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Abstract The paper concerns parameterized equilibria governed by generalized equations
whose multivalued parts are modeled via regular normals to nonconvex conic constraints.
Our main goal is to derive a precise pointwise second-order formula for calculating the
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graphical derivative of the solution maps to such generalized equations that involves
Lagrange multipliers of the corresponding KKT systems and critical cone directions. Then
we apply the obtained formula to characterizing a Lipschitzian stability notion for the
solution maps that is known as isolated calmness.

Keywords Variational analysis and optimization · Parameterized equilibria · Conic
constraints · Sensitivity and stability analysis · Solution maps · Graphical derivatives ·
Normal and tangent cones

Mathematics Subject Classification (2010) primary 49J53 · 49J52; secondary 90C31

1 Introduction

This paper pursues a twofold goal. The main attention is paid to developing generalized dif-
ferential calculus of variational analysis to which Lionel Thibault made crucial, pioneering
contributions. These aspects of our present study, being certainly of their own interest, are
motivated by the subsequent application to characterizing the so-called isolated calmness
property of stability analysis for parameterized equilibria represented as the solution map to
the generalized equation (GE)

0 ∈ f (x, y) + ̂N�(y) with � := g−1(�), (1.1)

which contains the regular normal cone ̂N� (see Section 2 for this and the other major
constructions of generalized differentiation employed in the paper) to the given, usually
nonconvex set �. By the general results of variational analysis (see Section 5), achieving the
latter goal requires the usage of the graphical derivative of the solution map S : Rn ⇒ R

m

defined by

S(x) := {

y ∈ R
m
∣

∣ 0 ∈ f (x, y) + ̂N�(y)
}

(1.2)

and its calculation in terms of the initial problem data of (1.1) and the associated values
computed at the reference solution point. This amounts to developing a calculus rule for the
expression of the graphical derivative of the normal cone mapping ̂N�(·).

It has been well recognized in variational analysis that developing calculus rules (even
of the inclusion type) for nonrobust, tangentially generated graphical derivatives is a chal-
lenging issue. In fact, not much has been known in this direction; see, e.g., [25]. This
significantly distinguishes tangentially generated derivative constructions from limiting
normals and normally generated coderivatives, which–despite their intrinsic nonconvexity–
enjoy comprehensive calculus rules based on variational/extremal principles of variational
analysis; see the books [12, 25] and the references therein.

In this paper we focus on the special class of set-valued mappings/multifunctions
S : Rn →→ R

m given in (1.2) and observe that such mappings accumulate certain first-order
information about optimization and equilibrium problems via the regular normal cone ̂N�

to the constraint set �. Therefore, generalized differentiation of S leads us to a second-
order object, and the desired formula for the graphical derivative of this multifunction can
be treated as a result of second-order calculus.

Some results on generalized differentiation of set-valued mappings of type (1.2) are
available in the literature. Namely, the paper [19] contains the calculation of the limiting
coderivative of the solution map to a counterpart of GE (1.1), where � is a Carthesian prod-
uct of the Lorentz cones. Our recent paper [15] provides a precise second-order formula to
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calculate the regular coderivative of the solution map S given in (1.2) under natural assump-
tions. Furthermore, the same paper [15] contains a formula for calculating the graphical
derivative of (1.2) but only under the convexity assumption on �, which is rather restric-
tive, being however unavoidable in the technique of [15]. Observe also that the convexity
assumption on � is not imposed in [6] while the set � in (1.2) is assumed to be a convex
polyhedron. This excludes from consideration many important classes in conic program-
ming, e.g., second-order cone programs and semidefinite programs, which are among the
main motivations for our current research.

In this paper we are able to completely avoid the convexity assumptions on � and sig-
nificantly relax the polyhedrality assumption on �. The key ingredients allowing us to
proceed in this way are the usage of the recent characterizations of full stability of local
minimizers in problems of conic programming [14] and the projection representation for
nonconvex prox-regular sets taken from [21]. Furthermore, an important role in our device
is played by a new local geometric condition on the underlying set � in the conic constraint
g(y) ∈ �, which is labeled as the projection derivation condition (PDC) and which holds
under the (second-order) extended polyhedricity condition from [3] and therefore also under
the stronger polyhedricity and polyhedrality properties of convex sets.

The rest of the paper is organized as follows. In Section 2 we state the problem, introduce
and discuss the standing assumptions, and recall the notions of first-order and second-order
generalized differentiation widely used in the formulations and proofs of the subsequent
results in the paper.

Section 3 is mainly devoted to the new results on the directional differentiability of
the projection operator P� associated with the constraint set � in (1.1). We prove here
the directional differentiability of P� and establish a precise representation of the direc-
tional derivative P ′

�(u;h) via the directional derivative P ′
� without imposing the convexity

assumption on � and/or the projection derivation condition (and hence any polyhedricity-
like assumption) on �. The aforementioned characterizations of full stability in conic
programming play a crucial role in this section.

In Section 4 we formally introduce and discuss the aforementioned PDC property for
� that is crucial for the subsequent calculation of the graphical derivative of the solution
map and its application to isolated calmness. In particular, relationships between the new
PDC and the polyhedricity and extended polyhedricity conditions on � are established and
illustrated in this section.

Section 5 contains the main results of the paper providing second-order formulas for
calculating the graphical derivative of the regular normal cone mapping ̂N� and then of the
solution map S from (1.2) in terms of Lagrange multipliers of the perturbed KKT system
and the critical cone of � under the projection derivation condition imposed on � at the
reference solution point.

Section 6 is devoted to the application of the graphical derivative formulas and other
calculus results to deriving sufficient conditions as well as complete characterizations of
the isolated calmness property of S at (x̄, ȳ) in terms of the problem data. We illustrate
the efficient usage of these conditions in the case of equilibrium systems governed by the
nonpolyhedral second-order (Lorentz) cone in R

3. In the concluding Section 7 we discuss
some perspective topics for future research.

Our notation is standard throughout the whole paper, except from special symbols
defined in the places where they first appear. Recall that Rn is the n-dimensional Euclidean
space, I is the identity matrix, �⊥ signifies the orthogonal complement to the set �, and AT

stands for the matrix or vector transposition. We denote by F : Rn →→ R
m a set-valued map-

ping, which takes values in the subsets of Rm. This distinguishes set-valued mappings from
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vector-valued ones denoted by f : Rn → R
m. In the latter case, the symbol f ′(x;h) stands

for the classical directional derivative of f at the point x ∈ R
n in the direction h ∈ R

n. As
usual, IB(x; r) denotes the closed ball centered at x with radius r > 0 while IB signifies the
closed unit ball of the space in question.

