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Abstract

Objective

The purpose of this study was to compare the transcriptome of visceral and subcutaneous

adipose tissues between pregnant and non-pregnant women.

Study Design

The transcriptome of paired visceral and abdominal subcutaneous adipose tissues from

pregnant women at term and matched non-pregnant women (n = 11) was profiled with the

Affymetrix Human Exon 1.0 ST array. Differential expression of selected genes was vali-

dated with the use of quantitative reverse transcription–polymerase chain reaction.

Results

Six hundred forty-four transcripts from 633 known genes were differentially expressed

(false discovery rate (FDR) <0.1; fold-change >1.5), while 42 exons from 36 genes showed
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differential usage (difference in FIRMA scores >2 and FDR<0.1) between the visceral and

subcutaneous fat of pregnant women. Fifty-six known genes were differentially expressed

between pregnant and non-pregnant subcutaneous fat and three genes in the visceral fat.

Enriched biological processes in the subcutaneous adipose tissue of pregnant women were

mostly related to inflammation.

Conclusion

The transcriptome of visceral and subcutaneous fat depots reveals pregnancy-related gene

expression and splicing differences in both visceral and subcutaneous adipose tissue. Fur-

thermore, for the first time, alternative splicing in adipose tissue has been associated with

regional differences and human parturition.

Introduction
Physiological adaptations of normal pregnancy include insulin resistance,[1–3] hyperlipid-
emia,[4,5] and, most notably, increased fat depot.[6,7] Teleologically, these profound metabolic
changes are aimed to ensure adequate nutrient supply for the rapidly growing fetus and pla-
centa. The ephemeral nature of the pregnancy-induced metabolic alterations, as well as empiri-
cal findings,[8–11] led to the conventional view that these physiologic adaptations stem solely
from the “diabetogenic” effect of the placental hormones. This concept has been challenged by
a large body of evidence suggesting that adipose tissue may play a regulatory role in both nor-
mal and abnormal gestations.

During the last decade, adipose tissue has emerged as a powerful endocrine organ [12–17]
that exerts autocrine, paracrine, and endocrine effects by production and secretion of highly
active peptides and proteins collectively termed adipokines.[15,18] The realization that fat is
an important endocrine organ that is crucial for whole-body insulin sensitivity and energy
homeostasis has rekindled the scientific interest in adipose tissue in both non-pregnant and
pregnant individuals. Indeed, adipokines have been implicated in physiological adaptations of
normal gestation,[12,19–34] as well as in the pathophysiology of preeclampsia,[35–54] gesta-
tional diabetes mellitus,[55–72] preterm birth,[73–75] delivery of large-for-gestational-age
(LGA) newborns,[76] small-for-gestational-age (SGA)[77–84] neonates, pyelonephritis,[85–
87] and intrauterine infection and inflammation.[88–91] Of note is the well established associ-
ation between obesity and theses complications of pregnancy.[30–33,70–72,92–117]

An emerging concept is that fat accrual in different depots is associated with different meta-
bolic consequences.[118] Specifically, accumulation of visceral (intra-abdominal) fat is associ-
ated with a much higher risk of diabetes, dyslipidemia, accelerated atherosclerosis, and
metabolic syndrome than subcutaneous fat accretion.[119–122] Although the specific mecha-
nism(s) by which an intra-abdominal fat depot exerts its detrimental effects has not been fully
elucidated, it is clear that visceral and subcutaneous adipose tissues display distinct structural
and functional properties, which include: 1) the size of adipocytes is smaller in visceral than in
subcutaneous adipose tissue;[123] 2) visceral fat cells have an increased β-adrenoceptor-medi-
ated lipolysis;[124] 3) visceral adipocytes display greater responsiveness to both adrenergic
receptor- and postreceptor-acting agents compared with subcutaneous adipocytes[123]; 4)
gene expression of β1- and β3-adrenoceptors is higher and β2-adrenoceptor lower in the vis-
ceral cells;[124] and 5) mRNA expression[125] and secretion of important adipokines such as
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leptin,[125,126] adiponectin,[126,127] and retinol-binding protein-4 (RBP4),[126] is lower in
visceral compared to subcutaneous adipocytes.

The mechanisms responsible for adipose tissue depot-specific structural and functional dif-
ferences are unknown. Regional variations in specific genes coding for important functional
proteins[124,126–148] have led several investigators to employ high throughput techniques to
identify adipose tissue depot-specific gene differences in non-pregnant individuals.
[128,131,149–151] However, to date, no studies have been published on the differences in the
transcriptome of visceral and subcutaneous adipose tissues between pregnant and non-preg-
nant women. Furthermore, to our knowledge, alternative splice variants whose expression dif-
fers between visceral and subcutaneous have not been reported in either pregnant or non-
pregnant individuals.

This study was undertaken to characterize the transcriptome of visceral and subcutaneous
adipose tissues during human pregnancy to gain further insight into the molecular changes
that are associated with normal gestation. The aims of this study were: 1) to determine the dif-
ferences between visceral and subcutaneous gene expression in non-pregnant women; 2) to
characterize, for the first time, regional variations in the transcriptome of adipose tissue during
normal pregnancy; 3) to determine the differences in visceral and subcutaneous gene expres-
sion between pregnant and non-pregnant women; and 4) to identify depot-specific and preg-
nancy-related alternative splicing alterations in adipose tissue.

Materials and Methods

Study groups
A prospective study was performed in which visceral and subcutaneous adipose tissue samples
were obtained from patients in the following groups: 1) pregnant women undergoing elective
cesarean section at term (n = 25); and 2) non-pregnant women undergoing elective laparotomy
for conservative myomectomy (n = 11). Patients were matched according to age, parity and
body mass index (BMI) at sampling for the comparison between pregnant and non-pregnant
women.

The inclusion criteria for both groups were: 1) absence of medical complications; 2) no anti-
biotic administration prior to the sample collection; and 3) normal post-operative course. The
inclusion criteria for pregnant women also included: 1) absence of obstetric complications of
pregnancy; 2) normal pregnancy outcome, including an infant who was of appropriate weight
for gestational age (AGA) without congenital anomalies and had Apgar scores>7 at 1 and 5
minutes; 3) absence of meconium staining of the amniotic fluid; and 4) absence of histologic
chorioamnionitis.

