Polyethylene/reduced graphite oxide nanocomposites with improved morphology and conductivity

Giovani Pavoski a, Thuany Maraschin b, Marcéo A. Milani a, Denise S. Azambuja a, Raúl Quijada c, Cássio Stein Moura d, Nara de Sousa Basso b, Griselda Barrera Gallanda a,∗

a Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre 91501-970, Brazil
b Departamento de Química, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, Porto Alegre 90619-900, Brazil
c Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla, 2777 Santiago, Chile
d Faculdade de Física, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga, 6681 Porto Alegre, Brazil

ARTICLE INFO

Article history:
Received 4 August 2015
Received in revised form 6 November 2015
Accepted 8 November 2015
Available online 11 November 2015

Keywords:
Polyethylene
Nanocomposites
Graphene
Morphology
Conductivity
Reduced graphite oxide

ABSTRACT

The use of graphite and polyolefins as starting materials to prepare nanocomposites is convenient because both are inexpensive and have very different properties, one is conductive and the other is insulating. The formation of nanocomposites can extend the applicability of both commodities. In this work we synthesized nanocomposites of polyethylene (PE) with two types of graphites, graphite oxide (GO) and reduced graphite oxide (RGO), by in situ polymerization using a supported metallocene catalyst. The functional groups on the graphites were used to support the metallocene catalyst by a previous treatment with methylaluminoxane. The nanocomposites were obtained with good catalytic activities and presented excellent morphology and dispersion; their elastic modulus and crystallization temperatures were higher than those of neat PE. However, the nanocomposites PEGO were insulant, whereas PERO had a conductivity of 1.1 × 10−5 S cm−1 with 3.1 wt% filler. This is a significant result compared to the conductivity obtained using non-supported graphite nanosheets where more than 15 wt% of graphite nanosheets are needed to obtain conductivities higher than 10−7 S cm−1. This improvement in the percolation threshold was attributed to the good morphology of the PEGO nanocomposites obtained due to the control of the graphitic sheets and the support methodology.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Graphite is found in nature in the form of natural graphite flakes or powders of various particle sizes. Brazil is the third largest producer of graphite, preceded by China and India, and has large reserves [1]. Interest in the graphite industry has dramatically increased with the discovery of the outstanding properties of graphene, the one-atom sheet that composes graphite [2]. However, a major challenge is to obtain adequate quality graphene at an affordable cost. Some current production routes include chemical vapor deposition [3], CO reduction [4], and exfoliating graphite [5–14]. The last method is the only one that can provide large quantities of graphene at a low cost and is the one used to obtain nanocomposites.

Published papers have documented the preparation of polyolefin nanocomposites with graphite or graphite oxide (GO) by blending in the molten state [2,13,15–17], solid-state shear pulverization [18,19] and solution [20,21]. In general, nanoparticles are difficult to disperse. Dispersion of nanoparticles during olefin polymerization benefits from the low viscosity of the liquid polymerization media, which prevents nanoparticle emissions. Dry powder blending with nanoparticles requires special safety precautions and handling procedures to prevent emissions, dust explosions, and health hazards resulting from nanoparticle inhalation or absorption [22]. However, in situ polymerization (polymerization of the monomer in the presence of fillers) of ethylene or propylene with graphite or graphite-derivative materials has been less studied [23].

In recent years our research group has been working to obtain graphene/polyolefin nanocomposites using in situ polymerization with metallocene catalysts [24–28]. Our results show improvement on the Young modulus, crystallization temperature, thermal stability, and conductivity in the nanocomposites compared with...
neat polymer; however, our electrical percolation threshold was still too high. In that research we used commercially expanded graphite sonicated for 8 h, and we obtained the nanocomposites by in situ polymerization using a non-supported approach. However, in some cases, to achieve a homogeneous dispersion of the nano-composites, covalent functionalization of graphene with polymers may be necessary [29]. There is a growing research focus on introducing covalent linkages between graphene-based filler and the polymer to promote stronger interfacial bonding [30].

