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RESUMEN DE TESIS
PARA OPTAR AL GRADO DE DOCTOR EN
CIENCIAS DE LA INGENIERÍA
MENCIÓN FLUIDODINÁMICA
POR: HUGO N. ULLOA SÁNCHEZ
PROF. GUÍA: YARKO NIÑO CAMPOS

Degeneration of internal gravity waves in a stratified rotating basin
Numerical and laboratory experiments

Con el fin de mejorar la comprensión de la dinámica no-lineal de las oscilaciones internas de gran escala
observadas en lagos estratificados afectados por la rotación terrestre, se investigó la degeneración de ‘ondas
internas gravitacionales’ (OIG) en un dominio idealizado, estratificado en dos capas separadas por una zona de
transición continua de espesor dado.

Para obtener soluciones teóricas y construir condiciones iniciales de OIG, tales como ondas de Kelvin y
Poincaré, se utilizó la teoría lineal de modos normales en un dominio cilíndrico rotatorio estratificado en dos
capas. Estas soluciones fueron utilizadas para analizar experimentos de laboratorio y realizar simulaciones
numéricas directas, que permitieron estudiar la degeneración de las OIG.

En primer lugar, se analizaron resultados de laboratorio obtenidos de experimentos desarrollados en una
mesa rotatoria. A partir de estos resultados, se estudió la evolución temporal de las OIG de gran escala en un
flujo estratificado en dos capas bajo diferentes escenarios de estratificación y rotación. El flujo inducido mediante
la relajación de una inclinación inicial lineal de la interfaz de densidad, generó ondas gravitacionales de tipo
Kelvin y Poincaré en respuesta al efecto de la rotación. Los resultados mostraron experimentalmente que la
onda interna Kelvin fundamental degenera en un paquete de ondas tipo solitarias, producto del empinamiento y
dispersión no-hidrostática. La rotación del medio determina la forma y estructura de estas ondas tipo solitarias.
En particular, a medida que la rotación se incrementaba, las escalas de longitud de la onda tipo solitaria líder
fueron muy similares a ondas no-lineales tipo KdV. Además, los resultados experimentales mostraron que existe
una interacción no-lineal entre las ondas Kelvin y Poincaré, que podría inducir un estado pseudo-resonante entre
ambas ondas y la transferencia de energía desde las modos fundamentales a sub-modos. En general, se observó
que las condiciones de estratificación/rotación tienen un efecto importante en la intensidad de los procesos no
lineales, los que a su vez mostraron un impacto directo en la tasa de decaimiento de la onda Kelvin. Esta tasa
de decaimiento mostró concordancia con el decaimiento de Ekman y un incremento del decaimiento a medida
que las no-linealidades se intensificaban.

En segundo lugar, se estudió la evolución de la onda interna Kelvin fundamental a través de simulaciones
numéricas directas, con un enfoque híper-viscoso/difusivo, para condiciones de rotación y estratificación similares
a las utilizadas en los experimentos de laboratorio. La dinámica de la onda fue controlada mediante el incremento
de la amplitud inicial, forzando así la tendencia al empinamiento y el flujo de corte en la vecindad de la interfaz de
densidad. Los resultados mostraron la existencia de diferentes regímenes, desde un régimen laminar amortiguado,
en el que la onda Kelvin retuvo su carácter lineal, hasta un régimen no-lineal de transición a la turbulencia, en el
que la dinámica no-lineal y no-hidrostática de la onda Kelvin indujo inestabilidades hidrodinámicas intermitentes
en la interfaz de densidad. En el régimen de transición, se observaron parches de turbulencia producidos por
quiebres parciales de la onda Kelvin en el interior de un radio interno de Rossby medido desde el borde horizontal
hacia el interior. Estos parches se asociaron al crecimiento y colapso tanto de inestabilidades inducidas por corte,
como de inestabilidades convectivas en la región del frente y cola de las ondas más energéticas.

El estudio permitió concluir que la amplitud de onda, la estratificación y la rotación del medio juegan roles
importantes en la degeneración de las OIG de gran escala en lagos. Tanto la estructura de la estratificación
como la amplitud de la onda tienen un efecto directo en el empinamiento de la onda, y en consecuencia un efecto
en la concentración de energía en su dirección de propagación; mientras que la rotación tiene un efecto directo
en la concentración de energía en la escala transversal de la propagación de la onda, la que es proporcional al
radio interno de Rossby. Ambos mecanismos de concentración de energía generan una intensificación local de
los procesos no-lineales, los cuales, a su vez, intensifican la actividad turbulenta y la mezcla en el medio fluido.
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Summary

The degeneration of ‘internal gravity waves’ was investigated in an idealized stratified rotating basin,
with the purpose of having a better understanding of the nonlinear dynamic of basin-scale motions
observed in large stratified lakes.

The linear theory of normal modes was adopted to obtain solutions and construct suitable initial
conditions of single internal gravity waves, – such as internal Kelvin and Poincaré waves –, and internal
gravity wave fields, in a smooth two-layer stratified rotating cylindrical domain. The theoretical
solutions were used to analyse laboratory experiments and to implement and perform direct numerical
simulations (DNS).

The temporal evolution of nonlinear large-scale internal gravity waves, in a two-layer flow affected
by background rotation, was studied via laboratory experiments conducted in a cylindrical tank on
a rotating turntable. The internal wave field was excited by the relaxation of an initial forced tilt of
the density interface, which generated Kelvin and Poincaré waves in response to rotation effects. The
density interface evolution was analysed in the shore region in terms of the background rotation and the
nonlinear steepening of the basin-scale internal waves. The results showed that the degeneration of the
gravest internal Kelvin wave into a solitary-type wave packet was caused by nonlinear steepening and
it was influenced by the background rotation. In fact, the physical scales of the leading solitary-type
wave were closer to Korteweg-de Vries theory as the rotation increased. Moreover, the results showed
a nonlinear interaction between Kelvin and Poincaré waves, which could lead to a pseudo-resonant
state between both waves, and the transfer of energy from lower modes to higher modes. In general,
the background stratification/rotation conditions showed having an important effect in the intensity of
nonlinear processes, which in turn showed a direct impact on the decay rate of the gravest Kelvin waves.
The experimental decay rate showed a good agreement with the Ekman damping rate when there was
no evidence of steepening and it showed a strong increment of decay as nonlinearities increased.

The free evolution of the gravest internal Kelvin wave was studied via spectral based DNS with an
hyper-viscosity/diffusivity approach, using stratification/rotation conditions similar to those observed
in mid-latitude lakes during the season summer. The wave dynamics was controlled by increasing the
initial wave amplitude, thus forcing the tendency for wave steepening and the shear in the vicinity of
density interface. The results showed the existence of several regimes, from a damped linear-laminar
regime (DLR), in which the Kelvin wave retains its linear character, to the nonlinear-turbulent
transition regime (TR), in which nonlinearity and dispersion become significant in the evolution of the
Kelvin wave, leading to intermittent hydrodynamic instabilities at the interface. In the TR, localized
turbulent patches were produced by the Kelvin wave breaking, i.e. shear and convective instabilities
that occurred at the front and tail of energetic waves, within an internal Rossby radius of deformation
from the boundary.

The study allows concluding that the wave amplitude, the stratification structure and the background
rotation play an important role in the degeneration of large-scale internal waves in enclosed basins.
The stratification and the wave amplitude have a direct control in the potential wave steepening, and
thus in the concentration of energy along the direction of the wave propagation; while the rotation
has a direct effect in the concentration of energy along the transverse direction of the wave, which is
proportional to the internal Rossby radius. Both mechanisms of energy concentration generate the
local intensification of the nonlinear processes and the energy transfer from the large-scale to smaller
scales, which in turn enhance the turbulence and mixing activity in the aquatic systems.
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Any fact becomes important when it’s connected to another. Umberto Eco
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Chapter 1

Introduction

The physical description of lakes started in late 19th century (Forel, 1873; Murray, 1888; Watson,
1904; Wedderburn, 1908, 1909, 1912), with the detection of vertical gradients of temperature along the
water column (vertical stratification) and coherent water motions both on the surface and the interior
(seiches1), which obeyed to the wind action. During this period an integrative discipline denominated
‘Limnology’ was established by Forel (1892), and whose main purpose was to study the lakes and their
aquatic ecosystems, from physics or hydrodynamics, chemistry and biology points of view. In present
times, the study of lakes has been motivated by the notorious increment of water quality issues, such as
water eutrophication, anoxic waters, loss of fish, benthos and wildlife habitat. In particular, large lakes
have supported the development of human population and their activities: nourishment, transport,
energy, tourism, etc. Most of these human activities have been intervening lakes and the quality of their
waters. In this context, the physical description of the water motions and their transport properties
are a fundamental issue in a lake ecosystem, because every aspect interacts with each other.

The framework of this thesis is the hydrodynamics of large stratified water basins (Csanady, 1975;
Imberger & Hamblin, 1982). Here the adjective ‘large’ means that Earth’s rotation is important in the
basin-scale motions. The study is focused specifically in the evolution and degeneration of basin-scale
internal gravity waves (Wüest & Lorke, 2003; Ivey et al., 2008). These type of waves reside in internal
interfaces of layered stratified basins, and these are mostly energized by the wind action across the
free surface. Wind stress tends to be balanced by horizontal pressure gradients that tilt the internal
interfaces, thus injecting energy to the larger scales. Then, when the wind stress decreases (or vanishes),
the unbalanced, large-scale horizontal pressure gradient induces free internal motions in a wide range
of scales denominated ‘internal wave field’. Energy distribution in the internal wave field follows a
cascade type structure, where most of the energy is located in the large-scale and this decays with
a ω−2 law (Garrett & Munk, 1979), where ω is the frequency of internal waves. In a rotating and
stratified flow, the limits of the internal gravity wave frequencies are the ‘inertial frequency’, f , which
depends of the rotating environment, and the ‘buoyancy frequency’, N , which depends of the stratified
structure (Cushman-Roisin & Beckers, 2011): f ≤ ω ≤ N . In this range of frequency, we can find
two well-known gravity waves, the super-inertial internal Kelvin and Poincaré waves (Csanady, 1967).
However, in most of the large stratified lakes, the gravest basin-scale waves can be characterized by
lower frequencies than f , such as the case of the sub-inertial internal Kelvin waves (Csanady, 1967).
On the other hand, higher frequencies than N are related to nonlinear motions, which characterize the
transition to turbulence.

This thesis is motivated by the field observations obtained from large stratified lakes during the last
decade (Lorke, 2007; MacIntyre et al., 2009; de la Fuente et al., 2010; Bouffard et al., 2012; Bouffard &
Lemmin, 2013; Rozas et al., 2014), which have shown the complex and nonlinear dynamic of basin-scale
internal waves. With the aim of understanding the dynamics of the basin-scale internal waves under
weakly nonlinear and non-hydrostatic limits de la Fuente et al. (2008) and Sakai & Redekopp (2010)
developed numerical models and performed numerical experiments in an idealized, two-layer stratified
rotating basin. Both authors obtained similar results, highlighting the steepening and the nonlinear
degeneration of the internal Kelvin wave into a train of solitary type waves, and the not-steepen

1The word originates in a Swiss French dialect, which means ‘rocking backwards and forwards’ (Vincent, 2012)
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dynamics of the internal Poincaré wave, with a pseudo oscillatory structure with time. In this thesis,
we use laboratory and numerical experiments in an idealized domain to validate and extend these
studies, on the nonlinear evolution of basin-scale internal waves in two-layer stratified rotating basins.

The main objective of this thesis was to investigate the degeneration2 of basin-scale internal gravity
waves in a two-layer stratified rotating basin. For this, we have adopted a simple setup in order to
develop and test a basic theoretical model. Following this main directive, three specific objectives were
defined:

1. To develop solutions of linear normal modes of internal gravity waves in a smoothly two-layer
stratification into a rotating cylindrical basin. The aim was to have a continuous and smooth
mathematical description of the Kelvin and Poincare waves, in terms of dimensionless parameter
that allow controlling its dynamics. For this, we have adopted the Csanady’s conceptual model
(1967) as starting point.

2. To analyse the temporal evolution of basin-scale internal gravity waves via laboratory experiments.
The aim was to characterize the dynamics of the gravest internal gravity waves in a internal
wave field, parameterized in terms of the initial perturbation of the internal interface, the aspect
ratio of the stratification and the background rotation. For this, we have analysed laboratory
experiments conducted in a cylindrical tank, mounted on a rotating turntable (Ulloa, 2011).

3. To explore and characterize the evolution of the gravest internal Kelvin wave in a continuous
two-layer rotating cylindrical basin in terms of dynamics and energetic regimes. The aim was to
analyse the effect of the Kelvin wave amplitude in its evolution and degeneration, from damped,
linear-laminar regime to the nonlinear-turbulent transition regime. For this, we have implemented
the smooth solution of the Kelvin wave (previously obtained in Ulloa et al. (2015a)) in a numerical
setup to perform numerical experiments, using the spectrally-based model flow_solve (Winters
& de la Fuente, 2012).

This thesis consists of three main chapters; each of them includes an article (two of them already
published), plus a chapter for the conclusions. In addition, the thesis has two appendices, which
present the equations of motion of Boussinesq type fluids and the derivation of linear internal gravity
waves in a stratified, inviscid, Boussinesq fluid on an f -plane, respectively. In Chapter 2, we introduce
an analytical approach to construct three-dimensional smooth linear normal modes of internal gravity
waves in an idealized continuous two-layer rotating basin, addressing the first specific goal of this thesis
(Ulloa et al., 2015a). In Chapter 3, we present the analysis of laboratory experiments conducted in a
rotating turntable, which show the free evolution of the basin-scale waves under different environmental
background (Ulloa et al., 2014). In Chapter 4, we present the results and analysis of numerical
experiments, which show the degeneration of the gravest internal Kelvin wave, addressing the second
specific goal of this thesis (Ulloa et al., 2015b). Finally, in Chapter 5 the main conclusions are
summarized.

2In this thesis, the term ‘degeneration’ is used to denote the lost of energy of an internal gravity wave as a consequence
of linear and/or nonlinear processes.
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Chapter 2

Analytical construction of Kelvin and Poincaré
modes in a smooth two-layer stratification.
Application to the wave regimes study.

Abstract

We introduce an analytical approach to construct smooth linear normal modes (SLNM) that
support arbitrary initial amplitudes in continuously stratified rotating fluids. Analytical solutions
of internal Kelvin and Poincaré waves (~v, ρ) in an ideal confined stratified basin are provided. The
solutions are used as initial conditions to compute direct numerical simulations of the gravest internal
Kelvin and Poincaré waves in a continuous two-layer stratification, to illustrate the evolution from a
linear-laminar regime to a nonlinear, turbulent transition regime, characterized by the emergence of
interfacial instabilities driven by shear stratified flows. The numerical experiments show important
similarities with recent field data obtained in large stratified lakes.

2.1 Introduction

It is known that in mid-latitude large stratified lakes the wind forcing and the Earth rotation allow
the existence of two main classes of linear gravity motions, widely known as internal Kelvin and
Poincare waves (Thomson, 1880; Lamb, 1932; Csanady, 1967). A Kelvin wave is a sub-inertial cyclonic
boundary-trapped wave whose amplitude η`(t, ~x) (of the layer `) decays exponentially from the shore
boundary to the interior and its horizontal flow has a strong shore-parallel component. A Poincaré
wave is a super-inertial anti-cyclonic wave characterized by a cell structure on the horizontal plane,
whose maximum amplitude is located at the center of the cell and its flow propagates mainly through
the interior of the water body. Although the Kelvin and Poincaré waves have been theoretically
characterized through linear equations of motion, field observations have shown a rich nonlinear
phenomenology associated to them (Boegman et al., 2003; Lorke, 2007; MacIntyre et al., 2009; de
la Fuente et al., 2010; Preusse et al., 2010; Bouffard et al., 2012; Rozas et al., 2014).

