq rat data-
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base (RGSC 5.0/rn5) to determine overlap with anno-

tated genes using cuffcompare [74].

Filtering probes and constructing clusters

Individual probe sequences from the Affymetrix Rat

Exon 1.0 ST Array were retrieved from the Affymetrix

website (http://www.affymetrix.com) and aligned with the

RGSC 5.0/rn5 version of the rat genome using the BLAT

algorithm [75]. Probes were eliminated if their sequence

did not align perfectly to the reference genome or if their

sequence aligned perfectly to multiple places in the gen-

ome. Probes were also eliminated: (a) if the region of the

genome to which they aligned harbored a SNP or small

indel between either of the progenitor strains and the BN

reference genome (via DNA-Seq) and (b) if <3 probes

remained in the probe set after certain probes were elimi-

nated. Probe sets were summarized into probe set clusters

based on the transcriptome reconstruction (via our RNA-

Seq results). Both ‘isoform-level’ and ‘gene-level’ clusters

were generated. The rationale for generating isoform-level

clusters was to determine whether only a specific isoform

of a gene was associated with alcohol consumption.

However, because many isoforms were not interrogated

by a probe set that was unique to that isoform, we also

examined gene-level clusters. When there is a highly

expressed isoform, the gene-level cluster will capture its

expression levels. For the gene-level analysis, all probe

sets that were contained completely within an exon or

UTR of a gene expressed in the brain, and did not over-

lap another gene, were summarized into a gene cluster.

For the isoform-level analysis, probe sets were included

in an isoform cluster if they aligned with a region of an

exon or UTR of a particular isoform that did not over-

lap any other isoforms or genes.

Detailed methods for identification of candidate

genes associated with a predisposition to alcohol

preference/consumption

Animals

Alcohol-na€ıve male rats (60–90 days old) from six separate

pairs of lines selectively bred for either high or low alcohol

preference were used for our studies. Brain tissues were

received from five animals for each line from populations in

Indiana, USA (high alcohol-drinking 1 and low alcohol-drink-

ing 1, HAD1/LAD1; high alcohol-drinking 2 and low alcohol-

drinking 2, HAD2/LAD2; and alcohol-preferring and

alcohol-nonpreferring, P/NP) [76]; five animals from each line

from Helsinki, Finland (Alko alcohol and Alko non-alcohol,

AA/ANA) [77]; five animals from each line from Cagliari,

Italy (Sardinian alcohol-preferring and Sardinian alcohol-

nonpreferring, sP/sNP) [78]; and five animals from each line

from the University of Chile (UChB/UChA) [79].

Male rats from the HXB/BXH RI panel were also

used for these studies. These rats were developed from an

intercross between two inbred strains, the Wistar origin

spontaneously hypertensive rat (SHR/Ola) and a Brown

Norway congenic (BN-Lx/Cub), by Drs Michal Pravenec

and Vladimir Kren (Institute of Biology of Charles Uni-

versity and Institute of Physiology of the Czech Academy

of Sciences, Prague, Czech Republic). The rats were red-

erived and maintained by Dr Morton Printz (University

of California, San Diego, CA, USA). The RI strains were

bred in a gender reciprocal manner, providing strains that

differ in the source of mitochondrial DNA and the Y

chromosome (HXB and BXH strains) [32].

RNA expression estimates

Total RNA was extracted from individual brains of five

male rats per selected line or four male rats per RI strain

(21 strains; 70–90 days old) using the RNeasy Midi kit

(Qiagen) and the RNeasy Mini kit (Qiagen) for cleanup.

cDNA from the brain of each individual rat was hybridized

to a separate Affymetrix GeneChip� Rat Exon 1.0 ST

array (Affymetrix). Arrays were processed in accordance

with the manufacturer’s instructions. All processed array

data were examined for quality using the tools outlined in

detail at http://phenogen.ucdenver.edu.

Gene-level expression estimates and isoform-specific

expression estimates were derived using the probe masks

described above and the RMA algorithm [80] implemented

in the Affymetrix Power Tools (www.affymetrix.com/

estore/partners_programs/programs/developer/tools/pow-

ertools.affx). Expression data were also subjected to a

batch effects adjustment using the Combat algorithm [81].

After batch effects adjustment, both individual samples

and strain means (RI panel only) were examined for out-

liers using hierarchical clustering. We chose a criterion for

a gene/isoform cluster that at least 5% of samples had to

have expression levels above background to include the

gene/isoform cluster in further analyses. The threshold of

5% of samples was chosen to ensure that genes/isoforms

expressed exclusively in one strain/line were included [68].

Detection above background was determined using the

DABG P value calculated within the Affymetrix Power

Tools suite. The expression value of a gene/isoform cluster

for an individual sample was considered to be ‘detected

above background’ if the DABG P value was < 0.0001.

This threshold is more stringent than the threshold recom-

mended by Affymetrix [82] (P < 0.05), although using the

recommended criterion would have resulted in a high false

positive rate; for example, a probability of 58% that at

least 5% of samples (three out of 60) would have a

DABG P value < 0.05 when none of the expression values

are above background. However, the probability of at

least 5% of samples (three out of 60) will have a DABG
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P value < 0.0001 when none of the samples are expressed

above background is < 1 9 10�7.

