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a b s t r a c t

It is often assumed in the literature that the nine classical strain invariants, which are used to

characterize the strain energy of a compressible anisotropic elastic solid with two preferred

non-orthogonal directions are independent. In this paper, it is shown that only six of the clas-

sical strain invariants are independent, and syzygies exist between the classical invariants.

Alternatively, using principal axis techniques, it is simply proven that, only six of the clas-

sical strain invariants are independent and syzygies exist between the principal axis strain

invariants. Consequently, all other sets of strain invariants, proposed in the literature, which

are uniquely related to the set of principal axis strain invariants, have only six independent

invariants. Due to syzygies, it is shown that the number of ground state constants required to

fully describe the quadratic linear strain energy function of two-fibre solids is fourteen, not

thirteen, as assumed in the literature.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Following the work of Spencer (1984), a strain energy function WF of a compressible elastic material with two preferred unit

directions a and b can be expressed as

WF = W(C, a ⊗ a, b ⊗ b), (1)

where C is the right Cauchy–Green deformation tensor and ⊗ denotes the dyadic product. W is an isotropic invariant function of

C, a ⊗ a and b ⊗ b, i.e.,

W(C, a ⊗ a, b ⊗ b) = W
(
QCQ T

, Q(a ⊗ a)Q T
, Q(b ⊗ b)Q T

)
(2)

must be satisfied for all proper orthogonal tensors Q. It follows that the strain energy function We can be expressed in terms of a

set of invariants

SB = {I1, I2, I3, I4, I5, I6, I7, I8, I9, I10}, (3)

where

I1 = tr(C), I2 =
I2
1 − tr

(
C2

)
2

, I3 = det(C), I4 = a • Ca, (4)
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I5 = a • C2a, I6 = b • Cb, I7 = b • C2b , I8 = (a • b)a • Cb, (5)

I9 = (a • b)
2 �= 0, I10 = (a • b)a • C2b (6)

and tr denotes the trace of a second order tensor. The invariant I9 is independent of strain and hence the set

SC = {I1, I2, I3, I4, I5, I6, I7, I8, I10} (7)

of 9 invariants is commonly used to describe the strain energy function (see Spencer, 1984). In this paper, we show that only seven

of the the 10 invariants in (3) are independent or six of the nine invariants in (7) are independent. In the case when the preferred

directions are orthogonal, I8 = I9 = I10 = 0, Shariff (2013) has shown that only six of the seven invariants Ij, j = 1, 2, 3, . . . , 7 are

independent. In Section 2, the proof is presented using a set of principal axis invariants, while in Section 3 the proof is done

directly using the definition of the invariants given in (4)–(6). In Section 4, the consequences of the syzygies on the number of

ground state constants are discussed via linear elasticity theory.

Preliminary concepts: Functional and integrity bases, syzygy

Let us review some concepts given, for example, in Zheng (1994), Spencer (1971) and Xiao (1996). Consider a set of isotropic

invariants I1, . . . , Ik of the tensors C, a ⊗ a and b ⊗ b (denoted by S).

1. Any single-valued function of I1, . . . , IB

f (S) = g(I1, , . . . IB) (8)

is called a representation for isotropic scalar-valued functions of S . If one of the invariants in the set {I1, . . . , IB} is expressible

as a single-valued function of the remainders, the invariant is said to be functionally reducible. The representation is said

to be complete, if any isotropic scalar-valued function of S can be expressed in the form (8). A functional basis for isotropic

scalar-valued functions of S is the set of invariants in a complete representation for isotropic scalar-valued functions of S .

A functional basis is said to be irreducible, if none of its proper subsets is a functional basis.

2. If the function f (S) is restricted to polynomial functions, then integrity bases are dealt with. A polynomial invariant is

said to be reducible if it can be expressed as a polynomial in other invariants; otherwise, it is said to be irreducible. A set SP

of polynomial invariants which has the property that any polynomial scalar function can be expressed as a polynomial in

members of the given set, is called an integrity basis. The integrity basis is said to be minimal, if none of its proper subset is

an integrity basis. It frequently happens that polynomial relations exist between invariants which do not permit any one

invariant to be expressed as a polynomial in the remainder. Such relations are called syzygies.

3. An minimal integrity basis is not necessarily an irreducible functional basis, and the later, in general, contains fewer ele-

ments than the former.