The degeneration of linear Kelvin and Poincaré waves has been studied using the following hypothesis:
the initial linear waves that do not satisfy the linear theory assumptions of small amplitudes evolve to
nonlinear waves. Assuming this hypothesis, theoretical, numerical and laboratory studies (Wake et al.,
2005; de la Fuente et al., 2008; Sakai & Redekopp, 2010; Ulloa et al., 2014) have explored the linear
and weakly nonlinear evolution of Kelvin and Poincaré waves (Grimshaw, 1985) in ideal (layered)
stratified rotating basins, adopting linear solutions as initial conditions (Csanady, 1967; Stocker &
Imberger, 2003). These works have shown that the linear theory can predict with good agreement
the dynamic of the gravest gravity waves in the wave field, but also can predict the weakly nonlinear
degeneration of Kelvin waves into solitary-Kelvin waves when the advection and non-hydrostatic effects
are important. A few laboratory experiments have analyzed the evolution and coexistence of Kelvin
and Poincaré waves in nonlinear regimes (Maxworthy, 1983; Renouard et al., 1987, 1993; Ulloa et al.,
2014), which have shown the incipient emergence of interfacial instabilities on the wavefronts as it
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increases the wave amplitude, the existence of resonant interaction among Kelvin and Poincaré waves,
and the similitude of the Kelvin wave evolution with KdV waves as rotation is more important in the
gravity wave dynamics.

The emergence of interfacial instabilities and turbulent patches driven by the nonlinear internal
gravity wave avance has been mainly studied in non-rotating stratified systems via laboratory and
numerical experiments (Carr et al., 2008, 2011; Fructus et al., 2009). However, no numerical studies on
the transition to turbulent regime driven by the nonlinear internal gravity wave evolution in rotating
stratified basins have been conducted. In this type of flows a wide range of motions coexist and
interact, from basin-scales (Kelvin and Poincaré) to small-turbulent scales. We are interested in
exploring, via direct numerical simulations (DNS), the conditions under which Kelvin and Poincaré
waves reach different dynamic regimes, focusing on the laminar to turbulent transition. For this type
of numerical technique, the initial condition and subsequent solution must be smooth. Considering the
aforementioned interest, we have revisited the linear normal modes problem in layered stratifications
to obtain convenient initial conditions for DNS.

The remainder of the paper is organized as follows. In section 2.2 we introduce the formulation of
the problem and we discuss briefly the pros and cons of the classical analytical solutions of internal
Kelvin and Poincaré waves (Csanady, 1967, 1982) which are derived in section 2.3 for a discontinuous
two-layer stratification, in a flat and lidded cylindrical basin. In section 2.4 we introduce an analytical
approach based in Laplacian diffusion to construct smooth linear normal modes (here called SLNM) in
a smooth two-layer stratification. In section 2.5 is characterized the interfacial shear flow resulting from
the SLNM’s construction, in terms of the gradient Richardson number, the rotation, the initial wave
amplitude and the aspect ratio of the stratification. In section 2.6 we use the SLNM as initial condition
to compute direct numerical simulations of internal Kelvin and Poincaré waves under different dynamic
regimes, whose results are discussed in section 2.7.

2.2 Formulation

We consider a cylindrical geometry to construct free normal modes in a rotating stratified fluid.
Two-layer solutions for rotating, inviscid linear normal modes in a cylindrical geometry are available
(Csanady, 1967), which define the vertical interface displacement, η` (of the layer ` = 1, 2), of the
Kelvin and Poincaré modes. Figure 2.2.1 sketches the conceptual model of the two-layer model. The
external parameters are the average thickness and density of each layer (h` and ρ`), the horizontal
and vertical length scales, characterized by the diameter D = 2R and the total depth H = h1 + h2,
respectively, and the angular velocity of rotation Ωz = f/2 (in the direction of gravity), where f is the
inertial frequency or Coriolis parameter. The linear modal celerity can be expressed as c` =

√
g′D`,

where g′ is the reduced gravity and D` is the equivalent modal depth that depends of h` and ρ`
(Csanady, 1982). In the two-layer system, the internal Kelvin and Poincaré modes are conventionally
obtained in the limit in which the Rossby radius of deformation, R` = c`/f , is smaller than the radius
of the basin, R.

In the two-layer conceptual model (and in general in the layered models) the density and the
horizontal velocity fields have a vertical discontinuity at the density interface, whose vertical position
is characterized by η`. We define η0 = max {η`(t = 0, ~x)} that under the linear assumptions must
satisfy η0/h` � 1. Despite this assumption of small motions, the two-layer solution allows defining
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Figure 2.2.1: Schematic of the conceptual model. (a) a 3D view; (b) a 2D vertical plane view; (c) a 1D vertical
density profile at the center of domain.

η0 ∈ [0,min(h1, h2)] with no mathematical inconsistency in the equations. However, the velocity and
density fields derived from this conceptual model are inconvenient as starting points for DNS that
require continuous and smooth initial conditions.

On the other hand, we can assume a stratified fluid where fluid density and velocity vary continuously
and smoothly across a finite length scale associated to the density interface, δi > 0 (see solid line in
figure 2.2.1(c)). In the case of the two-layer solution: δi = 0 (see dash line in figure 2.2.1c). However,
the normal modes derived from the solution of the continuous eigenvalue problem, δi > 0, are also
inconvenient because these are formally restricted to have displacement amplitudes much smaller than
δi (Kundu et al., 2012). Consequently, in these cases, the flow would not be energetic enough to
become nonlinear or turbulent. Here we wish to construct solutions to study the nonlinear transition
regime and waves in this regime have amplitudes substantially larger than δi. To achieve this goal,
we have constructed the velocity and density fields of linear internal Kelvin and Poincaré waves in a
continuous and smooth two-layer stratification based on Csanady (1967) solutions for the two-layer
flow. We have introduced a Laplacian diffusion process on the density and velocity fields to create a
smooth transition layer, δi > 0, in the density interface region, with δi � h`, to keep the two-layer
structure. We addressed this problem in the next two sections. In section 2.3 we revisit the work of
Csanady (1967) to obtain the modal structures of the density interface η`, which are used to derive the
respective velocity field in a two-layer stratification with δi = 0. In section 2.4 we introduce the new
analytical solution by considering a continuous and smooth two-layer stratification with 0 < δi � h`.

2.3 Normal modes in a two-layer stratification (δi = 0)

Csanady (1967) derived the ‘free normal modes’ in an incompressible, inviscid, two-layer stratified,
Boussinesq fluid confined in a flat cylindrical geometry. Assuming hydrostaticity, ∂p/∂z + ρg, with
p the fluid pressure, the vertically integrated linear equations of motion on an f -plane in cylindrical
coordinates, for each `-layer, take the form:

∂

∂t

(
qr
qθ

)
`

+ f

(
−qθ
qr

)
`

+ c2
`∇Hη` = 0, (2.3.1a)

1
r

{
∂ (r · qr)
∂r

+ ∂qθ
∂θ

}
`

+ ∂η`
∂t

= 0. (2.3.1b)

Here c` and η` are the modal celerity and the modal displacement of the `-interface, ∇H is the horizontal
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gradient operator, f is the inertial frequency, while qr and qθ are the horizontal modal transport
components defined for each layer ` as:

q(`)
r =

∫
`
u(t, r, θ)dz , q

(`)
θ =

∫
`
v(t, r, θ)dz, (2.3.2)

where u and v are the horizontal velocity components in the r and θ axes, respectively.

In this study only internal modes of ` = 2 are discussed. However the solution of the two-layer,
three-layer or even for the n-layer problem, is analog to solve n independent equations of motions
(2.3.1), by taking a suitable combination of the variables for the respective problem (Csanady, 1982;
Stocker & Imberger, 2003).

We work in cylindrical coordinates (r ∈ [0, R] and θ ∈ [0, 2π], z ∈ [0, H]) to facilitate the description
of the boundary conditions, which in this case are:

qr(t, r = R, θ, z) = 0, (2.3.3a)
w(t, r, θ, z = 0) = 0, w(t, r, θ, z = H) = 0, (2.3.3b)

dη`(t, r, θ)/dt− w(t, r, θ, z = z`) = 0, (2.3.3c)

where w is the vertical velocity component, z` is the vertical position of the `th-interface. In addition,
the symmetry of the problem indicates that the azimuthal component of the modal transport qθ must
be periodic.

A wave equation for η` is derived from equations (2.3.1):(
∂2

∂t2
+ f2

)
η` − c2

`∆Hη` = 0. (2.3.4)

Here ∆H is the horizontal Laplacian operator. The boundary condition for η` (Csanady, 1967) is
obtained after some manipulation of the equations of motion (2.3.1) and the boundary condition
(2.3.3a):

∂2η`
∂r∂t

+ f
1
r

∂η`
∂θ

= 0, at r = R. (2.3.5)

We first derive the modal structure of η`(t, r, θ) from equations (2.3.4) and (2.3.5). Note that in a
two-layer system it is only possible to study the first vertical mode (m = 1) of each field.

2.3.1 Vertical displacement of the density interface: η`

We are interested in normal modes whose radial modal structure is an arbitrary function G`(r) and its
azimuthal and temporal components are trigonometric functions. Wave solutions of η` can be sought
in the form:

η`,n(t, r, θ) = η0 ·G`,n(r) cos (nθ − ω`,nt− ϕ) . (2.3.6)

Here n ∈ {1, 2, 3, ...} is the azimuthal mode, θ is the azimuthal coordinate, ω`,n is the wave frequency
and ϕ is an arbitrary phase. Substituting (2.3.6) into (2.3.4) yields the following ordinary differential
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equation (ODE):
d2G`,n

dr2 + 1
r

dG`,n
dr −

(
n2

r2 −
ω2
`,n − f2

c2
`

)
G`,n = 0. (2.3.7)

To simplify the notation the following parameter is introduced:

α2
`,n =

ω2
`,n − f2

c2
`

=
σ2
`,n − 1
R2
`

, (2.3.8)

where σ`,n = ω`,n/f is the dimensionless wave frequency. So far we have not defined a sign for α2
`,n

but from (2.3.8), an important condition is infered. If α2
`,n > 0, then ω2

`,n > f2, which means that
we will find super-inertial wave frequencies. If α2

`,n < 0, then ω2 < f2, which means that we will find
sub-inertial wave frequencies. The case α2

`,n = 0 or ω2 = f2 will not be addressed in this study, but
a discussion of its meaning can be found in Pedlosky (1987, Chapter 3.9, pp 79-81). In general, the
radial structure G`,n(r, α`,n) will depend of the azimuthal mode n and the α`,n parameter. We analyse
the radial structure in terms of α2

`,n next.

Radial structure G`: Case α2
` < 0, Kelvin wave

We consider that α2
`,n < 0 or σ2

`,n < 1 (sub-inertial waves). Just for mathematical convenience a
new parameter β`,n is defined as β2

`,n = −α2
`,n. Then, using a stretching variable rβ = β`,n · r and

substituting r = β−1
`,nrβ in (2.3.7) yields a new ODE for G`,n in terms of rβ:

d2G`,n
dr2
β

+ 1
rβ

dG`,n
drβ

−
(
n2

r2
β

+ 1
)
G`,n = 0. (2.3.9)

Equation (2.3.9) corresponds to a Modified Bessel equation whose solutions are the Modified Bessel
functions (Abramowitz & Stegun, 1965):

G`,n(r) = A · In(β`,nr) +B ·Kn(β`,nr). (2.3.10)

Here In is the Modified Bessel function of the first kind and Kn is the Modified Bessel function of the
second kind, A and B are constants and n is the azimuthal mode. At the origin of rβ, G`,n(rβ) <∞.
Then, as Kn(rβ) → ∞ when rβ → 0, the constant B must be zero. The boundary condition for the
radial component G`,n is derived replacing η` in (2.3.5). Evaluating the result at r = R an equation
for ω`,n is obtained as:

ω`,n
∂

∂r
In(β`,nR) + fn

β`,nR
In(β`,nR) = 0, (2.3.11)

where ω`,n is the wave frequency linked to the azimuthal mode n and layer `. Rearranging expression
(2.3.11) and using the recursive properties of Modified Bessel function, yields a dispersion relation for
σ`,n = ω`,n/f as a function of the Burger number (Antenucci & Imberger, 2001), B` = R`/R:√

1− σ2
n,`

B`
In−1


√

1− σ2
`,n

B`

+ n

(
1
σ`,n
− 1

)
In


√

1− σ2
n,`

B`

 = 0. (2.3.12)
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For a specific set of n-mode and B`, equation (2.3.12) is numerically solved to obtain the wave frequency
ω`,n, which in this case corresponds to a sub-inertial frequency (ω`,n < f). This kind of mode is known
as Kelvin wave (Thomson, 1880) and the modal wave amplitude, η`,n, is given by

η`,n(t, r, θ) = η0 · In


√

1− σ2
`,n

B`
r

R

 cos(nθ − σ`,nft− ϕ). (2.3.13)

Radial structure G: Case α2
` > 0, Poincaré wave

We consider that α2
`,n > 0 or σ2

`,n > 1 (super-inertial waves). As in the first case, we use a stretching
variable rα = α`,n · r which is substituted in equation (2.3.7) to obtain a new ODE for G`,n in terms
of rα:

d2G`,n
dr2
α

+ 1
rα

dG`,n
drα

−
(
n2

r2
α

− 1
)
G`,n = 0. (2.3.14)

Equation (2.3.14) corresponds to a Bessel equation, whose solutions are the Bessel functions (Abramowitz
& Stegun, 1965)

G`,n(r) = A · Jn(α`,nr) +B · Yn(α`,nr). (2.3.15)

Here Jn is the Bessel function of the first kind and Yn is the Bessel function of the second kind, A and
B are constants and n is the azimuthal mode. At the origin of rα, G`,n(rα) <∞. Then, as Yn(r)→∞
when r → 0, the constant B must be zero. Similarly to the first case, a dispersion relation is obtained
for σ`,n = ω`,n/f in terms of Bessel functions Jn and the Burger number B`:√

σ2
`,n − 1
B`

Jn−1


√
σ2
n,` − 1
B`

+ n

(
1
σ`,n
− 1

)
Jn


√
σ2
`,n − 1
B`

 = 0. (2.3.16)

For a specific set of n-mode and B`, equation (2.3.16) is numerically solved to obtain the wave frequency
ω`,n, which in this case corresponds to a super-inertial frequency (ω`,n > f). This kind of mode is
known as Poincaré wave (Poincaré, 1885) and the modal wave amplitude, η`,n, is given by:

η`,n(t, r, θ) = η0 · Jn


√
σ2
`,n − 1
B`

r

R

 cos(nθ − σ`,nft− ϕ). (2.3.17)

2.3.2 Horizontal component of velocity field: (Ur, Uθ)`,n = (qr, qθ)`,n/h`

We look for (qr, qθ)`,n with the same structure of η`:

q(`,n)
r (t, r, θ) = q0,r ·Gqr(r)Θqr(nθ − ω`,nt− ϕ),

q
(`,n)
θ (t, r, θ) = q0,θ ·Gqθ(r)Θqθ(nθ − ω`,nt− ϕ),

(2.3.18)