2 Problem Formulation and Preliminaries

The major object of our analysis is the parameter-dependent generalized equation

0 ∈ f (x, y) + ̂N�(y) (2.1)

in Robinson’s formalism [22], which has been well recognized as a convenient model to
study various problems of optimization and equilibria. In (2.1) we have: x ∈ R

n is the
parameter, y ∈ R

m is the decision variable, the mapping f : R
n × R

m → R
m is con-

tinuously differentiable, and ̂N�(y) stands for the (Fréchet) regular normal cone to the set
� ⊂ R

m at the point y ∈ � defined by

̂N�(y) :=
{

v ∈ R
m
∣

∣

∣ lim sup
u

�→y

〈v, u − y〉
‖u − y‖ ≤ 0

}

, (2.2)

where the symbol u
�→ y indicates that u → y with u ∈ �. In what follows we address the

GE model (2.1) with � described by the conic constraint

� = g−1(�) ⇐⇒ g(y) ∈ �, (2.3)

where g : Rm → R
l is twice continuously differentiable and � ⊂ R

l is a closed convex
cone. We associate with (2.1) the parameter-dependent solution map S : Rn ⇒ R

m defined
by

S(x) := {

y ∈ R
m
∣

∣ 0 ∈ f (x, y) + ̂N�(y)
}

, x ∈ R
n. (2.4)

As mentioned in Section 1, the twofold goal of this paper is to derive a verifiable formula
for calculating the graphical derivative of the solution map S from (2.4) and apply it to
characterizing the isolated calmness property of S at the reference point of its graph.

Given an arbitrary set-valued mapping F : Rn →→ R
m and the point (x̄, ȳ) from its graph

gph F := {

(x, y) ∈ R
n × R

m
∣

∣ y ∈ F(x)
}

,

the graphical derivative of F at (x̄, ȳ) is the mapping DF(x̄, ȳ) : Rn →→ R
m defined by

DF(x̄, ȳ)(u) := {

v ∈ R
m
∣

∣ (u, v) ∈ Tgph F (x̄, ȳ)
}

, u ∈ R
n, (2.5)

where the tangent/contingent cone to a set � ⊂ R
s at a point z̄ ∈ � is given by

T�(z̄) := {

z ∈ R
s
∣

∣ ∃ tk ↓ 0, zk → z as k → ∞ with z̄ + tkzk ∈ �
}

. (2.6)

We refer the reader to [25] for more information on these constructions. Let us mention here
that the (convex) regular normal cone (2.2) to � at z̄ is dual/polar to the tangent cone (2.6),
i.e.,

̂N�(z̄) = T�(z̄)∗ := {

w ∈ R
s
∣

∣ 〈w, z〉 ≤ 0 for all z ∈ T�(z̄)
}

while not vice versa, since the tangent cone (2.6) is generally nonconvex.
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Next we formulate our standing assumptions in this paper, which are standard in conic
programming; see, e.g., the book [3] and the references therein.

Standing assumptions:

(A1) The set � is C2-reducible to a closed convex set � ⊂ R
q at z̄ := g(ȳ), and the

reduction is pointed. This means that there exist a neighborhood V of z̄ and a C2-
smooth mapping h : V → R

q such that: (i) for all z ∈ V we have z ∈ � if and only
if h(z) ∈ �, where the cone T�(h(z̄)) is pointed; (ii) h(z̄) = 0 and the derivative
mapping ∇h(z̄) : Rl → R

q is surjective/onto, i.e., the Jacobian matrix ∇h(z̄) has
full rank.

(A2) The point ȳ ∈ R
m is nondegenerate for g with respect to �, i.e.,

∇g(ȳ)Rm + lin
(

T�(z̄)
) = R

l ,

where lin(Q) denotes the largest linear subspace of Rl contained in Q ⊂ R
l .

(A3) The metric projection operator onto �, denoted by P�, is directionally differentiable
on R

l .

It occurs that assumption (A3) holds automatically for a large class of sets typically
encountered in conic programming. To describe such sets � ⊂ R

s , fix z̄ ∈ � and h ∈ T�(z̄).
Recall that

T 2
�(z̄, h) :=

{

w ∈ R
s
∣

∣

∣ dist
(

z̄ + th + 1

2
t2w; �

)

= o(t2) for all t > 0
}

(2.7)

is known as the (inner) second-order tangent set of � at z̄ in the direction h. According to
[1], the set � is second-order regular at z̄ ∈ � if for every sequence zk → z̄ in the form
zk = z̄ + tkh + 1

2 t2
k rk with tk ↓ 0 and tkrk → 0 as k → ∞ it follows that

lim
k→∞

[

dist
(

rk; T 2
�(x̄, h)

)] = 0. (2.8)

The set � is said to be second-order regular if it is second-order regular at every point
z̄ ∈ �.

We refer the reader to [1,3, Section 3.3.3], and the recent paper [26] for various useful
properties of second-order regular sets, which cover a large territory in second-order vari-
ational analysis and optimization. In particular, if � is second-order regular at z̄, then the
inner second-order tangent set (2.7) agrees with its outer counterpart (which is not employed
in this paper) and also T 2

�(z̄;h) �= ∅ for any h ∈ T�(z̄). Among sufficient conditions for
second-order regularity we mention the validity of this property at z̄ ∈ � for any convex
set � that is cone reducible at z̄, i.e., the set � in (A1) is a pointed cone. The latter prop-
erty holds, at any z̄ ∈ �, for many important classes of sets in conic programming, e.g., for
convex polyhedra, for the cone of symmetric positive-semidefinite matrices in semidefinite
programming, and for the second-order/Lorentz/ice-cream cone given by

Ql := {(θ1, . . . , θl)|θl ≥ |(θ1, . . . , θl−1)|} (2.9)

with the Euclidean norm ‖ · ‖ that describes problems of second-order cone programming.
The principal result of [1, Theorem 7.2] says the following: Given a closed and convex

set � ⊂ R
s , its single-valued metric projection P� : Rs → �, and z̄ = P�(ȳ) with ȳ ∈ R

s ,
the second-order regularity of � at z̄ ensures the directional differentiability of P� at ȳ.
This shows that assumption (A3) holds automatically for second-order regular sets � in the
conic constraint (2.3).