Eligible patients were enrolled at Hutzel Women’s Hospital (Detroit, MI, USA). All women
provided written informed consent prior to the collection of adipose tissue samples. The collec-
tion and utilization of the samples for research purposes were approved by the Institutional
Review Board of the Eunice Kennedy Shriver National Institute of Child Health and Human
Development (NICHD), National Institutes of Health (NIH), U.S. Department of Health and
Human Services (DHHS), Bethesda, MD, and Detroit, MI, USA), and the Human Investigation
Committee of Wayne State University (Detroit, MI, USA).

Clinical definitions
Patients not in labor underwent a cesarean section secondary to a fetus in non-cephalic presen-
tation, a previous uterine surgery or classical cesarean section, or an elective cesarean section
with no more than one previous cesarean section. Only women who delivered an AGA new-
born were included. Acute histologic chorioamnionitis was diagnosed using previously
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described criteria.[152,153] An AGA neonate was defined as having a birth weight between the
10th and 90th percentiles for the gestational age at birth.[154] Term gestation was defined as
gestational age>37 completed weeks. BMI was calculated according to the formula: weight
(kg)/height (m2). Normal weight was defined as a BMI of 18.5–24.9 kg/m2, overweight as a
BMI 25–29.9 kg/m2, and obesity as a BMI>30 kg/m2, according to the definitions of the
World Health Organization.[155]

Sample collection
Paired visceral and subcutaneous adipose tissue samples were obtained after an eight-hour fast.
Subcutaneous adipose tissue samples were collected at the site of a transverse lower abdominal
incision, in the middle of the Pfannenstiel incision, from the deeper strata of subcutaneous fat.
Visceral samples were obtained from the most distal portion of the greater omentum.
[127,156–159] Visceral and subcutaneous adipose tissues were collected using Metzenbaum
scissors and measured approximately 1.0 cm3. Tissues were snap-frozen in liquid nitrogen, and
were kept at –80°C until use.

RNA isolation
Total RNA was isolated from snap-frozen adipose tissue samples using TRI Reagent1

(Ambion1, Life Technologies Corporation, Austin, TX, USA) combined with the Qiagen
RNeasy Lipid Tissue Kit protocol (Qiagen, Valencia, CA, USA), according to the manufactur-
ers’ recommendations. The RNA concentrations and the A260 nm/A280 nm ratios were
assessed using a NanoDrop1 1000 Spectrophotometer (Thermo Scientific, Wilmington, DE,
USA). RNA integrity numbers were determined using the Agilent Bioanalyzer 2100 (Agilent
Technologies, Wilmington, DE, USA).

Microarray analysis and quantitative real-time reverse-transcription
polymerase chain reaction (qRT-PCR)
The Affymetrix GeneChip Human Exon 1.0 ST array (Affymetrix, Santa Clara, CA, USA) plat-
form was used to measure the expression levels in each unpooled specimen, according to the
manufacturer's instructions. The array contains approximately 5.4 million 5-μm features
(probes) grouped into 1.4 million probesets interrogating more than one million exon clusters.
[160–162] To verify the results from microarray, 53 genes were selected for qRT-PCR assays
from the original sample set (n = 11). A detailed description of the method and analysis is
available as supplementary material (S1 File. Supplementary methods).

Statistical analyses
The raw gene expression data were preprocessed using Robust Multi-array Average (RMA).
[163] A paired moderated t test[164] was used to test for differential expression with a false dis-
covery rate (FDR)[165] threshold of 0.1 in conjunction with a threshold of 1.5 on the fold-
change to assign gene significance.[166] Differential exon usage was tested using the FIRMA
(Finding Isoforms Using Robust Multichip Analysis) method [167] adapted for multiple sam-
ples as described in the Supplementary methods (S1 File). Gene Ontology analysis was con-
ducted with algorithms that were described previously.[168] Pathway analysis was performed
on the Kyoto Encyclopedia of Genes and Genomes (KEGG)[169] pathway database with an
overrepresentation analysis[170] Assessment of differential expression between experimental
regions from qRT-PCR data was performed with a paired t test on –ΔCt values. The Student t,
Mann-Whitney U, and X2 tests were used to identify significant differences in patient
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demographics between women in the microarray and qRT-PCR groups. SPSS software (version
14.0; SPSS Inc, Chicago, IL) was used for statistical analysis of the demographic data. A proba-
bility value of< 0.05 was considered statistically significant.

Results

Demographics
Table 1 displays the demographic characteristics of patients who were included in the microar-
ray and qRT-PCR analyses.

Results of the microarray analysis
Pregnant women: visceral versus subcutaneous. Microarray analysis demonstrated 644

transcripts that corresponded with 633 unique known genes that were differentially expressed
between visceral and subcutaneous adipose tissue of pregnant women at term (q-value<0.1;
fold change>1.5). A total of 391 genes had decreased expression, and 242 genes had increased
expression in the subcutaneous, compared with visceral adipose tissue. A “volcano plot” shows
the differential expression of all the transcripts tested in this comparison, with the log (base 10)
of the FDR-adjusted probability values (q-value) (y-axis) plotted against the log (base 2) fold-
changes (x-axis) between the visceral and subcutaneous adipose tissues (Fig 1). The heat map
in Fig 2 uses a color scale to show the consistency of the expression levels within each group of
samples as well as the differences between the groups that led to positive test results. A list of
the top 10 differentially expressed transcripts between visceral and subcutaneous adipose tis-
sues is presented in Table 2; the complete list of differentially expressed transcripts is available
as supplementary material (S1 Table).

Gene ontology meta-analysis of the significantly up- and down-regulated genes was per-
formed to identify gene ontology terms that were represented by the differentially expressed
genes. In this analysis, 82 biological processes were enriched (q-value<0.05); the top 10 biolog-
ical processes are presented in Table 3; the complete list of differentially expressed transcripts
is available as supplementary material (S2 Table). Pathway analysis of the significant genes was
undertaken with an overrepresentation method resulting in 12 KEGG pathways were signifi-
cant (q-value<0.05) in the comparison between visceral and subcutaneous adipose tissues

Table 1. Demographic and clinical characteristics.

