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Many complex systems can be described as networks
exhibiting inner organization as communities of
nodes. The identification of communities is a key
factor to understand community-based functionality.
We propose a family of measures based on the
weighted sum of two dissimilarity quantifiers that
facilitates efficient classification of communities by
tuning the quantifiers’ relative weight to the network’s
particularities. Additionally, two new dissimilarities
are introduced and incorporated in our analysis.
The effectiveness of our approach is tested by
examining the Zachary’s Karate Club Network and
the Caenorhabditis elegans reactions network. The
analysis reveals the method’s classification power as
confirmed by the efficient detection of intrapathway
metabolic functions in C. elegans.

1. Introduction
Characteristic inhomogeneities in real networks display
order and organization, e.g. the local inhomogeneity
in the distribution of links unveils the network
organization in clusters of nodes. Such a feature is
known as community structure [1]. In a community,
nodes share some sort of similarity or common property.
In a network, the communities may sustain functional
meaning, e.g. in a social context clusters could be
people with the same interests or buying patterns; in
a biochemical network, clusters may perform specific
functions such as energy production or storage. Despite
the many works published on the topic, community
detection in complex networks is still an active problem

2015 The Author(s) Published by the Royal Society. All rights reserved.
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and has been addressed from different perspectives [2–18]. In this study, we follow a novel
approach to this important problem. In particular, we propose a dissimilarity measure, Dε(d1, d2),
to detect communities. Such a measure is built with the weighted combination of two quantifiers,
d1 and d2. This procedure is able to address different particularities of the network. To the best
of our knowledge, there are no works dealing with weighted (dissimilarities) quantifiers in the
context of community identification in complex networks.

2. The dissimilarity measure Dε(d1, d2)
Given the single quantifiers, d1 and d2, we define the parametric family of dissimilarity measures,
Dε(d1, d2), as the weighted sum

Dε(d1, d2) = εd1 + (1 − ε)d2, (2.1)

where 0 ≤ ε ≤ 1 is a weight parameter. In this expression, Dε(d1, d2) is a matrix of components. We
will focus on a set of specific dissimilarity quantifiers: link betweenness, the Jaccard dissimilarity
index, Meet/Min and two new additional quantifiers that we introduce below. Let us consider
the following definitions: given a network N , nodes i and j, the betweenness centrality of an edge
{i, j} [19,20] is the sum of the fraction of all-pairs shortest paths that pass through {i, j}, i.e.

Bij =
∑

s,t∈N

σ (s, t | {i, j})
σ (s, t)

, (2.2)

where σ (s, t) is the number of shortest paths between nodes s and t, and σ (s, t | {i, j}) is the number
of those paths passing through edge {i, j}.

If N(i) denotes the neighbourhood nodes of node i, one of the simplest indexes, developed to
compare regional floras [21], is the Jaccard dissimilarity index between nodes i and j, which is
defined by

Jij ≡ 1 − |N(i) ∩ N(j)|
|N(i) ∪ N(j)| . (2.3)

The Meet/Min dissimilarity, mmij, as introduced by Golberg & Roth [22] and by Ravasz et al. [23]
is expressed as

mmij ≡ 1 − |N(i) ∩ N(j)|
min{|N(i)|, |N(j)|} . (2.4)

In this work, two additional quantifiers are introduced: (i) the Meet/Max, MM(i, j), proposed as a
variation of equation (2.5) and defined by

MMij ≡ 1 − |N(i) ∩ N(j)|
Max{|N(i)|, |N(j)|} , (2.5)

and (ii) the intensity of interaction between two nodes, Iij, given by

Iij ≡

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 − log2

(
1 + 1

kikj

)
if {i, j} ∈ E(N ), ki, kj �= 1

0 if {i, j} ∈ E(N ), ki = 1 or kj = 1

1 in other cases,

(2.6)