Finally in this section, we recall the notions of the (Mordukhovich) limiting normal cone
and coderivative used in the proofs of our main results; see [12, 25] for more details and
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references on these constructions. Given a set � ⊂ R
s , the limiting normal cone to � at

z̄ ∈ � is defined by

N�(z̄) := {

v ∈ R
s
∣

∣ ∃zk → z̄, vk → v with zk ∈ �, vk ∈ ̂N�(zk)
}

. (2.10)

Given a mapping F : Rn →→ R
m and a point (x̄, ȳ) ∈ gph F , the limiting coderivative of

F at (x̄, ȳ) is the set-valued mapping D∗F(x̄, ȳ) : Rm →→ R
n defined by using the normal

cone (2.10) as

D∗F(x̄, ȳ)(v) := {

u ∈ R
n
∣

∣ (u,−v) ∈ Ngph F (x̄, ȳ)
}

, v ∈ R
m. (2.11)

These constructions and their second-order combinations allow us to characterize the fun-
damental notion of full stability of local minimizers in conic programs employed in what
follows.

3 Directional Derivatives of Projection Operators

The main goal of this section is to establish relationships between the directional derivatives
of the projection operator P� onto the conic constraint set � from (2.3) and the projection
operator P� onto the underlying cone �. To proceed, consider first the auxiliary linear GE

0 ∈ y − u + ̂N�(y), y ∈ �, u ∈ R
m, (3.1)

and associate with (3.1) the canonically perturbed Karush-Kuhn-Tucker (KKT) system

u = y + (∇g(y)
)T

ν

s ∈ −g(y) + N�∗ (ν),
(3.2)

where ν ∈ R
l is the corresponding Lagrangemultiplier. Denote by T the mapping (u, s) �→

(y, ν) defined by (3.2) and pick a vector ū such that ȳ ∈ P�(ū). Note that under the posed
standing assumptions there is a unique Lagrange multiplier ν̄ ∈ R

l such that

(ȳ, ν̄) ∈ T (ū, 0). (3.3)

The next proposition, which is of its own interest, plays an important role in deriving the
major results of this paper. Its proof is based on the recent second-order characterizations of
the fundamental notion of full stability in optimization introduced in [11].

Recall this notion adapted to the case of conic programs considered in what follows:

minimize ϕ(y, p̄) subject to q(y, p̄) ∈ �, (3.4)

where the cost function ϕ : Rm × R
d → R and the constraint mapping q : Rm × R

d → R
l

are C2-smooth around the reference pair of (ȳ, p̄) of the solution vector y ∈ R
m and the

nominal value of the basic parameter p ∈ R
d . Consider now the perturbed version P(u,p)

of (3.4) involving also another (tilt) parameter u ∈ R
m and given in the form:

minimize ψ(y, p) − 〈u, y〉 with ψ(y, p) := ϕ(y, u) + δ�

(

q(y, p)
)

, (y, p) ∈ R
m × R

d ,

(3.5)

where δ� stands for the indicator function of the set �. Fix γ > 0 and define the local value
function and solution map for the parametric problem P(u,p) in (3.5) by, respectively,

mγ (u, p) := inf
{

ψ(y,p) − 〈u, y〉∣∣ ‖y − ȳ‖ ≤ γ
}

,

Mγ (u, p) := argmin
{

ψ(y, p) − 〈u, y〉∣∣ ‖y − ȳ‖ ≤ γ
}

.
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We say that x̄ is a (Lipschitzian) fully stable local minimizer of P(ū, p̄) if there exist pos-
itive numbers γ, κ and a neighborhood U × V of (ū, p̄) such that the mapping (u,p) �→
Mγ (u, p) is single-valued on U × V with Mγ (ū, p̄) = ȳ satisfying the Lipschitz condition

‖Mγ (u1, p1)−Mγ (u2, p2)‖ ≤ κ
(‖u1 −u2‖+‖p1 −p2‖

)

for all u1, u2 ∈ U, p1, p2 ∈ V

and the value function (u, p) �→ mγ (u, p) is also Lipschitz continuous around (ū, p̄).
This notion has been recognized as an important stability concept in optimization and has

been completely characterized via various second-order conditions. We refer the reader to
[11] and the recent papers [13, 14, 16–18] for such characterizations and their applications
to broad classes of optimization and control problems.

Now we are ready to formulate and prove the aforementioned proposition important
in what follows. The second-order condition in its first part is expressed in terms of the
coderivative (2.11) of the normal cone mapping N� generated by the cone � from the conic
constraint (2.3).

Proposition 3.1 (single-valued Lipschitzian localization of the KKT system) Consider
the triple (ū, ȳ, ν̄) satisfying (3.3) via the KKT system (3.2). The following assertions hold:

(i) Assume that for all w ∈ R
m \ {0} we have the second-order condition

〈

w, (I +
l
∑

i=1

ν̄i∇2gi(ȳ))w

〉

+ 〈∇g(ȳ)w, D∗N�(g(ȳ), ν̄)(∇g(ȳ)w)
〉

> 0. (3.6)

Then the set-valued mapping T from (3.3) admits a single-valued and Lipschitz
continuous localization around the quadruple (ū, 0, ȳ, ν̄).

(ii) If ū = ȳ in (3.3), then the conclusion in (i) is valid without assuming (3.6).

Proof To verify the conclusion of (i), which means Robinson’s strong regularity [23] of the
generalized equation corresponding to (3.2), we employ [14, Theorem 5.6] and deduce from
the equivalence (i)⇐⇒(iii) therein that, under our standing assumptions, the conclusion in
(i) amounts to saying that ȳ is a fully stable local minimizer corresponding to (ū, 0) of the
problem P(u, s) given by

minimize
1

2
‖y‖2 − 〈u, y〉 subject to g(y) + s ∈ �, (3.7)

which is a specification of (3.5) with ϕ(y, u) = 1
2 ‖y‖2, p = s ∈ R

l , and q(y,p) = g(y)+s.
Then [14, Theorem 5.6(iv)] tells us that condition (3.6) is a characterization of full stability
of ȳ in the problemP(ū, 0) from (3.7) with the Lagrange multiplier ν̄. This verifies assertion
(i).