2. Proof using principal axis invariants that only seven(six) of the ten(nine) invariants are independent

In this paper all subscripts i and j take the values of 1, 2 and 3, unless stated otherwise. If we write

C =
3∑

i=1

λ2
i ei ⊗ ei (9)

where λi and ei, i = 1, 2, 3 are the principal values and the principal directions of the right stretch tensor U, respectively, and

substitute (9) in (4)–(6), we have the expressions:

I1 = λ2
1 + λ2

2 + λ2
3, I2 = λ2

1λ
2
2 + λ2

1λ
2
3 + λ2

2λ
2
3, I3 = (λ1λ2λ3)

2
, (10)

I4 = λ2
1ζ1 + λ2

2ζ2 + λ2
3ζ3, I5 = λ4

1ζ1 + λ4
2ζ2 + λ4

3ζ3, (11)

I6 = λ2
1ξ1 + λ2

2ξ2 + λ2
3ξ3, I7 = λ4

1ξ1 + λ4
2ξ2 + λ4

3ξ3, (12)

I8 =
3∑

i=1

λ2
i χi, I9 = (a • b)

2
, I10 =

3∑
i=1

λ4
i χi, (13)

where

ζi = (a • ei)
2
, ξi = (b • ei)

2
, χi = (a • b)(a • ei)(b • ei) i = 1, 2, 3. (14)

The thirteen terms

λi, ζi, ξi, χi (i = 1, 2, 3), α = I9 = (a • b)
2

(15)

are invariants with respect to all proper orthogonal tensors Q. We note that if we write the strain energy function in the principal

axis form, i.e.,

WF = W(λ1, λ2, λ3, e1 ⊗ e1, e2 ⊗ e2, e3 ⊗ e3, a ⊗ a, b ⊗ b), (16)
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then it is shown in Appendix A that W̄ can be expressed in terms of the thirteen principal axis invariants λi, ζ i, ξ i, χ i (i = 1, 2, 3),

and α (see also, for example, Shariff (2011)). A subset of these invariants have been used by Shariff (2008, 2012) to describe the

mechanical behavior of nonlinear anisotropic elastic solids.

It can be easily shown that

ζ3 = 1 − ζ1 − ζ2, ξ3 = 1 − ξ1 − ξ2, χ3 = α − χ1 − χ2, (17)

and the syzygies

χ2
1 = αζ1ξ1, χ2

2 = αζ2ξ2. (18)

We note that from (17) and (18) ζ 1, ζ 2, ζ 3, ξ 3, χ3 are functionally reducible and hence they can be omitted from the functional

basis. As well as this, ζ 3, ξ 3 and χ3 are reducible and hence can be omitted from the integrity basis.

In addition to the syzygies in (18), we show below that there exists another syzygy via the relation

α =
(

3∑
i=1

(a • ei)(b • ei)

)2

. (19)

From (19) we get

ζ2ξ2ζ3ξ3(8ζ1ξ1 + 4c)
2 = [c2 + 4(ζ2ξ2ζ3ξ3 − ζ1ξ1ζ2ξ2 − ζ1ξ1ζ3ξ3)]2, (20)

where

c = α −
3∑

i=1

ζiξi. (21)

Hence, we have thirteen invariants and six independent relations (three in (17), two in (18) and one in (20)), which shows that

only seven invariants are independent. If we omit the non-deformation invariant α in the list (15) then only six of the nine

remaining invariants are independent. Since we have three syzygies, the minimal integrity basis

SA = {λ1, λ2, λ3, ζ1, ζ2, ξ1, ξ2, χ1, χ2, α} (22)

contains ten invariants. The irreducible functional basis

FA = {λ1, λ2, λ3, ξ1, ξ2, χ1, χ2, α} (23)

contains eight invariants. In view of (13), seven independent principal axis invariants suggest that only seven of the classical

invariants Ij, j = 1, 2, 3, . . . , 10 are independent (in Section 3 we show this using only the classical invariants).

3. Proof using the classical invariants that only seven(six) of the ten(nine) invariants are independent

In this section we prove (without using the principal axis invariants) that only seven of the ten classical invariants are inde-

pendent. To do this, we first consider the right-handed set of orthogonal unit vectors {v1, v2, v3}, where

v1 = a, v2 = b − (v1 • b)v1

β
, v3 = 1

β
a × b, (24)

where β =| b − (v1 • b)v1 |. Let us define the invariants

Iij = Iji = vi •
(
Cv j

)
, Hi = vi •

(
C2vi

)
(no sum in i), i, j = 1, 2, 3, (25)

taking note that

I11 = I4, H1 = I5, β2 = 1 − I9. (26)