Pregnant N = 25 Non-Pregnant N = 11 p

Maternal age (years) 34 (33–42) 32 (28–40) 0.6

BMI at Sampling (kg/m2) 30.4 (27.5–38.8) 31.1 (26.2–39.1) 0.9

Gravidity 4 (3–5) 4 (3–7) 0.7

Parity 3 (2–4) 3 (2–4) 0.6

Ethnic Origin (%) 0.5

African American 90.9 81.8

Caucasian 9.1 18.2

Systolic Blood Pressure (mmHg) 117 (114–120) 114 (111–117) 0.6

Diastolic Blood Pressure (mmHg) 74 (69–79) 66 (63–81) 0.4

Fasting Glucose (mg/dl) 87 (80–89) 88 (73–90) 0.3

Gestational Age at Delivery (weeks) 39.1 (38–39.3) NA NA

Birth Weight (grams) 3335 (2980–3555) NA NA

Data are presented as median and interquartile range (IQR). BMI—Body Mass Index.

doi:10.1371/journal.pone.0143779.t001
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(Table 4); the complete list of differentially expressed transcripts is available as supplementary
material (S3 Table). The five most significant pathways include: 1) the ECM-receptor interac-
tion (S1 Fig); 2) the PPAR signaling pathway (S2 Fig); 3) protein digestion and absorption (S3
Fig); 4) focal adhesion; and 5) complement and coagulation cascades.

Non-pregnant women: visceral versus subcutaneous. Microarray analysis demonstrated
significant changes in the transcriptome of visceral and subcutaneous adipose tissues of non-
pregnant women. In total, 226 unique genes were differentially expressed (q-value<0.1; fold-
change>1.5). A total of 147 genes had decreased expression, and 79 genes had increased
expression in the subcutaneous, compared with visceral, adipose tissue. A list of the top 10 dif-
ferentially expressed genes between visceral and subcutaneous adipose tissues is presented in
Table 5; the complete list of differentially expressed transcripts is available as supplementary
material (S4 Table).

Enrichment analyses identified 26 biological processes and five KEGG pathways that were
significantly enriched in differentially expressed genes (q-value<0.05) in the comparison
between visceral and subcutaneous adipose tissues. A list of the 10 enriched biological pro-
cesses in the comparison between visceral and subcutaneous adipose tissues of non-pregnant
women is presented in Table 6; the complete list is available as supplementary material (S5
Table). The significant pathways were: 1) complement and coagulation cascades; 2)

Fig 1. Pregnant women differential expression of visceral versus subcutaneous adipose tissue
transcripts. A “volcano plot” shows the differential expression of all the transcripts tested in this comparison,
with the log (base 10) of the FDR-adjusted probability values (q-value) (y-axis) plotted against the log (base
2) fold-changes (x-axis) between the visceral and subcutaneous adipose tissues.

doi:10.1371/journal.pone.0143779.g001
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Staphylococcus aureus infection; 3) prion diseases; 4) Chagas disease (American trypanosomia-
sis); and 5) retinol metabolism.

Pregnant versus non-pregnant women: subcutaneous adipose tissue. Microarray analy-
sis demonstrated significant changes in the transcriptome of subcutaneous adipose tissue
between pregnant and non-pregnant women. In total, 57 transcripts corresponding to 56
known genes were differentially expressed (q-value<0.1; fold-change>1.5). A total of 19 genes

Fig 2. Heat map representing fat depot-specific differences in gene expression of pregnant women.
The heat map uses a color scale to show the consistency of the expression levels within each group of
samples as well as the differences between the groups that led to positive test results.

doi:10.1371/journal.pone.0143779.g002

Table 2. A list of the top 10 differentially expressed transcripts between visceral and subcutaneous adipose tissues of pregnant women.

ENTREZ ID SYMBOL Gene Name Fold Change*

55600 ITLN1 intelectin 1 (galactofuranose binding) -21.60

9076 CLDN1 claudin 1 -17.33

3250 HP haptoglobin -11.08

93035 PKHD1L1 polycystic kidney and hepatic disease 1 (autosomal recessive)-like 1 -10.45

244 ANXA8 annexin A8 -10.35

642826 ANXA8L2 annexin A8-like 2 -8.68

246 ALOX15 arachidonate 15-lipoxygenase -7.52

10950 CXADR coxsackie virus and adenovirus receptor -7.06

3240 HPR haptoglobin-related protein -6.94

100294156 C4B complement component 4B (Chido blood group) -6.86

(*) The fold change represents the number of times the average expression in one group is higher than the one in the other group. Positive values mean

higher expression in subcutaneous compared to visceral tissues, while negative values represent higher expression in visceral compared to subcutaneous

tissues. Genes are ranked by absolute fold change. All q-values < 0.01.

doi:10.1371/journal.pone.0143779.t002
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Table 3. A list of top 10 enriched biological processes in the comparison between visceral and subcutaneous adipose tissues of pregnant women.

Biological process Genes in differentially expressed list, n Genes in reference array, n Odds Ratio q-value

circulatory system development 85 657 3.43 0.000

multicellular organismal process 300 4412 2.15 0.000

localization of cell 83 765 2.77 0.000

response to wounding 86 905 2.37 0.000

retinal metabolic process 7 8 144.91 0.000

regulation of inflammatory response 19 103 4.83 0.000

multicellular organismal development 121 1894 1.80 0.000

cell adhesion 34 306 2.88 0.000

positive regulation of cellular component movement 28 212 3.23 0.000

locomotion 33 301 2.86 0.000

doi:10.1371/journal.pone.0143779.t003

Table 4. A list of the 10 KEGG pathways that were significant in the comparison between visceral and subcutaneous adipose tissues of pregnant
women.

