Invited review

Metformin and cancer: Between the bioenergetic disturbances and the antifolate activity

J.A. Jara a, R. López-Muñoz b,∗

a Unidad de Farmacología y Farmacogenética, ICOD, Facultad de Odontología, Universidad de Chile, Santiago, Chile
b Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile

A R T I C L E I N F O

Article history:
Received 16 June 2015
Received in revised form 23 June 2015
Accepted 24 June 2015
Available online 13 August 2015

Keywords:
Cancer
Chemotherapy
Mitochondria
Metformin
Complex I
Folate cycle
Nucleotides

A B S T R A C T

For decades, metformin has been the first-line drug for the treatment of type II diabetes mellitus, and it thus is the most widely prescribed antihyperglycemic drug. Retrospective studies associate the use of metformin with a reduction in cancer incidence and cancer-related death. However, despite extensive research about the molecular effects of metformin in cancer cells, its mode of action remains controversial. In this review, we summarize the current molecular evidence in an effort to elucidate metformin’s mode of action against cancer cells. Some authors describe that metformin acts directly on mitochondria, inhibiting complex I and restricting the cell’s ability to cope with energetic stress. Furthermore, as the drug interrupts the tricarboxylic acid cycle, metformin-induced alteration of mitochondrial function leads to a compensatory increase in lactate and glycolytic ATP. It has also been reported that cell cycle arrest, autophagy, apoptosis and cell death induction is mediated by the activation of AMPK and Redd1 proteins, thus inhibiting the mTOR pathway. Additionally, unbiased metabolomics studies have provided strong evidence to support that metformin alters the methionine and folate cycles, with a concomitant decrease in nucleotide synthesis. Indeed, purines such as thymidine or hypoxanthine restore the proliferation of tumor cells treated with metformin in vitro. Consequently, some authors prefer to refer to metformin as an “antimetabolite drug” rather than a “mitochondrial toxin”. Finally, we also review the current controversy concerning the relationship between the experimental conditions of in vitro-reported effects and the plasma concentrations achieved by chronic treatment with metformin.

© 2015 Elsevier Ltd. All rights reserved.

Contents

1. Why metformin and cancer? ... 102
2. Mode of action of metformin as an antihyperglycemic drug 103
3. Metformin mode of action in cancer cell bioenergetics 103
4. Metformin as an “antimetabolite drug” ... 104
5. Other mechanism described for metformin 106
6. In vitro versus in vivo effects of metformin: the problem of concentration .. 106
Conflict of interest ... 106
Acknowledgments .. 106
References ... 106

1. Why metformin and cancer?

Metformin, a biguanide, is an antihyperglycemic agent that has for decades been the first-line treatment for type II diabetes mellitus; indeed, it is the most widely prescribed antidiabetic drug. Despite the extensive use of metformin as an antidiabetic for 40 years, the first report indicating an anticancer effect in mammals
was in 2001 [1], and the first report of a reduced risk of cancer in patients with type II diabetes treated with metformin was published only 10 years ago [2]. Since then, more than 150 articles reporting different effects of metformin in human cancers have been published. More importantly, more than 200 ongoing clinical trials, in almost all type of cancers, assessing the potential of metformin as an adjuvant or neoadjuvant chemotherapy agent or as an enhancer of classic chemotherapy are registered on www.clinicaltrials.gov. However, the mode of action explaining the anti-tumor and chemopreventive effects of metformin remains a matter of controversy. In this review, we present the current evidence suggesting some of the hypothesized mechanisms of action for this drug.

2. Mode of action of metformin as an antihyperglycemic drug

The first hypothesis to explain the mode of action of metformin as an antihyperglycemic drug involved the stimulation of glucose uptake by muscle [3]. There is a growing body of evidence suggesting that the primary effect of metformin as an antidiabetic is to decrease hepatic glucose production as a consequence of gluconeogenesis inhibition [4]. Furthermore, several reports indicate that metformin administration leads to a reduction in ATP levels in the liver and a decrease in the ATP/ADP ratio, resulting in a reduction in cellular bioenergetics [5,6].

