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Abstract. Given a factor code π from a shift of finite type X onto a sofic shift Y , the
class degree of π is defined to be the minimal number of transition classes over the points
of Y . In this paper, we investigate the structure of transition classes and present several
dynamical properties analogous to the properties of fibers of finite-to-one factor codes.
As a corollary, we show that for an irreducible factor triple, there cannot be a transition
between two distinct transition classes over a right transitive point, answering a question
raised by Quas.

1. Introduction
Given a finite-to-one factor code π from a shift of finite type X onto an irreducible sofic
shift Y , the degree of π is defined to be the minimal number of preimages of the points in Y .
The notion of degree was first introduced in [12] for endomorphisms of full shifts, and was
then extended to those of irreducible shifts of finite type and sofic shifts [10]. The concept
is widely studied and is useful in the study of finite-to-one factor codes [2, 5, 14, 19]. If
d is the degree of a one-block factor code π , there are well-known fundamental properties
of fibers of points in Y , summarized as follows.
(1) Every doubly transitive point in Y has exactly d preimages.
(2) π(x) is doubly transitive if and only if x is.
(3) Any two distinct preimages of a doubly transitive point in Y are mutually separated,

i.e. they do not share a common symbol at the same time.
In this work, we show that a natural generalization of the degree for general factor

codes is the class degree introduced in [1]. The principal motivation for defining the class
degree was to find a conjugacy-invariant upper bound on the number of ergodic measures
of relative maximal entropy. Measures of relative maximal entropy have appeared in
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many different topics in symbolic dynamics, owing to their connections with, for example,
functions of Markov chains [3, 8] and their use in computing the Hausdorff dimension of
certain sets [11]. The class degree is, in fact, a conjugacy-invariant upper bound on the
number of such measures over a fully supported ergodic measure [1, 16].

The class degree is defined by using a certain equivalence relation on the fiber of each
point in Y . Roughly speaking, two preimages x and x̄ of a point y in Y are equivalent
if we can find a preimage z of y which is equal to x up to an arbitrarily large given
positive coordinate and is right asymptotic to x̄ , and vice versa (see Definition 2.3). The
class degree is defined to be the minimal number of equivalence classes (called transition
classes) over the points in Y . It is shown in [1] that the class degree is equal to the degree
when π is finite-to-one, and, moreover, if d is the class degree of π , then every right
transitive point in Y has exactly d transition classes (analogous to (1) above). This suggests
that the class degree is a candidate for a generalization of the degree.

The idea of considering transitions between preimages of a point also came up
independently in [21]. To find a condition which is invariant under conjugacy and
weaker than the condition that appeared in [9], Yoo defined the notion of fiber-mixing
and showed that a fiber-mixing code between two mixing shifts of finite type sends every
fully supported Markov measure on X to a Gibbs measure on Y . Fiber-mixing codes were
investigated in further studies, e.g. [13, 17]. In our terminology, a fiber-mixing code from
a shift of finite type X onto a sofic shift Y is just a code in which every point in Y has
only one transition class; thus it is natural to ask what kind of properties a code can have
when the code is not fiber-mixing—for example, when the code has class degree one but
there exist some points with more than one transition class. Moreover, since the definition
of transition classes is motivated by communicating classes in Markov chains, Quas asked
whether there could be a transition between two distinct transition classes over a right
transitive point.

To answer such questions, one needs to have a structural theory on transition classes.
In fact, unlike the finite-to-one case, where the fibers have been well-studied, previous
research on infinite-to-one codes usually concentrated on their thermodynamic formalism
[6, 20] or on the construction of codes with nice properties [4, 7, 18]. In this paper,
we investigate the fibers and transition classes of such factor codes and provide several
structural results. By these results, it is natural to consider the class degree as a natural
generalization of the degree.

In particular, we provide dynamical properties analogous to (2) and (3) above (see
Theorem 3.4, Corollary 3.6 and Theorem 4.4).
(2′) A point y is right (respectively, doubly) transitive if and only if each transition class

over y contains a right (respectively, doubly) transitive point.
(3′) Any two points from two distinct transition classes over a right transitive point are

mutually separated.
This analogy shows us that, as for a finite-to-one code, fibers over almost all images for

infinite-to-one factors are well-behaved, in the sense that among the fibers over a typical
point of Y a typical point of X always exists, and that any points chosen from distinct
classes over a typical point of Y have orbits which neither meet nor approach each other
asymptotically. As a corollary, we also show that there cannot be any transition among
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distinct classes (see Corollary 4.7). Property (3′) above is one type of separation property
between distinct transition classes. In §5, we present another type of separation property,
which is stronger than the former; briefly, we make a partition on the set of preimages of
a magic block of π , so that one can determine whether or not two preimages of a doubly
transitive point are in the same transition class only by reading the symbols occurring
in their coordinates over the magic block (see Theorem 5.4). Other structural properties
on transition classes are also provided which will hopefully open new doors on further
investigation of infinite-to-one factor codes.

2. Background
In this section, we introduce some terminology and basic results on symbolic dynamics.

If X is a subshift (or shift space) with the shift map σ , then denote by Bn(X) the set of
all n-blocks occurring in the points of X and let B(X)=

⋃
∞

n=0 Bn(X). The alphabet of a
shift space X is denoted by A(X)= B1(X).

A code π : X→ Y is a continuous σ -commuting map between shift spaces. It is called
a factor code if it is surjective. Every code can be recoded to become a one-block code,
i.e. a code for which x0 determines π(x)0. Given a one-block code π : X→ Y , it naturally
induces a map on B(X), which we also denote by π for brevity. We say that π is finite-to-
one if π−1(y) is a finite set for all y ∈ Y .

A triple (X, Y, π) is called a factor triple if π : X→ Y is a factor code from a shift of
finite type X onto a (sofic) subshift Y . A factor triple is said to be irreducible when X is
irreducible. It is said to be finite-to-one if π is finite-to-one.

A point x in a shift space X is said to be right transitive if every block in X occurs
infinitely many times in x[0,∞) or, equivalently, if the forward orbit of x is dense. Two
points x and x̄ in X are said to be right asymptotic if x[N ,∞) = x̄[N ,∞) for some N ∈ Z. Left
asymptotic points and left transitivity are defined similarly. A point is doubly transitive if
it is both left and right transitive.