8
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where Gq and Θq are the radial and the azimuthal-temporal modal structures of the horizontal modal
transport, respectively. Replacing (2.3.6) and (2.3.18) into (2.3.1), (qr, qθ)` is given by:

q(`,n)
r (t, r, θ) = η0

α2
`,n

{
ω`,n

∂

∂r
G`,n(α`,nr)−

f · n
r

G`,n(α`,nr)
}

sin(nθ − ω`,nt− ϕ),

q
(`,n)
θ (t, r, θ) = − η0

α2
`,n

{
f
∂

∂r
G`,n(α`,nr)−

ω`,n · n
r

G`,n(α`,nr)
}

cos(nθ − ω`,nt− ϕ).
(2.3.19)

Considering the definition (2.3.2), the averaged horizontal velocity field on the `th-layer is (Ur, Uθ)`,n =
(qr, qθ)`,n/h`(t, r, θ). In particular, in a two-layer basin, neglecting the vertical displacement of barotropic
modes (` = 1), η1,n ∼ 0, and keeping constant the total depth H, the contribution of baroclinic modes
on the two-layer horizontal velocity field is

U (1,n)
r (t, r, θ) = q

(1,n)
r (t, r, θ)

h1 − η2,n(t, r, θ) , U
(1,n)
θ (t, r, θ) = q

(1,n)
θ (t, r, θ)

h1 − η2,n(t, r, θ) ,

U (2,n)
r (t, r, θ) = q

(2,n)
r (t, r, θ)

h2 + η2,n(t, r, θ) , U
(2,n)
θ (t, r, θ) = q

(2,n)
θ (t, r, θ)

h2,n + η2(t, r, θ) .
(2.3.20)

2.3.3 Vertical component of velocity field: w`,n

We have assumed hydrostaticity in the equations of motion, w`,n ∼ 0. However, this approach admits
the estimation of the vertical velocity, w`,n, at the internal interface (` = 2), and on the vertical
boundaries:

w2,n(t, r, θ, z = z2,n) = dη2,n
dt = ∂η2,n

∂t
+ U (2,n)

r

∂η2,n
∂r

+ U
(2,n)
θ

1
r

∂η2,n
∂θ

,

w`,n(t, r, θ, z = 0) = w`,n(t, r, θ, z = H) = 0,
(2.3.21)

where z2,n(t, r, θ) = h2 + η2,n(t, r, θ) is the height of the internal interface. Additionally, the horizontal
velocity components (Ur, Uθ)`,n are constant along the thickness of each layer by construction, hence,
from the continuity equations, it is derived that w2,n is a linear function of z whose vertical velocity
structure can be expressed as follows (Choi & Camassa, 1999):

w`,n = a`,n · z + b`,n, (2.3.22)

where a`,n and b`,n are constants for each layer and mode. Substituting (2.3.22) into (2.3.21) and
considering that w1,n(t, r, θ, z = z2,n) = w2,n(t, r, θ, z = z2,n), the constants a`,n and b`,n are solved and
w`,n is determined:

w`,n(t, r, θ, z) =

 w1,n = dη2,n
dt

(
H−z

h1−η2,n

)
z ≥ z2,n

w2,n = dη2,n
dt

(
z

h2+η2,n

)
z ≤ z2,n

(2.3.23)

Note that when η0 = 0, then η2,n = 0 and Ur = Uθ = w = 0.

9



CHAPTER 2. CONSTRUCTION OF NORMAL MODES

2.4 Normal modes in a smooth two-layer stratification (0 < δi � h1)

In the previous section we have derived the modal structure of the internal gravity waves in a two-layer
stratification, assuming a null thickness of the density interface, δi = 0. The discontinuous structure
of the density function, at z = z2,n, generates a discontinuity on the horizontal velocity component
at the same height. This, additionally, generates undefined vertical derivatives at z = z2,n. Hence,
these modal solutions are not useful as starting point for direct numerical simulations (DNS), because
of their mathematical singularities at the density interface. In this section we construct new smooth
solutions, which are suitable as a starting point for DNS.

In a two-layer stratification, the velocity and density fields of the previously derived Kelvin and
Poincaré waves can be mathematically expressed as : Ur

Uθ
w

 =

 Ur
Uθ
w


2

· {1−H(z − z2,n)}+

 Ur
Uθ
w


1

· H(z − z2,n), (2.4.1a)

ρ = ρ2 · {1−H(z − z2,n)}+ ρ1 · H(z − z2,n), (2.4.1b)

where H is the Heaviside function. Starting from solutions as (2.4.1) we wish to get a continuous
and smooth version of the fields. For this, we propose to use a controlled vertical Laplacian diffusion
along the vertical component of ρ and (Ur, Uθ, w) during a time scale to construct new continuous and
smooth solutions. We then must solve the following diffusion equation:

∂φ

∂t
= Dc

∂2φ

∂z2 , (2.4.2)

where φ = φ(t, r, θ, z) is a field to diffuse in z and Dc is a diffusion coefficient. The boundary conditions
to solve (2.4.2) depend of each field. In the case of ρ and (Ur, Uθ), Neumann boundary conditions are
imposed at z = 0 and z = H, which are interpreted as no-flux through the boundary and free-slip
condition, respectively:

∂φ

∂z
= 0 at z = 0, H. (2.4.3)

In the the case of w, Dirichlet boundary conditions are imposed:

φ = 0 at z = 0, H. (2.4.4)

Both problems have analytical solutions described by Fourier Series. Hereafter we use a sub-index ‘i’
instead of ` = 2, to denote properties at the internal interface (e.g., z2 = zi, η2 = ηi). In the first case
(Neumann conditions), the analytical solution of equation (2.4.2) is given by:

φ = a0
2 +

∞∑
k=1

ak cos
(
kπ

H
z

)
e−γkt, (2.4.5)

where a0 and ak are defined as:

a0 = 2zi
H

(φ2 − φ1) + 2φ1,

ak = 2 sin
(
kπzi
H

)(
φ2 − φ1
kπ

)
,

(2.4.6)
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φ1 and φ2 are the initial values of the field φ in each layer, with γk = (kπ)2Dc/H2. In the second case
(Dirichlet condition), the analytical solution of equation (2.4.2) is given by:

φ =
∞∑
k=1

bk sin
(
kπ

H
z

)
e−γkt, (2.4.7)

where bk is defined as follows:

b
(1)
k = 2φi

kπ(h2 + ηi)

{
H

kπ
sin
(
kπzi
H

)
− zi cos

(
kπzi
H

)}
,

b
(2)
k = 2φi

kπ(h1 − ηi)

{
H

kπ
sin
(
kπzi
H

)
+ (H − zi) cos

(
kπzi
H

)}
,

(2.4.8)

with bk = b
(1)
k + b

(2)
k and φi = φ(z = zi). The values of φ1, φ2 and φi are obtained from equations

(2.3.22). Then, the smooth versions of (Ur, Uθ, w) and ρ are written as follows:(
Ur(t, r, θ, z)
Uθ(t, r, θ, z)

)
= zi(r, θ)

H

(
∆Ur
∆Uθ

)
+
(
Ur
Uθ

)
1

+
∞∑
k=1

(
a

(Ur)
k (r, θ)
a

(Uθ)
k (r, θ)

)
cos

(
kπ

H
z

)
e−γkt, (2.4.9a)

w(t, r, θ, z) =
∞∑
k=1

bk(r, θ) sin
(
kπ

H
z

)
e−γkt, (2.4.9b)

ρ(t, r, θ, z) = zi(r, θ)
H

∆ρ+ ρ0 +
∞∑
k=1

ak(r, θ) cos
(
kπ

H
z

)
e−γkt, (2.4.9c)

where ∆ρ = ρ2 − ρ1, ∆Ur = U
(2)
r (r, θ) − U (1)

r (r, θ) and ∆Uθ = U
(2)
θ (r, θ) − U (1)

θ (r, θ). Finally, each
field is described by the linear superposition of smooth functions (C∞). For t > 0 the solution (2.4.9)
constructs normal modes with smooth density interface transitions, and we can specifically define a
time scale tδi = δ2

i /Dc, in which the vertical diffusion process occurs given the length scale δi and the
diffusion coefficient Dc.

An example of smooth linear normal modes (SLNM) obtained from (2.4.9) for a time scale t = tδi

are illustrated in figures 2.4.1, 2.4.2 and 2.4.3. Figure 2.4.1 shows the density field ρ and buoyancy
frequency, N =

√
−(g/ρ0)dρ/dz, derived from the analytical solution at t = 0 (grey line: discontinuous

two-layer stratification) and t = tδi (red line: smooth two-layer stratification). Density and velocity
fields of the gravest modes (n = 1) of Kelvin and Poincaré waves are exhibited in figures 2.4.2 and
2.4.3 for B2 = 0.25, h1/H = 0.35, and η0/h1 = 0.5.

2.5 Gradient Richardson number of SLNM

The flows induced by the linear internal Kelvin and Poincaré waves are parallel and predominantly
horizontal. Indeed, the ratio between the vertical and horizontal wavelengths is usually very small,
λV /λH < O(10−2). Hence, the hydrodynamic stability of the parallel two-layer flow drives by the
SLNM can be examined via the computation of the local gradient Richardson number, J , or its
inverse version:

J −1 ≡ S
2

N 2 , (2.5.1)
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Figure 2.4.1: Density profile ∆ρ(z)/∆ρ and buoyancy frequency N (z) of two-layer stratification, δi(t = 0) = 0
(grey line), and smooth two-layer stratification, 0 < δi(tδi > 0)� h1 (red line).
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Figure 2.4.2: Density field of Kelvin and Poincaré waves on the plane x− z at y = Ly/2; dash line shows the
vertical position of density interface in the unperturbed state.

where S = dU/dz is the vertical shear rate of the horizontal flow U and whose critical value is
J−1
c = 4. The Miles–Howard theorem (Miles, 1961; Howard, 1961) states that the sufficient condition

for hydrodynamic stability in a parallel stratified shear flow is satisfied if J < J −1
c everywhere; a value

J −1
c = 4 is a necessary but no sufficient condition for instabilities. However, local values J > J −1

c

suggest that shear instabilities are a distinct possibility around the density interface.

In a two-layer stratified flow both N 2 and S2 have a unique maximum located at the density
interface, z = zi. From the SLNM we can compute J −1 and estimate its maximum value near the
density interface, and where it occurs. As a first approach, we can assume that hydrodynamic stability
of Kelvin and Poincaré flows is similar to the stability of continuously stratified parallel flow in a
non-rotating limit. Therefore, we can solve the equation

J −1
c = 4 = S

2 (B2, δi/H, h1/H, η0/h1)
N 2 (δi/H,∆ρ/ρ0) , (2.5.2)

The spatial structure of the shear rate is controlled by four parameters: the rotation through the
Burger number B2, the aspect ratios of the stratification δi/H, h1/H, and the dimensionless wave
amplitude η0/h1. Then, for a given combination of (B2, h1/H, δi/H) and N , we can solve η0/h1 to
obtain the critical value Jc = 1/4. We define the vertical shear rate as S2 ≡

{
(dUr/dz)2 + (dUθ/dz)2

}
.
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Figure 2.4.3: Panels (a) and (e) show the vertical displacement ηi/η0 of gravest internal Kelvin/Poincaré waves.
Panels (b)-(f), (c)-(g) and (d)-(h) show the dimensionless velocity field ~v/wmax at z/H = 0.05, z/H = 0.65 and
z/H = 0.95, respectively. Arrows show the horizontal velocity components (Ur, Uθ) and background colours
shows the vertical velocity component w.
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Figure 2.5.1 shows the space of parameter J (B2, η0/H, h1/H), with B2 ∈ [0.05, 1.0], η0/h1 ∈ [0.05, 1.0],
η1/H ∈ [0.1, 0.5], δi/H = 5× 10−2 and ∆ρ/ρ0 = 1.5× 10−2; solid lines denote a family of solutions of
equation (2.5.2) for the gravest internal Kelvin wave flow (n = 1, ` = 2) whereas dash-dot lines denote
a family of solutions of equation (2.5.2) for the gravest internal Poincaré wave flow (n = 1, ` = 2).
Each curve divides the space of parameter in two regions: to the right of the curves, the flow has
regions where J < Jc; while to the left of the curves, the flow has J > Jc everywhere. From figure
2.5.1 we highlight the following characteristics: (1) for a given initial amplitude, η0/h1, and an aspect
ratio of the stratification, h1/H, both the Kelvin and Poincaré waves tend to unstable flow as rotation
effect increases (B2 → 0), but this effect is more important in the Poincaré wave; (2) given a rotating
regime, B2, and an initial amplitude, η0/h1, both the Kelvin and Poincaré waves tend to unstable flow
as aspect ratio increases (h1/H → 0.5); and (3) given a rotating regime, B2, and an aspect ratio of
the stratification, hi/H, both the Kelvin and Poincaré waves tend to unstable flow as wave amplitude
increases η0/h1 → 1.0. These results are discussed in the next section.

2.6 Direct numerical simulation of Kelvin and Poincaré waves

Nine three-dimensional numerical experiments were performed using the SLNMs as initial conditions,
to illustrate the free evolution and degeneration of the gravest internal Kelvin and Poincaé waves.
The parameters used were B2 = 0.25, h1/H = 0.35 and δi/H = 5 × 10−2. Six experiments of the
internal Kelvin wave varied its initial wave amplitude between 0.07 ≤ η0/h1 ≤ 0.60 and its minimum
gradient Richardson number between 0.13 ≤ min {J } ≤ 31.86, and three experiments of the internal
Poincaré wave varied its initial wave amplitude between 0.05 ≤ η0/h1 ≤ 0.15 and its minimum gradient
Richardson number between 0.34 ≤ min {J } ≤ 18.57. After the initial condition, the flow motion was
computed via the direct numerical simulation of the equations of motion (momentum, continuity and
mass transport equations in the Boussinesq sense) using the spectral model flow_solve (Winters &
de la Fuente, 2012), with a hyper-viscosity/diffusivity approach. Free-slip and no-flux conditions on
the boundaries were employed to solve the governing equation in the physical domain schematized in
figure 2.2.1. For more details on the equations of motion and the numerical approach, read Chapter
4, subsection 4.2.1.

Figure 2.6.1 show results of the internal Kelvin wave evolution. Left panels of figure 2.6.1 show time
series of vertical density profiles at r/R = 0.98 and θ = 0, for different values of η0/h1, whereas the right
panels show the respective power spectral density of the local potential energy, Ep(t) =

∫H
0 ρ(t, z)gdz.

The increment of η0/h1 induces an intensification of both the wave steepening and the shear flow in
the density interface region, around the maximum wave amplitude. The results show the existence of
different regimes: from a damped linear and laminar regime, associated to amplitudes η0 that scale
with the thickness of the transition layer δi, in which the Kelvin wave retains most of the linear
characteristics, to a nonlinear turbulent transition regime (T.R.), associated with amplitudes η0 that
scale with the thickness of the thinner layer, h1, in which the nonlinear processes induce the growth of
interfacial instabilities and turbulent patches in the density interface vicinity. These nonlinear processes
were observed when max

{
J −1} > 4. As the Kelvin wave dynamics tends to its linear regime, ηi → 0,

the theoretical Kelvin wave frequency, ωK , is virtually the frequency reproduced by the numerical
simulations that shows that the new smoothed solution preserves the linear modal structure of the
two-layer solution. Further description and characterization on these regimes are given in Ulloa et al.
(2015b).
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Figure 2.6.1: Left panels exhibit time series of density field along the vertical profile near where the maximum
Kelvin wave amplitude is achieved. T.R.: region where interfacial instabilities grow. Right panels exhibit the
power spectral density of the local potential energy, Ep(t). Legend: H : ωk/ωk; dash-line: N0/ωk; dot-dash line:
f/ωk

Figure 2.6.2 shows results of the internal Poincaré wave evolution. Figures 2.6.1(a) to 2.6.1(f)
show time series (in the left panels) of vertical density profiles at r/R = 0.0 and θ = 0, for three
different values of η0/h1, with their respective power spectral density of the local potential energy,
Ep(t) =

∫H
0 ρ(t, z)gdz (in the right panels); while figures 2.6.1(g) to 2.6.1(l) show the same information

but at r/R = 0.98 and θ = 0. The results show the existence of a local transition from laminar to
turbulent regime (T.R.) in the center of domain for η0/h1 = 0.15 and min {J} ≈ 0.34 > Jc = 0.25,
which is not observed in the perimeter. In fact, in the perimeter it is only observed the signal of
a Poincaré wave, with a single energy peak at the Poincaré-wave frequency in the PSDs of figures
2.6.2(h, j, l). In the PSDs of the interior region, wider frequency bands are observed as η0/h1 increases,
even with higher frequencies than the initial interfacial buoyancy frequency N0 (dash-line) in the case
of the transition regime, as shown in figure 2.6.2(f).

