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1. Introduction

Constraints such as rigidity, incompressibility and inextensibility refer to restrictions concerning the types
of deformations a body can be subject to, see, for example, §30 of [47]. These kinds of restrictions have
been considered within the context of classical linearized theory of elasticity by, for example, Poincare
[27] and Love [22], and in the case of large elastic deformations by Green and Shield (see §3 of [18]),
Rivlin [39], Rivlin and Ericksen and Rivlin (see §3 of [14]), and Adkins and Rivlin [1].

Constraints such as incompressibility introduce an indeterminacy in the specification of the stress
and in fact make it possible to obtain solutions that would be otherwise impossible to obtain within
the unconstrained class of bodies. For example, a static homogeneous deformation is not possible in a
homogeneous compressible Cauchy elastic solid, if gravity is taken into consideration. However, such static
solutions are possible within the context of incompressible homogeneous elastic bodies even if gravity is
to be taken into account. This is due to the arbitrariness in the stress due to the constraint that one can
manipulate. Similarly, while no inhomogeneous deformations are ‘universal’ within the class of isotropic
homogeneous nonlinear Cauchy elastic bodies, as many as six classes of inhomogeneous deformations
are possible in incompressible, isotropic nonlinear Cauchy elastic bodies (see Ericksen [13]). Rigidity is a
constraint that allows for any distribution of stress in the body.

In the classical theory of nonlinear continuum mechanics, when considering the class of simple materials
(see Noll [24]), the effects of the constraints have been incorporated by decomposing the stress in two
parts, where one depends on the particular properties of the material, while the second part, called
‘reaction stress’, is assumed not to do work with any deformation compatible with the constraints, see
§30 of [47], in particular pp. 70–71 therein. This approach (in particular the workless nature of the reaction
stress) has been questioned by many investigators, see Antman and Marlow [2], Casey [9], and recently
in particular by Rajagopal and Srinivasa1 [30,31].

Recently, in a series of papers, Rajagopal and coworkers have studied a more general class of elas-
tic bodies that cannot be classified as either Cauchy or Green elastic bodies [4,29,32–37]. The models
belonging to the generalization can be used in describing the response of soft tissue [15], describing

1It would be fair to say that the assumption of the reaction stress being ‘workless’ is not well taken within the context
of dissipative materials (see Rajagopal and Srinivasa [30,31]).
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more accurately the phenomenon of fracture of solids [37], and leading to linearizations that provide a
nonlinear relationship between the linearized strain and the stress as exhibited by many metallic alloys
[42,45,48,49], the response of infrastructure materials such as concrete [16], and the implicit counterpart
of models for fluids to describe noninvertible response exhibited by many colloids and suspensions [28].
This study concerns the development of constraints for the recent generalization of elasticity due to Ra-
jagopal. In [8], such a study was carried out for constitutive relations that arise from the linearization
of a subclass of the new constitutive relations, namely constitutive expressions for the linearized strain
as a function (in general, nonlinear) of the stresses [4,5], within the context of incompressibility. In the
present work, we continue the analysis of constraints for the same class of constitutive relations within
the context of inextensibility.

The constraint of inextensibility has been used, for example, as a mathematical approximation for
studying the behaviour of composites, where we have a matrix filled with one or more families of ‘fibres’
or ‘cords’, which have a much higher stiffness than the matrix, see, for example, §1 of [1], §7.1 of [17]
(pp. 229 therein) and [44]. The constituents of the composites, namely the matrix and the fibres, are
assumed to undergo no relative displacement (see, for example, §7.1 of [17]), and the body is assumed to
be incapable of stretching in the direction of the fibres once the fibres are fully stretched. One could and
does have composites wherein the fibres are allowed to stretch until the fibres break. In this study, we
are considering the special class of composites that are incapable of stretching in the fibre direction.

In [1], we find one of the early studies considering such a constraint, where the concept of the tension
in the direction of the fibre was introduced, and where the stress is decomposed into two parts, where one
part is an indeterminate tension, and another part depends on the particular properties of the material
(see Eqs. (2.5)–(2.8) and §7 of [1]). Such concepts have been generalized in subsequent works such as
the book [17], where solutions for different boundary value problems have been presented considering
large elastic deformations (see Chapter VII and §7.2–§7.17 therein); the article by Spencer [44], where in
Sect. 2.1, the case of a linearized inextensible body (one family of fibres) is considered, while in Sect. 3.2,
the case of an inextensible body undergoing large elastic deformations is studied; the papers [19,20],
where an inextensible linearized elastic body is studied, within the context of isotropic bodies (Eq. 4.1
therein) when the density of fibres is low in comparison with the density of the composite as a whole,
and within the purview of a transversely isotropic body (in the same direction as the inextensibility),
when the density of fibres is large in comparison with the density of the composite; the paper by Pipkin
[26], presents a detailed study of constraints (in a general sense) for linearized elastic bodies, where he
introduces the notions of ‘uniform’ and ‘nonuniform’ constraints2; and finally we mention the papers [3,41]
for some exact solutions and for some universal relations for the case of inextensible bodies within the
context of large deformations, and [11,12,23,40] with regard to exact solutions in the case of inextensible
elastic bodies within the context of linearized constitutive equations.