If π is a finite-to-one factor code from a shift of finite type X onto a sofic shift Y , there
is a uniform upper bound on the number of preimages of points in Y [15]. The minimal
number of π -preimages of the points in Y is called the degree of the factor code π and is
denoted by dπ .

THEOREM 2.1. [15, §9] Let (X, Y, π) be a finite-to-one factor triple with Y irreducible.
Then every doubly transitive point of Y has exactly dπ preimages.

Two points x and x̄ in a shift space are mutually separated if xi and x̄i are different
for each integer i . It is well known that if (X, Y, π) is a finite-to-one factor triple with
X one-step, π one-block and Y irreducible, then each y ∈ Y has dπ mutually separated
preimages. In particular, if y is doubly transitive, then any two distinct preimages of y are
mutually separated.

We say that two factor triples (X, Y, π) and (X̃ , Ỹ , π̃) are conjugate if X is conjugate
to X̃ under a conjugacy φ, Y is conjugate to Ỹ under a conjugacy ψ , and π̃ ◦ φ = ψ ◦ π .
An immediate corollary of Theorem 2.1 is that dπ is invariant under conjugacy.
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Definition 2.2. [15] Let (X, Y, π) be a factor triple with X one-step and π one-block.
Given a block w ∈ B(Y ), define

d(w)= min
1≤k<|w|

|{a ∈A(X) : ∃ u ∈ π−1(w) with uk = a}|.

If a block w satisfies d(w)=minv∈B(Y ) d(v), then it is called a magic block. In this
case, a coordinate k where the minimum occurs is called a magic coordinate. If |w| = 1,
then w is called a magic symbol.

Let w be a magic block with a magic coordinate k. Given a point y in Y and i ∈ Z
with y[i,i+|w|) = w, some block in π−1(w) may not be extendable to a point in π−1(y).
However, due to the minimality of d(w), the two sets {xi+k | x ∈ π−1(y)} and {uk | u ∈
π−1(w)} are the same. It is well known that for a one-block finite-to-one factor code π
from a one-step shift of finite type X onto an irreducible sofic shift Y , we have dπ = d(w)
for any magic block w of π .

The class degree defined below is a quantity analogous to the degree when the factor
code π is not limited to being finite-to-one.

Definition 2.3. Let (X, Y, π) be a factor triple and let x, x̄ ∈ X . We say that there is a
transition from x to x̄ , and denote it by x→ x̄ , if for each integer n there exists a point z
in X such that:
(1) π(z)= π(x)= π(x̄); and
(2) z(−∞,n] = x(−∞,n] and z[i,∞) = x̄[i,∞) for some i ≥ n.

We write x ∼ x̄ and say that x and x̄ are in the same transition class if x→ x̄ and
x̄→ x . Then the relation ∼ is an equivalence relation. Denote the set of transition classes
in X over y ∈ Y by C (y). We say that there is a transition from a class [x] to another class
[x̄], and denote it by [x] → [x̄], if x→ x̄ . Note that if [x] → [x̄], then for each z ∼ x and
z̄ ∼ x̄ we have z→ z̄.

FACT 2.4. [1] Let π : X→ Y be a one-block factor code from a one-step shift of finite
type X onto an irreducible sofic shift Y . Then the following hold.
(1) |C (y)|<∞ for each y in Y .
(2) Let x, x ′ ∈ π−1(y) for some y ∈ Y . Given xai = x ′ai

where (ai )i∈N is a strictly
increasing sequence in Z, we have x ∼ x ′.

Definition 2.5. Let (X, Y, π) be a factor triple. The minimal number of transition classes
over points of Y is called the class degree of π and is denoted by cπ .

It is clear that cπ is invariant under conjugacy. It was shown in [1] that for a finite-to-one
factor triple (X, Y, π) with Y irreducible, we have cπ = dπ .

THEOREM 2.6. [1] Let (X, Y, π) be a factor triple with Y irreducible. Then every right
transitive point of Y has exactly cπ transition classes.

Theorem 2.9 below states the class degree of a factor code in terms of another quantity,
which is defined concretely in terms of blocks.
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Definition 2.7. Let (X, Y, π) be a factor triple with X one-step and π one-block. Let
w = w[0,p] ∈ Bp+1(Y ). Also, let n be an integer in (0, p) and M a subset of π−1(wn).
We say that a block u ∈ π−1(w) is routable through a ∈ M at time n if there is a block
ū ∈ π−1(w) with ū0 = u0, ū p = u p and ūn = a. A triple (w, n, M) is called a transition
block of π if every block in π−1(w) is routable through a symbol of M at time n. The
cardinality of the set M is called the depth of the transition block (w, n, M). When there
is no confusion, for example when y ∈ Y and w = y[i,i+p] are fixed, we say that the points
x, x̄ ∈ π−1(y) are routable through a ∈ M at time i + n if x[i,i+p] and x̄[i,i+p] are routable
through a at time i + n.

Definition 2.8. Let

c∗π =min{|M | : (w, n, M) is a transition block of π}.

A minimal transition block of π is a transition block of depth c∗π .

THEOREM 2.9. [1] Let (X, Y, π) be a factor triple with X one-step, π one-block and Y
irreducible. Then cπ = c∗π .

For more details on symbolic dynamics, see [15]. For a perspective on the class degree
and its relation to the degree, see [1].

3. Each transition class over a right transitive point contains a right transitive point
In this section, we prove that given an irreducible factor triple (X, Y, π), each transition
class over a right transitive point contains a right transitive point. This result can be
seen as an analogue of the well-known fact that for a finite-to-one irreducible factor
triple (X, Y, π), every preimage of a right (respectively, doubly) transitive point is a right
(respectively, doubly) transitive point. We begin with the following definition.

Definition 3.1. Let (X, Y, π) be a factor triple and let X̄ be a proper subshift of X with
π(X̄)= Y . Let v̄ be in B(X) \ B(X̄). We say that two blocks u and v in B(X) form an
(X̄ , v̄)-diamond if the following hold:
(1) π(u)= π(v);
(2) v̄ is a subblock of v;
(3) u occurs in X̄ ; and
(4) u and v share the same initial symbol and the same terminal symbol.