The dynamics of Poincare wave has been studied by de la Fuente et al. (2008) and Sakai & Redekopp
(2010), both authors have found that Poincare wave does not exhibit the nonlinear degeneration and
the hyperbolic characteristics observed in the Kelvin wave. In the shore region, we observe similar
results than previous studies (de la Fuente et al., 2008; Sakai & Redekopp, 2010); however, we observe
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Exp 2.2: η0/h 1 = 0.10, J0 = 4.62, at r /R = 0
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Figure 2.6.2: Left panels exhibit time series of density field along the vertical profile near where the maximum
Poincaré wave amplitude is achieved. T.R.: region where interfacial instabilities grow. Right panels exhibit the
power spectral density of the local potential energy, Ep(t). Legend: H : ωp/ωp; dash-line: N0/ωp; dot-dash line:
f/ωp

a transition to turbulence in the interior region, where Poincaré wave has the strongest interfacial
shear flow. Indeed, recent field studies in large stratified lakes (Bouffard et al., 2012, 2014; Valipour
et al., 2015) have suggested that the gravest internal Poincaré waves induce vertical mixing in offshore
regions via shear instabilities.

2.7 Discussion

Previous numerical studies have explored the evolution of Kelvin and Poincaré waves in confined
rotating stratified fluids via linear and weakly nonlinear equations (de la Fuente et al., 2008; Sakai
& Redekopp, 2010). Consequently, these studies have analyzed the linear and weakly nonlinear
dynamics of the Kelvin and Poincaré waves. Here we have introduced an analytical approach to
construct smooth lineal normal modes (SLNMs) of Kelvin and Poincaré waves in a smooth two-layer
stratification, starting from the linear normal modes derived by Csanady (1967) in a discontinuous
two-layer stratification. Unlike the linear normal modes derived directly from continuous stratifications
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(e.g., Kundu et al., 2012), the wave amplitude of SLNMs, η0, can be taken as a significant fraction of the
thinner layer thickness. This property allows storing enough energy as to induce strong nonlinear flows
if proper nonlinear equations are solved. We have used the SLNMs as initial conditions to compute
the free evolution of the gravest internal Kelvin and Poincaré waves via DNS of the fully nonlinear
Boussinesq equations of motion. This approach allowed obtaining strong nonlinear regimes of Kelvin
and Poincaré waves.

Our numerical experiments show important physical processes associated to turbulent events and
vertical mixing in the density interface region, when the minimum gradient Richardson number in the
density interface region is close to the critical value Jc = 0.25. In the case of internal Kelvin wave, we
observed the emergence of interfacial instabilities when min {J} ≤ Jc, whereas in the case of internal
Poincaré waves, we observed the emergence of interfacial instabilities at partially-higher values than
Jc. Similar results have been recently observed in large stratified lakes (e.g., Preusse et al., 2010;
Bouffard et al., 2012). Preusse et al. (2010) have shown that internal Kelvin waves degenerate into
nonlinear internal waves with high amplitudes that drive interfacial instabilities and turbulent patches
near the crests and troughs of waves, in the shore region, as it is shown in the numerical experiments
of the internal Kelvin wave (see figure 2.6.1). On the other hand, Bouffard et al. (2012) have shown
that internal Poincaré waves induce intensive shear flow in the interior region of large lakes, driving
turbulent events and vertical mixing in the density interface region, as it is shown in the numerical
experiments of the internal Poincaré wave (see figure 2.6.2).

The numerical experiments presented here showed the individual evolution of the gravest internal
Kelvin and Poincaré waves. However, these waves can coexist and interact with each other in large
stratified lakes (Rozas et al., 2014). Therefore we could expect, at least, two sources of turbulence
and mixing driven by basin-scale internal gravity waves. To analyse these scenarios further studies are
required.
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Chapter 3

Degeneration of internal gravity waves in a stratified
rotating basin. Laboratory experiments

This chapter has been published as research paper, authored by Hugo Ulloa, Alberto de la Fuente and
Yarko Niño, in Journal of Fluid Mechanics (2014), http://dx.doi.org/10.1017/jfm.2014.10.

Abstract

The temporal evolution of nonlinear large-scale internal gravity waves, in a two-layer flow affected
by background rotation, is studied via laboratory experiments conducted in a cylindrical tank, mounted
on a rotating turntable. The internal wave field is excited by the relaxation of an initial forced tilt of the
density interface (ηi), which generates internal waves, such as Kelvin and Poincaré waves, in response to
rotation effects. The behaviour of ηi, in the shore region, is analysed in terms of the background rotation
and the nonlinear steepening of the basin-scale waves. The results show that the degeneration of the
fundamental Kelvin wave into a solitary-type wave packet is caused by nonlinear steepening and it is
influenced by the background rotation. In addition, the physical scales of the leading solitary-type wave
are closer to Korteweg-de Vries theory as the rotation increases. Moreover, the nonlinear interaction
between the Kelvin wave and the Poincaré wave can transfer energy to higher or lower frequencies than
the frequency of the fundamental Kelvin wave, as a function of the background rotation. In particular,
a specific normal mode in the off-shore region could be energized by this interaction. Finally, the
bulk decay rate of the fundamental Kelvin wave, τdk, was investigated. The results exhibit that τdk
is concordant with the Ekman damping time scale when there is no evidence of steepening in the
basin-scale waves. However, as nonlinear processes increase, τdk shows a strong decrease. In this
context, the nonlinear processes play an important role in the decay of the fundamental Kelvin wave,
via the energy radiation to other modes. The results reported demonstrate that the background
rotation and nonlinear processes are essential aspects in understanding the degeneration and the decay
of large-scale internal gravity waves on enclosed basins.

3.1 Introduction

The nonlinear and non-hydrostatic degeneration of large-scale internal gravity waves has been observed
in environmental stratified flows (Staquet & Sommeria, 2002; MacIntyre et al., 2009; Preusse et al.,
2010, 2012b; Rozas et al., 2014). It plays an important role in the energy distribution and mass
transport in stratified waterbodies, such as lakes and reservoirs (Wüest & Lorke, 2003; Lorke, 2007;
Ivey et al., 2008; Bouffard et al., 2012). When waterbodies are large enough to be affected by the
rotation of the Earth (Antenucci & Imberger, 2001), a wide variety of types of internal waves can coexist
(Shimizu et al., 2007), among which are the well-known Kelvin and Poincaré gravity waves (Csanady,
1967; Stocker & Imberger, 2003). Recent inviscid numerical studies (de la Fuente et al., 2008, 2010;
Sakai & Redekopp, 2010, 2011) have shown that in stratified lakes affected by background rotation,
the nonlinear evolution of internal gravity waves is wave dependent: Kelvin waves can degenerate
into a package of solitary-type waves, Poincaré waves show a periodic back-and-forth radiation of
energy, and nonlinear interaction between Kelvin and Poincaré waves triggers the transfer of energy to
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CHAPTER 3. LABORATORY EXPERIMENTS

higher-frequency modes (de la Fuente et al., 2010). These nonlinear processes are strongly influenced
by the available potential energy (Horn et al., 2001; Boegman et al., 2005b). In addition, theoretical,
numerical and recent experimental studies (Helfrich & Grimshaw, 2008; Grimshaw & Helfrich, 2008,
2012; Grimshaw et al., 2013) have shown that, in the absence of lateral boundaries, the effect of the
background rotation can strongly influence the evolution of solitary waves. The results show that
the background rotation is responsible for the radiation of energy from the solitary waves to long
inertial-gravity waves, giving rise the emergence of a new short solitary wave packet. However, these
theoretical and numerical studies are based on inviscid assumptions, and they must be investigated
from the experimental point of view, where viscous energy loss also occurs (Shimizu & Imberger, 2009,
2010).

Early experimental studies, performed by Maxworthy (1983), reported the formation of solitary-type
waves in a two-layer stratified rotating channel. The celerity of solitary-type waves is independent of
rotation and depends on only the stratification and wave amplitude. Furthermore, the wave amplitude
decays exponentially across the channel, proportional to the internal Rossby ratio of deformation.
Motivated by the experiments of Maxworthy (1983) experiments, Grimshaw (1985) derived the evolution
equations for a weakly nonlinear internal Kelvin wave from a Korteweg-de Vries (KdV)-type equation,
including the rotation effect. This theoretical result shows that in a strong rotating regime, the
amplitude of the internal Kelvin wave at the wall is described by KdV theory, while its transverse
structure is that of a linear internal Kelvin wave. Subsequent investigations found important similarities
between solitary-type waves in a rotating frame and the solitary wave described by the KdV equation
(Renouard et al., 1987; Grimshaw et al., 1998; Ostrovsky & Stepanyants, 2005; Helfrich & Melville,
2006). Moreover, Renouard et al. (1993) showed that the principal effects of weak rotation on the
evolution of weakly nonlinear long waves are caused by the resonant interaction between Kelvin and
Poincaré waves, previously described by Melville et al. (1989). Experimental studies conducted by
Wake et al. (2004, 2005) analysed the energy dissipation of an internal wave field affected by rotation
in a linear regime, showing that in the absence of topographic effects, it was controlled by viscous
dissipation in the bottom Ekman layer.

The aim of this study is to analyse experimentally the free evolution of basin-scale internal gravity
waves in a two-layer stratification, when nonlinear processes and background rotation are involved
in the flow dynamics. We are particularly interested in (1) investigating the fundamental Kelvin
wave response as a function of the initial displacement of the density interface, the aspect ratio of
stratification and the background rotation; (2) characterizing the conditions in which it is possible to
identify a nonlinear interaction among the fundamental modes of Kelvin waves and Poincaré waves; and
(3) studying the influence of rotation, the aspect ratio of the stratification and the initial displacement
of the density interface on the decay of the fundamental Kelvin wave. The conceptual model adopted
by Csanady (1967, 1968) was used to develop the experimental facility and to characterize the initial
internal gravity-wave field in a rotating cylindrical geometry with a two-layer stratified fluid.

Figure 3.2.1 shows a schematic of the conceptual model. The model defines the thickness and
density of each layer (ρ` and h`, with ` = 1, 2); the horizontal and vertical length scales, characterized
by the diameter D = 2R and the total depth H = h1 + h2, respectively; and the angular velocity
Ωz = f/2 (in the direction of gravity), where f is the inertial frequency. From this set of parameters
is defined the long internal gravity wave celerity ci =

√
g′h1h2/H, where g′ = (∆ρ/ρ0)g is the reduced

gravity, ∆ρ = ρ2−ρ1 is the density difference between the bottom and top layer, and ρ0 is the ambient
reference density. Csanady (1967) obtained the linear normal modes of the density interface, ηi(t, ~x), in
the limit in which the internal Rossby radius of deformation Ri = ci/f is smaller than the radius of the
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Figure 3.2.1: Schematic of the conceptual model and the experimental setup,. Figure exhibit the
cylindrical domain and the physical parameters involved in the study and the theoretical initial
condition of the density interface (dark gray colour), which is characterized by an initial vertical
displacement η0.

basin, R. In this context, the effect of the background rotation (Ωz = f/2) modulates the basin-scale
internal wave dynamics. From this model, an analytical description of the Kelvin and Poincaré waves
can be obtained. A Kelvin wave is a subinertial cyclonic boundary-trapped wave whose amplitude
ηi(t, ~x) decays exponentially from the horizontal boundary towards the centre of the domain, and its
horizontal flow has a strong azimuthal component. A Poincaré wave is a superinertial anticyclonic
wave characterized by a cell structure on the horizontal plane, whose maximum amplitude is located
at the centre of the cell, and its horizontal flow has a strong radial component. For use henceforth,
we define η0 = max {ηi(t = 0, ~x)}. Taking into account the physical parameters of the conceptual
model and the fluid properties, a set of dimensionless numbers that allow the characterization of the
behaviour of the basin-scale internal gravity waves are derived. In this study, the internal wave field
is excited via an initial straight tilt of the density interface, and its temporal evolution is analysed
in terms of three dimensionless parameters: the initial Wedderburn number W0 = h1/(2η0) (Horn et
al., 2001; Boegman et al., 2005b), the aspect ratio of the stratification h∗ = h1/H (Horn et al., 2001)
and the Burger number S = Ri/R (Antenucci & Imberger, 2001). Here (W0, h∗) and S describe the
nonlinear response and the effect of the background rotation on the basin-scale internal gravity waves,
respectively.

The outline of the paper is as follows. Section 3.2 presents the dimensionless parameters adopted to
characterize the experimental sets, the dominant normal modes in a stratified cylindrical basin and the
frequencies and characteristic time scales for studying the internal wave field. Section 3.3 presents the
experimental facility, the set of conducted experiments, the data analysis used and a brief qualitative
description of the results. In 3.4, the experimental results are analysed. First, the linear response of
the internal gravity wave field is characterized. Second, the nonlinear response of the basin-scale waves
is studied. Third, the parameters that control the bulk decay rate of the Kelvin wave are identified.
Finally, 3.5 presents a discussion of the results and the conclusions of the investigation.
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3.2 Dimensionless numbers, normal modes and time scales

3.2.1 Dimensionless numbers

First, this study assumes that the density interface is located below the mid-depth position (except
when h1 = h2) so that the bottom layer is the thinner layer, contrary to what is usually observed in most
lakes. Similarly to the laboratory experiments performed by Horn et al. (2001), this inverse condition
does not alter the physics of the problem because the experimental tank uses a rigid lid on top of the
water column (see figure 3.2.2). It allows better experimental measurements of the density interface to
be obtained because of the optical method used, which is explained in 3.3. Therefore, henceforth, the
following definitions of dimensionless parameters are used to describe this reverse stratification type.

The flow of the basin-scale internal gravity waves is characterized by the parameters presented
in the conceptual model (see figure 3.2.1), specifically, by the following set: {Ri, R, h1, H, η0, g

′, ν, κ}.
From this set, six dimensionless parameters are obtained, which the authors have chosen as follows.

The first dimensionless parameter is the Burger number (Antenucci & Imberger, 2001), defined as
the ratio between the internal Rossby radius of deformation, Ri = ci/f , and the length scale of the
water basin, or the radius of the cylindrical basin, R, so that

S = Ri
R
. (3.2.1)

This parameter quantifies the influence of the background rotation on the basin-scale internal gravity
waves. In the laboratory experiments, the inertial frequency f is controlled by the angular velocity
Ωz = f/2. The basin-scale internal gravity waves are affected by the background rotation when
0 < S < 1.0, and the rotation influence increases as S → 0 (Antenucci & Imberger, 2001). However,
when S ≥ 1, the rotation effects are weak.