Using Eq. (24) and from Eq. (B11) of Appendix B we have

I2
12 = I2 + I4I22 + I5 + H2 − I1(I4 + I22), (27)

where, in view of (24) we obtain

I22 = I6 − 2I8 + I9I4
1 − I9

, H2 = I7 − 2I10 + I9I5
1 − I9

, (28)

while

I2
12 = (v1 • Cv2)

2 = I2
8 I−1

9
− 2I8I4 + I2

4 I9

1 − I9
. (29)

Hence, from (27)–(29), we have the syzygy

I2
8 = I9(1 − I9)I2 + 2I1I8I9 − 2I9I10 + I9I4I6 − I1I9(I4 + I6) + I9(I5 + I7). (30)
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From Eq. (30), we have that I10 (say) is functionally reducible and hence can be omitted from the functional basis. An alternative

derivation for the syzygy (30) can also be found in Bustamante (2007).

Using (24), we obtain

I10 = β(a • b)
(
v1 • C2v2

)
+ I9I5, (31)

where1

v1 • C2v2 = I12(I4 + I22) + I13I32. (32)

In view of (31) and (32), we have

I10 − I9I5 = β(a • b)(I12(I4 + I22) + I13I32). (33)

Using (33) we have the relation{
(I10 − I9I5)

2 − (1 − I9)I9

(
I2
12(I4 + I22)

2 + I2
13I2

32

)}2

= 4I2
13I2

32I2
12(I4 + I22)

2
, (34)

where from Appendix B we have

I2
23 = I7 − 2I10 + I9I5

1 − I9
−

(
I6 − 2I8 + I9I4

1 − I9

)2

−
(

I2
8 I−1

9
− 2I8I4 + I2

4 I9

1 − I9

)
, (35)

I2
13 = I5 − I2

4 −
(

I2
8 I−1

9
− 2I8I4 + I2

4 I9

1 − I9

)
. (36)

The first relation was obtained from (B4) considering (28)1,2 and (29), whereas the second relation above was obtained using

(B3) considering (26) and (29). A syzygy can be easily obtained using (34)–(36), (29) and (28)1.

Since Iij are components of C relative to the orthonormal basis {v1, v2, v3}, we have I3 = det(C) = det(Iij), hence:

I3 = I4I22I33 − I4I2
23 − I22I2

13 − I33I2
12 + 2I12I13I23. (37)

This relation can be also obtained from Eq. (5.5) of Holzapfel and Ogden (2009) taking (see the notation in that paper) f0 as v1,

s0 as v2, n0 as v3 and considering (26)1. From (28)1 and (24) we also have

I33 = I1 − I4 −
(

I6 − 2I8 + I9I4
1 − I9

)
. (38)

Considering (37), we have the third relation

[I3 + I4(I2
23 − I22I33) + I22I2

13 + I33I2
12]2 = 4I2

12I2
13I2

23, (39)

Another syzygy can be easily obtained using (39),(38),(35), (36), (29) and (28)1.

Hence, due to the three relations (30), (34) and (39), we only have seven independent invariants. If we omit the non-

deformation invariant I9, then only six of the nine remaining invariants are independent. The minimal integrity basis is SB and

the irreducible functional basis

FB = {I1, I2, I3, I4, I5, I6, I7, I8, I9} (40)

contains only nine invariants.

3.1. Symmetry

It is clear that the syzygy (30) is symmetric with respect to an interchange of I4 with I6, and I5 with I7 (or equivalently an

interchange of a and b). Consider the right-handed set of orthogonal unit vectors {w1, w2, w3}, where

w1 = b, w2 = a − (w1 • a)w1

β
, w3 = 1

β
b × a (41)

and let Iij = wi • Cw j . We note that Iij = fij(C, a, b) and Iij = fij(C, b, a) are components of C with respect the orthonormal basis

{v1, v2, v3} and {w1, w2, w3}, respectively. Since I10 and I3 are invariants and due to the fact that Iij and Īi j have the same functional

form, we have
1 See Appendix B and Eqs. (B1) and (B2), using such expressions to calculate Cv2 and v1 • C2v2, respectively.
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I10 = (a • b)a • C2b = (a • b)

{
a •

[
3∑

i, j

(
3∑
k

IikIkj

)
vi ⊗ v j

]
b

}
= g(C, a, b),

= (b • a)

{
b •

[
3∑

i, j

(
3∑
k

IikIkj

)
wi ⊗ w j

]
a

}
= g(C, b, a)

(42)

and

I3 = det
(
Iij
)

= det
(

fij(C, a, b)
)

= f (C, a, b) = det
(
Iij

)
= det

(
fij(C, b, a)

)
= f (C, b, a). (43)

In view of (24), and (41)–(43), relations that are symmetric with respect to interchange of a and b can be constructed from

(34) and (39), since they are derived from the symmetric relations (42) and (43).