To justify assertion (ii), it suffices to show that condition (3.6) holds automatically if
ū = ȳ. Indeed, condition (3.6) means that for any v ∈ D∗N�(g(ȳ), ν̄)(∇g(ȳ)w) with
w �= 0 we have

‖w‖2 +
〈

w,

l
∑

i=1

ν̄i∇2gi(ȳ)w
〉

+ 〈∇g(ȳ)w, v
〉

> 0. (3.8)

Since ū = ȳ, it follows from (3.2) that ν̄ = 0, and thus the middle term in (3.8) disappears.
Furthermore, the maximal monotonicity of the normal cone mapping implies by [20, Theo-
rem 2.1] that 〈∇g(ȳ)w, v〉 ≥ 0. This shows that (3.8) holds, which completes the proof of
the proposition.
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Remark 3.2 (on the second-order condition) Condition (3.6) can be treated as a proper
extension of the classical strong second-order sufficient condition [23] to which (3.6)
reduces in the case of � = R

l−, i.e., in the case of standard equality and inequality
constraints as in nonlinear programming. We refer the reader to [2, 13, 14, 16–18] for con-
structive versions of (3.6) in other constraint systems. Note that (3.6) is satisfied when g is
�-convex, i.e., the set

{

(y, z) ∈ R
m × R

l
∣

∣ g(y) − z ∈ �
}

is convex. Indeed, the latter property is equivalent for C2-smooth mappings g to the
condition

〈∇2g(y)(h, h), ν
〉 ≥ 0 for all ν ∈ �∗ and y, h ∈ R

m.

Therefore the �-convexity of g ensures that the matrix
∑l

i=1 ν̄i∇2gi(ȳ) is positive semidef-
inite, and so (3.6) holds by the discussion above; cf. also [15]. On the other hand, it is not
hard to construct simple examples showing that the violation of the second-order condition
(3.6) for nonconvex sets � prevents the validity of the conclusion in Proposition 3.1(i).

However, it is rather surprising to see that we do not need to assume the second-order
condition (3.6) in the rest of the paper. In particular, justifying the main results of the paper
presented below requires only the usage of assertion (ii) in Proposition 3.1 without imposing
any convexity assumption on the set � and therefore the �-convexity of the mapping g as
in [15].

To proceed, we first recall the notion of prox-regularity [25] for closed sets in finite
dimensions and an important property of projections onto such sets. A set � ⊂ R

s is prox-
regular at z̄ ∈ � for v̄ ∈ N�(z̄) if � is locally closed around z̄ and there are numbers ε > 0
and ρ ≥ 0 such that

〈v, u − z〉 ≤ 1

2
ρ‖u − z‖2 for all u ∈ � ∩ B(z̄; ε), v ∈ N�(u), ‖v − v̄‖ < ε, ‖z − z̄‖ < ε.

The set � is called prox-regular at z̄ if it is prox-regular at z̄ for any v̄ ∈ N�(z̄).
Besides the validity of this property for closed convex sets, it holds for a large variety of

other “nice” sets broadly encountered in problems of variational analysis and optimization;
see. e.g., [25] and the references therein. In particular, the conic constraint set � under
consideration in this paper (2.3) is prox-regular at ȳ ∈ � (even better–“strongly amenable”)
under the nondegeneracy assumption (A2); see [25, Proposition 13.32 and Exercise 10.25].

Now we invoke the following result borrowed from [21], which holds for our underlying
set �.

Proposition 3.3 (projection representation for prox-regular sets) Given � ⊂ R
s and

r > 0, consider the truncation of the normal cone

Nr
�(z) :=

{

N�(z) ∩ B(z; r) if z ∈ �,

∅ otherwise.

Assume that � is prox-regular at z̄ ∈ �. Then there exists a neighborhoodO of z̄ on which
the projection operator P� is single-valued and Lipschitz continuous while admitting the
representation

P� = (I + Nr
�)−1 for some r > 0. (3.9)

Now we have all the ingredients allowing us to derive a precise second-order relationship
between the directional derivatives of the projection operators P� and P� under the standing



Graphical Derivatives and Stability Analysis for Conic Programming 695

assumptions made. This result does not impose any other assumptions on g and � and fully
eliminates the �-convexity of g imposed in [15].

Theorem 3.4 (directional differentiability of projections to conic constraints) Let the
standing assumptions be satisfied at some ȳ ∈ �, and put ū = ȳ. Then there is a neigh-
borhood U of ū such that the single-valued projection operator P� onto � is directionally
differentiable at each u ∈ U in every direction h ∈ R

m and its directional derivative
is calculated by P ′

�(u;h) = v1, where v1 is the first component of the unique solution
v = (v1, v2) ∈ R

m × R
l to the system of equations

h = (

I +
l
∑

i=1
νi∇2gi(y)

)

v1 + (∇g(y))T v2,

0 = ∇g(y)v1 − P ′
�

(

g(y) + ν; ∇g(y)v1 + v2
)

(3.10)

with y = P�(u) and ν = (ν1, . . . , νl ) ∈ R
l being the unique Lagrange multiplier

corresponding to the pair (u, y) in the KKT system (3.2) with s = 0.

Proof Observe that the local single-valuedness and Lipschitz continuity of the projection
operator P� follows directly from Proposition 3.3 due to the prox-regularity of � at ȳ. To
proceed further, define the mapping � : Rm ×R

m ×R
m ×R

l → R
m ×R

m ×R
m ×R

l by

�(w, z, y, ν) :=

⎡

⎢

⎢

⎣

w

z

y − w + (∇g(y)
)T

ν

g(y) + z − P�

(

g(y) + z + ν
)

⎤

⎥

⎥

⎦

, (3.11)

which is single-valued and Lipschitz continuous around (ū, 0, ȳ, ν̄). Using (3.11) and the
definition of T in (3.3), we clearly get

(y, ν) ∈ T (u, s) ⇐⇒ �(w, z, y, ν) =

⎡

⎢

⎢

⎣

u

s

0
0

⎤

⎥

⎥

⎦

. (3.12)

It follows from Proposition 3.1(ii) that there exist a neighborhood O of (ū, 0, ȳ, ν̄) and a
single-valued locally Lipschitzian mapping � such that �(ū, 0, 0, 0) = (ū, 0, ȳ, ν̄) and

�(·) = �−1(·) ∩ O
on a neighborhood of (ū, 0, 0, 0). Furthermore, the inverse mapping theorem by Kummer
[8, 9] tells us that � is directionally differentiable on a neighborhood of (ū, 0, 0, 0) and its
directional derivative on this neighborhood satisfies the relationship

�′(�(w, z, y, ν); (h, 0, 0, 0)
) =

⎡

⎢

⎢

⎣

h

0
v1

v2

⎤

⎥

⎥

⎦

with

⎡

⎢

⎢

⎣

h

0
0
0

⎤

⎥

⎥

⎦

= �′((w, z, y, ν); (h, 0, v1, v2)
)

.