Map Name Genes in differentially expressed list,
n

Genes in reference array,
n

Odds
Ratio

q-value

ECM-receptor interaction 16 72 5.55 0.000

PPAR signaling pathway 12 55 5.34 0.001

Protein digestion and absorption 13 64 4.89 0.001

Focal adhesion 23 171 3.05 0.001

Complement and coagulation cascades 11 49 5.52 0.001

Cytokine-cytokine receptor interaction 23 195 2.61 0.004

Arrhythmogenic right ventricular cardiomyopathy
(ARVC)

11 63 4.02 0.007

Cell adhesion molecules (CAMs) 14 103 3.01 0.015

Malaria 8 40 4.71 0.015

Steroid hormone biosynthesis 6 28 5.11 0.039

doi:10.1371/journal.pone.0143779.t004

Table 5. A list of the top 10 differentially expressed transcripts between visceral and subcutaneous adipose tissues of non-pregnant women.

ENTREZ ID SYMBOL Name Fold Change* q-value

55600 ITLN1 intelectin 1 (galactofuranose binding) -11.5 0.09

9076 CLDN1 claudin 1 -8.3 0.09

730 C7 complement component 7 -5.0 0.09

244 ANXA8 annexin A8 -5.0 0.09

93035 PKHD1L1 polycystic kidney and hepatic disease 1 (autosomal recessive)-like 1 -4.6 0.09

100294156 C4B complement component 4B (Chido blood group) -4.4 0.09

642826 ANXA8L2 annexin A8-like 2 -4.3 0.09

5999 RGS4 regulator of G-protein signaling 4 -4.1 0.09

246 ALOX15 arachidonate 15-lipoxygenase -3.9 0.09

7980 TFPI2 tissue factor pathway inhibitor 2 -3.9 0.09

(*) The fold change represents the number of times the average expression in one group is higher than the one in the other group. Positive values mean

higher expression in subcutaneous compared to visceral tissues, while negative values represent higher expression in visceral compared to subcutaneous

tissues. Genes are ranked by absolute fold change.

doi:10.1371/journal.pone.0143779.t005
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had decreased expression, and 37 genes had increased expression in the subcutaneous adipose
tissue of pregnant compared with non-pregnant women. A “volcano plot” shows the differential
expression of all tested transcripts, with the log (base 10) of the FDR-adjusted probability values
(y-axis) plotted against the log (base 2) fold-changes (x-axis) between pregnant and non-preg-
nant groups (Fig 3). The heat map in Fig 4 uses a color scale to show the consistency of the
expression levels within each group of samples as well as the differences between the groups that
led to the positive test results. A list of the top 10 differentially expressed transcripts in the

Table 6. A list of the 10 enriched biological processes in the comparison between visceral and subcutaneous adipose tissues of non-pregnant
women.

Biological process Genes in differentially expressed list, n Genes in reference array, n Odds Ration q-value

complement activation, classical pathway 7 23 26.80 0.0001

protein activation cascade 8 45 13.37 0.001

cell adhesion 25 515 3.45 0.001

retinol metabolic process 5 14 33.68 0.002

retinal metabolic process 4 8 60.31 0.003

single-multicellular organism process 83 3703 2.02 0.004

localization of cell 30 765 2.68 0.004

circulatory system development 27 657 2.79 0.005

cellular response to cAMP 5 22 17.82 0.009

developmental process 59 2336 2.02 0.010

doi:10.1371/journal.pone.0143779.t006

Fig 3. Differential expression of subcutaneous adipose tissue transcripts in pregnant vs. non-
pregnant women. A “volcano plot” shows the differential expression of all tested transcripts, with the log
(base 10) of the FDR-adjusted probability values (y-axis) plotted against the log (base 2) fold-changes (x-
axis) between pregnant and non-pregnant groups.

doi:10.1371/journal.pone.0143779.g003
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subcutaneous adipose tissues between the pregnant and non-pregnant women is presented in
Table 7; the complete list is available as supplementary material (S6 Table).

Gene ontology meta-analysis revealed four biological processes that were enriched at q-
value<0.05: 1) complement activation, classical pathway; 2) protein activation cascade; 3)
immunoglobulin-mediated immune response; and 4) humoral immune response. Pathway

Fig 4. Heat map representing subcutaneous adipose tissue differences in gene expression of
pregnant vs non-pregnant women. The heat map in Fig 4 uses a color scale to show the consistency of the
expression levels within each group of samples as well as the differences between the groups that led to the
positive test results.

doi:10.1371/journal.pone.0143779.g004

Table 7. A list of the 10 differentially expressed transcripts in the subcutaneous adipose tissues between the pregnant and non-pregnant women.

ENTREZ ID SYMBOL Gene Name Fold Change* q-value

729 C6 complement component 6 2.4 0.031

81617 CAB39L calcium binding protein 39-like 2.2 0.049

81575 APOLD1 apolipoprotein L domain containing 1 -2.1 0.097

390075 OR52N5 olfactory receptor, family 52, subfamily N, member 5 -2.1 0.087

643616 MOP-1 MOP-1 2.0 0.094

11326 VSIG4 V-set and immunoglobulin domain containing 4 2.0 0.049

79473 OR52N1 olfactory receptor, family 52, subfamily N, member 1 -1.9 0.069

51338 MS4A4A membrane-spanning 4-domains, subfamily A, member 4 1.9 0.094

3099 HK2 hexokinase 2 -1.9 0.015

10149 GPR64 G protein-coupled receptor 64 1.8 0.031

(*) The fold change represents the number of times the average expression in one group is higher than the one in the other group. Positive values mean

higher expression in subcutaneous tissues of pregnant compared to non-pregnant women, while negative values represent higher expression

subcutaneous tissues of non-pregnant women compared to pregnant women. Genes are ranked by absolute fold change.

doi:10.1371/journal.pone.0143779.t007
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analysis identified two KEGG pathways that were significantly enriched (q-value,<0.05) in the
comparison between the subcutaneous adipose tissue samples of pregnant and non-pregnant
women: 1) complement and coagulation cascades (S4 Fig), and 2) Prion diseases (S5 Fig).

Pregnant versus non-pregnant women: visceral adipose tissue. Microarray analysis
demonstrated significant changes in the transcriptome of visceral adipose tissue between preg-
nant and non-pregnant women. In total, three unique genes had increased expression in the
visceral adipose tissue of pregnant compared with non-pregnant women (Table 8).