4. On the number of ground state constants

Due to polynomial relations, a minimal integrity basis is useful in formulating a polynomial strain energy function. An in-

finitesimal strain strain energy function is a quadratic polynomial function and hence the appropriate minimal integrity basis

is used to evaluate the number of constants needed to formulate a general quadratic strain energy function. In this section, we

derive the number of constants needed for a general two preferred direction infinitesimal strain energy function We. We start by

considering the invariants

J1 = trε , J2 = trε2, J3 = trε3, J4 = a • (εa), J5 = a •
(
ε2a

)
, (44)

J6 = b • (εb), J7 = b •
(
ε2b

)
, J8 = cos (2φ)a • (εb), J9 = (a • b)

2 = cos2(2φ), (45)

J10 = cos (2φ)a •
(
ε2b

)
, (46)

which are suitable for an infinitesimal strain energy function We, where ε is the infinitesimal strain tensor. Spencer (1984)

omitted J10 from the set of invariants in We via the relation (which is shown later on that is incorrect):

(1 − J9)( J2
1 − J2) + 2J8J1 − J10 − ( J4 + J6)J1 + J4J6 − ( J8)

2

J9
+ J5 + J7 = 0, (47)

which is given by Eq. (33) in Spencer (1984). We note that Eq. (47) shows that J10 is not reducible since J9 is considered an invariant

although it is independent of the deformation. It is commonly believe that J10 is reducible2 and hence it is often omitted from

the strain energy function. We also note that the relation (47) is not correct. We prove this, simply, by letting ε = εI, where I is

the identity tensor, and we have, on the left hand side of (47),

3ε2 sin
2 (2φ) �= 0. (48)

The correct relation for J10 is obtained from (30), where Ij is replaced by Jj, i.e.:

J10 = 1

2

[
J5 + J7 − J2

8

J9
+ J4J6 + J1(2J8 − J4 − J6) − J2( J9 − 1)

]
. (49)

In view of the irreducible J10 in (49), we prove that the infinitesimal strain energy function We should have fourteen elastic

constants for compressible materials, not thirteen as stated in Spencer (1984), and for incompressible materials the number

of elastic constants is reduced to ten (not nine, as commonly assumed). However, we approach this proof, simply, using the

principal axis invariants for infinitesimal deformations. Our final result indicates that this is equivalent to including J10 in the

quadratic construction of We. Since most readers are not familiar with the principal axis formulations, for clarification, we start

with isotropic materials and work our way through to two fibre materials. In this section, we let ν i and ei (we use the same

notation for the eigenvector ei corresponding to U) to be the principal values and directions of ε, respectively. The infinitesimal

strain energy is assumed to be zero when ε = 0, where the infinitesimal stress is also zero, except for an incompressible material,

where it has an arbitrary value of p which is independent of ε.

4.1. Isotropic elasticity

The strain energy function for an isotropic material is expressed by

We = Wiso(ν1, ν2, ν3) (50)

with the symmetrical property

W (ν , ν , ν ) = W (ν , ν , ν ) = W (ν , ν , ν ) = etc. (51)
iso 1 2 3 iso 2 1 3 iso 1 3 2

2 The proof of I10 is reducible has not be found in the literature either.
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The function Wiso must be quadratic in ν i and possess the symmetrical property (51). To generate this type of quadratic strain

energy function we use the following linear and quadratic invariants

J1 = ν1 + ν2 + ν3 = trε, J2 = ν2
1 + ν2

2 + ν2
3 = trε2, (52)

K1 = ν1ν2 + ν1ν3 + ν2ν3. (53)

Since 2K1 = J2
1

− J2, we omit K1 in the above list. We note that the above invariants satisfy the symmetrical property (51).

A general quadratic strain energy function then takes the form

We = μ
(
ν2

1 + ν2
2 + ν2

3

)
+ λ(ν1 + ν2 + ν3)

2, (54)

where μ and λ is the shear modulus and Lame’s constant, respectively.