(3.13)

To justify now the claimed representation of P ′
�(u;h), pick any h ∈ R

m and u near ū

and then find (y, ν) sufficiently close to (ȳ, ν̄) such that u ∈ y + ̂N�(y) with y ∈ � and
̂N�(y) = N�(y) due to the aforementioned prox-regularity of �; see [25]. Since ū = ȳ,
we can choose y ∈ � so that ‖y − u‖ is small enough, which yields u ∈ y + Nr

�(y) for
the truncated normal cone in Proposition 3.3. Employing representation (3.9) ensures that
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y ∈ (I + Nr
�)−1(u) = P�(u). This allows us to combine the relationships in (3.11), (3.12),

and (3.13) and to arrive in this way at the conclusion of the theorem by using standard
calculus rules of calculating the directional derivative of � in (3.11).

4 Projection Derivation Condition

In this section we introduce and comprehensively discuss a new condition on the underlying
convex cone � formulated in terms of its projection operator P�. This condition, together
with the result of Theorem 3.4, plays a crucial role in the precise calculation of the projection
P� to the conic constraint set � via the initial data of (2.3) and then in the subsequent results
of this paper.

The aforementioned property can be formulated for general sets in finite or infinite
dimensions while we investigate and apply it below only for the set � ⊂ R

l under
consideration in (2.3).

Given vectors z̄ ∈ � and b ∈ R
l , define the critical cone to � at z̄ with respect to b by

K(z̄, b) := T�(z̄) ∩ {b}⊥. (4.1)

Definition 4.1 (projection derivation condition) The set � satisfies the PROJECTION

DERIVATION CONDITION (PDC) at the point z̄ ∈ � if we have

P ′
�(z̄ + b;h) = PK(z̄,b)(h) for all b ∈ N�(z̄) and h ∈ R

l . (4.2)

Let us discuss the class of convex sets � satisfying the new condition from Definition 4.1.
It follows from [24] that PDC (4.2) holds at each z̄ ∈ � when � is a convex polyhedron.
In fact it also holds for a significantly broader collection of sets satisfying the so-called
“extended polyhedricity condition” from [3, Definition 3.52]. To recall this definition, for
the fixed vectors z̄ ∈ � and b ∈ N�(z̄) we define the second-order critical set

K2(z̄, b) := {

h ∈ K(z̄, b)
∣

∣ 0 ∈ T 2
�(z̄, h)

}

(4.3)

and say that � satisfies the extended polyhedricity condition at z̄ if for any b ∈ N�(z̄) the
second-order critical set (4.3) is a dense subset of the critical cone K(z̄, b).

The next proposition reveals the relationship between the projection derivation condition
and the extended polyhedricity condition defined above.

Proposition 4.2 (extended polyhedricity implies PDC) Let � be a closed convex set with
z̄ ∈ �, and let � be cone reducible at z̄. Then the validity of the extended polyhedricity
condition for� at z̄ implies that� satisfies the projection derivation condition at this point.

Proof As already mentioned, the cone reducibility ensures by [1, Theorem 7.2] that the
projection operator P� is directionally differentiable at z̄. Moreover, it is proved therein
(see also [3, 26] for further details) that for any u ∈ R

l with z̄ = P�(u) we have the
representation

P ′
�(u;h) = argmin

{‖d − h‖2 − σ
(

u − z̄;T 2
�(z̄, d)

)∣

∣ d ∈ K(z̄, u − z̄)
}

, (4.4)

where σ(·; �) := supw∈�〈·, w〉 stands for the support function of the set in question. Pick-
ing an arbitrary vector b ∈ N�(z̄) and denoting u := z̄+b, we deduce from the well-known
equivalence

b ∈ N�(z̄) ⇐⇒ P�(z̄ + b) = z̄ (4.5)



Graphical Derivatives and Stability Analysis for Conic Programming 697

that z̄ = P�(u). We claim that P ′
�(u;h) = PK(z̄,u−z̄)(h) for all h ∈ R

l whenever � satisfies
the extended polyhedricity condition at z̄.

Indeed, for an arbitrary element d ∈ K(z̄, b) it is easy to see that σ(b;T 2
�(z̄, d)) ≤ 0.

Hence

min
{‖d −h‖2 −σ

(

u− z̄;T 2
�(z̄, d)

)∣

∣ d ∈ K(z̄, u− z̄)
} ≥ min

{‖d −h‖2
∣

∣ d ∈ K(z̄, u− z̄)
}

.

Moreover, since K2(z̄, u − z̄) ⊂ K(z̄, u − z̄) and σ(b;T 2
�(z̄, d)) = 0 for any d ∈ K2(z̄, b),

we get

min
{‖d − h‖2 − σ

(

u − z̄;T 2
�(z̄, d)

)∣

∣ d ∈ K(z̄, u − z̄)
}

≤ min
{‖d − h‖2 − σ(u − z̄;T 2

�(z̄, d)
)∣

∣ d ∈ K2(z̄, u − z̄)
}

= min
{‖d − h‖2

∣

∣ d ∈ K2(z̄, u − z̄)
}

.

This allows us to arrive at the equality

min
{‖d −h‖2 −σ

(

u− z̄;T 2
�(z̄, d)

)∣

∣ d ∈ K(z̄, u− z̄)
} = min

{‖d −h‖2
∣

∣ d ∈ K(z̄, u− z̄)
}

provided that K2(z̄, u − z̄) is a dense subset of K(z̄, u − z̄), which is a consequence of the
extended polyhedricity condition. Thus our claim follows from formula (4.4).