Alternative splicing. The Affymetrix Human Exon 1.0 ST array that we used in this study
allowed us to test for differential exon usage (a.k.a. differential/alternative splicing) in addition
to the differential expression analysis described above. Significant differences in exon usage
rates were found between visceral and subcutaneous adipose tissues of pregnant women and
between pregnant and non-pregnant women in the subcutaneous region. Forty-two alternative
splicing events in 36 unique genes were associated with the regional differences of the adipose
tissue of pregnant women. For six of the 36 affected genes, the evidence for differential splicing
was found for two distinct Affymetrix probesets that either targeted the same exon of the gene
[peptidase domain containing associated with muscle regeneration 1 (PAMR1) and serine/argi-
nine repetitive matrix 2 (SRRM2)] or different exons of the same gene [kinase non-catalytic C-
lobe domain (KIND) containing 1 (KNDC1), the podocalyxin-like (PODXL), solute carrier
family 7 (cationic amino acid transporter, y+ system), member 8 (SLC7A8), and desmin
(DES)]. A list of the top 10 alternative splicing events associated with the regional differences
of the adipose tissue of pregnant women is presented in Table 9; the complete list is available as
supplementary material (S7 Table). Fifty percent of the genes that were affected by alternative
splicing were also differentially expressed.

Table 9. A list of the alternative splicing events associated with the regional differences of the adipose tissue of pregnant women.

Symbol Gene Name Transcript ID Exon ID Probeset ID Diff. mean FIRMA q-value

ABLIM1 actin binding LIM protein 1 3307939 619043 3308001 2.851 0.000

ADRA2C adrenergic, alpha-2C-, receptor 2716328 249900 2716338 -2.288 0.004

CRB2 # crumbs homolog 2 (Drosophila) 3188478 544486 3188501 -2.842 0.000

DAPK1 # death-associated protein kinase 1 3177880 538110 3177903 3.061 0.000

DCLK1 # doublecortin-like kinase 1 3509473 742860 3509602 -3.042 0.000

DES* desmin 2528476 131889 2528483 -2.660 0.007

DES* desmin 2528476 131895 2528491 -2.291 0.003

FAIM3 Fas apoptotic inhibitory molecule 3 2452977 84252 2452981 -2.944 0.000

GATA6 # GATA binding protein 6 3781245 908232 3781284 -2.220 0.000

GFPT2# glutamine-fructose-6-phosphate transaminase 2 2890660 359171 2890703 2.247 0.000

*Genes showing differential exon usage for two exons
# Genes demonstrating differential exon usage that were also differentially expressed

doi:10.1371/journal.pone.0143779.t009

Table 8. A list of the 3 differentially expressed transcripts in the visceral adipose tissues between the pregnant and non-pregnant women.

SYMBOL ENTREZ ID Name Fold Change q-value

CA1 759 carbonic anhydrase I 2.4 0.07

GPR64 10149 G protein-coupled receptor 64 2.0 0.05

CXorf21 80231 chromosome X open reading frame 21 1.5 0.05

doi:10.1371/journal.pone.0143779.t008
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For an illustration of the differential exon usage between the visceral and subcutaneous adi-
pose tissues of pregnant women see Fig 5 which depicts the normalized probe expression data
against the genomic coordinates for gene PMP22. The figure shows the normalized probe inten-
sity for gene PMP22 plotted as a function of the genomic coordinates from the 5’ to the 3’ end.
Each line corresponds to one sample (blue: subcutaneous and grey: visceral). The probesets,
each containing 4 probes, are separated by vertical grey lines. The ideogram under the genomic
axis shown in gold color represents the gene model, with each vertical rectangle denoting one
exon. Under the gene model are depicted known ENSEMBL database transcripts (in blue) that
either include or exclude the exon that shows differential usage between groups, and which is
highlighted with a vertical rectangle across all ideograms. For most probes used to target this
gene, the expression level is about the same in the visceral and subcutaneous samples, except for
the probes targeting the last exon for which the expression in the subcutaneous (blue) group,
the expression is consistently higher. As a consequence the FIRMA scores, indicative of the
exon usage, are significantly higher in the subcutaneous than in the visceral samples.]

Differential splicing associated with labor was found for three genes in the subcutaneous
adipose tissue, namely LIMS1 (LIM and senescent cell antigen-like domains 1), YY1AP1 (YY1

Fig 5. Normalized probe expression data against the genomic coordinates for gene PMP22. The figure
shows the normalized probe intensity for gene PMP22 plotted as a function of the genomic coordinates from
the 5’ to the 3’ end. Each line corresponds to one sample (blue: subcutaneous and grey: visceral). The
probesets, each containing 4 probes, are separated by vertical grey lines. The ideogram under the genomic
axis shown in gold color represents the gene model, with each vertical rectangle denoting one exon. Under
the gene model are depicted known ENSEMBL database transcripts (in blue) that either include or exclude
the exon that shows differential usage between groups, and which is highlighted with a vertical rectangle
across all ideograms. For most probes used to target this gene, the expression level is about the same in the
visceral and subcutaneous samples, except for the probes targeting the last exon for which the expression in
the subcutaneous (blue) group, the expression is consistently higher.

doi:10.1371/journal.pone.0143779.g005
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associated protein 1) and GSTK1 (glutathione S-transferase kappa 1). S6 Fig (see legend of Fig
5 for details) shows that for one of the middle exons of the gene GSTK1, the usage rate is lower
in the labor group than in the not in labor group, while this is not the case for any other of the
exons. Such a phenomenon can be explain for instance by an imbalance in the abundance of
the isophorm that includes the exon (ENSEMBLE ID: ENST00000479303) and the remaining
ones documented in the ENSEMBLE database which skip this exon.

We did not find significant differences in exon usage rates between pregnant and non- preg-
nant women in the visceral adipose tissue.