Although the functionalization of graphene with polymers is generally attempted with a view to confer new or improved properties to the polymer, the polymer may also prevent the aggregation of the graphene sheets [29–32]. Polypropylene has very recently been graft from Ziegler–Natta-immobilized GO prepared through a Grignard reagent [33]. Independent of the opposite nature of the polymer and GO, a good dispersion of sheets in the matrix was observed. Strikingly, in spite of the almost insulating properties to the polymer, the polymer may also prevent the aggregation of the graphene sheets [29].

2. Experimental

2.1. Materials

All materials were used as received. Graflake 9950 (FK) with a size of around 150 μm was provided by National de Grafite Ltda. (Brazil). Sulfuric acid, nitric acid, hydrochloric acid, and potassium chloride were purchased from Merck, São Paulo, Brazil. Polymerization reactions were performed in a 100-ml reactor (Parr Instrument Company, Illinois, USA). The solvents and solutions for polymerization reactions were handled under an inert atmosphere of argon using the standard Schlenk technique. The reagents were used as received, except toluene (Nuclear, Brazil), which was distilled under argon with metallic sodium and benzophenone (Sigma–Aldrich, Brazil) [37].

2.2. Graphite oxide synthesis and thermal reduction

GO was synthesized from FK flakes using a modified Staudenmaier method [38], where the time of oxidation was used was 24 h instead of 96 h. The GO was then heated at 1000 °C for 30 s in an oven, using a closed quartz ampoule with normal atmosphere. Reduced graphite oxide (RGO) was obtained.

2.3. Support of the catalyst

For catalyst support, GO or RGO was placed in a Schlenk vessel with toluene using inert atmosphere and was sonicated with a bath (Ultracleaner 1600A, Unique, Brazil) working at 40 kHz for 8 h. The amount of GO and RGO used varied between 100 and 1000 mg. Then, 15% (wt/wt) MAO was added to the graphite and sonicated for an additional 30 min. Next, Cp2ZrCl2 was added in an amount of 2 (wt/wt) Zr/GO or 2% (wt/wt) Zr/RGO, left another 30 min in the ultrasonic bath, and 2 h with stirring at 50 °C. The supernatant was then decanted and the solid washed three times with toluene. Thereafter, the GO/MAO/Cp2ZrCl2 or RGO/MAO/Cp2ZrCl2 was used as the catalyst for the polymerization of ethylene.

2.4. Polymerization reactions

Polymerization reactions were performed in a 100-ml reactor; toluene was used as the solvent and an additional amount of MAO (Al/Zr = 100) was added as scavenger. The reactions were performed at 70 °C using a 3.0-bar ethylene pressure for 30 min. The polymerization reactions were stopped using ethanol acidified with HCl (10%).

2.5. Characterization

The fractions of C, H, and N in the graphite samples were analyzed using a Perkin–Elmer MCHNSO/2400 analyzer. A sample mass of 2 mg was employed in each analysis.

The contents of zirconium fixed on the nanoparticles were determined by inductively coupled plasma emission spectrometry (ICP) in a Perkin Elmer, Optima 7300.

The melting temperature and crystallinity of the nanocomposites were measured on a differential scanning calorimeter (TA Instruments Q20) with a heating rate of 10 °C min⁻¹ and a temperature range of 20–160 °C. The heating cycle was performed twice to remove the thermal history of the material, but only the results of the second heating were considered.

The dynamic mechanical analysis of the nanocomposites was obtained using a DMA analyzer (TA Instrument model Q800). The samples were analyzed in a single cantilevered manner at a frequency of 1 Hz and a strain level of 0.1% in the temperature range of −140 to 120 °C. The heating rate was 3 °C min⁻¹. The tests were conducted using a rectangular bar with dimensions of 17 × 13 × 3 mm.