Selected lines meta-analysis

To determine differential expression of genes/isoforms in

the selected lines, a random effects meta-analysis was

implemented in SAS (SAS Institute Inc., Cary, NC, USA)

using PROC MIXED where the random effect was the selected

line pair. For each gene/isoform cluster, two models were

evaluated: one that allowed the variance within a selected

line pair to vary across pairs and one that constrained the

variance to be the same within each pair. The P value from

the model with the smaller Akaike information criterion

was used to determine differential expression. These P val-

ues were adjusted for multiple comparisons across genes

and isoforms using a FDR [83]. For a gene/isoform cluster

to be associated with drinking in the meta-analysis of the

six selected line pairs, not only did it have to be signifi-

cantly associated with alcohol preference after multiple test-

ing correction (FDR < 0.05), but also the direction of the

expression difference in individual selected line pairs had to

match (e.g. the higher preferring line had higher expression

levels, across all selected line pairs with minimal statistical

evidence for a detectable difference; P < 0.05 for the indi-

vidual line pair). The differential expression estimates

reported for individual selected line pairs were derived

using least squares estimates from the full model.

Weighted gene co-expression network analysis in RI

panel

An unsigned weighted gene co-expression network analysis

was executed for the HXB/BXH RI panel to identify gene

co-expression modules and isoform co-expression modules,

separately, using the WGCNA package in R [24]. Two

parameters were altered from their default setting to allow

for the identification of smaller modules: the minimum

module size (was set to 5) and the deepSplit parameter

(was set to 4). The Pearson correlation coefficient calcu-

lated between gene/isoform clusters was used to generate

the network. The model fitting index proposed by Zhang

and Horvath [84] was used to determine the appropriate

soft thresholding power. A soft-thresholding power of 7

was sufficient for both networks.

Modules associated with alcohol consumption/preference

Data on alcohol consumption were gathered on male rats

(70–100 days old at the start of study) from 23 HXB/BXH

RI strains and the two progenitor strains at the University

of California (San Diego, CA, USA). The number of rats

per strain ranged from nine to 12, with 242 total rats being

utilized to measure alcohol consumption. In the first week

(week 0) of treatment, rats were given 10% ethanol as their

only choice of fluid. For the next 7 weeks, the rats were

given a choice of two bottles: one with water and one with

a 10% (v/v) ethanol solution. For the present study, we

used alcohol consumption data from the second week of

the two-bottle choice paradigm to match our previous

research with this phenotype [19,66]. These studies were

performed in accordance with the guidelines in the NIH

Guide for the Care and Use of Laboratory Animals, and

were approved by the University of California, San Diego

Institutional Animal Care and Use Committee.

Initially, co-expression modules were evaluated for asso-

ciation with alcohol consumption using a P value that

combined a correlation analysis of the module’s eigengene

with alcohol consumption (week 2) from the HXB/BXH RI

panel with an analysis that evaluated the module based on

enrichment of genes that were identified as differentially

expressed in the selected lines meta-analysis (outlined ear-

lier). The P values from these two analyses were combined

using Fisher’s method and modules were retained if their

combined P value was < 0.01.

The list of candidate co-expression modules was further

reduced by only considering modules with a significant

eigengene QTL that overlaps a behavioral QTL for alcohol

consumption in the HXB/BXH RI panel. The marker set

used for QTL analysis in the HXB/BXH rats was derived

from the SNPs genotyped by the STAR consortium (http://

www.snp-star.eu) [85]. The locations of SNPs were con-

verted to the RGSC 5.0/rn5 version of the rat genome and

their genotypes were examined in detail for quality as out-

lined in Vanderlinden et al. [66]. QTLs for alcohol con-

sumption and for module eigengenes in the HXB/BXH

panel were calculated using a marker regression on strain

means (21 RI strains with both genotype and alcohol con-

sumption data). Results are reported for individual marker/

phenotype (or eigengene) associations using a LOD score

(i.e. the log base 10 of the likelihood ratio that compares a

model that includes a genotype effect for that marker ver-

sus a model without a genotype effect). Empirical genome-

wide P values were calculated for all QTL analyses using

1000 permutations [86]. QTLs with empirical genome-wide

P values < 0.05 were considered statistically significant and

QTLs with empirical genome-wide P values < 0.63 were

considered suggestive based on guidelines presented by

Lander and Kruglyak [27] and adopted by many (e.g. the

Complex Trait Consortium) [87]. Bayesian credible inter-

vals were calculated for alcohol consumption QTLs using

methods outlined previously [88]. Confidence intervals for

eigengene QTLs were calculated using the bootstrap

method described in Visscher et al. [89]. Alcohol consump-

tion QTL analyses and graphics were generated using the

R/qtl package in R [90]. Because of the number of

eigengenes analyzed, eigengene QTLs were calculated using

QTLREAPER (http://qtlreaper.sourceforge.net).
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Candidate genes

To identify not only individual genes/isoforms related to

alcohol consumption, but also functional pathways, we

gathered a list of annotated candidate genes from both the

co-expression module associated with alcohol consumption

and the differentially expressed genes/isoforms from the

selected lines meta-analysis. Genes/isoforms from the candi-

date co-expression module were filtered for independent cor-

relation with alcohol consumption in the HXB/BXH panel

(P < 0.05) and were combined with the ten genes/isoforms

with the most significant association with alcohol consump-

tion in the selected-lines meta-analysis. The purpose of put-

ting together a list of candidate genes/isoforms was to be

able to systematically identify shared functional pathways

among genes with the most evidence of association with a

predisposition to alcohol preference/consumption. This list

is meant to be representative rather than exhaustive.

Summary

The results of the present study show that different

selectively bred rat lines and RI strains may display

different combinations of differentially expressed genes

influencing the risk for alcohol drinking. However,

there are common functional pathways that are

involved in all models that we have studied. Because

high levels of alcohol consumption represent a risk

factor for alcohol addiction [5], the neurobiological

systems identified in our studies (e.g. neuroinflamma-

tion, energy metabolism, cell—cell communication)

can serve to focus future studies with humans on the

genetic predisposition for high alcohol consumption

and by extrapolation [5] for alcohol dependence.
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