Discussion

Visceral versus subcutaneous adipose tissue in pregnant women
To our knowledge, this is the first study that describes the transcriptome of visceral and subcu-
taneous adipose tissues in pregnant women. Previous reports regarding gene expression in adi-
pose tissue of pregnant women have used a targeted approach.[171–189] High-dimensional
biology techniques allow comprehensive and unbiased insight into complex physiologic events
including the investigation of the reproductive tract.[190–202] Using high-throughput tech-
niques, differential gene and protein expressions have been reported in pregnant women in the
uterine cervix,[203–211] human myometrium,[212–218] chorioamniotic membranes,
[219,220] amniotic fluid,[221–230] and umbilical cord blood.[231] While region-specific dif-
ferences were extensively investigated in non-pregnant individuals using both targeted and
high-dimensional biology techniques,[118–120,128,130,131,149–151,232–253] the compre-
hensive gene expression, biological processes, and pathways associated with gestational adipos-
ity have not yet been described. We used an unbiased approach to characterize the
transcriptome of visceral and subcutaneous adipose tissues in pregnant and non-pregnant
women to gain an understanding of pregnancy-related global changes in adipose tissue depot-
specific gene expression and splicing.

The findings of the present study provide evidence for pregnancy-associated differences
between visceral and subcutaneous adipose tissues. Compared with non-pregnant women, the
magnitude of regional differences in the transcriptome of pregnant women was larger, with the
fold changes of the top ten genes ranging from 6.9 to 21.6 in pregnant women compared to 4.6
to 11.5 in non-pregnant women. These findings suggest that adipose tissue depot-specific dif-
ferences in gene expression are more accentuated in human gestation. Remarkably, among the
top five differentially expressed genes between visceral and subcutaneous adipose tissues, four
are common for both pregnant and non-pregnant women. These genes encode for omentin
(intelectin 1), claudin 1, polycystic kidney and hepatic disease 1 (autosomal recessive)-like 1,
and annexin A8. Consistent with this finding, among the top 100 differentially expressed genes
between visceral and subcutaneous adipose tissues, 53 are common for both pregnant and
non-pregnant women, suggesting that many of the depot-specific alterations are common for
these groups yet the magnitude of changes is higher in pregnant women.

Omentin (also named intelectin) is a secretory protein that has been recently identified as a
new depot-specific adipokine.[254–256] Several lines of evidence support the highly selective
expression of omentin in human visceral adipose tissue: 1) omentin mRNA was predominantly
expressed in visceral compared with subcutaneous fat;[255,257–259] 2) qRT-PCR demon-
strated that omentin mRNA was expressed in stromal vascular cells, isolated from omental adi-
pose tissue, with more than 150-fold less in subcutaneous cell fractions;[255] and 3) consistent
with these findings, omentin was detected in a culture medium of omental, but not of subcuta-
neous, fat explants.[255] Importantly, qRT-PCR has demonstrated that omentin is expressed
in stromal vascular cells but not in adipocytes.[255] Our results confirm that there is a
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significant over-expression of omentin in visceral compared to subcutaneous adipose tissue.
We were able to extend the abovementioned reports by demonstrating over-expression of this
adipokine in visceral fat of pregnant women. Furthermore, while the fold-change increase of
omentin expression in visceral adipose tissue was 11.5 in the non-pregnant state, during preg-
nancy the fold-change was approximately twice as high (21.6), suggesting that this adipokine
may play a role in the metabolic adaptations of visceral fat to normal gestation.

Omentin enhances insulin-stimulated glucose uptake in human adipocytes and triggers
AKT signaling.[255,256] This adipokine does not stimulate basal glucose transport on its own,
indicating that omentin has no intrinsic insulin-mimic activity. Thus, it has been suggested
that depot-dependent insulin action is subject to modulation by this adipokine. Omentin has
been detected in maternal circulation;[188,260,261] however, how omentin concentrations
change during pregnancy is not yet known. It can be speculated that the insulin-sensitizing
effect of this insulin-sensitizing hormone may be of special importance during pregnancy in
order to balance the "diabetogenic" effect of several placental hormones. Alterations in omentin
expression and/or secretion may also account for the association between maternal obesity and
complications of pregnancy. Indeed, pre-existing maternal obesity is associated with lower
omentin-1 expression in adipose tissue and maternal plasma.[188] In conclusion, the dramatic
over-expression of omentin in visceral adipose tissue during pregnancy may point to a regula-
tory role of this adipokine in the depot-dependent insulin action that may alleviate the preg-
nancy-related insulin resistance.

Gene ontology and pathway analysis revealed functional categories associated with the adi-
pose tissue depot-specific expression changes in human pregnancy. Specifically, the biological
process related to extracellular matrix–receptor interactions, inflammation, metabolism, and
tissue development characterized the pregnancy-related adipose tissue depot-specific alter-
ations. The extracellular matrix–receptor interaction and PPAR signaling pathway were
among the most impacted signaling pathways in the visceral adipose tissue of pregnant
women. Interestingly, the extracellular matrix–receptor interaction pathway was also the most
impacted signaling pathway at the site of rupture in the chorionic membranes[220] and has
been implicated in cervical ripening before the onset of labor at term in human pregnancy.
[205] Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that
are activated by fatty acids and their derivatives. PPARs are abundantly expressed in adipose
tissue and central to the regulation of pre-adipocyte differentiation through transcriptional
control of adipocyte-specific genes.[234,262,263] PPARs include three subtypes: PPAR -α, -β/
δ, and -γ, and each is encoded in a separate gene.[264] PPAR-γ is considered the master adipo-
genic regulator,[263,265] and it has an essential role in maintaining mature adipocyte function.
[265–267] This is of special importance as human pregnancy is characterized by increased
accumulation of visceral fat. Indeed, using longitudinal ultrasound measurements, a significant
increase in intraabdominal to subcutaneous ratio was observed during the third trimester
when compared with the first and second trimesters.[268] Accordingly, parity is associated
with increased abdominal fat retention for months and years after delivery.[269–271] Taken
together, our findings suggest that, during pregnancy, biological processes aimed at the expan-
sion and development of both components of adipose tissue, i.e., the adipocytes and stromal
vascular cells, are activated in visceral adipose fat. Thus, the results of this study may provide a
putative molecular mechanism(s) by which pregnancy-associated increase and expansion of fat
accrual occurs.