The analysis of molecular weights was performed on a Waters chromatograph (Alliance GPC 2000) equipped with a differential refractometer and three Styragel HT columns (HT3, HT5, HT6E) previously calibrated with polystyrene standards. The solvent used was 1,2,4-trichlorobenzene at 135 °C. Before injecting the nanocomposites in the chromatograph, samples were placed in a Soxhlet extractor with decalin under reflux for 4 h at 160 °C. The polymers were precipitated from the decalin solution with ethanol, filtered, and dried in a vacuum oven for 4 h.

Scanning Electron Microscopy (SEM) was performed with a Phillips microscope (model XL30) operating at 20 kV, using aluminum stubs and gold metallization.
Transmission Electron Microscopy (TEM) images of the reduced graphene oxide were obtained using a JEOL 2010 TEM operated at 200 kV. All samples were prepared by depositing an acetone suspension drop on a copper grid (300 mesh) covered with amorphous carbon. TEM images of the nanocomposites were obtained using a JEOL 1200 EXII TEM operated at 100 kV. All samples were prepared by depositing an decalin suspension drop on a copper grid (300 mesh) covered with amorphous carbon.

Electrical impedance spectroscopy was performed to measure the electrical conductivity of the graphites. A sine wave with 1.0 Vpp was applied to the sample, and the frequency was varied from 1 to 10^6 Hz. The current and potential differences between the sample's faces were measured. The phase difference between the voltage and current in the sample allows the determination of the real part, which is associated with conductivity, and imaginary parts of electrical impedance. A numerical fitting algorithm was applied to the data, which provided the conductivity values.

Impedance measurements of the nanocomposites were obtained with films cut and sandwiched between two stainless steel electrodes assembled into an epoxy resin holder, as described previously [39]. Film thickness was between 50 and 70 μm, and the area was about 1.5 cm². These films were obtained from samples prepared in a Carver Press at 160 °C and 5 ton/cm² for 3 min. The measurements were performed using an AUTOLAB PGSTAT 30/FRA 2 in the 1-MHz to 100-mHz frequency range, and the amplitude of the sinusoidal voltage was 10 mV. All experiments were carried out at 25 °C.

3. Results and discussion

Elementary analyses showed that GO consisted of 33% oxygen atoms and that 13% still remained after reduction. Fourier transform infrared (FTIR) spectra (Supplementary data) showed that most of the oxygen is in the form of hydroxyl groups. These functional groups are the ones to which MAO will be fixed, avoiding the deactivation of the metallocene catalyst, which is very sensitive to polar groups. The difference in the number of hydroxyl groups in GO and RGO was also confirmed by the amount of catalyst supported.

The quantity of Zr in the supported catalysts was calculated by ICP, and the results were 1.31 wt% Zr/GO and 0.36 wt% Zr/RGO. Considering that initially 2 wt% Zr was placed over the graphite support, the amount of Zr immobilized in the GO showed good results, given that normally only half of the catalyst remains in the support after grafting [35]. This high amount of Zr immobilized over GO can be attributed to the high number of oxygen groups available over GO. On the other hand, the amount of Zr supported over the RGO was only 0.36 wt%, which can be explained by the significantly reduced (2.5 times) number of oxygen groups available in RGO.

Studies of X-ray diffraction (XRD) (Supplementary data), Raman (Supplementary data), SEM and TEM (Fig. 1 and Supplementary data) of these graphites showed that they are constituted by graphene sheets (an average of 11 graphenes per crystal) with a distance between the graphenes of 0.8 nm in GO and 0.35 nm in RGO. As one of the objectives of this work was to compare the nanocomposites obtained by the supported method (this work) with the results obtained in our previous work, we included some of the published results. We previously used the non-supported method [23,25–28], i.e., we placed the graphite, MAO, catalyst, and monomer together in the reactor without supporting the catalyst first. In order to avoid the deactivation of the catalyst, the graphite used was sonicated expanded graphite (GNS) with a very low percentage of oxygen (2.4%), as described previously [24].