At the molecular level, the most described mode of action of metformin is the inhibition of mitochondrial complex I (NADH ubiquinone oxidoreductase), the first component of the electron transport chain [7]. Complex I inhibition by metformin could interrupt mitochondrial respiration, inducing a decrease in proton-driven ATP production and causing an energetic stress and reduction in the AMP/ATP ratio. Consequently, it was shown in the last decade that AMP/ATP ratio decreases stimulates AMP-activated protein kinase (AMPK); this enzyme was therefore considered to be a major sensor and mediator of the glucose-lowering effect of metformin [8,9]. AMPK activation in muscle can also increase glucose consumption, and hepatic AMPK activation can inhibit gluconeogenesis and activate glycolysis [10]. Both of these effects of metformin may decrease blood glucose and contribute to its antihyperglycemic effect in type II diabetes.

Although AMPK was once considered the pivotal executor of metformin’s glycemic action, loss of function of AMPK and the upstream kinase LKB1 in mice revealed that AMPK may not be required for the observed gluconeogenesis suppression induced by metformin [5]. In addition, an AMPK-independent mechanism has been proposed, wherein metformin may be antagonized by glucagon-dependent cyclic AMP (cAMP) signaling [11]. In this way, metformin disturbs the glucagon activation of adenyl cyclase and consequent CAMP production, thereby inhibiting the activation of CAMP–dependent protein kinase (PKA). The activation of PKA decreases fructose-2,6-bisphosphate levels, thus enhancing gluconeogenesis in the liver and increasing blood glucose levels [12].

Additionally, recent data show that metformin treatment alters the hepatocellular redox state by inhibiting mitochondrial glycerophosphate dehydrogenase (mGPD), an enzyme that transports cytosolic reducing equivalents from NADH to the mitochondria through the glycerol-phosphate shuttle. It is noteworthy that a decrease in reducing equivalents, as well as complex I inhibition, compromises the ability of mitochondria to provide reducing equivalents to the electron transport chain to promote the production of ATP [13].

Thus, considering the increasing evidence that mitochondrial metabolism plays a pivotal role in supporting tumor growth by delivering both ATP and metabolic intermediates that can be used in anabolic reactions [14,15], an understanding of the actions of metformin in energy metabolism, particularly mitochondrial function, is relevant within the context of the potential applications of metformin in oncology.

3. Metformin mode of action in cancer cell bioenergetics

The recognition that type II diabetes mellitus is associated with increased cancer risk has led to increased interest in the therapeutic potential of various antidiabetic drugs such as metformin [16,17]. Of the abovementioned modes of action, the first one explored was metformin’s mitochondrial activity.

Efficient mitochondrial activity and complex I function have been shown to be essential for the promotion of aerobic glycolysis and the Warburg effect [18], and the induction of mitochondria-mediated apoptosis by metformin was described in glioma cells in 2007 [19]. In 2010, it was reported that metformin increases the fraction of uncoupled respiration [20], which is important because the induction of mitochondrial uncoupling itself via the overexpression of UPCs proteins is able to inhibit tumor growth in breast cancer cells (the MDA-MB-231 cell line) [21].

Although it has been shown that metformin inhibits mitochondrial complex I in cancer cells (Fig. 1), there is no molecular description to date of the interaction between metformin and this NADPH reductase. However, some recent evidence lends support to this hypothesis. Andrzijewski et al. [22] reported that metformin acts by directly inhibiting complex I-mediated mitochondrial respiration and citric acid cycle functions in breast cancer cells and their isolated mitochondria. These effects induce a shift in favor of uncoupling reactions, causing mitochondrial metabolism to become energetically inefficient. Thus, metformin inhibits oxygen consumption in isolated mitochondria only in the presence of complex I substrates (malate and pyruvate) but not in the presence of complex II substrates, such as succinate [22]. These data agree with classical evidence showing an inhibitory effect of complex I together with a membrane potential-driven accumulation of positively charged drug within the mitochondrial matrix in hepatocellular carcinoma [23]. Further evidence about the role of complex I in the effects of metformin was provided by Wheaton et al. [24]. These authors showed that metformin exerted an anti proliferative effect in colon cancer cells but that this effect is abolished when a metformin–resistant NADH reductase from Saccharomyces cerevisiae (NDI1) was overexpressed. These results were confirmed in mice overexpressing the NDI1 protein [24].