As mentioned earlier, in the present work, we study how the constraint of inextensibility can be
incorporated, in the case of a nonlinear elastic transversely isotropic body, within the context of small
displacement gradients for the new constitutive relation presented, for example, in [6,7,37]. The paper is
arranged in the following manner: in Sect. 2, the basic equations of nonlinear elasticity are documented
and the new classes of constitutive relations are presented. In Sect. 3, the inextensibility of the elastic
body is considered, and the general constitutive representation for such a body is developed. In Sect. 3.1,
the constraints of inextensibility and incompressibility are considered simultaneously. In Sect. 4, several
simple boundary value problems are studied for the constrained bodies within the framework of this new
class of constitutive equations. Finally, in Sect. 5, the case of inextensibility for a body within large elastic
deformations is studied.

2A uniform constraint according to Pipkin is a constraint that does not depend explicitly on the position, while a
nonuniform constraint does depend on the position.
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2. Basic equations

2.1. Kinematics and the equation of equilibrium

Let X ∈ B denote a typical particle belonging to the abstract body B. Let us denote by κ a one to
one mapping, referred to as the placer, which maps the abstract body into a three-dimensional Euclidean
space. By the motion of the body, we mean a one-parameter family of placers (the parameter being
identified with time). Let κr denote a reference placer and κt the placer at time t, and let κr(B) and
κt(B) denote the reference configuration and the configuration at time t, respectively. We can identify
the motion with a one to one mapping χ that assigns to each point X ∈ κr(B) a point x ∈ κt(B), that
is

x = χ(X, t). (1)

Let u denote the displacement of the body, that is

u = x − X, (2)

and F denote the gradient of the motion

F =
∂χ

∂X
, (3)

where it is assumed that J = detF > 0. Then
∂u
∂X

= F − I. (4)

We define the Cauchy–Green tensors B and C, and the Green-St. Venant strain E through

B = FFT, C = FTF, E =
1
2
(C − I). (5)

The linearized strain ε is defined through

ε =
1
2

(
∂u
∂x

+
∂u
∂x

T
)

. (6)

In the present communication, we consider only quasi-static deformations; therefore, the Cauchy stress
tensor must satisfy the equilibrium equation

divT + ρb = 0, (7)

where ρ is the density of the body in the current configuration and b the body force.
The above definitions and equations are sufficient for our work, and more details about kinematics

and the equation of motion can be found, for example, in [10,46].

2.2. Some new classes of constitutive relations

Based on the initial work of Rajagopal [29,32–34], several constitutive relations have been proposed by
Rajagopal and his coworkers for elastic bodies, which cannot be interpreted as describing either Cauchy
or Green elastic bodies [29,32–35]. One such class of constitutive relation is the implicit constitutive
equation for isotropic elastic bodies of the form (see [35]) H(T,B) = 0, where in general it is not possible
to express either the Cauchy stress tensor T in terms of B or viceversa. As special cases of the above
implicit relation, we have T = g(B) and B = K(T), where the first equation is the classical constitutive
equation for Cauchy elastic bodies, while the second equation is a new class of constitutive relation.

When one assumes that |∇u| ∼ O(δ), δ � 1, we have B ≈ I + 2ε, and from B = K(T), it is possible
to show that the correct relation between the stresses and the linearized strain tensor ε should be of the
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form [25] ε = f(T). In the present work, we consider the class of linearized constitutive relations given
by ε = f(T), and we furthermore assume that there exists a scalar function Π = Π(T) such that

ε = f(T) =
∂Π
∂T

. (8)

2.3. Boundary value problems

As explained in detail in [8], when working with the constitutive equation (8), the procedure we use in
order to solve boundary value problems is to study (8), (6) and (7) simultaneously:

1
2
(∇u + ∇uT) = f(T), (9)

divT + ρb = 0, (10)

Tn = t̆ on ∂κt(B)t, u = ŭ on ∂κt(B)u (11)

where the boundary of the body in the current configuration is ∂κt(B) and ∂κt(B) = ∂κt(B)u ∪
∂κt(B)t, ∂κt(B)u ∩ ∂κt(B)t = Ø, and t̆ and ŭ are the external traction and a known displacement
field, respectively.