The following lemma is a slightly stronger version of [22, Proposition 3.1]. We include
a different proof here, which is also more direct than the original one. Later, in §6, a further
strengthened version of Lemma 3.2 will be provided.

LEMMA 3.2. Let (X, Y, π) be an irreducible factor triple with X one-step and π one-
block. Let X̄ be a proper subshift of X with π(X̄)= Y . Then, for each block v̄ in B(X) \
B(X̄), there is an (X̄ , v̄)-diamond.

Proof. For w in B(Y ), define n(w) to be the maximal number of mutually separated
preimages of w in B(X̄), and let n be the infimum of n(w) where w runs over all the
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non-empty words in B(Y ). Clearly, n is a positive integer. Let w be a block in B(Y ) with
n(w)= n and let u be a preimage of w in B(X̄).

Let v̄ be in B(X) \ B(X̄). Since X is irreducible, there is a cycle α in B(X) such that
α = uγ v̄η for some blocks γ and η. Denote the length of α by l, and consider αn+1. There
are at least n mutually separated blocks β(1), . . . , β(n) in B(X̄) all projecting to π(αn+1).
Note that for all 0≤ j < n + 1 and 1≤ m ≤ n, we have π(αn+1

[ jl, jl+|w|))= π(β
(m)
[ jl, jl+|w|))=

w. Moreover, for all 1≤ m, m′ ≤ n where m 6= m′, the blocks β(m)
[ jl, jl+|w|) and β(m

′)
[ jl, jl+|w|)

are mutually separated.
Since n(w)= n, for each 0≤ j < n + 1 there is 1≤ m j ≤ n such that β

(m j )

[ jl, jl+|w|) meets

u, i.e. there is 0< i < |w| such that β
(m j )

jl+i = ui . Thus, by the pigeonhole principle, there is
1≤ m ≤ n such that β(m) meets u twice, say at positions jl + i and j ′l + i ′ for some 0≤
j < j ′ < n + 1 and 0≤ i, i ′ < |w|. It is clear that the blocks β(m)

[ jl+i, j ′l+i ′] and αn+1
[ jl+i, j ′l+i ′]

form an (X̄ , v̄)-diamond. �

Remark 3.3. Note that Lemma 3.2 is not necessarily true when X is reducible. For
example, let X be the orbit closure of the point a∞.b∞, let Y = {0∞}, and consider the
trivial map π : X→ Y . Let X̄ = {a∞} and v̄ = b.

THEOREM 3.4. Let (X, Y, π) be an irreducible factor triple and let y in Y be right
transitive. Then each transition class over y contains a right transitive point.

Proof. We may assume that X is one-step and π is one-block. Let C be a transition class
over y and let x be in C . If x is right transitive, we are done. So suppose that x is not right
transitive. Let X̄ be the ω-limit set of x , i.e.

X̄ = ω(x)= {z ∈ X : ∃ ni ↗∞ with σ ni (x)→ z}.

Then we have X̄ ( X . Since π(x)= y and y is right transitive, it follows that π(X̄)= Y .
Now consider an enumeration v̄1, v̄2, . . . of B(X). For each i ∈ N with v̄i ∈ B(X) \ B(X̄),
by Lemma 3.2 there is an (X̄ , v̄i )-diamond (ui , vi ). Note that for this i , v̄i is a subblock
of vi , vi ∈ B(X) \ B(X̄) and ui ∈ B(X̄).

For each i ∈ N, define a block wi ∈ B(X̄) by

wi =

{
v̄i if v̄i ∈ B(X̄),
ui otherwise.

Then, since each wi is in B(X̄), we can find an increasing sequence {ni }
∞

i=1 such that
x[ni ,ni+|wi |) = wi and ni+1 > ni + |wi | for all i ∈ N. Finally, define a new point z ∈ X ,
obtained from x by replacing each occurrence of ui at the coordinates x[ni ,ni+|wi |) for all
i ∈ N with vi ∈ B(X) \ B(X̄). Since each (ui , vi ) forms a diamond, z is indeed a point in
X and we have π(z)= y.

Since there are infinitely many positive coordinates j for which x j = z j , we have z ∼ x
and therefore z ∈ C . Also, since each block in X occurs infinitely many times as a subblock
in the enumeration v̄1, v̄2, . . . , it follows that z contains all the v̄i and is therefore a right
transitive point, as desired. �
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Remark 3.5. Let (X, Y, π) be an irreducible factor triple and let y in Y be left transitive.
Then each transition class over y contains a left transitive point.

The proof of this remark is similar to the proof of Theorem 3.4 but much simpler. Let
X̄ be the α-limit set of x , i.e. X̄ = {z ∈ X : ∃ ni ↘−∞ with σ ni (x)→ z}. If x is not left
transitive, then we may construct a point z ∈ X similarly to the proof of Theorem 3.4: first,
find a decreasing subsequence {ni } such that x[ni ,ni+|wi |) = wi (the same wi as defined
in Theorem 3.4) and ni+1 < ni − |wi+1| for all i ∈ N; then, define z by replacing each
occurrence of ui at the coordinates x[ni ,ni+|wi |) with vi for all i ∈ Z. Then z is left
transitive. Since z and x are right asymptotic, we have z ∼ x .

The following corollary is an immediate result of Theorem 3.4 and Remark 3.5.

COROLLARY 3.6. Let (X, Y, π) be an irreducible factor triple and let y in Y be doubly
transitive. Then each transition class over y contains a doubly transitive point.

With the following corollary, we see that for an irreducible factor triple, the cardinalities
of the transition classes over right transitive points fall into two categories: they are either
all finite (if a factor code is finite-to-one) or all uncountable (if it is infinite-to-one).

COROLLARY 3.7. Let (X, Y, π) be an irreducible factor triple and let y in Y be right
transitive. If π is infinite-to-one, then the cardinality of each transition class over y is
uncountable.