In addition to contributing to an energetic imbalance, the inhibition of mitochondrial complex I has been associated with a decrease in insulin/insulin-like growth factor–1 (IGF-1) signaling, inhibition of mammalian target of rapamycin (mTOR), activation of AMPK (Fig. 1), and reduction in reactive oxygen species (ROS) production and its associated DNA damage [25–28]. AMPK and mTOR signaling comprise a central pathway in tumor proliferation [29] and has been related to metformin activity in such cancers as breast carcinoma [30,31], esophageal cancer [32], pancreatic cancer [33] and gastric cancer [34]. Although the regulatory function of AMPK over mTOR is well established, there is also evidence that metformin can inhibit the activity of mTOR in an AMPK-independent manner, inducing cell cycle arrest through an increase in the expression of the Redd1 protein (Fig. 1) [35]. Nevertheless, AMPK-dependent expression of Redd1 induced by metformin has also been described [36]. Finally, other less well-known effects derived from mTOR inhibition have been suggested to be effects of metformin. Interestingly, recent studies show that metformin has the potential to antagonize the epithelial-mesenchymal transition (EMT) and stemness in cancer cells, an effect that is not an easily predictable consequence of mTOR inhibition [37–39].
In addition, metformin-induced bioenergetics alterations in hypoxic tumor cells have been reported. It is important to note that a main and well-known feature of solid tumors is the reduction in vascularization, which affects the availability of both glucose and oxygen and increases the malignant phenotype of tumor cells. Molecularly, the stabilization of hypoxia-inducible factors (HIFs) is a key step in the cascade of metabolic changes that allows adaptation to a low-oxygen environment. Consequently, activation of HIFs (such as HIF-1α) is reported in several types of cancer [40–42]. In this setting, metformin has recently been shown to reduce hypoxia-induced HIF-1α stabilization and the expression of HIF target genes in tumor cells [24]. These effects suggest that metformin may also have a therapeutic role in cancers that are dependent on HIF signaling for survival under hypoxic conditions.

4. Metformin as an “antimetabolite drug”

Folate metabolism has been highlighted as an important target for chemotherapeutic drugs. “Antimetabolite drugs”, such as methotrexate and pemetrexed, interfere with folate metabolism, exerting antiproliferative and cytotoxic effects in several types of tumor cells, and are currently used as therapy against several common cancers including breast cancer [45], lung cancer [46] and pediatric leukemia [47]. The importance of folate metabolism in cancer cells involves its relationship with important processes for tumor cell survival and/or chemotherapy resistance in “one-carbon” metabolism, which integrates nucleotide synthesis, the methionine cycle, glutathione synthesis and polyamine metabolism, among other metabolic pathways [48].

The relationship between metformin and folate metabolism alterations is based on several studies reporting an increase in homocysteine and decrease in folate and B12 vitamin in patients with type II diabetes mellitus treated long-term with metformin [49–53]. Homocysteine is linked to folate metabolism by the action of methionine synthase, an enzyme that methylates homocysteine using 5-methyl-tetrahydrofolate as a methyl group donor and B12 vitamin as the main cofactor [48]. However, the relationship between folate metabolism and the antitumor effect of metformin has not been well explored. In this regard, unbiased analyses by HPLC/MS in cancer cells treated with metformin have provided important evidence indicating that the effect of metformin resembles that exerted by antimetabolite drugs, which could explain its antiproliferative and cytotoxic effects [Fig. 2]. In 2012, Corominas-Faja et al. reported that metformin alters folate metabolism in breast cancer cells (MCF-7, BT-474 and MDA-MB-231 cell lines), inducing an inhibition of the de novo synthesis of thymidine and purine nucleotides as a final cytotoxic effect [54]. This folate metabolism alteration was also linked to a reduction in glutathione synthesis. Metformin in cancer cells also induced an accumulation of homocysteine but decreased the levels of reduced glutathione and the disulfide form of this thiol [54]. These results were further confirmed by Janzer et al. [44], whereby breast cancer stem cells (CSCs) treated with metformin showed an increase in homocysteine levels and a significant decrease in triphosphate nucleotides, as measured by HPLC/MS. Interestingly, in CSCs, metformin does not alter glycolytic intermediates or tricarboxylic acid cycle products, indicating no alteration in mitochondria homeostasis in these cells [44]. In addition, Cicco et al. evaluated the metabolite profile of the culture medium of chemotheraphy-resistant breast cancer cells (derived from MCF-7, BT-474 and SUM 159 cell lines) and found that the culture medium from cells treated with metformin had greater levels of pyroglutamate, which agrees with the reduced intracellular levels of glutathione [55]. However, as none of these reports can elucidate the precise mode of action that explains this alteration, specific enzyme inhibition mediated by metformin has not yet been proven.