Table 1 shows the results of the polymerization of ethylene with the catalysts supported on GO and RGO. The results of the homogeneous polymerization of ethylene and the results obtained with GNS using the in situ polymerization (non-supported method) are also shown. In the case of the supported catalyst systems, the ratio of Al/Zr used in the reactor was 100 because the supported catalysts already have MAO impregnated in the support. In this case, the amount of MAO in the reactor works only as a scavenger because the catalyst was already activated by the MAO in the support. For the in situ polymerizations with GNS, the Al/Zr used was 1000 because MAO needs to act as a scavenger and an activator.

In the polymerizations with the system Cp₂ZrCl₂/MAO/GO, there was a decrease in the catalytic activity with an increase in the amount of graphite in the support, probably due to the high number of oxygen groups even though the amount of MAO was also increased. In all cases these catalytic activities were inferior to the ones obtained with the reduced oxide that contained fewer deactivating functional groups. The catalytic activities of the supported catalysts were lower than the ones presented by the homogeneous in situ polymerization. This behavior is normally observed in heterogeneous systems because not all the Zr impregnated in the support are active, as is the case in homogeneous polymerization [35].

Melting temperatures (Tₘ) and crystallinities (Xₘ) of the nanocomposites did not show a trend; however, the crystallization temperatures (Tₜ) of all the nanocomposites were 2–4 °C higher than those of the neat PE, showing the nucleation power of the filler. Mass average molecular weights of the supported nanocomposites (PEGO: molecular weight (Mₙ) = 50,000 g mol⁻¹ and the polydispersities between 2.0 and 2.8), were all significantly higher than the ones obtained with homogeneous polymerization (PE: Mₙ = 28,000 g mol⁻¹ and polydispersity of 3.0), which is typical of the heterogeneous catalyst [35].

The nanocomposite morphology was studied by SEM. Fig. 1 shows the SEM images of all the graphites compared in this work; GO, RGO, and GNS, were all highly exfoliated. TEM of RGO and GNS are also shown in Fig. 1. It is possible to count the number of graphenes in the nanosheets (see the sheet between the arrows in Fig. 1d), confirming that RGO is composed by a few graphene layers as it was also estimated by XRD (Supporting information). In GNS the number of graphenes per sheet was higher.

Figs. 2 and 3 show different SEM magnifications of the PEGO2 and PERGO1 nanocomposites with similar amounts of filler (2.5 and 2.2 wt%, respectively). For comparison, Fig. 4 shows the SEM of PE obtained by homogeneous polymerization (Fig. 4a) and two SEM magnifications (b) and (c) of the nanocomposite PEGNS2 (with 2.8 wt% of GNS) obtained by in situ polymerization; the differences in morphology are impressive. The nanocomposites obtained with the supported catalysts (Figs. 2 and 3) formed spherical particles that flowed easily, preventing the fouling of the reactor. The non-supported catalyst gave nanocomposites with morphology closer to PE (Fig. 4). The nanocomposite obtained with the RGO had a highly exfoliated structure (Fig. 3d), showing that PE grew over the exfoliated graphite sheets. The PEGO nanocomposites were also very exfoliated, but the edges of graphite were not as ordered as in the PERGO (Figs. 2d and 3d).

Transmission electronic micrographs of the nanocomposites with GO and RGO are shown in Fig. 5. It can be seen like dark worms (Fig. 5a and c) distributed uniformly all over the samples that represent graphite nanosheets with very good aspect ratio recovered by polymer. In the higher magnification micrographs (Fig. 5b and d) it can be seen dark lines in the thinner part of the sample showing the graphene nanosheets. In both samples the filler seems to have a very good dispersion in the polymeric matrix.