Proof. We may assume that X is one-step and π is one-block. Recall that π is infinite-to-
one if and only if it has a diamond, say (u, v) [15, Theorem 8.1.16]. If C is a transition
class over y, there is a right transitive point x in C by Theorem 3.4. Then u occurs infinitely
many times to the right in x . Any point made by replacing some occurrences of u with v
is equivalent to x , which implies that C is uncountable. �

4. Mutual separatedness for transition classes
If (X, Y, π) is an irreducible finite-to-one factor triple of degree d , where X is one-step
and π is one-block, then for each doubly transitive point y ∈ Y , the set of the preimages
of y consists of d mutually separated points in X . This result is one of the important
properties of fibers of finite-to-one factor codes, since it is used to prove that the degree
indeed equals the number combinatorially defined using a magic block [10, 12, 15, §9].

In this section, we present a similar mutual separatedness property for transition classes:
any two points from two distinct transition classes over a right transitive point are mutually
separated (Theorem 4.4). As an application, we show that there is no transition between
distinct transition classes over a right transitive point, answering a question raised by Quas.

LEMMA 4.1. Let (X, Y, π) be an irreducible factor triple with X one-step and π one-
block. Given a minimal transition block (w, n, M), any preimage of w is routable through
a unique symbol of M.

Proof. Let u be in π−1(w) and let d = cπ be the class degree of π . If d = 1, then the result
is trivial, so suppose d ≥ 2. Assume that u is routable through two different members a(1)
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and a(2) of M = {a(1), a(2), . . . , a(d)}. Let x be a point of X such that u occurs infinitely
many times to the right, say at positions {[i j , i j + |w|)} j∈N where i j+1 > i j + |w|.

From each transition class in C (π(x)) \ {[x]} choose one point, and denote these points
by x (1), . . . , x (d−1). Each of these points is routable through at least one member of M
at time i j + n for each j ∈ N. If there is a point in {x (1), . . . , x (d−1)

} which is routable
through a(1) or through a(2) at i j + n for infinitely many j , then such a point is equivalent
to x , which gives a contradiction and so we are done.

Suppose that there is no such point, i.e. each of the points x (1), . . . , x (d−1) is routable
through a symbol in {a(3), . . . , a(d)} at i j + n for all but finitely many j . It follows, by
the pigeonhole principle, that there are at least two points in {x (1), . . . , x (d−1)

} which are
routable through the same symbol in {a(3), . . . , a(d)} at i j + n for infinitely many j . This
forces these two points to be equivalent, which is again a contradiction. �

Remark 4.2. Note that Lemma 4.1 is not necessarily true when X is reducible. For
example, let X be the orbit closure of the point a∞.b∞, let Y = {0∞}, and consider the
trivial map π : X→ Y . The triple (000, 1, {a, b}) is a minimal transition block with a
preimage abb which is routable through both a and b.

LEMMA 4.3. Let (X, Y, π) be an irreducible factor triple with X one-step and π one-
block. Suppose there are two points x and x̄ such that:
(1) x and x̄ are in two distinct transition classes over a right transitive point y ∈ Y ; and
(2) x and x̄ are not mutually separated.
Then, given a right transitive point z in X, there is a transition from [z] to a transition
class over π(z) other than [z].

Proof. Let (w, n, M) be a minimal transition block. Since y is right transitive, there is a
sequence {i j } j∈N such that y[i j ,i j+|w|) = w and i j+1 > i j + |w|. By assumption (2), for
some integer i we have xi = x̄i . Since x and x̄ are in distinct transition classes, there exist
i j > i and two distinct symbols a, b ∈ M such that x and x̄ are routable through a and b,
respectively, at time i j + n. By taking equivalent points in the transition classes of x and
x̄ , we may assume that xi j+n = a and x̄i j+n = b.

Consider the block y[i,i j+|w|) which is an extension of w. Denote this extension by w̄
and the coordinate i j − i + n by n̄. Then (w̄, n̄, M) is also a minimal transition block.
Note that, by the above, block w̄ has two preimages x[i,i+|w̄|) and x̄[i,i+|w̄|) which share
the same initial symbol; moreover, xi+n̄ = a and x̄i+n̄ = b.

Now let z be a right transitive point in X . Note that for infinitely many k ∈ Z we have
z[k,k+|w̄|) = x[i,i+|w̄|). Denote the class degree by d , and let z(1) = z. From each transition
class of C (π(z)) \ {[z]} choose a point, and denote these points by z(2), z(3), . . . , z(d).
Since (w̄, n̄, M) is a minimal transition block, by Lemma 4.1 we may assume that z( j)

k+n̄ ∈

M for each 1< j ≤ d. Since the z( j) are from distinct transition classes, the set {z( j)
k+n̄ :

1≤ j ≤ d} consists of d symbols for all large such k. Thus there is a point z̄ among
z(2), z(3), . . . , z(d) such that among those k, at infinitely many l we have z̄l+n̄ = b. Then,
for any such l, the points u(l) defined by

u(l)(−∞,l) = z[−∞,l), u(l)
[l,l+n̄) = x̄[i,i+n̄) and u(l)

[l+n̄,∞) = z̄[l+n̄,∞)

give a transition [z] → [z̄] over the right transitive point π(z). �
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THEOREM 4.4. Let (X, Y, π) be an irreducible factor triple with X one-step and π one-
block. Let y ∈ Y be right transitive. Then any two points from two distinct transition
classes over y are mutually separated.

Proof. Suppose not, i.e. that there are two points x and x̄ in distinct transition classes over
y such that x and x̄ are not mutually separated. Recall that any transition class over y
contains a right transitive point. Then, by Lemma 4.3, given any class C ∈ C (y) there is
a transition from C to some other transition class over y. However, since there are only
finitely many classes in C (y), there must be a transition class over y with no transition to
any other class, which is a contradiction. �

One can easily check the following corollary, which is a conjugacy-invariant version of
Theorem 4.4.

COROLLARY 4.5. Let (X, Y, π) be an irreducible factor triple. Then there is c > 0 such
that whenever y ∈ Y is right transitive and x and x̄ are points from two distinct transition
classes over y, we have d(x, x̄) > c.

COROLLARY 4.6. Let (X, Y, π) be an irreducible factor triple. Then each transition class
over a right transitive point is a closed set (with respect to the usual topology on X).