2.4. Constraints for the deformation in the classical theory of elasticity

Kinematical constraints of the deformation are defined as restrictions, which the field χ must satisfy
in all deformations the body is subjected to, for a given family of bodies, and are usually expressed
mathematically as3 (see, for example, §30 of [47]):

λ(C) = 0. (12)

The method of enforcing the constraint is usually based on the assumption that the stress tensor can
be divided into two parts [47]

T = F(F) + TN, (13)

where the part F(F) (usually referred as the extra stress) depends on the particular material being
considered (the class of materials for which the constraint holds), and TN the part of the stress that
enforces the constraint (usually referred to as the reaction stress) does not do work with any deformation
compatible with the constraint (12) (see [31,47]). Such an assumption leads to the following expression
for the stress tensor TN

TN = qF
∂λ

∂C
FT, (14)

where q is a Lagrangian multiplier.
In the case of bodies that are inextensible in the direction a0 in the reference configuration, the

expression for the function λ is (see [47]):

λ(C) = a0 · (Ca0) − 1. (15)

As mentioned earlier, the constraint of inextensibility (15) has been used as a mathematical idealization
of a certain class of composite materials, where we have a matrix reinforced by inextensible fibres (aligned
in a preferred direction a0), inextensible in the sense that the fibres are much stiffer than the matrix [44].
In such a situation, as an approximation, it is assumed that the composite is inextensible in the direction

3It is possible, even for simple materials to have a constraint that is given in terms of the history of the deformation, as
far as mathematics is concerned. However, none of the physically meaningful constraints such as rigidity, incompressibility
or inextensibility require such an artifice.
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a0. However, such a constraints would be valid only when there is tension in that particular direction,4

in compression the ‘fibres’ may not present a significant resistance to deformation, and the matrix would
be the only component of the composite resisting such compressive loads. In the case of modelling the
behaviour of such composites, the following constraint would be more appropriate

a0 · (Ca0) ≤ 1. (16)

If |∇u| ∼ O(δ), δ � 1 the constraint (15) λ(C) = 0 can be written as (see, for example, Eq. (17) of
[44] and Eq. (4.2) of [26])

a · (εa) = 0, (17)

where a is the direction along which the body is inextensible in the current configuration, and where in
general since |∇u| ∼ O(δ), as δ � 1 it is not necessary to distinguish between a0 and a. In the case of
(16), the counterpart when |∇u| ∼ O(δ), δ � 1 would be

a · (εa) ≤ 0. (18)

3. An elastic body that is inextensible in a preferred direction

Let us assume that the elastic body of interest is subject to small displacement gradient, that in the case
of Cauchy elasticity leads to the classical linearized elastic model. On considering small displacement
gradients in the sense that |∇u| ∼ O(δ), δ � 1, within the context of a transversely isotropic elastic solid
with a preferred direction a. Then, the scalar function Π defined in (8) depends on the following list of
invariants5 [43]:

I1 = trT, I2 =
1
2
tr(T2), I3 =

1
3
tr(T3), I4 = a · (Ta), I5 = a · (T2a). (19)

Using Π = Π(I1, I2, I3, I4, I5) in (8) and the chain rule for the derivative, we obtain (see Eq. (4.8) of [4])

ε = Π1I + Π2T + Π3T2 + Π4a ⊗ a + Π5[a ⊗ (Ta) + (Ta) ⊗ a], (20)

where Πi = ∂Π
∂Ii

, i = 1, 2, 3, 4, 5.
Now, as the body cannot extend in the direction a, replace (20) in (17), then we obtain the first-order

partial differential equation

Π1 + Π2I4 + Π3I5 + Π4 + 2Π5I4 = 0, (21)

whose solution is found to be (see Chapter 1 of [21] for a general methodology to solve such first-order
partial differential equations):

Π = Π̄(Ī1, Ī2, Ī3, Ī4), (22)

where we have defined6

Ī1 = I4 − I1, Ī2 =
1
2
I2
1 + I2 − I1I4, Ī3 = I2

1 − 2I1I4 + I5, (23)

Ī4 = −1
3
I3
1 + I3 + I2

1I4 − I1I5. (24)

4Compare this with the classical approach, where it is assumed that there is no stretching or contraction in the preferred
direction a0, see, for example, pp. 34 of [40] and §7.1 of [17] (see (i) in pp. 229 therein).