Dynamic mechanical studies (Fig. 6) showed that the storage modulus (E') is higher in all the nanocomposites compared to the neat polymer, showing a significant increase in stiffness and
reinforcement. Graphite fillers make the polymer stiffer when they are well dispersed [40]. Once that the DMA analysis takes into account the viscoelastic behavior of the polymer, the modulus measured in this analysis is not exactly the same to the Young’s modulus of the classic stress-strain curve. However, as the storage modulus is associated with a rigid material, it may be related to the Young’s modulus especially in the room temperature region [41,42]. At 25 °C nanocomposites with similar amount of filler, PEGO2 (2.5%) and PERGO1 (2.2%) show the same E’ of 2100 MPa. This value is 75% superior to the one presented by the neat polyethylene (1200 MPa). When the GO content added was 9.5% (PEGO4) the value found for E’ (2300 MPa) was almost doubled. Such important enhancement in the storage and/or Young modulus have been seen in other studies when graphite-based fillers were considered well dispersed in the matrix [18,22,26,27].

These data as well as the transition temperature (Table 1), which was higher in the nanocomposites, showed the reinforcement effect of the fillers, which depends more on the amount than on the type of graphite.

One of the aims of this study is to transform an insulant material as PE to a semi-conductor material to broaden the applications. Table 2 shows the conductivities of the fillers (GO, RGO and GNS) and their PE nanocomposites. The presence of almost 33% oxygen atoms in GO should make this graphite the least conductive among the studied ones, and this was the case in our study. However, 1.2 × 10−2 S cm−1 is also good average conductivity given that the measurement of conductivity is made of a pellet without any orientation. Graphite is an anisotropic material that presents conductivity only in one direction, i.e., in the horizontal plane, so this method obtained an average conductivity. GNS, which has only 2.4% oxygen, is only two times more conductive than GO; on the other hand, RGO with about 13% oxygen is 10 times more conductive than GO. The presence of oxygen, therefore, is not the only factor influencing conductivity. Previous studies [24] (see also Supplementary data) shows that RGO is more exfoliated than GNS and has fewer graphenes per sheet. This difference in the type of graphite used has an appreciable influence on the conductivity of the nanocomposites produced. In the case of the nanocomposites obtained with GO, neither of them were conductive even using a high amount of filler (9.5%). The nanocomposites obtained with GNS using the in situ polymerization [27], i.e., mixing all the reagents in the reactor without previous support of the catalyst, gave conductive nanocomposites but only when a high amount of graphite was used—15.3 wt% and 20.9 wt% GNS to obtain

![Fig. 1. SEM of (a) GO, (b) RGO and (c) GNS and TEM of (d) RGO and (e) GNS [24].](image)

Table 1

<table>
<thead>
<tr>
<th>Samples</th>
<th>Graphites (%)</th>
<th>Graphites (g)</th>
<th>Polymer (g)</th>
<th>Catalytic activity (KgPE/[Zr] h bar)</th>
<th>Tc (°C)</th>
<th>Tm (°C)</th>
<th>Xc (%)</th>
<th>Tg (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE</td>
<td>0</td>
<td>0</td>
<td>10.9</td>
<td>166</td>
<td>116</td>
<td>131</td>
<td>69</td>
<td>-113.2</td>
</tr>
<tr>
<td>PEGO1</td>
<td>1.1</td>
<td>0.1</td>
<td>8.9</td>
<td>415</td>
<td>118</td>
<td>132</td>
<td>78</td>
<td>-111.1</td>
</tr>
<tr>
<td>PEGO2</td>
<td>2.5</td>
<td>0.2</td>
<td>7.9</td>
<td>182</td>
<td>117</td>
<td>133</td>
<td>84</td>
<td>-111.6</td>
</tr>
<tr>
<td>PEGO3</td>
<td>3.0</td>
<td>0.3</td>
<td>9.9</td>
<td>153</td>
<td>118</td>
<td>132</td>
<td>90</td>
<td>-</td>
</tr>
<tr>
<td>PEGO4</td>
<td>9.5</td>
<td>0.5</td>
<td>5.3</td>
<td>49</td>
<td>119</td>
<td>134</td>
<td>78</td>
<td>-111.2</td>
</tr>
<tr>
<td>PERGO1</td>
<td>2.2</td>
<td>0.2</td>
<td>9.2</td>
<td>780</td>
<td>119</td>
<td>134</td>
<td>-</td>
<td>-111.5</td>
</tr>
<tr>
<td>PERGO2</td>
<td>3.1</td>
<td>0.3</td>
<td>9.6</td>
<td>544</td>
<td>120</td>
<td>132</td>
<td>66</td>
<td>-</td>
</tr>
<tr>
<td>PEGNS1a</td>
<td>1.2</td>
<td>0.05</td>
<td>4.1</td>
<td>1464</td>
<td>118</td>
<td>132</td>
<td>72</td>
<td>-109</td>
</tr>
<tr>
<td>PEGNS2a</td>
<td>2.8</td>
<td>0.1</td>
<td>3.6</td>
<td>1285</td>
<td>118</td>
<td>131</td>
<td>73</td>
<td>-109</td>
</tr>
<tr>
<td>PEGNS3a</td>
<td>5.6</td>
<td>0.2</td>
<td>4.6</td>
<td>1642</td>
<td>119</td>
<td>132</td>
<td>84</td>
<td>-106</td>
</tr>
</tbody>
</table>