Proof. We may assume that X is one-step and π is one-block. Let {x (i)}i∈N be a
convergent sequence in a transition class C over a right transitive point y. Denote the
limit of this sequence by x . Then π(x)= y. Since x (i)→ x , for large i we have x (i)0 = x0.
Then x is not mutually separated from this x (i), and so, by Theorem 4.4, that x must belong
to C . �

COROLLARY 4.7. Let (X, Y, π) be an irreducible factor triple and let y be a right
transitive point in Y . There is no transition between any two distinct transition classes
over y.

Proof. We may assume that X is one-step and π is one-block. Suppose, on the contrary,
that there is a transition [x] → [x̄] between two distinct transition classes [x] and [x̄] over
y. Then there is a point z ∈ π−1(y) such that z(∞,0] = x(∞,0] and z[i,∞) = x̄[i,∞) for some
i > 0. Since z ∈ [x̄] and z and x are not mutually separated, by Theorem 4.4 we have a
contradiction. �

The following examples show that there may be a transition if the domain is not
irreducible, or if the point in Y is not right transitive.

Example 4.8. (1) Let X be the orbit closure of the point a∞.b∞, let Y = {0∞}, and
consider the trivial map π : X→ Y . Above the point 0∞ there are two transition classes:
one class, say C1, consists of only one point a∞, and the other class, C2, consists of all the
points of the form a∞b∞ and b∞. Even though 0∞ is a (right) transitive point, there is a
transition from C1 to C2. Note that X is not irreducible.

(2) Let X be an irreducible edge shift given by the following diagram, and let Y =
{0, 1}Z. Let π : X→ Y be a one-block factor code given by π(a)= π(b)= π(d)= 0 and
π(c)= π(e)= 1. Note that cπ = 1.
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Let y in Y be any point with y[0,∞) = 0∞. Since each vertex has incoming edges
labeled by 0 and 1, there are two left infinite paths, say α and β, mapping to y(−∞,0]
and terminating at I and J , respectively. Hence, as in the previous example, y has two
transition classes: one containing α.a∞ and the other containing α.anbd∞ for all n ∈ N
and β.d∞. It follows that there is a transition from one transition class over y to the other.

In the definition of a transition x→ x̄ between two points x and x̄ in X , we require
an infinite number of points which are left asymptotic to x and right asymptotic to x̄ ,
since for each n ∈ N we need a point which equals x until time n. However, if the point
y = π(x)= π(x̄) is right transitive, to satisfy this definition, a single asymptotic point to
x and x̄ suffices, as statement (3) in the following corollary shows.

COROLLARY 4.9. Let (X, Y, π) be an irreducible factor triple and let y ∈ Y be right
transitive. Then, for x, x̄ ∈ π−1(y), the following are equivalent.
(1) x ∼ x̄ .
(2) x→ x̄ .
(3) There is a point in π−1(y) which is left asymptotic to x and right asymptotic to x̄ .

Proof. Since the conditions (1), (2) and (3) are all conjugacy-invariant, we may assume
that X is one-step and π is one-block. The equivalence of (1) and (2) follows from
Corollary 4.7. Statement (2) clearly implies (3). Suppose that x and x̄ are not equivalent.
If z is a point satisfying condition (3), we have z ∈ [x̄]. Since z and x are left asymptotic,
they are not mutually separated, which contradicts Theorem 4.4. �

The following corollary is immediate.

COROLLARY 4.10. Let (X, Y, π) be an irreducible finite-to-one factor triple. Let y in Y
be right transitive. Then, for any x and x̄ in π−1(y), they are either mutually separated or
right asymptotic.

Proof. First, note that since π is finite-to-one, x and x̄ must be right transitive. Suppose
that x and x̄ are neither mutually separated nor right asymptotic. Then, by Corollary 4.9,
they are equivalent and therefore produce a diamond, which implies that π is not finite-to-
one (see [15, §8.1]). �

5. Block partition properties for a factor triple
In this section, we provide further separation properties for transition classes over a right
transitive point. Throughout this section, we assume that X is one-step and π is one-block

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 26 Nov 2015 IP address: 200.89.68.74

Structure of transition classes for factor codes on shifts of finite type 2363

for a factor triple (X, Y, π). Also, in what follows, for a transition class C and A ⊂ Z,
denote by C |A the set {xA : x ∈ C}. If A = {i} for some integer i , then C |A is written
simply as C |i for convenience. With this notation, Theorem 4.4 says that if y ∈ Y is right
transitive, then C |i ∩ C̄ |i = ∅ for C 6= C̄ ∈ C (y) and all i ∈ Z.

We will first see that if (w, n, M) is a minimal transition block and y is right transitive,
then |C |i+n ∩ M | = 1 for any C in C (y) and i ∈ Z with y[i,i+|w|) = w.

LEMMA 5.1. Let (X, Y, π) be an irreducible factor triple. Let y ∈ Y be right transitive
with y[i,i+|w|) = w for some minimal transition block (w, n, M). Given C ∈ C (y), there
is a unique symbol b in M such that every point in C is routable through b at time i + n.

Proof. Let MC = M ∩ C |i+n for any C in C (y). Then
⋃

C∈C (y) MC = M . As each
MC is contained in C |i+n , by Theorem 4.4 the sets MC are mutually disjoint. So∑

C∈C (y) |MC | = |M | = cπ . Since |C (y)| = cπ and each MC is non-empty, we have that
|MC | = 1 for each C ∈ C (y). �

The following proposition states, intuitively, that given a right transitive point y in Y , if
two preimages of the symbol y0 appear in two distinct transition classes over y at time 0,
then these two symbols cannot ever appear at the same time in a single class over any right
transitive point.

PROPOSITION 5.2. Let (X, Y, π) be an irreducible factor triple, and let y ∈ Y be a right
transitive point with a minimal transition block in y(−∞,0). Then, for any right transitive
point z ∈ Y with zi = y0 for i ∈ Z and any given D ∈ C (z), we have D|i ∩ C |0 6= ∅ for at
most one C ∈ C (y).