The second dimensionless parameter is the initial Wedderburn number (Horn et al., 2001; Boegman
et al., 2005b), defined as the ratio of the unperturbed thickness bottom layer, h1, to twice the initial
vertical displacement of the density interface, η0:

W0 = h1
2η0

. (3.2.2)

Here, the initial Wedderburn number is a measure of the initial available potential energy attributed
to the initial straight tilt of the density interface. If 0 ≤ η0 ≤ h1, then 0.5 ≤W0 ≤ ∞, where W0 →∞
denotes null initial available potential energy, whereasW0 = 0.5 denotes the upwelling (or downwelling,
for our experiments) condition of the density interface, which is associated with the maximum initial
available potential energy for a specific h1.

The third dimensionless parameter seeks to quantify the steepening of the basin-scale internal
gravity waves, henceforth denoted by Cs. This parameter is defined as the ratio of the linear long
internal wave celerity, ci, to the nonlinear internal wave celerity cnl = η0α1 derived from the KdV
theory (Horn et al., 2001; Boegman et al., 2005b), where α1 = (3/2)ci(H − 2h1)/ {h1(H − h1)} is the
KdV nonlinear coefficient (Helfrich & Melville, 2006). Here Cs may be expressed in terms of W0 and
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Figure 3.2.2: Experimental facility of the rotating turntable system.

the aspect ratio of the stratification h∗ = h1/H as follows:

Cs = ci
η0α1

= 2W0
3

1− h∗
1− 2h∗

. (3.2.3)

As W0 and h∗ decrease, Cs decreases to a limiting value of Cs = 1/3. In the range (1/3) < Cs < 1, the
nonlinear celerity cnl is higher than the linear celerity ci; hence, nonlinear steepening of the basin-scale
internal gravity waves is expected, and this effect increases as Cs → 1/3. In contrast, when Cs ≥ 1,
steepening takes too long to play an important role in the evolution of internal waves. This regime is
related to two conditions: η0 ≈ 0 or h1 ≈ h2. Consequently, if the initial Wedderburn number is set
to a constant value, the nonlinear steepening may be controlled via the aspect ratio h∗; the nonlinear
processes affecting the basin-scale internal gravity waves will increase as h∗ → 0 (Horn et al., 2001).
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The fourth dimensionless parameter is the Reynolds number, defined as follows:

Re = η0ci
ν
, (3.2.4)

where ν is the kinematic viscosity. In our experiments, Re ∼ O(103).

Because a saline stratification is used, the fifth dimensionless parameter is the Schmidt number:

Sc = ν

κ
, (3.2.5)

where κ is the mass diffusivity coefficient. In our experiments Sc ≈ 700.

The last dimensionless parameter is the basin aspect ratio (Sakai & Redekopp, 2010), defined as
the ratio of the vertical (λv) to the horizontal (λh) length scales of the basin-scale waves:

Λ = λv
λh

= H

2R (3.2.6)

where 2R is the diameter, D, of the cylindrical basin. In our experiments, Λ ∼ O(10−2). This
parameter is a measure of the hydrostaticity of the basin-scale waves. However, this flow characteristic
does not mean that the vertical acceleration will always be small; nonlinear processes (steepening,
breaking, dispersion) may transfer energy from large scales (∼ λh) to smaller scales (∼ λv), so that the
horizontal and vertical wave length scales may be of the same order, thereby causing the hydrostatic
pressure hypothesis to be invalid (de la Fuente et al., 2008, 2010).

3.2.2 Normal modes in a stratified cylindrical basin

We are interested in identifying the presence of Kelvin and Poincaré waves in an internal wave field
developed in a cylindrical domain with a two-layer stratified fluid. Csanady (1967) studied linear
dynamics of the rotating internal gravity waves in a two-layer cylindrical basin via the analysis of
natural normal modes derived from the linear hydrostatic inviscid equation of motion and continuity:

∂

∂t

(
Ur
Uθ

)
+
(
−Uθ
Ur

)
−∇Hηi = 0, (3.2.7)

∂ηi
∂t

+ 1
r

{
∂(rUr)
∂r

+ ∂Uθ
∂θ

}
= 0. (3.2.8)

These equations are presented in their dimensionless form (∗ in the superscript indicates a dimensional
variable only for velocities, time, radial coordinate and displacement of density interface), where
(Ur, Uθ) = (U∗r , U∗θ )c−1

i are the radial and azimuthal velocity components, t = t∗f is the time,
r = r∗R−1

i ∈ [0, S−1] is the radial coordinate, θ ∈ [0, 2π] is the azimuthal coordinate, ∇H = Ri∇∗ is the
horizontal gradient, and ηi = η∗i /h1 is the dimensionless vertical displacement of the density interface.
This model supposes that there is no flux through the walls as a boundary condition (Csanady, 1967).
From the momentum equation (3.2.7), the continuity equation (3.2.8) and the boundary condition, one
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can derive the boundary condition for ηi (Csanady, 1967):

∂2ηi
∂r∂t

+ 1
r

∂ηi
∂θ

= 0 at r = S−1. (3.2.9)

To obtain the radial and azimuthal structure of the first baroclinic normal mode, it is assumed that ηi
has the following modal pressure form:

ηi = R(r) cos (θ · nθ − σt) , (3.2.10)

where R(r) is an arbitrary radial function of the modal pressure, nθ ∈ {1, 2, 3, ...} is the azimuthal
mode, and σ = ω/f and ω are the dimensionless and dimensional wave frequencies, respectively. We
are looking for periodic solutions in θ. The radial structure of the modal pressure satisfies the wave
equation:

∂2R
∂r2 + 1

r

∂R
∂r

+
(
σ2 − 1− n2

θ

r2

)
R = 0. (3.2.11)

Equation (3.2.11) is a Bessel equation if σ2−1 > 0 and is a modified Bessel equation if σ2−1 < 0. The
solutions of theses equations are traditionally denoted by J and I, respectively. Hence, the solution of
R depends on σ and nθ:

Rnθ =

 Inθ

(
r
√
|σ2 − 1|

)
, σ2 − 1 < 0,

Jnθ

(
r
√
|σ2 − 1|

)
, σ2 − 1 > 0.

(3.2.12)

Two types of gravity-wave modes are obtained from these equations: for subinertial frequencies (σ2 −
1 < 0), the solutions are cyclonic Kelvin waves (Antenucci & Imberger, 2001), while for superinertial
frequencies (σ2 − 1 > 0), the solutions are anticyclonic Poincaré waves, higher azimuthal Kelvin wave
and other radial modes (Antenucci & Imberger, 2001; Stocker & Imberger, 2003). In general, the
horizontal structure of these modes can be characterized by the Burger number. Each type of wave is
characterized by a radial-mode component and an azimuthal-mode component, M(nr, nθ), where nr
denotes the radial mode number. Hereafter, Kelvin or cyclonic modes (Antenucci & Imberger, 2001)
are denoted by K(nr, nθ), Poincaré or anticyclonic modes (Antenucci & Imberger, 2001) are denoted
by P (nr, nθ).

As we know the radial structure Rnθ , we use equation (3.2.9) to calculate the theoretical natural
frequencies σ of each type of wave:

S−1
√
|σ2 − 1|Rnθ−1

(
S−1

√
|σ2 − 1|

)
+ nθ

(
σ−1 − 1

)
Rnθ

(
S−1

√
|σ2 − 1|

)
= 0. (3.2.13)

This result is useful for identifying the types of basin-scale internal gravity waves presented in a
spectral signature (Wake et al., 2005). Figure 3.2.3 shows the interface displacement of the main
modes M(nr, nθ) of the internal gravity waves, along with corresponding symbols (triangles, circles,
diamonds, squares), which will be used later in the experimental results presented in section 3.3. The
internal wave field is excited by an initial straight tilt of the density interface (see figure 3.2.1). This
initial condition excites all radial modes and the first azimuthal mode (Stocker & Imberger, 2003).
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Figure 3.2.3: Spatial structure of the density interface ηi(r, θ)/η0 of the main initially excited modes
(top row) and unexcited modes (bottom row).

3.2.3 Frequency/time scales

First, we use the theoretical frequencies derived from equation (3.2.13) to identify the fundamental
modes of the Kelvin and Poincaré waves, whose dimensionless frequencies are denoted by σk = ωk/f
and σp = ωp/f , respectively, where ωk and ωp are their dimensional frequencies, respectively.

Second, the nonlinear interaction between waves of frequencies σk and σp produces two characteristic
frequencies σk±σp (Hammack & Henderson, 1993). These type of characteristic frequencies have been
called Kelvin–Poincaré waves, σkp = σp + σk, and Poincaré–Kelvin waves, σpk = σp − σk, respectively
(de la Fuente et al., 2008). Their existence in the frequency spectrum is attributable to nonlinear
processes involving Kelvin and Poincaré waves.

Third, the time scale associated with the emergence of nonlinear steepening of internal Kelvin waves
may be studied in terms of the steepening time scale, Ts, derived from the KdV theory (Horn et al.,
2001; Boegman et al., 2005a; de la Fuente et al., 2008) and the Kelvin wave period:

τs = Ts
Tk
, (3.2.14)

where Ts = 2πR/(η0α1), and Tk = 2πR/ωk is the Kelvin wave period. It is observed that if h∗ → 0.5
(h1 → h2), then τs → ∞, so the steepening of internal gravity waves it is not expected. A similar
dimensional analysis can be performed for the nonlinear behaviour of the fundamental Poincaré wave.

Finally, a dimensionless time scale associated with the bulk decay rate of the vertical displacement,
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τd, of a specific internal gravity wave can be described using the ratio τd = Td/Ti, where Td is a decay
time scale obtained from experimental measurements of ηi(t) associated with the internal gravity waves.
The aim is to quantify the decay rate of the fundamental Kelvin wave; therefore, the following ratio is
considered:

τdk = Td
Tk

(3.2.15)

Lower values of τdk imply greater decay of the fundamental Kelvin wave in one period.

3.3 Methods

3.3.1 Experimental set-up

The experimental study was conducted on a rotating table whose rotation speed varied between 0 and
6 rpm (figure 3.2.2). On top of the rotating table was mounted a circular tank made of transparent
acrylic glass, with a diameter of 1.8 m. The rotating table was set up with a frame that can be tilted
and then released into the horizontal position in a very short time (tr ∼ 1 s). This time scale is one or
two orders of magnitude smaller than the period of the waves of interest.

A two-layer stratification was created inside this experimental tank using a freshwater layer with
density ρ1 on top and a dyed saltwater layer of density ρ2 on the bottom, with a characteristic density
difference ∆ρ = ρ2 − ρ1. To create the two-layer system, the salt water was first placed in the tank,
and fresh water was then gently poured on top of the saltwater layer through a low-porosity sponge,
which is required to reduce vertical mixing. Finally, a rigid lid closed the free surface of the water to
prevent the generation of barotropic waves. In this step, the aspect ratio of the stratification, h∗, was
defined.

The initial thickness of the density interface, δi, was estimated optically to be δi ≈ 1.0 cm (±0.05
cm); its thickening because of vertical mass diffusion has a characteristic time scale Tmd, which is much
longer than the time scale of the internal gravity waves of interest, Tk, and the measurement time, Tr:

Tmd ∼
(
δ2

i
κ

)
> Tr ∼ 10Tk, (3.3.1)

where the mass diffusion coefficient for salt water is κ ∼ 10−9 m2s−1 (Csanady, 1975), leading to
Tmd ∼ 105 s, while the measurement time is Tr ≈ 5 × 102 s, and the Kelvin wave period, Tk, takes
values between 40 s and 80 s, depending on the set of parameters used. Therefore, the thickness of the
density interface achieved during an experiment is δi � H, even if turbulent mixing affects the density
interface. If we increase the effective diffusivity to 100κ, then Tmd ≥ Tr. Consequently, the vertical
mass diffusion present in the experiments does not affect the conceptual problem of the two-layer flow.

Once the two-layer stratification was created, each experiment was conducted in two steps. First,
the desired Burger and the initial Wedderburn numbers for the experiment were set. The Burger
number was achieved by gradually increasing the angular velocity until the desired value of Ωz was
obtained. This process was executed slowly to avoid high azimuthal accelerations (t ∼ 1 − 2 hrs).
Afterwards, to achieve the initial Wedderburn number, the density interface was gradually tilted with
respect to the horizontal bottom tank direction (see Horn et al., 2001; Boegman et al., 2005b); this

26



CHAPTER 3. LABORATORY EXPERIMENTS

displacement was induced using a mechanical arm located at the edge of the frame (see figure 3.2.2).
Gentle operation of the table was required to avoid significant accelerations of the flow that would
induce vertical mixing. Second, once the dimensionless numbers (h∗, S,W0) were set, the experiment
was begun by suddenly releasing the tank, allowing it to return to the horizontal position, which
induced an adjustment of the interface as well as the excitation of all radial modes and only the first
azimuthal mode of the internal gravity waves.

The vertical response and free evolution of the density interface was captured using a video camera
that rotated with the table. It was located in the zone where the initial vertical displacement was −η0
with respect to the equilibrium position, so the density interface is close to the bottom boundary of the
tank (see figure 3.2.1). The video camera was programmed to measure one frame per second (fr = 1
Hz), because our interest was to record internal gravity waves whose frequencies are in the range
ω ∼

[
O(10−1), O(10−2)

]
Hz. The video camera image resolution was 512×512 pixels, with a recording

area that covered the entire range of vertical displacements of the density interface (approximately 10
cm). As the salt water was dyed and the fresh water was not, the registered images were composed of
two colours: black and white. The pycnocline was located at the boundary between the two colours.
The accuracy of the measurements was ±0.05 cm.

3.3.2 Experimental set

The physical variables to be controlled were the initial thicknesses of the bottom layer and top layer,
h1 and h2; the initial vertical displacement of the density interface, η0; the relative density between
the top layer and the bottom layer, ε = ∆ρ/ρ1; the radius of the circular tank, R; and the inertial
frequency f = 2Ωz. Using these external variables, the six dimensionless parameters were controlled.
However, the focus of this study is the following three parameters: W0, Cs(W0, h∗) and S. A total of
26 experiments were conducted, and Table 3.1 summarizes the experimental conditions of each one.

The experiments were grouped into three sets. Set 1 contains 16 experiments and was conducted to
analyse the influence of the background rotation on a nonlinear internal wave field. In set 1, h∗ ≈ 0.2
and S ∈ (0.2 − 0.8) ∪ ∞ (S → ∞ when f → 0), and two different values of the initial Wedderburn
number, W0 = 0.5 and W0 = 1.0, were used for each Burger number.

Set 2 contains 10 experiments and was conducted with the objective of studying the response of
the density interface for different aspect ratios in the range h∗ ∈ (0.09 − 0.53). Using this set of
experiments, the influence of the aspect ratio on the nonlinear behaviour of the basin-scale internal
gravity waves was analysed.

Set 3 contains three experiments. Its intent is to study the influence of the background rotation on
the decay rate in the absence of nonlinear steepening in basin-scale internal gravity waves. In this set,
h∗ ≈ 0.5, W0 = 1.0 and the Burger number was in the range of S ∈ (0.2− 0.8).