Since b = u − z̄, it follows from the above claim that

P ′
�(z̄ + b;h) = P ′

�(u;h) = PK(z̄,u−z̄)(h) = PK(z̄,b)(h)

under the extended polyhedricity condition for � at z̄. Remembering that b ∈ N�(z̄) was
chosen arbitrarily allows us to conclude that the PDC holds for � at z̄ and thus to complete
the proof.

The obtained proposition shows that the PDC property holds, in particular, for polyhedric
convex sets (see, e.g., [3, Definition 3.51]), which constitute a broader class that the standard
convex polyhedra in finite dimensions. The next example describes a heavily nonpolyhedral
situation when we do not have even polyhedricity but the PDC property holds.

Example 4.3 (PDC for nonpolyhedric sets) Consider the closed and convex cone

� := {

z ∈ R
3
∣

∣ z = tq with t ≥ 0, q ∈ �
}

(4.6)

generated by the nonconvex three-dimensional set

� = {

z = (z1, z2, z3)
∣

∣ z1 = 1 and z4
2 ≤ z3 ≤ 1

}

,

which is depicted on Fig. 1 together with normals to � at the reference point.
It is not hard to check that the set (4.6) is nonpolyhedric at z̄ = (1, 0, 0) and thus also

nonpolyhedral. To show that � has the PDC property at z̄, it suffices to check by Propo-
sition 4.2 that � satisfies the extended polyhedricity condition at this point. Since � is
described around ȳ by

ϕ(z) := z4
2/z

3
1 − z3 ≤ 0, (4.7)

it follows from [3, Proposition 3.30] that for every b ∈ N�(z̄) and every h ∈ K(z̄, b) the
second-order tangent set T 2

�(z̄, h) from (2.7) is given by

T 2
�(z̄, h) = {

w ∈ R
3
∣

∣ ϕ′′(z̄; h,w) ≤ 0
}

(4.8)
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Fig. 1 Cone � from (4.6)

via the parabolic second order directional derivative of ϕ defined by

ϕ′′(z;h, w) := lim
t↓0

ϕ(z + th + 1
2 t2w) − ϕ(z) − tϕ′(z;h)

1
2 t2

. (4.9)

Due to the twice continuous differentiability of ϕ from (4.7) around z̄, we easily get

ϕ′′(z;h, w) = ∇ϕ(z)w + ∇2ϕ(z)(h, h)

= −3
z4

2

z4
1

w1 + 4
z3

2

z3
1

w2 − w3 + 12

(

z4
2

z5
1

h2
1 − 2

z3
2

z4
1

h1h2 + z2
2

z3
1

h2
2

)

.

Thus N�(z̄) = {0} × {0} × R− at z̄ = (1, 0, 0) and then

K(z̄, b) =
{

R
2 × R+ if b3 = 0,

R
2 × {0} if b3 < 0.

In both cases formula (4.8) leads us to the representation

T 2
�(z̄, h) = {

w ∈ R
3
∣

∣ w3 ≥ 0
}

for any h ∈ K(z̄, b),

and so 0 ∈ T 2
�(z̄, h). It shows that K2(z̄, b) = K(z̄, b) for the second-order critical set in

(4.3), and thus � satisfies the extended polyhedricity condition at z̄.
Observe further that the latter property can be lost for the set � from (4.6) at other points,

where the curvature of � is larger. Indeed, at z̄ = (1, 1, 1) the same computations as above
lead us to N�(z̄) = R+(−3, 4,−1), and thus for any b �= 0 we have

K(z̄, b) = {

h ∈ R
3
∣

∣ − 3h1 + 4h2 − h3 = 0
}

.

It gives us for any h ∈ K(z̄, b) the representation

T 2
�(z̄, h) = {

w ∈ R
3
∣

∣ − 3w1 + 4w2 − w3 + 12(h1 − h2)
2 ≤ 0

}

.

Hence 0 ∈ T 2
�(z̄, h) if and only if h1 = h2. This shows that K2(z̄, b) is not a dense subset

of the critical cone K(z̄, b), and so the extended polyhedricity property of � is violated at
this point. �
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Since the PDC property is local, it may hold in many important situations that have
nothing to do with polyhedricity. The next proposition reveals one of them, which is used
what follows.

Proposition 4.4 Any closed and convex cone � ⊂ R
l satisfies PDC at the vertex z̄ = 0 ∈

�.

Proof By Proposition 4.2 it suffices to check that � satisfies the extended polyhedrality
condition at z̄ = 0. Observe to this end that T�(0) = � and that � clearly contains the
critical cone K(0, b) for any b ∈ N�(0) = �∗. Thus it remains to note that for any h ∈ �

we have T 2
�(0, h) = T�(h). This yields that 0 ∈ T 2

�(0, h), and so the condition K2(0, h) =
K(0, h) holds for any h ∈ �.

5 Calculating Graphical Derivatives

First we present the following result on calculating the graphical derivative of the projection
P� , which is of its own interest while being used in establishing the main results given
below.

Lemma 5.1 (graphical derivative of projections to conic constraints) Let ȳ ∈ P�(ū),
and let ν̄ be the corresponding unique multiplier satisfying (3.3). Then

DP�(ū, ȳ)(h) = {

v1 ∈ R
m
∣

∣ ∃ v2 ∈ R
l such that

h =
(

I +
l
∑

i=1
λ̄i∇2gi(ȳ)

)

v1 + (∇g(ȳ)
)T

v2,

0 = ∇g(ȳ)v1 − P ′
�

(

g(ȳ) + ν̄; ∇g(ȳ)v1 + v2
)}

(5.1)

under the standing assumptions made. Assuming in addition that PDC is satisfied at z̄ :=
g(ȳ) and denoting K̄ := K(g(ȳ), ν̄), we have

DP�(ū, ȳ)(h) =
{

v

∣

∣

∣

∣

∣

h ∈
(

I +
l
∑

i=1

ν̄i∇2gi(ȳ)

)

v + (∇g(ȳ)
)T

NK̄
(∇g(ȳ)v

)

}

. (5.2)

Proof Formula (5.1) follows from Theorem 3.4 since the graphical derivate reduces to the
directional one when the latter exists. To verify (5.2) under the imposed PDC assumption,
observe that the second relationship on the right-hand side of (5.1) amounts in this case to
saying that

PK̄
(∇g(ȳ)v1 + v2

) = ∇g(ȳ)v1. (5.3)

Since the cone K̄ is surely convex due to the convexity of �, equality (5.3) is equivalent to
the inclusion v2 ∈ NK̄(∇g(ȳ)v1). In this way we arrive at (5.2).