![Diagram of proposed metformin's mitochondrial mode of action](image-url)

Fig. 1. Proposed metformin’s mitochondrial mode of action.
Metformin gets into cancer cells by the Organic cation transporter 1 (OTC1) protein [43]. Discontinuous red lines represent activation of signaling pathways. The figure shows the inhibitory effect of metformin on complex I [22], and the next diminution of ATP synthesis in the ATP synthase. Furthermore, metformin induces the activation of AMPK, via its phosphorylation, with the consequent inhibition of mTOR and the cell cycle arrest [25,26]. Also has been described that metformin induces Redd1, independently of the activity of AMPK [35]. In addition, metformin has an inhibitory effect on TCA cycle with the subsequent diminution of NADH levels and the diminution of cancer cell redox ability [44].
One interesting hypothesis regarding altered folate metabolism is based on other species, namely, experiments performed in a model involving Caenorhabditis elegans co-cultured with Escherichia coli. In this model, the exposure of E. coli to metformin altered folate metabolism, increasing S-adenosylmethionine and 5-methylene-thetrahydrofolate levels, whereas the levels of methionine decreased. Such alterations strongly suggest an inhibition of methionine synthase, leading to the accumulation of homocysteine and 5-MTHF as well as a bacteriostatic effect. In addition, these authors found that this antiproliferative effect in bacteria is not related to energetic metabolism because metformin did not impair respiration in wild-type and ubiquinone-deficient bacteria. The report of Cabreiro et al. is also interesting because it suggests metabolic cross-talk in folate metabolism between the species: an alteration in the folate status of C. elegans is produced by the folate alterations in E. coli, which is the main source of folate for the nematode. The extrapolation of this information to the human-gut flora interaction could offer interesting approaches to elucidating the effect of metformin on our resident gastrointestinal bacteria [56].

Some evidence also suggests that metformin could be related to polyamine metabolism in mammals. For instance, metformin competitively inhibits the transport of spermidine in NIH 3T3 cells [57]. Thus, because polyamine synthesis is tightly linked to the folate cycle via the methionine cycle, this polyamine metabolism impairment could explain the “antimetabolite effect” of metformin. Of note, HPLC/MS metabolomics profiling revealed that difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase (ODC), the first rate-limiting step in polyamine synthesis (Fig. 2), exerts an antiproliferative effect in cancer cells through the accumulation of 5-methyl-THF and reduction of the
thymidine pool. Indeed, thymidine supplementation reverses the cytostatic effects of DFMO in colon cancer cells [58]. How does metformin interfere with polyamine metabolism? Although there is no known interaction between metformin and any enzyme of the polyamine synthesis pathway, the biguanide-class structure of metformin closely resembles methylglyoxal bis(guanylylhydrazone) (MGBG), a guanidine-containing drug known to be an inhibitor of S-adenosylmethionine decarboxylase (SAM-DC), exerting antiproliferative and cytotoxic effects in tumor cells [59] (Fig. 2). Similar to metformin, it has been reported that MGBG induces mitochondrial damage independently of SAM-DC inhibition activity [60,61] and lowers glucose levels in humans [62]. Therefore, this sharing of pharmacological effects and the structural similarity between MGBG and metformin suggest that metformin could possess the inhibitory activity of SAM-DC, blocking spermidine synthesis.

Regardless, the described alteration in folate metabolism is not completely counter to the mode of action regarding mitochondria and the AKT pathway. For instance, the report of Janzer et al. shows that treatment with metformin also decreases the levels of all intermediates of the tricarboxylic acid cycle, suggesting that, at least, both phenomena occur at the same time [44]. In addition, Corominas-Faja et al. showed that AMPK activation is a consequence of folate metabolism alteration and thymidine pool depletion, as thymidine or hypoxanthine supplementation restores nucleotide biosynthesis and inhibits the phosphorylation of AMPK, restoring the proliferative ability of cancer cells [54]. Such effects on the AMPK phosphorylation status are also exhibited by metothrexate, pemetrexed and other investigational antifolate drugs that induce apoptosis via this kinase [63,64].