5See also [4], where the notation e was used for the field a, and [38].
6Please notice the error in Eq. (5.19) of [4].
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Replacing (22) in (20), and taking into considering (23) and (24), after some manipulations, we obtain
the general expression for the constitutive equation for a transversely isotropic body, which is inextensible
in the direction of anisotropy:

ε =
∂Π̄
∂Ī1

(a ⊗ a − I) +
∂Π̄
∂Ī2

(−Ī1I + T − I1a ⊗ a) +
∂Π̄
∂Ī3

[−2Ī1I − 2I1a ⊗ a + a ⊗ (Ta)

+ (Ta) ⊗ a] +
∂Π̄
∂Ī4

{−Ī3I + T2 + I2
1a ⊗ a − I1[a ⊗ (Ta) + (Ta) ⊗ a]}. (25)

Regarding (18) by following the same procedure presented above, on assuming that Π = Π(I1, I2,
I3, I4, I5), we obtain

Π =
{

Π(I1, I2, I3, I4, I5) if a · (εa) < 0,
Π̄(Ī1, Ī2, Ī3, Ī4) if a · (εa) = 0.

(26)

3.1. An elastic body that is inextensible and incompressible

Let us study briefly a special case, where apart from considering the body to be inextensible in the
direction a, we also assume that is incompressible. Then, using (20) and on enforcing the constraint of
incompressibility

tr(ε) = 0, (27)

we obtain the first-order partial differential equation (see [4,8])

3Π1 + Π2I1 + 2Π3I2 + Π4 + 2Π5I4 = 0. (28)

Using the expression for Π from (22) that already satisfies the inextensibility constraint and using the
chain rule for the partial derivatives, Eq. (28) becomes

− 2
∂Π̄
∂Ī1

− 3
∂Π̄
∂Ī2

Ī1 − 4
∂Π̄
∂Ī3

Ī1 +
∂Π̄
∂Ī4

(2Ī2 − 3Ī3) = 0, (29)

which is the equation that the inextensible body must satisfy in order to be incompressible as well. The
solution of (29) is of the form (see [21])

Π̄ = Π̃(Ĩ1, Ĩ2, Ĩ3), (30)

where we have defined (see (23) and (24))

Ĩ1 = Ī2 − 3
4
Ī2
1 , Ĩ2 = Ī3 − Ī2

1 , Ĩ3 =
1
2
(Ī3

1 + 2Ī2Ī2 − 3Ī1Ī3 + 2Ī4), (31)

and from (30) and (31), the expression for ε would be of the form:

ε =
∂Π̃
∂Ĩ1

[
1
2
(I1 − 3I4)a ⊗ a +

1
2
(I4 − I1)I + T

]
+

∂Π̃
∂Ĩ2

[−2I4a ⊗ a + a ⊗ (Ta) + (Ta) ⊗ a]

+
∂Π̃
∂Ĩ3

{
1
2
(8I1I4 − 5I2

1 − 2I2 + 3I2
4 − 3I5)a ⊗ a +

1
2
(5I2

1 + 2I2 − 10I1I4 + 3I2
4 + I5)I

+
1
2
(I1 − 3I4)[a ⊗ (Ta) + (Ta) ⊗ a] + T2

}
. (32)

In this study, we restrict our attention to the model (25) for inextensible bodies and do not consider
the additional constraint that it be incompressible as well.
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3.2. On the consequences of a stress tensor of the form T = qa ⊗ a

In the classical theory of elasticity, for inextensible bodies, from (14), we deduce that7 TN = qa⊗ a, and
in this section, we study the effect of adding such a reaction stress tensor in (25). Consider the following
decomposition of the stress tensor

T = To + qa ⊗ a, (33)

where q = q(x) is a scalar field and

a · (Toa) = 0. (34)

Let us define

Io
1 = trTo, Io

2 =
1
2
tr(T2

o), Io
3 =

1
3
tr(T3

o), Io
4 = a · (Toa), Io

5 = a · (T2
oa), (35)

where from (34), we have Io
4 = 0. From (19) and (35), we can show that

I1 = trT = Io
1 + q, I2 =

1
2
tr(T2) = Io

2 + qIo
4 +

q2

2
= Io

2 +
q2

2
, (36)

I3 =
1
3
tr(T3) = Io

3 + qIo
5 + q2Io

4 +
q3

4
= Io

3 + qIo
5 +

q3

4
, (37)

I4 = a · (Ta) = Io
4 + q = q, I5 = a · (T2a) = Io

5 + 2qIo
4 + q2 = Io

5 + q2. (38)

Using these expressions in (23) and (24), it is easy to deduce that Īk = Īo
k , k = 1, 2, 3, 4, where Īo

k are the
invariants (23) and (24) defined with respect to To. On the other hand, it follows from (33), (36)–(38)
and (25) that

(I1 − I4)I + T − I1a ⊗ a = (Io
1 − Io

4 )I + To − Io
1a ⊗ a, (39)

2(I1 − I4)I − 2I1a ⊗ a + a ⊗ (Ta) + (Ta) ⊗ a = 2(Io
1 − Io

4 )I − 2Io
1a ⊗ a + a ⊗ (Toa)