Proof. Let y0 = a. Suppose, on the contrary, that for some right transitive point z ∈ Y with
zi = a for i ∈ Z and some D ∈ C (z), there are two symbols b ∈ C |0 and c ∈ C̄ |0, where
C 6= C̄ ∈ C (y), occurring at time i in D, i.e. b, c ∈ D|i . Then there are two points x (1) and
x (2) in D with x (1)i = b and x (2)i = c. As b ∈ C |0 and c ∈ C̄ |0, we have two points x̄ (1) ∈ C
and x̄ (2) ∈ C̄ such that x̄ (1)0 = b and x̄ (2)0 = c.

Define new points x̂ (l) for l = 1, 2 by

x̂ (l) = x̄ (l)(−∞,0). x (l)
[i,∞),

and consider ẑ = π(x̂ (1))= π(x̂ (2)). Then ẑ is right transitive since it is right asymptotic
to σ i (z), and the points x̂ (l) are equivalent since the x (l) are equivalent.

Recall that, by assumption, a minimal transition block (w, n, M) occurs in y[ j, j+|w|) =

ẑ[ j, j+|w|) for some j ≤−|w|. Since x̄ (1) and x̄ (2) are not equivalent, by Theorem 4.4 they
are routable through different members of M at time j + n. It follows that x̂ (1) and x̂ (2)

are routable through different members of M at time j + n, which contradicts Lemma 5.1,
since x̂ (1) and x̂ (2) are equivalent. �

A finite-to-one factor code possesses a kind of permutation property, as discussed in
[15, §9], for preimages of a magic symbol. Analogous to this property, the following
proposition exhibits a permutation property for preimages of a minimal transition block.
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PROPOSITION 5.3. Let (X, Y, π) be an irreducible factor triple of class degree d, and let
(w, n, M) be a minimal transition block. For each block u = wvw ∈ B(Y ) for some v,
there is a permutation τu : M→ M such that given any right transitive point y in Y with
y[0,|u|) = u and C ∈ C (y), we have τu(C |n ∩ M)= C ||wv|+n ∩ M.

Proof. Let y be a right transitive point in Y with y[0,|u|) = u. Given C in C (y), by
Lemma 5.1 we have C |n ∩ M = {a} and C ||wv|+n ∩ M = {b} for some symbols a and
b. Define a permutation τu,y of M by τu,y(a)= b, and let x ∈ C be a point with xn = a
and x|wv|+n = b.

We show that τu,y does not depend on y. Let ȳ be a right transitive point in Y with
ȳ[0,|u|) = u, and let x̄ be a point in π−1(ȳ) with x̄n = a. Consider a point x ′ ∈ π−1(ȳ) with
x ′
|wv|+n = b. Then the point x̄(−∞,n]x(n,|wv|+n)x ′[|wv|+n,∞) ∈ π

−1(ȳ) is left asymptotic to
x̄ and right asymptotic to x ′, which implies that x̄ and x ′ are equivalent. It follows that
τu,ȳ(a)= b, and thus τu,y = τu,ȳ as C was chosen arbitrarily. �

Theorem 5.4 informally states that given any irreducible factor triple (X, Y, π), in order
to determine whether two points with the same image are equivalent or not, one only needs
to locally compare the preimages of a magic block which occur within these points. More
precisely, there is a partition on the set of preimages of a magic block w of π such that
given all right transitive points y in Y and any i ∈ Z with y[i,i+|w|) = w, two preimages x
and x ′ of y are equivalent if and only if x[i,i+|w|) and x ′

[i,i+|w|) belong to the same class of
the partition on π−1(w).

THEOREM 5.4. Let (X, Y, π) be an irreducible factor triple of class degree d. Let w be
a magic block of π . There is a partition of π−1(w) into d subsets B1, . . . , Bd such that
for any doubly transitive z in Y and any i ∈ Z with z[i,i+|w|) = w, we have a bijection
ρz,i : C (z)→ {1, . . . , d} with D|[i,i+|w|) ⊆ Bρz,i (D) for each D ∈ C (z).

Proof. Let k be a magic coordinate of w and let Aw,k = {uk | u ∈ π−1(w)}. Let y be a
doubly transitive point in Y with y[0,|w|) = w. For C ∈ C (y), let BC = {u ∈ π−1(w) : uk ∈

C |k}. List C (y)= {C (1), . . . , C (d)
} and write B j = BC( j) . We claim that {B j : 1≤ j ≤ d}

is a desired partition.
Note that since k is a magic coordinate of w, we have

⋃
C∈C (y) C |k =Aw,k and hence⋃

C∈C (y) BC = π
−1(w). Moreover, the BC with C ∈ C (y) are mutually disjoint, since by

Theorem 4.4 the sets C |k with C ∈ C (y) are mutually disjoint.
Now we show that such a partition does not depend on y. Let z be a doubly transitive

point in Y with z[i,i+|w|) = w for some i ∈ Z. By considering the point σ i (z), we may
assume that i = 0. For each D ∈ C (z), let B(z)D = {u ∈ π

−1(w) : uk ∈ D|k}. Again, since
k is a magic coordinate of w, we have

⋃
D∈C (z) D|k =Aw,k and thus

⋃
D∈C (z) B

(z)
D =

π−1(w). It follows that for each D ∈ C (z), there is a transition class C ∈ C (y) such that
C |k ∩ D|k 6= ∅, which implies that BC ∩ B(z)D 6= ∅. We show that BC = B(z)D . Suppose
not. First assume that there is a block u in BC \ B(z)D . There must be another class
D′ ∈ C (z) such that uk ∈ D′|k . This means that C |k intersects both D|k and D′|k , which
contradicts Proposition 5.2. So BC ⊆ B(z)D . The case of u ∈ B(z)D \ BC is also impossible
by the symmetric argument, and hence we have BC = B(z)D .
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FIGURE 1. Graph for Example 5.6

Define ρz,i : C (z)→ {1, . . . , d} to send each D ∈ C (z) to the unique 1≤ ρz,i (D)≤ d

with B(σ
i (z))

D = Bρz,i (D). By definition, D|[i,i+|w|) is contained in Bρz,i (D). �

Note that, in general, the partition in Theorem 5.4 need not be unique. However, in
some special cases, for example when π has a magic symbol, we obtain the uniqueness of
the partition. The following remark, which follows directly from Proposition 5.2, explains
such cases.