The next major result provides a precise second-order formula for calculating the graph-
ical derivative of the regular normal cone mapping (2.1) to the conic constraint set � from
(2.3).

Theorem 5.2 (graphical derivative of the normal cone mapping) Let w̄ ∈ ̂N�(ȳ), and let
ν̄ be the unique multiplier satisfying the KKT system in (3.3) with w̄ = ū− ȳ. In addition to
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the standing assumptions made, suppose that the cone � in (2.3) satisfies PDC at z̄ = g(ȳ).
Then for any v ∈ R

m we have the representation

D̂N�(ȳ, w̄)(v) =
(

l
∑

i=1

ν̄i∇2gi(ȳ)

)

v + ∇g(ȳ)T NK̄
(∇g(ȳ)v

)

, (5.4)

where the cone K̄ is defined in Lemma 5.1.

Proof As mentioned above, the conic constraint set � is prox-regular at ȳ. Thus N�(y) =
̂N�(y) for all y ∈ � sufficiently close to ȳ and the result of Proposition 3.3 can be applied.
It follows therefore that there exists a neighborhood U of ȳ such that for all u ∈ U we have
the equivalence

y = P�(u) ⇐⇒ u ∈ y + N�(y).

Consider now a neighborhood V of ȳ and an ε > 0 such that y + w ∈ U for all y ∈ V and
w ∈ εIB . It follows furthermore that

w ∈ ̂N�(y) if and only if

[

y + w

y

]

∈ gph P� (5.5)

provided that y ∈ V and w ∈ εIB . Given w̄ ∈ ̂N�(ȳ), we can find a positive number ϑ

such that ϑw̄ ∈ ε
2 IB , and so the equivalence (5.5) holds for all y ∈ � close to ȳ and w

close to ϑw̄. Combining (5.5) with formula (5.2) from Lemma 5.1 and the chain rule from
[25, Exercise 6.7] yields

D̂N�(ȳ, ϑw̄)(v) =
(

l
∑

i=1

νi∇2gi(ȳ)

)

v + ∇g(ȳ)T NK̄
(∇g(ȳ)v

)

,

where ν ∈ R
l is the unique multiplier satisfying the conditions

ϑw̄ = ∇g(ȳ)T ν, ν ∈ N�

(

g(ȳ)
)

.

It remains to denote ν̄ := ν
ϑ

and recall the easily verifiable equivalence (see
[6, Lemma 1(i)])

(h, s) ∈ Tgph �(a, b) ⇐⇒ (h, ϑs) ∈ Tgph �(a,ϑb), ϑ > 0,

which holds for any cone-valued mapping � : Rn →→ R
n with (a, b) ∈ gph �. This together

with definition (2.5) of the graphical derivative gives us (5.4) and completes the proof of the
theorem.

Now we are ready to present the final result of this section giving us an upper estimate
of the graphical derivative of the solution map S in (2.4) under the assumptions above and
then a precise representation under an additional surjectivity assumption. It is convenient to
formulate this result via the Lagrangian function associated with GE (2.1) by

L(x, y, λ) := f (x, y) + ∇g(y)T λ, λ ∈ R
l .

Theorem 5.3 (graphical derivative of the solution map) Let (x̄, ȳ) ∈ gphS, w̄ :=
−f (x̄, ȳ), and λ̄ ∈ N�(g(ȳ)) be the unique Lagrange multiplier satisfying the equation

L(x̄, ȳ, λ̄) = 0.
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Suppose that all the assumptions of Theorem 5.2 are fulfilled and that f is a smooth vector
function around (x̄, ȳ) ∈ gphS. Then for any u ∈ R

n we have the inclusion

DS(x̄, ȳ)(u) ⊂ {

v ∈ R
m
∣

∣ 0 ∈ ∇xf (x̄, ȳ)u + ∇yL(x̄, ȳ, λ̄)v + (∇g(ȳ)
)T

N
̂K
(∇g(ȳ)v

)}

(5.6)
with the notation ̂K := K(g(ȳ), λ̄). Furthermore, inclusion (5.6) becomes an equality
provided that partial Jacobian ∇xf (x̄, ȳ) is surjective.

Proof We obviously have the representation

gph S = {

(x, y) ∈ R
n × R

m
∣

∣

(

y,−f (x, y)
) ∈ gph ̂N�

}

.

It follows from the tangent cone calculus rule of [25, Theorem 6.31] that we have the
inclusion

Tgph S(x̄, ȳ) ⊂ {

(u, v) ∈ R
n × R

m
∣

∣ − ∇xf (x̄, ȳ)u − ∇yf (x̄, ȳ)v ∈ D̂N�

(

ȳ, f (x̄, ȳ)
)

(v)
}

.

(5.7)

Moreover, (5.7) holds as equality provided that the matrix ∇xf (x̄, ȳ) is surjective; see,
e.g., [25, Exercise 6.7]. Combining inclusion (5.7) with Theorem 5.2 gives us the upper
estimate (5.6) while the additional surjectivity assumption ensures the equality therein and
thus completes the proof.

6 Application to Isolated Calmness

In this section we develop an application of the graphical derivative evaluations obtained in
Theorem 5.3 to derive sufficient as well as necessary and sufficient conditions for the so-
called isolated calmness of solution map S from (2.4), which is a useful local Lipschitzian
stability property recognized in variational analysis and optimization; see, e.g., [4] and the
references therein.