4.2. Transversely isotropic elasticity

Following the work of Shariff (2008), the strain energy function for a material with the preferred direction a can be written

as

We = Wtrs(ν1, ν2, ν3, ζ1, ζ2, ζ3) (55)

with the symmetrical property

Wtrs(ν1, ν2, ν3, ζ1, ζ2, ζ3)

= Wtrs(ν2, ν1, ν3, ζ2, ζ1, ζ3)

= Wtrs(ν3, ν2, ν1, ζ3, ζ2, ζ1) = etc. (56)

It is very important to know that Wtrs should be independent of ζ i and ζ j when νi = ν j, i �= j in order Wtrs to have a unique value

due to the non-unique values of ei and ej when νi = ν j . Similarly, Wtrs should be independent of ζ k, k = 1, 2, 3 when ν1 = ν2 = ν3.

We call this independent property the P-property. To generate a general quadratic expression for Wtrs with this property and the

symmetrical property (56), we use the following linear and quadratic symmetrical invariants

J4 = ζ1ν1 + ζ2ν2 + ζ3ν3 = a • (εa), J5 = ζ1ν
2
1 + ζ2ν

2
2 + ζ3ν

2
3 = a •

(
ε2a

)
, (57)

K2 = ζ1ν2ν3 + ζ2ν1ν3 + ζ3ν1ν2 (58)

together with the invariants J1 and J2. However,

K2 = J5 + J2
1 − J2

2
− J4J1, (59)

hence, we omit K2 from the above list. We note that, for example, when ν1 = ν2 = ν, we have

J4 = ν(1 − ζ3) + ζ3ν3, J5 = ν2(1 − ζ3) + ζ3ν
2
3 , (60)

and they are independent of ζ 1 and ζ 2. It is also clear that they are independent of ζ k, k = 1, 2, 3 when all the principal variables

have the same value. A general quadratic strain energy function takes the form

We = q1J2
1 + q2J1J4 + q3J2

4 + q4J2 + q5J5 (61)

with 5 material constants ql, l = 1, 2, 3, 4, 5; this is consistent with existing theory. For an incompressible material, J1 = 0 and

We has only 3 material constants.

4.3. Orthotropic elasticity

Following Shariff (2011), we have

We = Wort(ν1, ν2, ν3, ζ1, ζ2, ζ3, ξ1, ξ2, ξ3), (62)

for materials with two preferred orthogonal directions a and b, and having the symmetric property

Wort(ν1, ν2, ν3, ζ1, ζ2, ζ3, ξ1, ξ2, ξ3) = Wort(ν2, ν1, ν3, ζ2, ζ1, ζ3, ξ2, ξ1, ξ3)

= Wort(ν3, ν2, ν1, ζ3, ζ2, ζ1, ξ3, ξ2, ξ1) = etc (63)

together with the P-property similar to that described in Section 4.2. To generate a general quadratic Wort, we use the following

symmetrical invariants

J6 = ξ1ν1 + ξ2ν2 + ξ3ν3 = b • (εb), J7 = ξ1ν
2
1 + ξ2ν

2
2 + ξ3ν

2
3 = b •

(
ε2b

)
, (64)

K3 = ξ1ν2ν3 + ξ2ν1ν3 + ξ3ν1ν2 (65)
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together with J1, J2, J4 and J5. The above invariants have similar P-property as J4 and J5. We omit K3 from the above list since

K3 = J7 + J2
1 − J2

2
− J6J1. (66)

A general quadratic strain energy function takes the form

We = q1J2
1 + q2J1J4 + q3J2

4 + q4J2 + q5J5 + q6J1J6 + q7J2
6 + q8J4J6 + q9J7, (67)

with 9 (6 for incompressible materials) material constants, as given in the literature.

4.4. Two-preferred-direction elasticity

This section deals with materials with two preferred non-orthogonal directions a and b. In view of the results presented

Section 2, we have

We = Wtwo(ν1, ν2, ν3, ζ1, ζ2, ζ3, ξ1, ξ2, ξ3, χ1, χ2, χ3) (68)

with the symmetrical property

Wtwo(ν1, ν2, ν3, ζ1, ζ2, ζ3, ξ1, ξ2, ξ3, χ1, χ2, χ3)

= Wtwo(ν2, ν1, ν3, ζ2, ζ1, ζ3, ξ3, ξ1, ξ3, χ2, χ1, χ3)

= Wtwo(ν1, ν3, ν2, ζ1, ζ3, ζ2, ξ1, ξ3, ξ2, χ1, χ3, χ2) = etc (69)

and satisfying the P-property. The additional symmetrical invariants satisfying the P-property, needed for a quadratic function

We, are:

J8 =
3∑

i=1

χiνi, J10 =
3∑

i=1

χiν
2
i , (70)

K4 = χ1ν2ν3 + χ2ν1ν3 + χ3ν1ν2. (71)

Where K4 can be omitted from the above list since

K4 = J10 + α
J2
1 − J2

2
− J8J1. (72)

The quadratic strain energy function then takes the form

We = q1J2
1 + q2J1J4 + q3J2

4 + q4J2 + q5J5 + q6J1J6 + q7J2
6 + q8J4J6 + q9J7 + q10J1J8 + q11J4J8 + q12J6J8 + q13J2

8 + q14J10 (73)

with 14 constants. For an incompressible material it reduces to 10 constants. We note that the number of constants is reduced

to 13 if the invariant J10 is omitted from (73). For a mechanically equivalent material We is unchange if we interchange a with b.

For this type of material q2 = q6 and q3 = q7 and q5 = q9, and hence it requires only 11 constants to characterize its mechanical

behavior; this number of constants seems to agree with that obtained by Murphy (2014).
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Appendix A

The strain energy function for two preferred direction solids can be represented by

WF = W(C, a ⊗ a, b ⊗ b) = W(λ1, λ2, λ3, e1 ⊗ e1, e2 ⊗ e2, e3 ⊗ e3, a ⊗ a, b ⊗ b). (A1)

W̄ is an isotropic invariant function of E1 = e1 ⊗ e1, E2 = e2 ⊗ e2, E3 = e3 ⊗ e3, a ⊗ a and b ⊗ b, i.e.,

W(λ1, λ2, λ3, E1, E2, E3, a ⊗ a, b ⊗ b)

= W
(
λ1, λ2, λ3, QE1Q T

, QE2Q T
, QE3Q T

, Q(a ⊗ a)Q T
, Q(b ⊗ b)Q T

) (A2)

for all proper orthogonal tensors Q. Taking note that tr Ei = tr(a ⊗ a) = tr(b ⊗ b) = 1, Ei = E2
i = E3

i = . . . , a ⊗ a = (a ⊗ a)2 =
(a ⊗ a)3 = . . . , b ⊗ b = (b ⊗ b)2 = (b ⊗ b)3 = . . . and EiE j = 0, i �= j, and using the results of Spencer (1971) for five matrices, it

follows that We can be expressed as

We = W̄(λ1, λ2, λ3, ζ1, ζ2, ζ3, ξ1, ξ2, ξ3, χ1, χ2, χ3, α) (A3)
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where we have the invariants ζi = tr(Ei(a ⊗ a)), ξi = tr(Ei(b ⊗ b)), χi = tr(Ei(a ⊗ a)(b ⊗ b)), i = 1, 2, 3 and α = tr((a ⊗ a)(b ⊗
b)) = (a • b)2

. We note that the invariants ζ i, ξ i and χ i do not have unique values if two or three eigenvalues of U have the same

value. However,

ζ3 = 1 − ζ1 − ζ2, ξ3 = 1 − ξ1 − ξ2 and χ3 = α − χ2 − χ3. (A4)

Appendix B

Consider the right-hand set of orthonormal vectors {v1, v2, v3}. Note that

Cv1 = (v1 • Cv1)v1 + (v2 • Cv1)v2 + (v3 • Cv1)v3. (B1)

Hence

v1 • C2v1 = (v1 • Cv1)
2 + (v2 • Cv1)

2 + (v3 • Cv1)
2
. (B2)

From Eq. (B2) we have

I2
13 = H1 − I2

11 − I2
12. (B3)

Similarly, it can be easily shown that

I2
23 = H2 − I2

12 − I2
22 (B4)

and

H3 = I2
13 + I2

23 + I2
33. (B5)

From the relation

I1 = tr(C) = v1 • Cv1 + v2 • Cv2 + v3 • Cv3, (B6)

we have

I33 = I1 − I11 − I22. (B7)

From the above equations, we have

H3 = H1 + H2 − 2I2
12 + I2

1 − 2I1(I11 + I22) + 2I11I22. (B8)

From the relation

tr
(
C2

)
= v1 • C2v1 + v2 • C2v2 + v3 • C2v3 (B9)

we get

I2
1 − 2I2 = tr

(
C2

)
= H1 + H2 + H3. (B10)

Substituting Eq. (B8) into (B10) we have the relation

I2
12 = I2 + I11I22 + H1 + H2 − I1(I11 + I22)

= I2 + I4I22 + I5 + H2 − I1(I4 + I22). (B11)
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