3.3.3 Data analysis

The internal gravity wave field was studied via the analysis of the time series of the perturbed density
interface at the boundary, ηi(tn). The energy and frequency properties of the main internal gravity
waves excited in the experiments were analysed using the power spectral density (PSD) function via
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Set Run h1 h2 η0 ε ci f h∗ W0 Cs S Re
n. n. (cm) (cm) (cm) (%) (cm/s) (hz) (-) (-) (-) (-) (-)

1.1 4.5 19.5 2.3 1.96 8.39 0.46 0.19 1.0 0.87 0.20 1887
1.2 5.0 19.0 5.0 1.96 8.73 0.46 0.21 0.5 0.45 0.21 4363
1.3 4.1 20.0 2.1 1.96 8.09 0.30 0.17 1.0 0.84 0.30 1658
1.4 4.5 19.5 4.5 1.96 8.39 0.30 0.19 0.5 0.43 0.31 3774
1.5 5.0 19.0 2.5 1.96 8.73 0.21 0.21 1.0 0.90 0.46 2181
1.6 5.5 18.5 5.5 1.96 9.03 0.21 0.23 0.5 0.47 0.48 4967
1.7 4.5 19.5 2.3 1.96 8.39 0.21 0.19 1.0 0.87 0.45 1887

1st 1.8 4.5 19.5 4.5 1.96 8.39 0.21 0.19 0.5 0.43 0.46 3774
1.9 4.5 19.0 2.3 1.96 8.37 0.18 0.19 1.0 0.87 0.52 1882
1.10 5.0 19.0 5.0 1.96 8.73 0.18 0.21 0.5 0.45 0.54 4363
1.11 4.5 19.5 2.3 1.96 8.39 0.15 0.19 1.0 0.87 0.63 1887
1.12 4.0 20.0 4.0 1.96 8.01 0.15 0.17 0.5 0.42 0.60 3203
1.13 4.0 20.0 2.0 1.96 8.01 0.11 0.17 1.0 0.83 0.80 1601
1.14 4.0 19.0 4.0 1.96 7.97 0.11 0.17 0.5 0.42 0.80 3189
1.15 4.0 20.0 2.0 1.96 8.01 0.00 0.17 1.0 0.83 ∞ 1601
1.16 4.5 19.5 4.5 1.96 8.39 0.00 0.19 0.5 0.43 ∞ 3774
2.1 2.5 21.5 2.5 1.96 6.56 0.21 0.10 0.5 0.38 0.35 1641
2.2 2.2 21.8 1.1 1.96 6.20 0.21 0.09 1.0 0.74 0.33 682
2.3 4.5 19.5 2.3 1.96 8.39 0.21 0.19 1.0 0.87 0.45 1887
2.4 4.5 19.5 4.5 1.96 8.39 0.21 0.19 0.5 0.43 0.46 3774

2nd 2.5 6.5 17.5 6.5 1.96 9.55 0.21 0.27 0.5 0.53 0.51 6206
2.6 6.5 17.5 3.3 1.96 9.55 0.21 0.27 1.0 1.06 0.51 3103
2.7 8.0 16.0 8.0 1.96 10.13 0.21 0.33 0.5 0.67 0.54 8103
2.8 8.0 16.0 4.0 1.96 10.13 0.21 0.33 1.0 1.33 0.54 4051
2.9 7.5 7.5 7.5 1.96 8.49 0.21 0.50 0.5 ∞ 0.45 6370
2.10 8.0 7.0 4.0 1.96 8.47 0.21 0.53 1.0 4.67 0.45 3390
3.1 8.0 7.0 4.0 1.96 8.47 0.47 0.53 1.0 4.67 0.20 3390

3rd 3.2 8.0 7.0 4.0 1.96 8.47 0.21 0.53 1.0 4.67 0.45 3390
3.3 7.5 7.5 3.8 1.96 8.49 0.12 0.50 1.0 ∞ 0.80 3003

Table 3.1: Experimental set.

28



CHAPTER 3. LABORATORY EXPERIMENTS

finite Fourier transforms (FFTs) (e.g., Bendat & Piersol, 2000):

Ĝηi(fk) = 2
Tr

Ns−1∑
`=0
|Π̂ηi(ω`, Tr)|2, (3.3.2)

where Ns is the number of samplings in Tr; ω` = `/Ns is the `th discrete frequency calculated using
` = 0, 1, ..., [Ns/2− 1]; and Π̂ηi(ω`, Tr) is the discrete spectral signal obtained by applying the discrete
FFT to ηi(tn) over the recording length Tr. To use the PSD, it is necessary to have a periodic or
quasi-periodic signals (Garcia et al., 2005), and two tests were used to validate the use of PSD on the
measured time series. (i) The frequency under study, ωm, was identified, and the PSD was computed
for various sampling frequencies in the range ωs ≥ 2ωm. For each PSD, the frequency of the studied
signal was identified, and if it did not vary as a function of ωs it was concluded that this mode had
periodic characteristics. If ωm changed with ωs but by less than 10%, it was considered a quasi-periodic
type wave, for which the PSD is an acceptable tool. In any other case, the PSD is a useless tool. (ii)
The time series was divided into several segments, and the PSD was computed in each segment. The
studied signal was again identified, and the same criterion used for test (i) was considered to define
whether the PSD could be used to study the measured time series. For the first test, the used sampling
frequencies were ωs = 1, 0.5 and 0.1 Hz, and percentage changes between 0 and 3.98 % were obtained
for ωm. Two segments were used for the second test (0 : Tr/2, Tr/2 : Tr), and percentage changes
between 0 and 9.86 % were obtained for ωm. The results demonstrated that the frequencies of the
dominant energy peaks are quasi-invariant, thereby establishing that the PSD could be used to identify
the frequencies of the large-scale internal gravity waves.

A normal mode identified by the PSD has an associated frequency and an associated amount of
energy, which can be analysed using a band-pass decomposition around the frequency that defines its
energy peak in the spectral signal. The spectral signal of the specific normal mode is obtained by
multiplying Π̂i(ω`) by the frequency response function, Hm, of the band-pass filter:

Π̂ηm(ω`) = Hm(ω`)Π̂ηi(ω`), (3.3.3)

where the frequency response function is a linear superposition of two discrete Heaviside functions:

Hm(ω`) = H(ω` − ω(l)
m )−H(ω` − ω(u)

m ), (3.3.4)

with
H(ω` − ω∗) =

{
0 ω` < ω∗,
1 ω` ≥ ω∗,

(3.3.5)

whose resonant frequency is ωm, and its characteristic bandwidth is Bm = ωh − ωl, where ω
(u)
m =

ωm + Bm/2 is the upper cut-off frequency, and ω(l)
m = ωm − Bm/2 is the lower cut-off frequency. The

frequency band that characterizes the energy content of an internal gravity wave is therefore
[
ω

(l)
m , ω

(u)
m

]
.

Following Bendat & Piersol (2000), this bandwidth can be defined with the quadratic bias error of the
PSD estimator taken into consideration, which provides:

Bm ≈ c
(
ω4
m

Tr

)1/5

(3.3.6)

where c ≈ 1.18. Then, a synthetic time series associated with ωm can be obtained by taking the real
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part of the inverse FFT formula of Π̂ηm :

ηm(tn) = <
{

1
Ns

Ns−1∑
`=0

Π̂ηm(ω`) exp
(
j

2πnω`
Ns

)}
(3.3.7)

where ηm(tn) is the discrete vertical displacement of the oscillation mode m, and j is the complex unit.
This method makes it possible to isolate the temporal evolution of a single normal mode.

It is noteworthy that in the experiments only the interface displacement signals at the tank perimeter
are measured and used for the analysis. This implies that only the Kelvin wave modes, of radial mode
one, can be associated with their maximum energy amplitude in the PSD. However, although Poincaré
modes can be identified in the spectral signal, these are not associated to their maximum energy
amplitudes, because their maximum vertical displacements are located in the off-shore region.

3.3.4 Preliminary description of measurements

Representative results obtained from each experimental set are shown in figures 3.3.1, 3.3.2 and 3.3.3.
The left column of each figure shows the measured vertical displacements of the density interface as a
function of time, while the right column shows the corresponding PSD.
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Figure 3.3.1: Representative results of set 3: left panels present time series of the vertical displacement
of the density interface, ηi(t), whereas right panels present the PSD of ηi(t). The triangles and the
circles identify the Kelvin and Poincaré waves, respectively (see Symbols presented in figure 3.2.3.
Furthermore, the dot line marks the inertial frequency, f , the dashed line marks the theoretical
position of the Kelvin–Poincaré frequency ωkp, the dot-dashed line marks the theoretical position
of the Kelvin–Poincaré frequency ωpk, and the continuos line denotes an unclassified lowest frequency.

Figure 3.3.1 shows results from set 3 of experiments, which had a steepening parameter Cs > 1
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(h∗ ≈ 0.5), so the linear response of the basin-scale internal waves is expected. In fact, the time series
of ηi(t) (figures 3.3.1a, c, e) exhibit damped oscillatory waves with no evidence of steepening. However,
higher azimuthal Kelvin modes are clearly identified of Figure 3.3.1(b) (grey and white triangles),
which, according to de la Fuente et al. (2010), indicates the steepening of the Kelvin wave. This
apparent contradiction is because the Cs is defined based on the first-order nonlinear terms, whereas
in the presence of large vertical displacements of the density interface, higher-order nonlinear effects
may become important (see the extended KdV equation in, e.g., Helfrich & Melville (2006)). More
discussion on this aspect is provided in subsection 3.4.4.
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Figure 3.3.2: Representative results of set 1: idem to figure 3.3.1.

Figure 3.3.2 shows results from the set 1 of experiments, which had an aspect ratio of h∗ ≈ 0.2 and
a steepening parameter Cs < 1, so nonlinear response of the basin-scale internal waves is expected.
The time series of ηi(t) exhibits a strong steepening of the wave front in the first three periods.
Moreover, figures 3.3.2a (S = 0.20) and 3.3.2c (S = 0.45) show that, after the first period, the wave
front is followed by a train of waves. This is the result of the balance between nonlinear steepening
and non-hydrostatic acceleration, which causes the dispersion of the main wave into a package of
solitary-type waves. However, there is no evidence of wave dispersion in the time series with S = 0.8
(see figure 3.3.2e). In general, we observe that as S decreases, the number of solitary waves (in the
tail) increases. These results suggest that rotation promotes the formation of KdV-type undular bore
structures (EI et al., 2005, 2006; Kamchatnov et al., 2012), as it is shown in the top two panels of
figure 3.3.2. However, recent studies have shown that the background rotation inhibits the existence
of permanent solitary-type wave solution (Helfrich & Grimshaw, 2008; Grimshaw & Helfrich, 2008,
2012) and undular bore structures (Grimshaw et al., 2012; Johnson & Grimshaw, 2013); this apparent
contradiction may be due to a time-scale effect: while rotation inhibits the existence of permanent
solitary-type wave solution (Helfrich & Grimshaw, 2008; Grimshaw & Helfrich, 2008), the steepening
of the Kelvin wave and its subsequence degeneration in a train of undular bore may operate in a much
smaller time scale. Further theoretical studies are required to elucidate this apparent contradiction,
which was also discussed in de la Fuente et al. (2008). In addition, the PSDs of figure 3.3.2 exhibit
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a wide range of frequencies associated with important energy peaks of higher azimuthal modes of
Kelvin and Poincaré waves (grey and white triangles/circles). In addition, it is observed that the
Kelvin–Poincaré frequency, ωkp = σkpf , is correlated with an energy peak (dashed line) and the
internal mode M(1, 0) (?), which is characterized as well as discussed in subsection 3.4.2. Moreover,
the PSD of figure 3.3.2(f) exhibits an energy peak whose frequency (marked with a black solid line)
is lower than the lowest Kelvin mode K(1, 1).
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Figure 3.3.3: Representative results of set 2: idem to figure 3.3.1.

Finally, figure 3.3.3 presents the results of set 2 of experiments, which exhibit important differences
among themselves. The time series with h∗ = 0.10 (see figure 3.3.3a) exhibits an intensive degenerative
and damping evolution of the large-scale internal gravity wave in the first wave periods, and after
approximately the fourth period, ηi(t) exhibits a small-amplitude linear seiche. However, the time
series with h∗ = 0.27 (see figure 3.3.3c) indicates that large-scale internal gravity waves are affected
by nonlinear steepening and non-hydrostatic dispersion in the first three wave periods, with high wave
amplitudes throughout the first six wave periods. After that, a damped linear seiche is observed. In
contrast, the time series with h∗ = 0.53 (see figure 3.3.3e) does not show evidence of steepening or
non-hydrostatic dispersion of the internal waves. In contrast to the results shown in figures 3.3.3(a)
and 3.3.3(c), the decay of ηi(t) is weak. The PSDs of figure 3.3.3 exhibit important contrasts; the PSD
of figure 3.3.3(b) exhibits energy peaks in a wide range of frequencies, with a poorly defined energy
peak at the K(1, 1) frequency. Moreover, the PSDs of figures 3.3.3(d) and 3.3.3(f) indicate that most
of the energy of the internal wave field is contained in the K(1, 1) and P (1, 1) frequencies, but weaker
energy peaks associated with higher azimuthal modes of Kelvin and Poincaré waves are also observed.

32



CHAPTER 3. LABORATORY EXPERIMENTS

3.4 Results

3.4.1 Internal gravity wave field

The PSD of the experimental time series of the interface displacement (e.g. Bendat & Piersol, 2000;
Garcia et al., 2005) was computed and used to characterize the internal gravity wave field; the highest
energy peaks of each PSD were attributed to particular internal gravity waves, and the experimental
frequencies were compared with the theoretical normal-mode frequencies (Antenucci & Imberger, 2001;
Stocker & Imberger, 2003; Wake et al., 2005). An example of this comparison is shown in the right-hand
panels of figures 3.3.1–3.3.3, where the PSD of ηi(t) is plotted, and the natural frequencies of the
highest-energy peaks are marked on the horizontal axes. A summary of this classification is shown in
table 3.2, where Tw denotes the wave period; σt and σe denote the theoretical and experimental wave
frequencies, respectively, scaled by the inertial frequency, f ; and εr = 100|σt − σe|/|σt| denotes the
relative difference between the experimental and theoretical frequencies of the corresponding wave.

Figures 3.4.1 and 3.4.2 show the decomposition of the time series of the interface displacement into
the five largest modes M(nr, nθ) ∈ {K(1, 1),K(1, 2), P (1, 1), P (1, 2),M(1, 0)}, for runs 1.7 and 3.2,
respectively. These two experiments had the same initial Wedderburn and Burger number, but they
differed significantly in the steepening parameter; the first had Cs(W0 = 1.0, h∗ = 0.19) = 0.87, and the
second had Cs(W0 = 1.0, h∗ = 0.53) = 4.67. The synthetic time series of the interface displacements
associated with these modes was computed using a band-pass filter in a bandwidth frequency that
was dependent on the internal wave frequencies, ωM(nr,nθ), and the recording time, Tr (see Bendat &
Piersol, 2000, chap. 8). Figures 3.4.1 and 3.4.2 exhibit several aspects of the free evolution of internal
waves that were previously defined based on theoretical and numerical studies (Stocker & Imberger,
2003; de la Fuente et al., 2008; Sakai & Redekopp, 2010). First of all, significant vertical excursions of
the density interface are observed between 100 and 150 s in figure 3.4.1, and it is attributed to K(1, 1)
and P (1, 1) nonlinear interaction. This lapse of time coincides to the time in which the maximum of
both Kelvin and Poincaré are in phase. However, the linear superposition of maximum displacements
of K(1, 1) and P (1, 1) does not totally explain the observed vertical displacements, so it is argued
that this observation is due to non-hydrostatic accelerations occurring when K(1, 1) and P (1, 1) are in
phase. Second, in both cases shown in figures 3.4.1 and 3.4.2, the fundamental Kelvin wave, K(1, 1)
exhibits a decay of its amplitude as function of time, while the fundamental Poincaré wave, P (1, 1),
exhibits intermittent decay and amplification of the amplitude of the wave. Finally, azimuthal modes
with nθ > 1 are not excited by the initial condition, so their presence can be attributed to nonlinearities
in the flow dynamics.