Definition 6.1 (isolated calmness) We say that a set-valued mapping F : Rd ⇒ R
s has

the ISOLATED CALMNESS PROPERTY at (x̄, ȳ) ∈ gph F if there exist neighborhoods U of
x̄ and V of ȳ as well as a positive constant � > 0 such that

F(x) ∩ V ⊂ {ȳ} + �‖x − x̄‖IB for all x ∈ U. (6.1)

This property can be viewed as a local single-valued restriction at the nominal point ȳ

of the calmness notion for set-valued mappings [25], which in turn is an image localization
of Robinson’s upper Lipschitz property introduced in [22] for stability analysis of general-
ized equations. Note that the isolated calmness is called “local upper Lipschitz” property
in [10]. Furthermore, it is easy to show (see, e.g., [4, Theorem 3I.2]) that property (6.1)
for F is equivalent with the so-called “strong metric subregularity” of the inverse mapping
F−1. It is worth mentioning that the latter property has been recently applied in [5] to the
study of tilt stability in optimization, which is a particular case of full stability used in Sec-
tion 3 to derive formulas for the directional derivatives of projections to nonconvex conic
constraints. As we have seen, these formulas have been much employed in deriving the
main graphical derivative results in Section 5. Some characterizations of the isolated calm-
ness and strong metric subregularity properties for parametric variational inequalities over
polyhedral convex sets can be found in [4] and [6].
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Our application of the obtained graphical derivative calculations to isolated calmness
is based on the following graphical derivative characterization of this property for general
multifunctions between finite-dimensional spaces whose necessity part was obtained in [7,
Proposition 2.1] while sufficiency was proved later in [10, Proposition 4.1].

Lemma 6.2 (graphical derivative criterion for isolated calmness) Let F : Rd →→ R
s ,

and let (x̄, ȳ) ∈ gphF . Then F has the isolated calmness property at (x̄, ȳ) if and only if
DF(x̄, ȳ)(0) = {0}.

The last result of this paper incorporates the graphical derivative evaluation for the solu-
tion map (2.4) into the isolated calmness criterion of Lemma 6.2. In this way we arrive at
efficient conditions for the isolated calmness property of solutions to GE (2.1) in terms of
its initial data.

Theorem 6.3 (isolated calmness for parameterized equilibria with conic constraints)
In the setting of Theorem 5.3, assume that the adjoint generalized equation

0 ∈ ∇yL
(

x̄, ȳ, λ̄
)

v + (∇g(ȳ)
)�

N
̂K
(∇g(ȳ)v

)

(6.2)

has only the trivial solution v = 0. Then the solution map S from (2.4) has the isolated
calmness property at (x̄, ȳ). If in addition the partial Jacobian ∇xf (x̄, ȳ) is surjective, then
the above condition is also necessary for S to have the isolated calmness property at (x̄, ȳ).

Proof This is a direct combination of Lemma 6.2 and Theorem 5.3.

Finally in this section, we illustrate the usage of Theorem 6.3 in the case of nonpolyhedral
conic constraints in (2.1) with � being the second-order cone (2.9) in R

3.

Example 6.4 (isolated calmness for equilibrium problems with second-order cone
constraints) Consider the generalized Eq. (2.1) with x, y ∈ R

3, f (x, y) = x,

� := Q3 =
{

(θ1, θ2, θ3) ∈ R
3
∣

∣ θ3 ≥ ‖(θ1, θ2)‖ =
√

θ2
1 + θ2

2

}

,

and � := g−1(�) with g(y) := (y1, y2, y3 + 0.2(y2
1 + y2

2)), i.e.,

� =
{

(y1, y2, y3) ∈ R
3
∣

∣

(

y1, y2, y3 + 0.2(y2
1 + y2

2 )
) ∈ Q3

}

.

This set � is clearly nonconvex.
Note that the corresponding generalized Eq. (2.1) amounts to the stationary condition for

the parametric optimization problem given by:

minimize 〈x, y〉 subject to y ∈ �.

Consider the pair (x̄, ȳ) with x̄ = (−1, 0, 1) and ȳ = (0, 0, 0), which belongs to the graph
of the solution map S of this GE. Since ∇g(ȳ) = I , it follows that λ̄ = −x̄ and the vector
ȳ trivially satisfies the nondegeneracy condition (A2). As we pointed out in Section 2, Q3

is cone reducible, and therefore its metric projection is directionally differentiable every-
where on R

3. Thus our standing assumptions (A1) and (A3) are also satisfied in this setting.
Furthermore, Proposition 4.4 ensures that � = Q3 satisfies the PDC property at its vertex
ȳ = (0, 0, 0).
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Let us now show that the solution map S enjoys the isolated calmness property at (x̄, ȳ)

via the verification of condition (6.2) from Theorem 6.3. Observe to this end that

∇yL(x̄, ȳ, λ̄)v = λ̄3∇2g3(ȳ)v =
⎛

⎝

−0.4v1
−0.4v2

0

⎞

⎠ and ̂K = K(ȳ, λ̄) = K3 ∩ λ̄⊥ = R+

⎛

⎝

1
0
1

⎞

⎠ .

Since N
̂K
(∇g(ȳ)v

) = ̂K∗ ∩ v⊥ (due to ∇g(ȳ) = I ), condition (6.2) amounts to the
implication

⎡

⎣

⎛

⎝

0.4v1

0.4v2
0

⎞

⎠ ∈ ̂K∗, v ∈ ̂K, v2
1 + v2

2 = 0

⎤

⎦ =⇒ v = 0.

By the direct calculation we have ̂K∗ = {a ∈ R
3| a1 +a3 ≤ 0}, the so the above implication

holds. This shows by Theorem 6.3 that the solution map S in this example possesses the
isolated calmness property at (x̄, ȳ). It is worth noting that S does not have the (robust)
Aubin/Lipschitz-like property around (x̄, ȳ) because its values are empty for all x < 0.

7 Concluding Remarks

This paper demonstrates that the recently developed techniques of second-order variational
analysis and full stability in optimization allow us to derive calculus formulas for graphical
derivatives of solution maps to parameterized equilibria with conic constraints in chal-
lenging cases of nonconvex constraint sets generated by nonpolyhedral cones. The new
projection derivation condition plays a crucial role in obtaining verifiable results in this
direction and their application to isolated calmness of solution maps. This condition is local
and may be violated in many situations. In such cases we do not have for now an efficient
technique for calculating graphical derivatives in our disposal. This could be an interesting
goal for further research. On the other hand, the obtained formulas for calculating graphical
derivatives of metric projections and solutions maps contain terms expressed via normals to
the corresponding (convex) critical cone for the underlying set � at the reference points. It
would be appealing from both viewpoints of optimization/equilibrium theory and its appli-
cations to further evaluate these terms entirely via the initial data of remarkable constraint
systems appearing in conic programming.
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