+ (Toa) ⊗ a, (40)

(2I1I4 − I2
1 − I5)I + T2 + I2

1e ⊗ e − I1[a ⊗ (Ta) + (Ta) ⊗ a] = (2Io
1Io

4 − Io
1
2 − Io

5 )I

+T2
o + Io

1
2e ⊗ e − Io

1 [a ⊗ (Toa) + (Toa) ⊗ a]. (41)

Using all these results in (25), one can show the expression for the ε in (25) remains identical to that
which is obtained by replacing To by To + qa ⊗ a. Therefore, we have

ε = f(T) = f(To). (42)

3.3. Dimensionless expressions

With an aim towards a proper comparison of the results of our analysis and the results predicted by the
linearized theory of elasticity, we proceed to nondimensionalize (20) and (25).

Let us define the dimensionless stress tensor T̂ = 1
σo
T, where σo is a characteristic value for the stress.

We then obtain, from (19), dimensionless invariants (see [8]):

Î1 = trT̂, Î2 =
1
2
tr(T̂2), Î3 =

1
3
tr(T̂3), Î4 = a · (T̂a) =

I4

σo
, Î5 = a · (T̂2a) =

I5

σ2
o

. (43)

Let us define the dimensionless function [8] Π̂ as Π̂ = Π
σo

. Using the chain rule for the derivatives, we
have ∂Π

∂I1
= ∂Π

∂Î1

1
σo

, ∂Π
∂I2

= ∂Π
∂Î2

1
σ2
o
, ∂Π

∂I3
= ∂Π

∂Î3

1
σ3
o
, ∂Π

∂I4
= 1

σo

∂Π
∂Î4

and ∂Π
∂I5

= 1
σ2
o

∂Π
∂Î5

. Using these expressions in

7See, for example, Eq. 24 of [44], Eq. 8 of [40] and Eq. 3.7 of [26].
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(8), it is easy to show that

ε = Π̂1I + Π̂2T̂ + Π̂3T̂2 + Π̂4a ⊗ a + Π̂5[a ⊗ (T̂a) + (T̂a) ⊗ a], (44)

where Π̂i = ∂Π̂
∂Îi

, i = 1, 2, 3, 4, 5. Replacing in (17), we obtain the solution Π̂ = Π̌(Ǐ1, Ǐ2, Ǐ3, Ǐ4), where

Ǐ1 = Î4 − Î1, Ǐ2 =
1
2
(Î2

1 + 2Î2 − 2Î1Î4), Ǐ3 = Î2
1 − 2Î1Î4 + Î5,

Ǐ4 =
1
3
(3Î3 − Î3

1 + 3Î2
1 Î4 − 3Î1Î5), (45)

and so from (44), we finally obtain

ε =
∂Π̌
∂Ǐ1

(a ⊗ a − I) +
∂Π̌
∂Ǐ2

[(Î1 − Î4)I + T̂ − Î1a ⊗ a] +
∂Π̌
∂Ǐ3

[2(Î1 − Î4)I − 2Î1a ⊗ a

+a ⊗ (T̂a) + (T̂a) ⊗ a] +
∂Π̌
∂Ǐ4

{(2Î1Î4 − Î2
1 − Î5)I + T̂2 + Î2

1a ⊗ a

− Î1[a ⊗ (T̂a) + (T̂a) ⊗ a]}, (46)

which is the dimensionless counterpart of (25).

3.4. The linearized constitutive equation

Let us carry out a further linearization by assuming that |T̂| ∼ O(δ), δ � 1, which is equivalent to
saying |T| � σo. Such a linearization leads to the classical linearized elastic model. We can express the
functions ∂Π̌

∂Ǐi
(T̂) as a truncated Taylor series (assuming that Π̌ is sufficiently smooth) around T̂ = 0 in

index notation as:

∂Π̌
∂Ǐi

(T̂) ≈ ∂Π̌
∂Ǐi

(0̂) +
(

∂2Π̌
∂Ǐi∂Ǐj

∂Ǐj

∂T̂mn

)
T̂=0

T̂mn, i, j = 1, 2, 3, 4. (47)

Using this expansion in (46) after some manipulations (neglecting terms of order O(δr), r ≥ 2), which
for brevity are not presented here, we obtain the linearized equation (compare with Eq. 24 of [44])

ε = [α1 + (β + α2 + 2α3)(Î1 − Î4)]I + α2T̂ − (α2 + 2α3)a ⊗ a + α3[a ⊗ (T̂a) + (T̂a) ⊗ a], (48)

where we have defined

αl =
∂Π̌
∂Ǐl

(0), β =
∂2Π̌
∂Ǐ2

1

(0), l = 1, 2, 3. (49)