The aforementioned aspects of the free evolution of internal gravity waves can be understood by
invoking the results of previous studies (Wake et al., 2005; de la Fuente et al., 2008; Sakai & Redekopp,
2010). Nonlinear coupling between fundamental Kelvin and Poincaré waves and the energy dissipation
of the large-scale waves of a viscous flow are two particular aspects that affect the measurements that
require further analysis.
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Figure 3.4.1: Panel (a) exhibits the PSD of run 1.7, with the frequency bands allocated to K(1, 1),
K(1, 2), P (1, 1), P (1, 2) and M(1, 0). (b− f) Time series of the dominant waves identified in the PSD,
which were synthetically reconstructed by using a band-pass filter and the inverse Fourier transform.
The horizontal dashed line in panels (b − f) denotes the maximum theoretical amplitude achieved
by the normal modes (LK(1, 1), LP (1, 1) and LM(1, 0)) via the initial tilt of the density interface
condition. In addition, the grey curve denotes the original time series of ηi.
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Figure 3.4.2: (a) The PSD of run 3.2, with the frequency bands allocated to K(1, 1), K(1, 2), P (1, 1),
P (1, 2) and M(1, 0). Panels (c) to (i) idem to figure 3.4.1. (b− f) idem to figure 3.4.1

3.4.2 Kelvin–Poincaré interaction

The nonlinear interaction among Kelvin and Poincaré waves generates waves whose frequencies are
ωkp = ωp + ωk and ωpk = ωp − ωk (de la Fuente et al., 2008), which can be identified in the PSD (see
figures 3.3.1–3.3.3) as the structures indicated by the dashed lines and dot-dashed lines, respectively.
It is observed that the frequencies ωkp (dashed lines) and ωpk (dot-dashed lines) are attributed to
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Figure 3.4.3: Spatial structure of a internal gravity wave M(1, 0). showing the interface displacement
at (a) t = 0 and (b) t = Tw/2 (half of period).

different energy levels for each experiment. de la Fuente et al. (2008) observed that at the centre of
the basin, a standing oscillation with a frequency ωkp was excited when both the K(1, 1) and P (1, 1)
waves were in phase. However, from (3.2.12) and (3.2.13), an internal gravity wave whose maximum
amplitude is located at the centre of the basin, is obtained if Rnθ = Jnθ and nθ = 0 and nr = 1.
Therefore, the wave frequency is obtained from the solution of the dispersion equation:

S−1
√
|σ2 − 1|J−1

(
S−1

√
|σ2 − 1|

)
= 0. (3.4.1)

We look for the root σ of (3.4.1) that corresponds to the dimensionless frequency of the first radial mode
nr = 1, which can be numerically calculated for a specific S. Figure 3.4.3 shows the modal structure
of the density interface of the mode M(1, 0), which is characterized by a standing radial oscillation.
M(1, 0) achieves its maximum amplitude at the centre of the basin and the edges of the basin. The
frequency of M(1, 0) is indicated on the PSD by a star (?) (see figures 3.2.3–3.3.1); its frequency is
quite similar to ωkp. Figure 3.4.4 shows the theoretical frequency differences between ωM(1,0) and ωkp
(black line) as a function of S; the theoretical frequencies are very similar, with a maximum difference
of approximately 6%. The circles, squares and triangles in Figure 3.4.4 denote the relative error εr
between the theoretical frequency ωM(1,0) and the experimental frequency observed from the PSD. The
results demonstrate that the experimental error is on the order of the theoretical difference between ωkp
and ωM(1,0). It is possible that the nonlinear Kelvin–Poincaré interaction transfers energy to M(1, 0).
To reinforce this idea, the spectral energy that can be attributed to the range of frequencies of M(1, 0)
in run 1.7 was ep = 1.40 × 10−3 cm2 (see figure 3.4.1a), while the energy associated with the range
of frequencies of M(1, 0) in run 3.2 was ep = 9.90 × 10−5 cm2 (see figure 3.4.2a). As a consequence,
part of the energy attributed toM(1, 0) in run 1.7 may be related to the nonlinear interaction between
K(1, 1) and P (1, 1).

The amount of energy contained in M(1, 0), was calculated to study its behaviour as a function of
the dimensionless numbers, h∗, W0 and S. The results are presented in dimensionless terms:

e∗M(1,0) = 1
η2

0

∫ ω2

ω1
Π̂M(1,0)dω (3.4.2)

where e∗M(1,0) is the amount of energy contained in the characteristic frequency band [ω1, ω2] of mode
M(1, 0), and η0 is the initial amplitude of the pycnocline. Figure 3.4.5(a) presents e∗M(1,0) as a function
of h∗, where it is observed that e∗M(1,0) increases as h∗ decreases for similar values of the Burger number
(S ≈ 0.5). In addition, both sets of experiments (W0 = 0.5, W0 = 1.0) show that the amount of energy
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Figure 3.4.4: Plot (continuous line) of the theoretical relative difference between the fundamental
geostrophic frequency, ωM(1,0), and ωkp frequency, as a function of Burger number, S. The white circles,
the gray triangles, and the black squares denote the relative difference between the experimental and
theoretical frequencies of ωM(1,0), for different conditions of W0 and h∗, as a function of S.
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Figure 3.4.5: (a) The dimensionless potential energy of M(1, 0) as a function of the aspect ratio, h∗,
for two initial Wedderburn numbers (W0 = 0.5 and W0 = 1.0), and Burger numbers approximately
S ≈ 0.5 ± 0.05. (b) The dimensionless potential energy of mode M(1, 0) as a function of S, for three
combinations of (W0, h∗).

allocated in the mode M(1, 0) increases as the aspect ratio decreases. Furthermore, it is observed that
e∗M(1,0) exhibit a lower rate of increasing when W0 = 0.5. In this condition, the steepening and the
non-hydrostatic dispersion of the basin-scale wave is enhanced; therefore, the fundamental Kelvin wave
evolves into a solitary-type wave. During this processes the transfer of energy from the fundamental
Kelvin wave to subazimuthal Kelvin and Poincar waves can be more important than the irradiation
of energy to the centre of the basin. However, no clear correlation was observed between e∗M(1,0)
and S. Results indicate that the amount of energy in M(1, 0) is related to the nonlinear steepening
(Cs(W0, h∗)).

Sakai & Redekopp (2010) numerically studied the wind-forced problem, considering both a linear
hydrostatic model and a nonlinear, non-hydrostatic model. The evolution of the initial internal wave
field should be uncoupled unless nonlinear interactions arise among the internal gravity waves, which
may produce temporal changes in the amplitude, phase speed and frequency of the waves (de la Fuente
et al., 2010). Figure 26 of Sakai & Redekopp (2010) compares the PSD of ηi of both models. The
results demonstrate that large-scale waves irradiate energy to subazimuthal modes (nθ > 1) when a
nonlinear and non-hydrostatic model is used. In this case, our results (e.g., PSD of figures 3.4.1a and
3.4.2a) show good agreement with the results of Sakai & Redekopp (2010). Nevertheless, our results
indicate that even when a linear response is expected (Cs →∞ as h∗ → 0.5), as in the case of run 3.2
(see figure 3.4.2a), it is possible to identify subazimuthal modes of Kelvin and Poincaré waves with a
low energy level. In general, the evolution of ηi(t) is modulated by the most energetic modes K(1, 1)
and P (1, 1); however, if K(1, 1) and P (1, 1) transfer energy to other waves via nonlinear interaction,
ηi(t) will be a superposition of a rich diversity of waves.

To evaluate how much influence the linear superposition ofK(1, 1) and P (1, 1) has over the evolution
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of ηi(t), the correlation coefficient

R(ηi, ηkp) = C(ηi, ηkp)/
√
C(ηi, ηi)C(ηkp, ηkp) (3.4.3)

was calculated. Here C corresponds to the covariance and ηkp = ηk(1,1) + ηp(1,1), where ηk(1,1) and
ηp(1,1) correspond to the synthetic time series of K(1, 1) and P (1, 1), respectively, that were obtained
by using the band-pass filter. The correlation coefficient as a function of h∗ is shown in figure 3.4.6(a),
with S ≈ 0.5. The correlation coefficient as a function of S is shown in figure 3.4.6(b), with h∗ ≈ 0.2.
In figure 3.4.6, the grey triangles correspond to experiments with (W0 = 1.0, h∗ ≈ 0.2), the black
circles correspond to experiments with (W0 = 0.5, h∗ ≈ 0.2), and the white squares correspond to
experiments with (W0 = 1.0, h∗ ≈ 0.5). From figure 3.4.6, three trends in evidence: (i) as h∗ increases,
R(ηi, ηkp) increases, and better correlations are achieved when W0 = 1.0 (see figure 3.4.6a); (ii) no
clear relationship between R(ηi, ηkp) and S is obtained when h∗ ≈ 0.2 (see figure 3.4.6b); and (iii)
the highest values of R(ηi, ηkp) are achieved when h∗ ≈ 0.5 and W0 = 1.0 (see the white squares of
figure 3.4.6b). The results indicate that when the internal gravity wave field is characterized by a
linear response, the linear superposition of K(1, 1) and P (1, 1) dominates the dynamics of the density
interface, 0.94 ≤ R(ηi, ηkp) < 1.
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Figure 3.4.6: (a) The correlation coefficient, R(ηi, ηkp), as a function of aspect ratio, h∗, for two values
of Wedderburn numbers (W0 = 0.5 and W0 = 1.0), and Burger numbers approximately S ≈ 0.5±0.05.
(b) The correlation coefficient, R(ηi, ηkp), as a of the Burger number, S.

3.4.3 Degeneration of the basin-scale internal gravity waves

The degeneration or irreversible distortion of the large-scale gravity waves is triggered by nonlinear
processes. If we set W0 to a constant value, the wave steepening is controlled by h∗ (see Cs(W0, h∗)).
Figure 3.4.7 shows the effect of the reduction of Cs(h∗) (h∗ ∈ [0.19, 0.5]), starting from an initial
Wedderburn number of W0 = 0.5 and a Burger number of S ≈ 0.50±0.05. When Cs →∞ (h∗ = 0.50),
it is not possible to distinguish the formation of nonlinear waves (see figure 3.4.7a). Nevertheless, as
Cs decreases, the degeneration of the basin-scale internal gravity waves increases; it is observed that
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the leading wave evolves into a solitary-type package (see grey area on plots of figures 3.4.7b–e), and
ηi(t) exhibits high amplitudes and steep slopes.
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Figure 3.4.7: Time series of the density interface that show the effect of the steepening process in
the basin-scale waves as a function of Cs(h∗) (W = 0.5 and S = 0.50 ± 0.05). In (a) a time series
with Cs(h∗ = 0.5)→∞, therefore a linear behaviour of the interface density is expected. In (b–e) the
dashed line marks the steepening time scale, Ts, of the basin-scale waves. Moreover, in the grey region
the first solitary-type wave packet is identified.

Figure 3.4.8 shows a summary of the geometrical properties of the leading solitary-type waves
located in the grey regions of figure 3.4.7. Figure 3.4.8(a) presents changes in the dimensionless
amplitude of the leading solitary wave at the time t = Ts, as0/η0, as a function of the steepening
parameter Cs, where the dimensional wave amplitude, as0, was normalized to the time Ts by fitting
the peaks of the density interface to the curve:

as0(t) = As exp(−γst), (3.4.4)

to obtain the decay timescale, γs, and the initial amplitude As. As Cs decreases, there is a significant
reduction in the ratio as0(Ts)/η0. Figure 3.4.8(b) presents similar results for the dimensionless wavelength
λs0/λt of the leading solitary-type wave observed in each grey region of figure 3.4.6, where λs0 denotes
the experimental wavelength and λt the theoretical wavelength of a solitary wave. The experimental
wavelengths were estimated to be λs0 ≈ cs∆Ts0, where cs is the average Kelvin wave celerity calculated
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Figure 3.4.8: A summary of geometrical properties of the leading solitary-type wave observed in figure
3.4.7. (a) exhibits the dimensionless amplitude of the leading solitary wave, as0/η0, as a function of
dimensionless steepening parameter Cs. Panel (b) exhibits the dimensionless wavelength, λs0/λt, as a
function of Cs. Panel (c) exhibits the maximum vertical velocity of the density interface, max(∂tηi(t)),
as a function of the aspect ratio, h∗.

as 2πRωk, and ∆Ts0 is the time window of the first leading solitary wave. The theoretical wavelengths
were estimated using the following expression:

λ2
t = 12β

as0
(
α1 + 1

2α2as0
) , (3.4.5)

where α1, α2 and β are standard second-order KdV equation coefficients (Helfrich & Melville, 2006):

α1 = 3
2ci

h1 − h2
h1h2

, α2 = 3ci
(h1h2)2

[
7
8(h1 − h2)2 −

(
h3

2 + h3
1

h1 + h2

)]
, β = ci

6 h1h2. (3.4.6)

Finally, figure 3.4.8(c) shows the value of max(∂tηi(t)) as a function of h∗, which demonstrates that
the maximum vertical velocity of the density interface tends to decrease as h∗ increases.

The characteristics of the solitary-type waves observed in the experiments follow the unidirectional
steepening of the fundamental Kelvin wave along the perimeter of the tank. This suggests that the
geometry of these observed solitary-type waves follows the theoretical results obtained for unidirectional
waves. In particular, the second-order KdV scale was used to investigate the influence of rotation on
the solitary-type wavelength (Helfrich & Melville, 2006). This wavelength, λs, can be written in a
dimensionless form as (Helfrich & Melville, 2006)(

λs
h1

)2
= Ks(1− h∗)2

η∗s0 (1− 2h∗) + (η∗
s0)

2

2

(
1−h∗
h∗

) , (3.4.7)

where Ks is a coefficient with a value equal to 12 in the case of a unidirectional wave that is not
affected by rotation (Helfrich & Melville, 2006), and η∗s0 = as0/H, where as0 is the amplitude of the
wave. It is considered that Ks is a bulk parameter that accounts for all influences of the rotation on
the solitary-type wavelength. Figure 3.4.9 shows the experimental dependence of Ks in terms of S−1,
where it is observed that the wavelength of the solitary-type waves decreases as the rotation increases.
No influence of the Wedderburn number was observed on the value of Ks, which indicates that length
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Figure 3.4.9: Panel of Ks as a function of the Burger number, S, for two initial Wedderburn numbers
(W0 = 0.5 and W0 = 1.0).

Set h∗ W0 ai bi R2

• 0.2 0.5 0.24 -0.53 0.90
4 0.2 1.0 0.19 -0.49 0.68
� 0.5 1.0 0.11 -0.48 0.99

Table 3.3: Fitting parameters of the experimental decay rate in terms of Burger number.

scales in the second-order KdV equations are suitable to characterize this flow. In the limit of S → 0,
the value of Ks seems to be asymptotic to a value close to Ks = 12, which is in good agreement with
the prediction of the second-order KdV equation, whereas Ks takes on values that are one order of
magnitude larger than Ks = 12, as the influence of the rotation decreases.

3.4.4 Bulk decay of the fundamental Kelvin wave: K(1, 1)

The results indicate that ηi(t) is characterized by a composition of oscillatory motions that are affected
by a continuous decay of the vertical displacement. The most energetic mode in the initial wave field is
K(1, 1), which is damped in time by viscous dissipation and the nonlinear energy transfer from K(1, 1)
to other modes (de la Fuente et al., 2008; Shimizu & Imberger, 2009; Sakai & Redekopp, 2010).