Bashiri et al[272] have determined alterations in genome-wide transcription expression in
visceral and abdominal subcutaneous fat deposits in obese and lean pregnant women (4 in
each group) using Affymetrix Human Exon 1.0 st platform. The authors reported that global
alteration in gene expression was identified in pregnancy complicated by obesity and the
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identification of indolethylamine N-methyltransferase, tissue factor pathway inhibitor-2, and
ephrin type-B receptor 6, that were not previously associated with fat metabolism during preg-
nancy. In addition, subcutaneous fat of obese pregnant women demonstrated increased coding
protein transcripts associated with apoptosis as compared to lean pregnant women. Several of
the top 36 candidate genes with the greatest variation in expression between subcutaneous and
omental fat in both normal and obese pregnant women reported in the study of Bashiri et al.
[272] were also found to be differentially expressed in the present study including NTNG1,
KCNT2, LYPD6 and others.

Pregnant versus non-pregnant states: gestational-related alterations in
the subcutaneous and visceral adipose tissue transcriptome
To our knowledge, there has been no report comparing the visceral and subcutaneous adipose
tissue transcriptome between pregnant and non-pregnant women. We report herein that 57
and three genes were differentially expressed between pregnant and non-pregnant women in
subcutaneous and visceral adipose tissues, respectively. Intriguingly, the gene encoding G pro-
tein-coupled receptor 6 (GPR64) was over-expressed in both subcutaneous and visceral adipose
tissues of pregnant women. GPR64 (also known as HE6—human epididymis-specific protein
6) is an orphan member of the LNB-TM7(B2) subfamily of G-protein-coupled receptors.[273–
276] GPR64 mRNA is highly expressed in the epithelia of ductuli efferentes and proximal epi-
didymis.[273–278] It has been suggested to function in the control of water balance and fluid
reabsorption in the male excurrent ducts.[279–281] qRT-PCR studies with numerous tissue
probes from mouse, rat, and human specimens as well as microarray analyses of essentially all
human tissues and organs revealed a highly epididymis-restricted expression of HE6.[275]
Thus, to our knowledge, this report represents the first evidence that GPR64 is expressed in
human adipose tissue. The biological importance of GPR64 in adipose tissue, and specifically
during gestation, has to be evaluated. HE6/GPR64 is an ‘orphan’member of the adhesion
GPCRs,[274–276] and an endogenous ligand(s) is presently unknown. Moreover, ligand pre-
diction for GPCRs is extremely difficult since ligands for GPCRs are associated with remark-
able variation.[275]

The findings of this study indicate that three out of four biological processes enriched in
subcutaneous fat during pregnancy (i.e. complement activation, classical pathway, immuno-
globulin mediated immune response and humoral immune response) are related to inflamma-
tion. This finding is consistent with a large body of evidence indicating that adipose tissue can
orchestrate an inflammatory response, including: 1) knockout mice for IL-6,[282] TNF-α,
[283] PAI-1,[284] IL-18,[285] IL-1α,[286] MCP-1,[287] and JNK1[288] are often obese or
have a metabolic phenotype related to obesity; 2) adipose tissue is an important site for the pro-
duction of inflammatory mediators including TNF-α,[13,289–291] IL-6,[292–294] monocyte
chemoattractant protein (MCP)-1,[295,296] C-reactive protein (CRP),[23,24,293,297–299]
serum amyloid A,[300] and plasminogen activator inhibitor-1 (PAI-1);[301] 3) adipocytokines
such as resistin,[302–305] visfatin,[306–308] and adipsin[309] have been implicated in the reg-
ulation of the innate immune responses, and leptin[310–315] and adiponectin[316–322] are
involved in the regulation of both innate and adaptive limbs of the immune system; and 4) obe-
sity is associated with high-circulating pro-inflammatory and acute phase reactant adipocyto-
kines such as TNF-α,[323] IL-6,[294] and CRP.[293] Normal pregnancy is considered a pro-
inflammatory state. The total white blood cell count in maternal blood increases with advanc-
ing gestational age and leukocytes derived from normal pregnant women are phenotypically
and metabolically activated.[324,325] During pregnancy, there is also an increased circulating
concentration of acute phase proteins. Of note, a growing body of evidence suggests that
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normal gestation is characterized by adipose tissue inflammation,[326]and this process seems
to be accentuated toward the end of the pregnancy[327,328]. Collectively, our data suggest that
pregnancy-related subcutaneous adipose inflammation may contribute to the generalized pro-
inflammatory state that characterizes human gestation.

Resi V et al[329] have recently reported the results of a longitudinal study in which adipose
tissue biopsies were obtained from the subcutaneous gluteal depot of healthy non-obese
women who are in early (8–12 weeks of gestation) and late (36–38 weeks of gestation) preg-
nancy. Specimens obtained via liposuction were subjected to histologic examination and gene
expression analysis using DNAmicroarray. The findings of our study are in agreement with
the above-mentioned report[329] in which approximately 40% of pregnancy-associated
changes were related to mediators of the immune response, extracellular matrix components.
[329] In addition, comparison between pre-conception and early pregnancy gene expression
revealed marked changes in genes regulating pathways for the inflammatory response and
metabolism.[329] In contrast to the report by Resi V et al,[329] in which 26% of pregnancy-
associated changes were related to lipid metabolism, we did not identify this biological process
as significantly enriched in genes differentially expressed between pregnant and non-pregnant
women. Several explanations can account for this discrepancy: 1) the methods by which speci-
mens were obtained were different between the studies; and gene expression, as determined by
microarray experiments, has been shown to be affected by the adipose tissue biopsy technique;
[245] 2) subcutaneous adipose tissue gene expression varies as a function of the specific region
from which specimens were obtained and 3) the microarray platforms used were different. A
recent study has shown that a total of 2,890 transcripts were differentially expressed between
four subcutaneous adipose depots: upper abdomen, lower abdomen, flank, and hip in normal
weight women;[330] and 3) it has been proposed that gluteal and femoral adipocytes serve as
energy stores during pregnancy and lactation to meet the increased need for energy during that
time.[269,331] This view is supported by studies in humans demonstrating that the activity of
lipoprotein lipase in adipocytes from the femoral region increases during pregnancy, whereas
such a pattern was not detected for abdominal adipocytes.[331] Thus, different gene expression
patterns among subcutaneous adipose depots (e.g. abdominal versus gluteal) may represent
their diverse function during normal human pregnancy.