4. Simple boundary value problems

In this section, we first study two simple boundary value problems, where we assume the distributions
of stresses and strains are homogeneous; thereafter, we consider the results presented in Sect. 3.2, and
we study problems concerning the inhomogeneous distributions of stresses and strains, and we present
partial solutions of some boundary value problem using the decomposition of the stress (33), i.e. adding
qa ⊗ a to the stress field.
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4.1. The biaxial extension of a thin plate

In this first problem, let us consider the plate defined through −L1/2 ≤ x1 ≤ L1/2, −L2/2 ≤ x2 ≤ L2/2,
0 ≤ x3 ≤ h, where h � L1, h � L2. Let us assume that the plate is under a homogeneous stress
distribution of the form

T = σ1e1 ⊗ e1 + σ2e2 ⊗ e2 (50)

and let us consider the case where the preferred direction a is given as

a = cos ξe1 + sin ξe2, 0 ≤ ξ ≤ π

2
. (51)

On substituting (50) and (51) into (19), we obtain

I1 = σ1 + σ2, I2 =
1
2
(σ2

1 + σ2
2), I3 =

1
3
(σ3

1 + σ3
2), (52)

I4 = σ1 cos2 ξ + σ2 sin2 ξ, I5 = σ2
1 cos2 ξ + σ2

2 sin2 ξ, (53)

therefore, in terms of the invariants defined in (23), (24), we have

Ī1 = σ1(cos2 ξ − 1) + σ2(sin2 ξ − 1), (54)
Ī2 = Ī3 = σ2

1(1 − cos2 ξ) + σ2
2(1 − sin2 ξ), Ī4 = 0, (55)

(56)

and finally from (25), the nonzero components of the strain tensor are:

ε11 =
∂Π̄
∂Ī1

(cos2 ξ − 1) + 2
∂Π̄
∂Ī2

σ1 sin2 ξ + 2
∂Π̄
∂Ī3

σ1 sin2 ξ, (57)

ε22 =
∂Π̄
∂Ī1

(sin2 ξ − 1) + 2
∂Π̄
∂Ī2

σ1 cos2 ξ + 2
∂Π̄
∂Ī3

σ1 cos2 ξ, (58)

ε33 = − ∂Π̄
∂Ī1

+
∂Π̄
∂Ī2

[σ1(1 − cos2 ξ) + σ2(1 − sin2 ξ)] +
∂Π̄
∂Ī3

[σ1 + σ2

+ (σ2 − σ1) cos(2ξ)] +
∂Π̄
∂Ī4

[(σ2
1 − σ2

2) cos(2ξ) − σ2
1 − σ2

2 ], (59)

ε12 =
[

∂Π̄
∂Ī1

− ∂Π̄
∂Ī2

(σ1 + σ2) − ∂Π̄
∂Ī3

(σ1 + σ2)
]

cos ξ sin ξ. (60)

Since the stress field is constant, it satisfies the equilibrium equation (7) (without body forces) au-
tomatically, while from (6)3 and (57)–(60), we obtain unique expressions for the components of the
displacement field (up to a rigid body motion).

4.2. A slab under a state of simple shear stress

Let us consider the slab −Li/2 ≤ xi ≤ Li/2, i = 1, 2, 3 under the effect of the shear stress distribution

T = τ(e1 ⊗ e2 + e2 ⊗ e1), (61)

and let us assume the same expression for a as in (51). Using (61) and (51) in (19), we obtain

I1 = I3 = 0, I2 = I5 = τ2, I4 = 2τ sin ξ cos ξ. (62)

Using these expressions for the invariants in (23), (24), we have

Ī1 = 2τ sin ξ cos ξ, Ī2 = Ī3 = τ2, Ī4 = 0. (63)
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Using (22) in (25) and repeating the above calculations for the nonzero components of the strains, we
obtain:

ε11 =
∂Π̄
∂Ī1

(cos2 ξ − 1) − 2
∂Π̄
∂Ī2

τ sin ξ cos ξ − 2
∂Π̄
∂Ī3

τ sin ξ cos ξ, (64)

ε22 =
∂Π̄
∂Ī1

(sin2 ξ − 1) − 2
∂Π̄
∂Ī2

τ sin ξ cos ξ − 2
∂Π̄
∂Ī3

τ sin ξ cos ξ, (65)

ε33 = − ∂Π̄
∂Ī1

− 2
∂Π̄
∂Ī2

τ sin ξ cos ξ − ∂Π̄
∂Ī4

τ2, (66)

ε12 =
∂Π̄
∂Ī1

sin ξ cos ξ +
∂Π̄
∂Ī2

τ +
∂Π̄
∂Ī3

τ. (67)

Again since T from (61) is constant, the equilibrium equations (without body forces) (7) are satisfied
and from (6)3 and (64)–(67), we can obtain unique expressions (up to a rigid body motion) for the
displacement field.