where ki and kj are the connectivity degrees of nodes i and j, respectively, and E(N ) is the set
of edges. Note the resemblance between Iij and the channel capacity. Iij quantifies information
interchange between nodes, e.g. if only a link between two nodes occurs, the quantity Iij is
maximized because the flow of mutual information is not divided up by other nodes. On the
contrary, if two high-degree nodes are connected the information circulating through them
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Figure 1. Schematic of the process of hierarchical clustering and ε tuning. Given a value of ε, at step k = 0 and (a) given
a network (b) a matrix of dissimilarities d̂ is calculated and its minimum entry determined. The corresponding indexes
are collapsed into a single one as depicted by (c) the network’s dendrogram showing the new network partition whose
(d) modularity is now evaluated. This process is repeated recurrently through k steps until the network collapses into a single
node. The maximum obtained value of the modularity, Qmax, is calculated for each of the considered ε values as shown in (e).
An optimal partition is then detected by the value (or set of values) of ε yielding the larger Qmax and (f ) the best detected
community structure. (Online version in colour.)

is shared with the additional neighbourhood nodes, producing poor effective communication
between the two high-degree nodes. We found that this quantity is particularly useful to classify
satellite nodes. As far as we know, Iij has not been related to community detection yet. It seems
to be one of the simplest dissimilarity measures to detect inner network communication.

Below, the following dissimilarity measures are evaluated:

Dε(Jij, Iij) = εJij + (1 − ε)Iij, (2.7)

Dε(mmij, Iij) = εmmij + (1 − ε)Iij, (2.8)

Dε(MMij, Iij) = εMMij + (1 − ε)Iij, (2.9)

Dε(Bij, Iij) = εBij + (1 − ε)Iij, (2.10)

Dε(Jij,Bij) = εJij + (1 − ε)Bij, (2.11)

Dε(mmij,Bij) = εmmij + (1 − ε)Bij (2.12)

and Dε(MMij,Bij) = εMMij + (1 − ε)Bij. (2.13)

To carry out our approach, hierarchical clustering on the Dε(d1, d2) matrix is developed,
implementing a single-linkage renormalization or agglomerative method [24]. Consequently, the
communities with the most similar nodes are recursively merged. This procedure is described in
detail in figure 1. We have tested additional methods such as complete linkage [25] and average
linkage [26], obtaining similar results. The performance of Dε(d1, d2) was tested by analysing the
community structure of: (i) the Zachary’s Karate Club Network (ZKCN) [27] and (ii) the metabolic
reactions network of Caenorhabditis elegans.
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Figure 2. Community structures detected in the ZKCN using different quantifier combinations: (a) Jij and Iij , (b)MMij and Iij ,
(c)mmij and Iij , (d)Bi,j and Iij , (e) Jij andBi,j , (f )MMij andBi,j , (g)mmij andBi,j , (h) the two schools created after fission of
the original club: the one led by the club’s owner (blue) and the one led by the club’s sensei (green). (Online version in colour.)

3. Zachary’s Karate Club Network
ZKCN data were downloaded from the University of California Irvine Network Data Repository.
Reported by Wayne Zachary while studying information flow patterns and fission of small social
groups [27], the ZKCN is a network of friendship of 34 members of a karate club at a US university
in the 1970s. ZKCN data were taken after the club split into two schools following an internal
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Figure 3. Modularity versus the parameter ε for each of the combinations of d1 and d2 according to equations (2.7)–(2.13)
evaluated on the ZKCN. Different curves are for (orange) Jij and Iij , equation (2.7) (Qmax = 0.405); (magenta) mmij and Iij ,
equation (2.8) (Qmax = 0.402); (violet)MMij andIij , equation (2.9) (Qmax = 0.383); (red)Bi,j andIij , equation (2.10) (Qmax =
0.370); (blue) Jij andBi,j , equation (2.11) (Qmax = 0.287); (green)mmij andBi,j , equation (2.12) (Qmax = 0.377); and (black)MMij

and Bi,j , equation (2.13) (Qmax = 0.257). The best results are obtained with the combination of the Jaccard and the intensity
quantifiers on the interval ε ∈ [0.775, 0.897] (orange). (Online version in colour.)