Remark 5.5. Let (X, Y, π) be an irreducible factor triple of class degree d , and let a be
in A(Y ). If for some doubly transitive point y in Y we have y0 = a and π−1(y)|0 =
π−1(a), then there is a unique partition of π−1(a) into d subsets B1, . . . , Bd such that for
any right transitive z ∈ Y with zi = a, we have a bijection ρz,i : C (z)→ {1, . . . , d} with
C |i ⊆ Bρz,i (C) for each class C in C (z).

The following example shows that the partition property stated in Remark 5.5 need not
hold for every symbol.

Example 5.6. Consider the irreducible vertex shifts X and Y displayed in Figure 1. In
the graphs of X and Y , each pair of leftmost and rightmost vertices with the same symbol
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(m1, m2 or m) is identified. Let π be the map that erases the subscripts and sends all
numbered vertices of X to the symbol a.

A point y in Y is of the form (m(α + β + γ )a(α′ + β ′ + γ ′))∞, where the notation α +
β + γ implies that one can choose freely any of α, β or γ as a symbol to appear in the given
position (this is a standard notion in the theory of formal languages). The choices may
differ up to positions, so that a word like mαaβ ′mβaγ ′ is allowed. If u = mδaδ′m with
δ ∈ {α, β, γ } and δ′ ∈ {α′, β ′, γ ′}, this u defines a unique permutation τu of {m1, m2}: if
m1 and u are given, for any preimage v of u with v0 = m1, the last symbol of v is uniquely
determined. Similarly for m2. Note that this property is inductively true for general blocks
of the form u = mδ(1)aδ′(1)m · · · mδ(k)aδ′(k)m. This means that for each y in Y and x in
π−1(y), there are only two choices of putting the mi in x . Hence, there are exactly two
transition classes over y. It follows that every point in Y has two transition classes and the
class degree of π is 2. Note that m is a magic symbol; also, it is a minimal transition block.

Now consider the symbol a ∈A(Y ) and the sets C |0 with C ∈ C (y), where y is right
or doubly transitive.
(1) If y = · · · mα.aα′m · · · , then we have {1} and {3} as the sets C |0 in Proposition 5.2.
(2) If y = · · · mβ.aβ ′m · · · , then we have {1, 2} and {5}.
(3) If y = · · · mγ.aγ ′m · · · , then we have {2, 3} and {6}.
(4) If y = · · · mδ.aδ′m · · · , where (δ, δ′) is not a pair in the above cases, then each C |0

is a singleton.
Symbols 1 and 2 appear together in one class, as do symbols 2 and 3; however, symbols

1 and 3 appear in distinct classes. So, there is no partition of π−1(a) into two sets that
satisfies the property stated in Remark 5.5.

6. Applications and examples
The definitions of transition, transition classes and class degree are asymmetric. So it is
natural to consider reversed transitions as follows: x→r x̄ if for each integer n there is a
point which is left asymptotic to x and equal to x̄ in [n,∞). We say that x ∼r x̄ if and only
if x→r x̄ and x̄→r x . The reversed transition classes of a point in Y are the equivalence
classes generated by this new relation ∼r . Denote by [x]r the reversed transition class
containing x . Let xT be the point such that (xT)i = x−i for every integer i , and define
XT
= {xT

: x ∈ X}. Note that the reversed transition classes of a point y can be obtained
from the transition classes of a point yT under the transposed code πT

: XT
→ Y T. All the

results in the previous sections hold for the reversed transition classes if we replace left
transitive with right transitive.

Note that the set of transition classes and the set of the reversed transition classes of a
point y ∈ Y need not coincide; nor do they need to have the same cardinality. However,
they do coincide for almost all points (Proposition 6.2).

Example 6.1. We show that given any finite-to-one irreducible factor triple (X, Y, π)
which is not bi-closing, there are uncountably many points in Y for which the number
of transition classes differs from the number of reversed transition classes.

Suppose, without loss of generality, that π is not left closing, i.e. there are two distinct
points x 6= x̄ ∈ X which are right asymptotic and such that y = π(x)= π(x̄). Since the
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subshift X is of finite type and x[i,∞) = x̄[i,∞) for some i , by changing the common right
tail we may assume that x and x̄ are right transitive. Then y is also right transitive and
hence y has exactly cπ transition classes. Since π does not have any diamond, x and x̄
are not equivalent with respect to the reversed transition relation. Moreover, since any
given two points z and z̄ from distinct transition classes over y are mutually separated,
they are also not equivalent with respect to the reversed transition relation. It follows that
the number of reversed transition classes of y is at least cπ + 1. Since the right tail of
x can be changed in uncountably many ways to produce a right transitive point, we have
uncountably many points in Y with a different number of transition classes than the number
of its reversed transition classes.

PROPOSITION 6.2. Let (X, Y, π) be an irreducible factor triple. If y is doubly transitive
and x ∈ π−1(y), then the transition class of x equals the reversed transition class of x.

Proof. Suppose, on the contrary, that [x] 6= [x]r . We may assume that there is a point
x̄ ∈ [x]r \ [x]. Since x̄ ∼r x , there is a point z ∈ π−1(y) which is left asymptotic to x̄ and
right asymptotic to x . Then, by Corollary 4.9, [x] = [z] = [x̄] and therefore x̄ ∈ [x], which
is a contradiction. �

Recall Definition 3.1. Let (X, Y, π) be a factor triple and X̄ a proper subshift of X with
π(X̄)= Y . Let v̄ be in B(X) \ B(X̄). A block u in B(X̄) and a block v in B(X) form an
(X̄ , v̄)-diamond if π(u)= π(v), v̄ is a subblock of v, and u and v share the same initial
symbol and the same terminal symbol. Lemma 3.2 states that if X is irreducible and one-
step and π is one-block, then for each block v̄ in B(X) \ B(X̄) there is an (X̄ , v̄)-diamond.

As mentioned before, we strengthen Lemma 3.2 in this section. Proposition 6.3 gives
an upper bound on the length of the (X̄ , v̄)-diamond of a given word v̄ in B(X) \ B(X̄).
Note that the proof of Proposition 6.3 employs Theorem 3.4, which was shown using
Lemma 3.2.