4.3. A simple example wherein the reaction stress is of the form qa ⊗ a

In this problem, we use the notation x, y, z for xi, i = 1, 2, 3, respectively. Let us work with a three-
dimensional body defined through a ≤ x ≤ b, where in the planes y − z the body may have an arbitrary
geometry (smooth enough such that our calculations are valid). Let us assume this body is under the
effect of the following stress field

T = To(x) + qe1 ⊗ e1, (68)

where we have assumed that a = e1 (we need to remember that a · (Toa) = 0), then:

To(x) = σ2(x)e2 ⊗ e2 + σ3(x)e3 ⊗ e3 + τ12(x)(e1 ⊗ e2 + e2 ⊗ e1)
+τ13(x)(e1 ⊗ e3 + e3 ⊗ e1) + τ23(x)(e2 ⊗ e3 + e3 ⊗ e2). (69)

Using (68) and (69) in (7) and neglecting body forces in the equilibrium equations, we obtain

∂q

∂x
= 0,

dτ12

dx
= 0,

dτ13

dx
= 0. (70)

Let us assume that q is of the form

q = ζ(x) + ϑ(y, z), (71)

then by virtue of (70), we have the solution

ζ(x) = c1, τ12 = c2, τ13 = c3, (72)

where ci, i = 1, 2, 3 are constants.
Let us assume that the stress tensor field (68) produces the following displacement field8

ui(x, y, z) = υi(x) + giy + hiz, i = 1, 2, 3, (73)

where gi, hi, i = 1, 2, 3 are constants. Using (73) in (6)3 and appealing to (42), we obtain the relations

dυ1

dx
= f11(To(x)), g2 = f22(To(x)), h3 = f33(To(x)), (74)

g1 +
dυ2

dx
= 2f12(To(x)), h1 +

dυ3

dx
= 2f13(To(x)), h2 + g3 = 2f23(To(x)), (75)

8It is possible that other solutions for the displacement field are possible, considering (68), (69) and (25), but in this
communication we do not discuss about such possible nonuniqueness for the displacement field.
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where the components fij of f are obtained from (25), which for the sake of brevity are not presented
explicitly here.

Solving for υi, i = 1, 2, 3 from (74)1 and (75)1,2 and (73), we obtain

u1 =

x∫
a

f11(To(η)) dη + υ1o
+ g1y + h1z, (76)

u2 = 2

x∫
a

f12(To(η)) dη − g1x + υ2o
+ g2y + h2z, (77)

u3 = 2

x∫
a

f13(To(η)) dη − h2x + υ3o
+ g3y + h3z, (78)

where υio , i = 1, 2, 3 are constants.
Regarding boundary conditions, let us assume that at x = a the displacement is zero, i.e. u(a, y, z) = 0,

therefore, from (76) to (78), we conclude that such a condition is satisfied if υio = 0, gi = 0, hi = 0,
i = 1, 2, 3. With regard to the boundary at x = b, let us assume that we apply an external traction there,
i.e. Tn = t̆, and considering (68), (69) and since n = e1 we have

t̆ = (c1 + ϑ(y, z))e1 + c1e2 + c3e3. (79)

This is the external load that we need in order to produce the displacement (76), (78) such that the
boundary value problem is solvable under the assumptions that have been made for the forms for the
stress and displacement fields. As a consequence of (71), we have ϑ(y, z) and thus σ2(x), σ3(x) and τ23(x)
can be found by solving the, in general nonlinear, algebraic equations (74)2,3 and (75)3.

In finding the above solution for the boundary value problem, we have used a semi-inverse approach.
As the governing equations in general are nonlinear, it is possible that there might be other solutions
than of the form sought in the semi-inverse approach.

4.4. Another example wherein the reaction stress is of the form qa ⊗ a

We repeat the methodology presented in the previous section, within the context of a cylindrical body.
Consider the body defined in cylindrical coordinates by a ≤ r ≤ b. In the θ − z plane, the geometry of
the body can be arbitrary. Let us assume that this body is under the influence of the stress tensor field

T = To + qer ⊗ er, (80)

where a = er and

To = σθ(r)eθ ⊗ eθ + σz(r)ez ⊗ ez + τrθ(r)(er ⊗ eθ + eθ ⊗ er)
+ τrz(r)(er ⊗ ez + ez ⊗ er) + τθz(r)(eθ ⊗ ez + ez ⊗ eθ), (81)

i.e. er · (Toer) = 0. Replacing (80), (81) in the equilibrium equations (7) (neglecting body forces), we
obtain