dispute. Therefore, it is known that this network has at least two communities, i.e. the two schools
created after fission: the one led by the club’s owner and the one led by the club’s sensei. The
underlying community structure was determined by calculating Dε(d1, d2) for different weighted
combinations of the quantifiers d1 and d2. Results obtained with these combinations are displayed
in figure 2a–g. A first obvious observation is that the identification of communities depends on
the selection of the weight parameter ε and the particular measures d1 and d2. The classification in
communities varies in composition. However, the identification of some particular communities,
such as the one coloured bright pink and located on the left of the network’s representation, does
not depend on the implementation of Dε(d1, d2). However, communities such as the blue one
located at the network centre, while being quite stable in composition, vary slightly depending
on the implemented quantifier. Meanwhile, there is a set of communities whose composition
varies tremendously with the implementation of Dε(d1, d2). The yellow, green, red and brown
ones exemplify this situation. Finally, particular implementations of Dε(d1, d2) determine isolated
nodes. Certainly, the family of measures Dε(d1, d2) show that, in all the analysed cases, the
school led by node 1 (the club’s owner) and the school led by node 34 (the club’s sensei ) may
exhibit subdivisions into much more similar groups of nodes. The behaviour of the modularity
values with the parameter ε for each of the evaluated combinations of d1 and d2 is shown in
figure 3. In this representation, the orange line describes the best determined outcome, shown
in figure 2a, that yields a modularity value Qmax = 0.405. Such a measure was built with the
weighted combination of the Jaccard and the interaction intensity given by equation (2.7) with
optimum weight parameter values ε ∈ (0.778, 0.889). In such a case, four different communities
are identified in the ZKCN.

4. Caenorhabditis elegans reactions network
Caenorhabditis elegans is the first multicellular organism whose genome was sequenced [28] and
is widely used in genetics and neuroscience research. Metabolic network data from the work
of Nerima et al. [29] were used here. The network of reactions was obtained by the projection
of the metabolic network using the methods outlined by Newman et al. [30]. On this reactions
network, Dε(d1, d2) was calculated using the combinations given by equations (2.7)–(2.13). The
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Figure 4. Modularity versus the parameter ε for each of the combinations of d1 and d2 according to equations (2.7)–(2.13)
evaluated on the C. elegans reactions network. Different curves are for (orange) Jij and Iij , equation (2.7) (Qmax = 0.676);
(magenta) mmij and Iij , equation (2.8) (Qmax = 0.687); (violet) MMij and Iij , equation (2.9) (Qmax = 0.679); (red) Bi,j and
Iij , equation (2.10) (Qmax = 0.704); (blue) Jij and Bi,j , equation (2.11) (Qmax = 0.697); (green) mmij and Bi,j , equation (2.12)
(Qmax = 0.717); and (black)MMij andBi,j , equation (2.13) (Qmax = 0.697). The best results are obtainedwith the combination of
theMeet/Min and betweenness quantifiers for ε = 0.071 and the interval ε ∈ [0.117, 0.147] (green). (Online version in colour.)
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Figure 5. (a) Best obtained community structure for the reactions network of C. elegans determined with the measure
Dε (d1, d2) built with a weighted combination of theMeet/Min and betweenness quantifiers given by equation (2.12). (b) Colour
code for the metabolic functions associated with each detected community. (Online version in colour.)

best community structure was obtained with the weighted combination of the Meet/Min and
betweenness centrality quantifiers given by equation (2.12) for ε = 0.071 and the interval ε ∈
[0.117, 0.147] (green line of figure 4 yielding a value of Qmax = 0.717 and Nc = 74 communities).
The network community structure obtained with Qmax can be seen in figure 5. In figure 6, the
resulting network’s structure, the values of Qmax and the number of communities obtained with
the rest of evaluations of Dε(d1, d2) is reported.
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Figure 6. (a) Community structure of the reactions network of C. elegans determinedwith themeasureDε (d1, d2) built with (a)
Jij and Iij , equation (2.7) (Qmax = 0.676 and Nc = 78); (b)mmij and Iij , equation (2.8) (Qmax = 0.687 and Nc = 65), (c)MMij

and Iij , equation (2.9) (Qmax = 0.679 and Nc = 72), (d) Bi,j and Iij , equation (2.10) (Qmax = 0.704 and Nc = 67), (e) Jij and
Bi,j , equation (2.11) (Qmax = 0.697 and Nc = 72); and (f )MMij andBi,j , equation (2.13) (Qmax = 0.697 and Nc = 72). Note that
the colour codes are not the same as in figure 5. (Online version in colour.)