Alternative splicing: a novel pregnancy-associated mechanism for the
regional differences between visceral and subcutaneous adipose
tissues
Alternative splicing of mRNA transcripts is the process by which cells can selectively include
or exclude different sections of pre-mRNA during RNA processing.[332] Once translated,
these altered transcripts result in closely related proteins expressed from a single locus.
[332,332,333] Alternative splicing is a major biological process by which a relatively limited
number of genes can be expended into elaborate proteomes.[334] It has been estimated that
approximately two-thirds to three-quarters of all human genes undergo alternative splicing.
[334–337] The splicing process may affect function, localization, binding properties, and sta-
bility of the encoded proteins.[334,338] Moreover, alternative splicing can also lead to degra-
dation of the transcript.[334,339,340] It is an important regulatory mechanism that has been
shown to be involved in several molecular pathways including angiogenesis and differentia-
tion.[332,341]

To the best of our knowledge, this is the first report implicating alternative splicing in
regional differences of adipose tissue either in pregnant or non-pregnant individuals. We iden-
tified 42 exons in 36 genes showing differential usage in the comparison between visceral and
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subcutaneous adipose tissues. Of note, significant results were found only for the comparison
between adipose tissue depots of pregnant women, but not for non-pregnant individuals. This
finding characterized pregnancy as a unique physiologic condition in which alternative splicing
may account for the different biological functions of visceral versus subcutaneous adipose tis-
sue. It can be postulated that the remodeling and adaptations of adipose tissue during gestation
require a larger repertoire of proteins that can be achieved by alternative splicing.

Strengths and limitations of the study
The major strengths of this study are novel findings reported herein, the employment of a high
throughput technique in the investigation of adipose tissue during pregnancy, the evaluation of
paired specimens, and the inclusion of well-matched, non-pregnant controls.

This report represents the first description of the transcriptome of adipose tissue visceral
and subcutaneous transcriptome in pregnant women and the comparison between pregnant
and non-pregnant gene expression in these fat depots. Using the Illumina GeneChip Human
Exon 1.0 ST array, we analyzed exon level expression data to determine differential usage asso-
ciated with adipose tissue regions and pregnancy. Significant differences in exon usage were
found between visceral and subcutaneous adipose tissues of pregnant women, implicating
alternative splicing in regional differences in adipose tissue for the first time. We have identi-
fied novel genes previously unrecognized to be differentially expressed in visceral versus subcu-
taneous adipose tissues. Furthermore, we have demonstrated the expression of G protein-
coupled receptor 6 (GPR64) in both visceral and subcutaneous. This gene was thought to be
expressed exclusively and abundantly in epithelia of ductuli efferentes and proximal epididy-
mis. Several limitations of our study should be acknowledged, and these include the racial
polarity of our patient population. As the study population consists mainly of African-Ameri-
can women, the generalization of our findings to pregnant women of different ethnic origins
will require future investigation. In addition, this study was specifically designed to delineate
differences between visceral and abdominal subcutaneous adipose tissues. Thus, adipose tissues
of other regions were not evaluated. Finally, we recognize that the cross-section natural of this
study does not allow us to demonstrate neither a temporal nor a causal relationship between
gestation and alterations in adipose tissue region-specific gene expression.

In conclusion, we have provided evidence that the adipose tissue region-specific alterations
in gene expression established in non-pregnant individuals are enhanced during human gesta-
tion. Furthermore, unique pregnancy-related gene expression characterized both visceral and
especially subcutaneous adipose tissues. Finally, alternative splicing has been implicated in
regional differences in adipose tissue for the first time. Collectively, these novel findings may
provide a molecular mechanism for the pregnancy-related adipose tissue remodeling, expan-
sion, metabolic adaptations and the inflammatory response.

Supporting Information
S1 Fig. Rendering of the ECM-receptor interaction KEGG pathway (hsa04512) showing
genes and genes complexes as colored rectangles (blue = down-regulation, magenta = up-
regulation) between subcutaneous and visceral tissues of pregnant women. The genes
COL4A1, COL4A2, COL5A2 and COL3A1 are shown as a single rectangle (Collagen). The
same is true about LAMB1 and LAMB3, which are represented as the Laminin rectangle.
(TIF)

S2 Fig. Rendering of the PPAR signaling KEGG pathway (hsa03320) showing genes and
genes complexes as colored rectangles (blue = down-regulation, magenta = up-regulation)
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between subcutaneous and visceral tissues of pregnant women.
(TIF)

S3 Fig. Rendering of the Protein digestion and absorption KEGG pathway (hsa04974)
showing genes and genes complexes as colored rectangles (blue = down-regulation,
magenta = up-regulation) between subcutaneous and visceral tissues of pregnant women.
The genes COL12A1, COL15A1, COL3A1, COL4A1, COL4A2 and COL5A2 are shown as a
single rectangle (Collagen). The same is true about ACE2, DPP4, MME and XPNPEP2, which
are represented as the Peptidase rectangle.
(TIF)

S4 Fig. Rendering of the Complement and coagulation cascades KEGG pathway (hsa04610)
showing genes and genes complexes as colored rectangles (blue = down-regulation,
magenta = up-regulation) between subcutaneous tissues of pregnant and non-pregnant
women. The genes C1QA, C1QB and C1QC are shown as a single rectangle (C1Q).
(TIF)

S5 Fig. Rendering of the Prion diseases KEGG pathway (hsa05020) showing genes and
genes complexes as colored rectangles (blue = down-regulation, magenta = up-regulation)
between subcutaneous tissues of pregnant and non-pregnant women. The genes C1QA,
C1QB and C1QC are shown as a single rectangle (C1q).
(TIF)

S6 Fig. Normalized probe expression data against the genomic coordinates for gene
GSTK1.
(TIF)
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(DOC)

S4 Table. Subcutaneous vs. visceral: non-pregnant women.
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