∂q

∂r
+

1
r
(q − σθ) = 0,

dτrθ

dr
+

2τrθ

r
= 0,

dτrz

dr
+

τrz

r
= 0. (82)

Let us assume that q = q(r), then from (82)1 we find, for example, q as:

q(r) =
1
r

r∫
a

σθ(η) dη − cr

r
, (83)
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while from (82)2,3, we obtain

τrθ(r) =
cθ

r2
, τrz(r) =

cz

r
, (84)

where cr, cθ, cz are constants.
Let us assume the above stress field produces the following displacement field in the body:

ur = υr(r) + qrz + k, uθ = υθ(r), uz = υz(r) + qzz, (85)

where qr, qz, k are constants. Using this displacement field in (6)3 and recalling (42), we obtain

dυr

dr
= frr(To(r)),

υr

r
= fθθ(To(r)), qz = fzz(To(r)), (86)

dυθ

dr
− υθ

r
= 2frθ(To(r)), qr +

dυz

dr
= 2frz(To(r)), 0 = fθz(To(r)). (87)

From (86)1,2, we can find a unique solution for υr(r) if the following (in general nonlinear) differential
equation, which arises from compatibility considerations, is satisfied:

d
dr

[rfθθ(To(r))] = frr(To(r)). (88)

If (88) is satisfied, from (86)2, we have the solution

υr(r) = rfθθ(To(r)). (89)

From (87)1,2, (89) and (85), we obtain the solutions

ur = rfθθ(To(r)) + qrz + k, (90)

uθ = 2r

r∫
a

1
η
frθ(To(η)) dη + rυθo

, (91)

uz = 2

r∫
a

frz(To(η)) dη − qrr + qzz, (92)

where υθo
is a constant.

With regard to the boundary conditions, let us assume that on the boundary r = a we have the
condition u = 0, then from (90)–(92) that condition is met if k = −afθθ(To(a)) and qr = qz = υθo

= 0.
Regarding the boundary at r = b we assume that there is an external traction t̆ applied there, and using
(80), (81) from Tn = t̆ we have

t̆ =

⎡
⎣1

b

b∫
a

σθ(η) dη − cr

b

⎤
⎦ er +

cθ

b2
eθ +

cz

b
ez, (93)

which is the necessary external traction for the solution (90)–(92) to be valid.
In this problem, σθ(r), σz(r) and τθz(r) can be found by solving the (in general nonlinear) ordinary

differential equation (88) and the nonlinear algebraic equations (86)3 and (87)3. In the case of the previous
boundary value problem, we are using a semi-inverse approach solutions other than those of the form
sought are possible.
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5. Case of large elastic deformations

In this last section, let us consider briefly the case when |∇u| is large, where in this case ∇ is the gradient
defined with respect to the reference configuration. The results in this case are very similar to the case
of small gradient of the displacement field presented in the previous sections. The constraint for a body
that is inextensible in the direction a0 is given in terms of the tensor C (see (12) and (15)), and that
equation can be rewritten in terms of E (see (5)3) as

a0 · (Ea0) = 0. (94)

Let us consider an implicit constitutive relation of the form (see [33,34]) F(S,E) = 0 (where S =
JF−1TF−T is the second Piola-Kirchhoff stress tensor), and its subclass E = g(S). Furthermore, let us
assume again that there exists a scalar function Ω = Ω(S) such that

E = g(S) =
∂Ω
∂S

. (95)

In the case Ω = Ω(S) is a transversely isotropic function the direction of anisotropy being a0 (reference
configuration), then Ω = Ω(Jk), k = 1, 2, 3, 4, 5, where Jk are given as in (19) but interchanging T by S
and a by a0, i.e. J1 = trS, J2 = 1

2 tr(S2), J3 = 1
3 tr(S3), J4 = a0 · (Sa0) and J5 = a0 · (S2a0). In this case,

we have

E = Ω1I + Ω2S + Ω3S2 + Ω4a0 ⊗ a0 + Ω5[a0 ⊗ (Sa0) + (Sa0) ⊗ a0], (96)

where Ωk = ∂Ω
∂Jk

, k = 1, 2, 3, 4, 5. Replacing (96) in (94) and following the same procedure as presented
for the case of small gradient of the displacement field in Sect. 3, it is possible to show that the particular
expression for Ω for the body to be inextensible in the direction a0 must be of the form

Ω = Ω̄(J̄1, J̄2, J̄3, J̄4), (97)

where J̄1 = J4 − J1, J̄2 = 1
2J2

1 + J2 − J1J4, J̄3 = J2
1 − 2J1J4 + J5 and J̄4 = − 1

3J3
1 + J3 + J2

1J4 − J1J5.
The constraint a0 · (Ea0) ≤ 0 can be treated in the same way as in Sect. 3.
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