The functional significance of the detected structures using equation (2.12) was checked by
searching in the KEGG database and manually curated for functions associated with the reactions
at a given community. As expected our method classifies a set of reactions as communities
developing specific metabolic pathways according to their gene ontology (GO). Remarkably,
Dε(d1, d2) is able to detect subtle differences in the same GO group. This is the case for the
pentose–phosphate pathway, which is commonly grouped as a single pathway but in our case
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we can separate it into its oxidative and non-oxidative component pathways. This is also true for
the pathways of purine degradation and purine and pyrimidine metabolism.

5. Conclusion
Dissimilarity-based hierarchical clustering methods were conceived to account only for the
quantitative or qualitative characteristics for which they were designed, being unable to
access other aspects. Measures of dissimilarity were originally inspired by clustering of spatial
(vectorial) data with no connections, in a context where communication or information flow were
of no interest. As an example, consider the case of comparing two nodes’ shared neighbourhoods.
Obviously, such a procedure would not consider details such as information flow or connectivity.
While single dissimilarity approaches have already been used to detect communities [31], it may
seem insufficient to capture the intrinsic features of a complex network. A single quantifier does
not capture the structural complexity. In such a context, in this work we propose a novel strategy
that complements a quantifier’s weaknesses with the strengths of another. As figure 2 illustrates,
a particular measure Dε(d1, d2) may perform better, depending on how well their constituent
quantifiers, d1 and d2, adapt to the network’s specificity. Thus, choosing an optimal measure may
depend on the topological and statistical heterogeneity of the network under analysis. Adaptively
coupling two different quantifiers may improve community detection while considering more
than one relevant network’s feature, e.g. local or global properties. The resulting network maximal
modularity can be evaluated as a function of the parameter ε, thus tuning the weights in Dε(d1, d2)
to the best structural result. Such a tuning is not an artefact, as the resulting classification shows.
In fact, it is possible to observe a good classification of the different communities of ZKCN.
Remarkably, for the case of C. elegans, the method precisely separates all the metabolic pathways
and intrapathway functions. Consequently, such a detailed function identification represents an
improvement with respect to the GO classification available at KEGG.

In our paper, we explored two archetypal systems used widely in the literature to test
methods for community detection in complex networks. In particular, we found that our method
is useful to detect communities in sparse networks such as the metabolic network discussed
above. In fact we found that weighting dissimilarities perform better than several of the methods
recently published [8–18]. An analysis of larger networks would offer further insights into the
dissimilarity’s performance; however, such an analysis is outside the scope of this work and is left
for a future publication. However, we analysed a number of different networks. We observed that
when a network with more diverse characteristics is analysed the method adapts better and the
modularity improves, as observed in our analysis of ZKCN (Qmax = 0.405) and C. elegans (Qmax =
0.717). In particular, our analysis considered different networks whose results are not included
here but will be reported elsewhere. Such analysis includes (but is not limited to) the networks of
Candida albicans (Qmax = 0.733), Dictyostelium discoideum (Qmax = 0.744), Cryptosporidium hominis
(Qmax = 0.549), Schizosaccharomyces pombe (Qmax = 0.751) and Entamoeba histolytica (Qmax = 0.776).

The current approach could be generalized to more than two measures, i.e. taking into account
n different features to build a new measure

Dεk (d1, . . . , dn) =
n∑

k=1

εkdk, (5.1)

where d1, . . . , dn are dissimilarity quantifiers capturing most of the features of a community in
a complex network and

∑n
k=1 εk ≡ 1. At this point, it must be remarked that the current method

is not based on the optimization of modularity but that such a function is used as a quantifier
providing selection criteria for the best cutting level on the dendrogram. As a result, the method
does not suffer from a resolution limit. Moreover, variations of our approach can be implemented
using different modularity functions, e.g. using the recently reported surprise [32], and possibly
changing the criteria on the dendrogram’s cut-off level. It seems obvious that a non-supervised
version can be formulated with little effort.
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Insights into the intermediation role that some nodes may play can be gained by integrating
the information obtained with different implementations of Dε(d1, d2). The application of such
a procedure could reveal vertices with robust memberships and vertices playing a clear
intermediate role. This aspect is left for future work.
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