5. Other mechanism described for metformin

An additional mode of action for metformin was described with regard to the growth of hepatocellular carcinoma cells (HCCs). In this cancer type, metformin exerts an inhibitory effect both in vitro and in vivo through the modulation of cell-cycle regulatory proteins, such as cycling D1 and cyclin E [65,66]. Additionally, in HCCs, in which the C-MYC gene is suggested to be a pivotal mediator of carcinogenesis [67], metformin treatment has been shown to inhibit C-MYC expression in vitro by up-regulating tumor suppressor let-7 family microRNAs [68,69]. Let-7 and lin28 belong to a recently discovered family of microRNAs that are involved in the regulation of life span, cell proliferation, differentiation and apoptosis [69]. Furthermore, metformin has also been described as antagonizing lin28 activation, enhancing let-7 levels and antagonizing the carcinogenesis promoted by stem cells [69–71].

Due to the complexity and heterogeneous features of solid tumors, new culture methods, such as mammosphere formation, have offered new tools for studying the effect of drugs in more complex models [72]. Thus, employing cell lines derived from various human breast cancers, metformin at clinically relevant concentrations inhibits mammosphere formation and notably reduces the number of stem cells in vitro and also potentiates the cytotoxic activity of doxorubicin in both stem and non-stem-cells [73].

6. In vitro versus in vivo effects of metformin: the problem of concentration

The most common criticism concerning in vitro experiments aimed at explaining the mode of action of metformin is the concentration used. Pharmacokinetic analyses of metformin plasma concentration have revealed that after a regular administration of 3 g/day (maximum dose allowed in therapeutics), the average steady-state concentration is almost 1.5 mg/L; considering the molecular weight of metformin (129.2 g/mol), the average molar concentration in plasma is approximately 11 μM [74,75]. However, experiments probing the mitochondrial activity of metformin have utilized concentrations from 0.5 to 10 mM, at least 50 times greater than the plasma concentrations in humans [22,24,25,76–78]. In addition, some reports provide evidence that the antifolate activity of the drug is observed at concentrations between 0.3 and 1 mM, also greater than the plasma concentration [44,54,55]. Finally, in vivo research in which mice are treated with metformin has resulted in interesting evidence. For instance, in mice treated with 250 mg/kg of metformin, resulting in a plasma concentration of 4 mg/mL, Memmot et al. showed that the mTOR pathway was effectively inhibited, whereas phosphor-AMPK was increased, lending strong support to the AMPK-mediated mechanism of action of metformin [27].

Another concern resulting from in vitro and in vivo data is that glucose in the culture medium could interfere with metformin metabolism. Most of the papers reviewed utilized DMEM or DMEM/F12 as the culture medium, which contain 24 and 17.5 mM glucose, respectively; however, the normal range of glucose concentration in plasma is below 7 mM. In this regard, Zhuang et al. proved that the cytotoxic effect of metformin is potent in low-glucose media, suggesting that the necessity of a high concentration of metformin in vitro experiments is due to the masking effect that glucose exerts; thus, the data obtained in these experiments are not invalidated [76]. This relationship between the effects of metformin and the medium glucose concentration was further confirmed by Weathon et al. [24] and Menendez et al. [78]. Finally, it is obvious that complex metabolism-modifying drugs such as metformin most likely have several modes of action. Thus, a deeper knowledge about these mechanisms could improve the design of new drugs and the understanding of the potential use of metformin in cancer and other multifactorial diseases.

Conflict of interest

The authors declare that there is no conflict of interest associated with this publication.

Acknowledgments

JA is supported by the grants U-UNICIA #156 (Vicerrectoría de Investigación, Universidad de Chile) and “Proyecto de Inserción en la Academia” #791220004 (Consejo Nacional de Investigaciones Científicas y Tecnológicas–CONICYT, Chile). RLM is supported by the grant DID-UACH #S-2015-05 (Dirección de Investigación, Universidad Austral de Chile).

References