PEGO = nanocomposite of polyethylene with graphite oxide; PERGO = nanocomposite of polyethylene with reduced graphite oxide; PEGNS: nanocomposite of polyethylene with graphite nanosheets.

a Samples prepared by in situ polymerization with Graphene Nanosheets (GNS) using the non-supported method. This data is described in Refs. [24,27].
conductivities of 1.6×10^{-7} and 1.3×10^{-4} S cm$^{-1}$, respectively. Remarkably, RGO gave an PERGO nanocomposite having a conductivity of 1.1×10^{-5} S cm$^{-1}$ with only 3.1 wt% of RGO distributed in the PE matrix.

This strong decrease in the percolation threshold can be attributed to two factors. The first is the excellent exfoliation of this RGO, the quality of the graphene sheets with a low number of defects, and possibly the presence of single graphene sheets that provided a better dispersion in the matrix. The second factor is the methodology used, which was supporting the catalyst that led to the morphology of the graphene sheets. It can be seen in Fig. 3 that the PE-recovered graphene sheets are almost parallel or orientated, which significantly enhance conductivity. On the other hand, Fig. 2 shows that the nanocomposite sheets in PEGO are disordered,

Fig. 2. SEM images of nanocomposite PEGO2 (2.5% GO/PE) at different magnifications, scale bars: a) 100 µm, b) 20 µm, c) 2 µm and d) 200 nm.

Fig. 3. SEM images of nanocomposites PERGO1 (2.2% RGO/PE) at different magnifications, scale bars: a) 100 µm, b) 20 µm, c) 2 µm and d) 200 nm.
Fig. 4. SEM images of a) PE, scale bar 50 μm and PEGNS 2.8% in situ polymerization, scale bars: b) 50 μm and c) 5 μm.

Fig. 5. TEM image of PEGO2 (2.5%) with scale bars a) 0.2 μm and b) 50 nm and PERGO1 (2.2%), scale bars c) 0.5 μm and d) 50 nm.
which does not provide good conductivity. To our knowledge, this is the first work where these types of morphologies are shown.

4. Conclusions

PERGO nanocomposites with excellent morphology and good conductivity were obtained. The key to obtaining this interesting material is the preparation of a high exfoliated graphite with a low number of defects and some oxygen functional groups (13%) on the material is the preparation of a high exfoliated graphite with a low conductivity were obtained. The key to obtaining this interesting

Acknowledgments

The authors would like to thank CNPq 302902/2013-9 and 473128/2011-0, CAPES, FAPERG-PRONEX 09/2009, Department of the Navy Grant N62909-11-1-7069 issued by Office of Naval Research Global, PROYECTO FONDECYT: 1130446 for financial support. R.Q. acknowledge the Millennium Nucleus of Chemical Processes and Catalysis (CPC), grant number NC120082. We also thank Nacional de Grafito Ltda./Brazil for the Grafflake 9950 supply and CME and LRNANO from UFRGS for microscopy analysis.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.polymer.2015.11.019.

References