PROPOSITION 6.3. Let (X, Y, π) be an irreducible factor triple with X one-step and π
one-block. Let X̄ be a proper subshift of X with π(X̄)= Y . Then there is a positive integer
N such that for each block v̄ in B(X) \ B(X̄), we have an (X̄ , v̄)-diamond of length less
than |v̄| + N.

Proof. Let k be a positive integer such that for any blocks u and v in B(X), there is a
block w in B(X) with |w| ≤ k and uwv in B(X). Such k exists, since X is irreducible
and of finite type. Let (w, n, M) be a minimal transition block of π with |w| = l and u a
preimage of w in B(X̄).

Consider a block v̄ in B(X) \ B(X̄), and let γ = uαv̄βu for some α and β with
|α|, |β| ≤ k. Write |γ | = L . Let y be a right transitive point of Y and x̄ a preimage
of y in X̄ . By Theorem 3.4, there is a right transitive preimage x of y in X which is
equivalent to x̄ . Note that x 6= x̄ . For convenience, let x[0,L) = γ . Note that x and x̄
are both routable through the same symbol of M , say a, at time n and at time L − l + n.
Let δ be a block of length l in B(X) such that δ0 = u0, δl−1 = ul−1 and δn = a. Also,
let δ̄ and δ̄′ be blocks of length l in B(X) such that δ̄0 = x̄0, δ̄l−1 = x̄l−1, δ̄n = a and
δ̄′0 = x̄L−l , δ̄

′

l−1 = x̄L−1, δ̄
′
n = a. Then the two blocks δ̄[0,n)δ[n,l)x[l,L−l)δ[0,n)δ̄

′

[n,l) and
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x̄[0,L] form an (X̄ , v̄)-diamond of length smaller than or equal to |v̄| + 2l + 2k. Letting
N = 2l + 2k completes the proof. �

In the case of finite-to-one factor codes π = π2 ◦ π1, we have cπ = dπ = dπ1 · dπ2 =

cπ1 · cπ2 . Since class degree is a conjugacy-invariant generalization of degree, it is natural
to consider whether this equality holds for the infinite-to-one case. The following example
shows that it actually does not; however, we are still able to get an inequality, as stated in
Proposition 6.5 below.

Example 6.4. Let X be the full 2-shift, let Y = {0∞}, and consider the trivial map π :
X→ Y . By letting π2 = π and π1 : X→ X by π1(x)i = xi + xi+1 mod 2, we have π =
π2 ◦ π1. However, 1= cπ < cπ1 · cπ2 = 2.

PROPOSITION 6.5. Let (X, Y, π1) and (Y, Z , π2) be irreducible factor triples. If π =
π2 ◦ π1, then cπ ≤ cπ1 · cπ2 .

Proof. Since class degree is invariant under conjugacy, we may assume that X and Y
are one-step and that π1 and π2 (and hence π ) are one-block. For convenience, rename
c1 = cπ1 and c2 = cπ2 . Fix a doubly transitive point z in Z , and let C be a transition
class over z with respect to π2. By Corollary 3.6, C contains a doubly transitive point y.
Moreover, by the same corollary, there are c1 doubly transitive points x (1), . . . , x (c1) in
π−1

1 (y) which are not equivalent to each other with respect to π1.
We claim that any doubly transitive point x ′ in π−1

1 (C) is equivalent to some x (i), 1≤
i ≤ c1. To show this claim, observe that y′ = π1(x ′) lies in C and is equivalent to y with
respect to π2. It follows that there is a point Ey in Y such that π2(Ey)= z, Ey(−∞,0] = y(−∞,0]
and Ey[ j,∞) = y′

[ j,∞) for some j > 0.
Since y′ is doubly transitive, a minimal transition block (w, n, M) of π1 occurs in

y′
[k,k+|w|) = Ey[k,k+|w|) = w for some k ≥ j . Let the point x ′ be routable through a symbol

a ∈ M at time k + n. There is a point Ex in π−1
1 (Ey) which is also routable through a at time

k + n. Reset Ex[k,∞) to have Exk+n = a and Ext = x ′t for all t ≥ k + |w|.
Since y is doubly transitive, the minimal transition block (w, n, M) also occurs in

y[−l,−l+|w|) = Ey[−l,−l+|w|) = w for some l ≥ |w|. Let the point Ex be routable through a
symbol b ∈ M at time −l + n. By Lemma 4.1 and Theorem 4.4, there is exactly one x (i)

among x (1), . . . , x (c1) which is routable through b at time −l + n. Reset Ex(−∞,−l+|w|) to
have Ex−l+n = b and Ext = x (i)t for all t ≤−l. Therefore, we have that Ex is left asymptotic to
x (i) and right asymptotic to x ′, and π(Ex)= π2(Ey)= z. Corollary 4.9 implies that x ′ ∼ x (i)

with respect to π . It follows that π−1
1 (C) contains at most c1 doubly transitive π -preimages

of z which are not equivalent to each other with respect to π .
Now let C1, C2, . . . , Cc2 be all the transition classes over z with respect to π2. Note

that, by Corollary 3.6, the class degree of π is the maximal number of doubly transitive
points in π−1(z)=

⋃c2
j=1 π

−1
1 (C j ) which are not equivalent to each other with respect to

π . By the above argument, each π−1
1 (C j ) contains at most c1 doubly transitive points

which are not equivalent to each other with respect to π . Therefore we have cπ ≤ c1c2. �

We finish with the following question, which can be regarded as a measure-theoretical
version of Theorem 3.4.
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Question 6.6. Let (X, Y, π) be an irreducible factor triple and ν an ergodic measure on Y .
Given a right transitive point y ∈ Y which is ν-generic, does each transition class over y
contain a generic point of a measure of relative maximal entropy over ν?

Note that the class C ∈ C (y) may not contain generic points for different measures of
relative maximal entropy over ν. For example, consider the factor code π1 on the full 2-
shift in Example 6.4. Then cπ1 = 2 and π1 maps the (1/3, 2/3)- and (2/3, 1/3)-Bernoulli
measures to the same measure on X . However, each transition class over a point in X is a
singleton.
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