The influence of friction on the wave dynamics can be included using a linearized equation for the
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rotating Rayleigh bottom shear stress, which is proportional to the flow velocity (Martinsen & Weber,
1981; Wake et al., 2005). Following this approach, Stocker et al. (2000) determined that the waves
of the density interface decay exponentially over time in a circular basin, with the following form:
η ∼ η0 exp(−kt). Based on this finding, a bulk decay time scale of the fundamental Kelvin wave,
K(1, 1), can be obtained by fitting the filtered amplitudes of K(1, 1) and ηk with an harmonic damped
function as follows:

ηk(t∗)
η0

= cos(ωkt∗ + φ) exp
(
− t
∗

Tk

1
τdk

)
, (3.4.8)

where η0 is the initial amplitude of the pycnocline, ωk is the natural frequency of K(1, 1), φ is the wave
phase to be fitted, t∗ is the dimensional time. Tk is the Kelvin wave period and τ−1

dk is the dimensionless
bulk decay coefficient that was obtained for each experiment. Figure 3.4.10a shows the dependence of
τ−1

dk on the Burger number. The results were grouped into three classes: the curves described by circles
and triangles correspond to experiments with h∗ ∼ 0.2 and either W0 = 0.5 or W0 = 1.0, respectively,
and the curve described by squares corresponds to experiments with h∗ = 0.5 and W = 1.0. All three
sets of experiments show that the decay rate increases as the rotation becomes more important to the
dynamics of the flow. Potential functions were fitted to each set, aiS

bi , with coefficients ai and bi, to
estimate the experimental relation between S and the decay rate of K(1, 1). The coefficients of figure
3.4.10(a) are presented in Table 3.3. It is observed that τ−1

dk ∝ 1/
√
S or τ−1

dk ∝
√
f , which may indicate

that the decay mechanism can be attributed to the friction developed in a non-stationary Ekman-type
layer (Pedlosky, 1987; Wake et al., 2005). Figure 3.4.11(a) shows the experimental Ekman damping
time scale (τ e

Ek) as a function of the theoretical Ekman damping time scale (τ tEk), which is defined as

τ tEk = TEk
Tf

= h1
π

√
f

2ν , (3.4.9)

where Tf = 2π/f is the inertial period and ν corresponds to the kinetic viscosity of the fluid. The

0.2 0.4 0.6 0.8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

S

τ
−

1
d
k

 

 
( a )

a1S
b 1

a2S
b 2

a3S
b 3

W
0
 = 0.5 ; h

*
~0.2

W
0
 = 1.0 ; h

*
~0.2

W
0
 = 1.0 ; h

*
~0.5

0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Non lin ear IGW

L
in

e
a
r
IG

W

τ
−

1
d
k

h∗

(b )
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decay of the fundamental Kelvin wave. τ−1
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results show that τ e
Ek ≈ τ tEk when W0 = 1.0 and h∗ ≈ 0.5. However, it was not possible to identify

any significant correlation between τ tEk and τ e
Ek when h∗ ∼ 0.2 (triangles and circles in figure 3.4.11a);

this result suggests that the decay of K(1, 1) is influenced by the nonlinear processes. Indeed, figure
3.4.10(b) shows the relation between the aspect ratio h∗ and the decay rate of K(1, 1). These results
indicate that the bulk decay of K(1, 1) is strongly dependent on the nonlinear steepening. When
h∗ = 0.5, the decay coefficient, τ−1

dk , takes on its minimum value, which is 5.5 times less than the
maximum value measured at h∗ = 0.19. Hence, a faster decay is expected when nonlinearities are
involved in the evolution of K(1, 1). Moreover, Grimshaw et al. (1998) and Grimshaw & Helfrich
(2012) have demonstrated that an initial solitary-type wave evolves into an oscillatory wave packet
when background rotation affects the flow. Figure 3.3.2 suggests that the rotation plays an important
role in the disintegration of the basin-scale wave. In this sense, Grimshaw et al. (1998) and Grimshaw
& Helfrich (2012) have found an extinction time scale, Tex, associated with the solitary wave, which
depends on the initial amplitude, the KdV coefficients and the rotation; this scale can be written in
terms of the Kelvin wave period as follows:

τex = Tex
Tk

= ci
λsf2T

−1
k , (3.4.10)

where λs is the wavelength of the solitary wave (see 3.4.5), which depends of the KdV coefficients
(Helfrich & Melville, 2006). The extinction time scale was estimated via the experimental wavelength
of the first leading solitary-type wave λs0, calculated in the previous subsection. Figure 3.4.11(b) shows
the bulk decay time scale τdk as a function of the extinction time scale τex. Results show that the
bulk decay time scales decreases as the extinction time scale decreases, indicating a direct relationship
between the bulk decay rate of K(1, 1) and the extinction rate of the solitary waves into radiating
waves.
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Figure 3.4.11: (a) The experimental Ekman damping time scale as a function of the theoretical Ekman
damping time scale. (b) The bulk decay rate of the fundamental Kelvin wave, τdk, as a function of the
extinction time scale, τex, made dimensionless with Tk.
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3.5 Discussion and conclusions

The free evolution of basin-scale gravity waves affected by background rotation and nonlinear processes
was studied via laboratory experiments.

First, the frequencies of the lowest Kelvin and Poincaré waves (nθ ≤ 3) were well predicted (εr <
10%, see table 3.2) by the theoretical frequencies that were derived from the linear governing equations
(Csanady, 1967; Stocker & Imberger, 2003). The evolution of the internal wave field associated with
Cs(h∗ ∼ 0.5)→∞ exhibits good similarity with previous laboratory studies (Wake et al., 2004, 2005);
under these conditions, no steepening or solitary-type waves were observed. However, the experimental
results confirm the steepening and the subsequent degeneration of the Kelvin wave into a solitary-type
wave package when Cs < 1; this behaviour has been previously identified by de la Fuente et al.
(2008) and Sakai & Redekopp (2010) using weakly nonlinear and non-hydrostatic numerical models.
Nevertheless, the number of solitary-type waves generated from the degeneration of a Kelvin wave
was larger in our experiments than in the numerical results of de la Fuente et al. (2008) and Sakai
& Redekopp (2010); this difference may be attributable to the weakly nonlinear numerical schemes
used by the authors. In general, the internal wave-field response appears to be strongly influenced
by the aspect ratio of the stratification (h∗) and the background rotation (S), in agreement with
the early experiments of Renouard et al. (1993). Results presented in figure 3.3.1 propound that the
increment of background rotation may influence the energy transfer and distribution when weakly
nonlinear processes are involved on evolution of basin-scale internal waves; nonetheless further studies
are required.

Second, the results suggest that the nonlinear Kelvin–Poincaré interaction could be transferring
energy to the mode M(1, 0) (see figure 3.4.3), because its modal frequency is ωM(1,0) ∼ (ωkp); in
addition, de la Fuente et al. (2008) observed that, in this context, a standing internal gravity wave was
excited at the centre of basin with a frequency ωkp. The results demonstrate that the energy ofM(1, 0)
increases as the nonlinear effects increase. Furthermore, the results obtained from the decomposition
of the main modes indicate that the linear superposition of K(1, 1) and P (1, 1) almost completely
restores the dynamics of the density interface, when the aspect ratio is h∗ ≈ 0.5. However, as h∗
decreases, the linear superposition of K(1, 1) and P (1, 1) loses its correlation with respect the full
signal of ηi (see figure 3.4.6a); this result is related to the energy transfer from K(1, 1) and P (1, 1) to
other subazimuthal modes of higher frequencies. Furthermore, energy peaks of ωkp and ωpk indicate
that, depending on the value of the Burger number, the nonlinear interaction between the K(1, 1)
and P (1, 1) modes may transfer energy to lower frequencies than ωk, when S ≥ 0.5 (see figures 3.3.2f ,
3.3.3d and 3.3.3f), thus generating an energy cascade in two directions simultaneously, as has also been
observed by Wake et al. (2005). Energy peaks associated with lower-frequency waves than ωpk were
also observed when S ≥ 0.51, although it was not possible to identify with which pair of interacting
modes these could be associated.

Third, it was shown that the azimuthal length scale of the first solitary wave is affected by both
the aspect ratio of stratification and the rotation. The relation between the wavelength λt and S
is well described by the length scales predicted by the second-order unidirectional KdV equation
(Helfrich & Melville, 2006) when S approaches zero, which suggests that driven azimuthal flow can be
represented by unidirectional waves propagating along the perimeter of the basin, as the Kelvin wave
is more strongly trapped on the edge when S approaches zero (Stocker & Imberger, 2003). In this
context, Grimshaw (1985) and Katsis & Akylas (1987) showed via theoretical and numerical analysis,
respectively, that nonlinearities and background rotation play an important role in the evolution of
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Kelvin and solitary waves. The theoretical and numerical results show that for strong rotation, a
Kelvin wave can evolve as a KdV-type wave at the boundary and as a linear Kelvin wave in the
offshore region. Moreover, the front of the wave is curved backward and this process can transfer
energy from Kelvin to Poincaré waves as well as a resonant state between above waves, as shown by
Melville et al. (1989). Our work does not explore the evolution of the density interface in the offshore
region, however the evidence of a nonlinear interaction between the fundamental modes of the Kelvin
and Poincaré waves may help to support the above theoretical results.

Fourth, the experimental decay-rate measurements exhibit a good correlation with the time scale
associated with viscous dissipation mechanisms induced by the rotation of the system for a quasi-linear
response of the density interface (h∗ ≈ 0.5), and its differences may be related with the fact that the
experimental tank has an upper lid, which generates an additional energy sink. However, when the
nonlinear processes are act of the basin-scale waves, the decay of K(1, 1) can be controlled by the
transfer of energy to other modes in the off-shore region, as is the case of mode M(1, 0), but also to
modes and waves in the azimuthal shore region via the degeneration of K(1, 1) into a solitary-type
wave package. The correlation between the extinction time scale, τex, and the decay time scale of τdk,
suggest that the decay of the fundamental Kelvin wave could be controlled by the disintegration of the
solitary-type waves.

Recent field studies have identified the passage of basin-scale internal Kelvin waves associated with
strong steepening as well as to solitary-type waves in large lakes (Boegman et al., 2003; Appt et al.,
2004; de la Fuente et al., 2010; Preusse et al., 2010, 2012b). However, the role played by the background
rotation in the degeneration and dissipation of basin-scale internal gravity waves, in enclosed basins,
has not been well characterized; therefore, further investigations are required. The results presented in
the study identify different mechanisms that enhanced the damping of the basin-scale internal waves
in large stratified lakes. For example, seasonal changes on stratification (h∗ and S) of Lake Kinneret,
Israel, are correlated with significant differences in the damping evolution of large-scale internal waves
affected by rotation (Shimizu & Imberger, 2010). Furthermore, seasonal changes of the stratification
(h∗ and S) may change the response of solitary-type waves in large lakes (Preusse et al., 2012b). The
steeping and degeneration of basin-scale waves has been associated with instabilities and breaking of
internal waves, which can generate turbulent and mixing patches (Boegman & Ivey, 2009; Preusse et
al., 2010, 2012b; Bouffard et al., 2012). In the most energetic experiments (W0 = 0.5), small interfacial
instabilities and the ejection of vortices from the basin-scale wave to the upper layer were observed
during the steepening process (h∗ < 0.5), but only in the first period. These processes enhance the
vertical mixing; therefore, the modal structure of the internal gravity waves can evolve in time, which
is indicated by the discrepancy between the theoretical and the experimental wave frequencies.
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Chapter 4

Degeneration of internal Kelvin waves in a stratified
rotating basin. Numerical experiments

This chapter has been published as research paper, authored by Hugo Ulloa, Kraig Winters, Alberto
de la Fuente and Yarko Niño, in Journal of Fluid Mechanics (2015), http://dx.doi.org/10.1017/
jfm.2015.311.

Abstract

We explore the evolution of the gravest internal Kelvin wave in a two-layer rotating cylindrical basin,
using direct numerical simulations with a hyper-viscosity/diffusion approach to illustrate different
dynamic and energetic regimes. The initial condition is derived from Csanady’s (J. Geophys. Res.
Vol. 72, 1967, pp. 4151-4162) conceptual model, which is adapted by allowing molecular diffusion
to smooth the discontinuous idealized solution over a transition scale, δi, taken to be small compared
to both layer thicknesses h`, ` = 1, 2. The different regimes are obtained by varying the initial wave
amplitude, η0, for the same stratification and rotation. Increasing η0 increases both the tendency
for wave steepening and the shear in the vicinity of the density interface. We present results across
several regimes: from the damped, linear-laminar regime (DLR), for which η0 ∼ δi and the Kelvin wave
retains its linear character, to the nonlinear-turbulent transition regime (TR), for which the amplitude
η0 approaches the thickness of the (thinner) upper layer h1, and nonlinearity and dispersion become
significant, leading to hydrodynamic instabilities at the interface. In the TR, localized turbulent
patches are produced by Kelvin wave breaking, i.e. shear and convective instabilities that occur at the
front and tail of energetic waves within an internal Rossby radius of deformation from the boundary.
The mixing and dissipation associated with the patches are characterized in terms of dimensionless
turbulence intensity parameters that quantify the locally elevated dissipation rates of kinetic energy
and buoyancy variance.

4.1 Introduction

Physical processes that control the degeneration of basin-scale internal gravity waves (IGW) in stratified
lakes affected by earth’s rotation have been subject of considerable interest for several decades, owing
to their impact on transport and water quality (Wüest & Lorke, 2003; Boehrer & Schultze, 2008). In
these aquatic systems, the fundamental IGWs are the known Poincaré and Kelvin waves (Lamb, 1932;
Csanady, 1967), where the latter IGW is usually the most energetic mode (Antenucci & Imberger,
2001; Stocker & Imberger, 2003). Field measurements have shown that the passage of internal Kelvin
waves is correlated with high-frequency internal waves (Boegman et al., 2003; Lorke et al., 2006; de
la Fuente et al., 2010), shear instabilities and local overturns near the wave troughs in the near-shore
regions (Preusse et al., 2010, 2012b). These processes lead to significant localized turbulence and
mixing in the pelagic thermocline (Lorke, 2007; Bouffard & Lemmin, 2013). Over the course of the
stratified season, dynamical changes in the wave regime can alter the spatial and temporal distribution
of turbulent activity induced by Kelvin waves.
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Previous numerical and laboratory studies have analysed the internal Kelvin wave evolution in
laminar and weakly nonlinear regimes, obtaining that the wave amplitude, stratification and rotation
play an important role in the degeneration and damping processes (de la Fuente et al., 2008; Shimizu
& Imberger, 2009; Sakai & Redekopp, 2010; Rozas et al., 2014; Ulloa et al., 2014). Here we extend the
study of the internal Kelvin waves to nonlinear regimes at which turbulence starts to emerge, using
continuous and smooth solutions that allow control the wavefront steepening and the interfacial shear
flow through the initial wave amplitude.

In this study we analyse the degeneration of the ‘gravest internal Kelvin wave’ (hereinafter IKW)
in a two-layer stratified basin under different dynamic regimes; from a laminar, linear flow to a
nonlinear regime characterized by the transition to turbulence. To this end, we have performed
three-dimensional direct numerical simulations (DNS) of the governing equations in a cylindrical
domain. The governing equations are the standard three-dimensional Boussinesq equations with
m-order hyper-viscosity/diffusion operators (Winters & D’Asaro, 1997; Waite & Bartello, 2004). The
use of a hyper-viscosity/diffusion approach enabled us to increase the scale separation between the
forcing and dissipation length scales, producing a larger inertial subrange in the model while confining
the dissipation length scales as close as possible to the grid spacing (Spyksma et al., 2012). The
use of a cylindrical domain permits the derivation of the linear modal structure of IKWs for a
discontinuous two-layer stratification (Csanady, 1967). This solution was then allowed to diffuse
vertically via Laplacian diffusion and molecular diffusivities for mass and momentum for a finite
time interval producing slightly smoothed versions of linear normal modes in a continuous, nearly
two-layer stratification. The length scale δi defines the thickness of the sharp pycnocline, which is
constrained to be smaller than the thinner upper layer thickness h1. The advantage of this approach
is twofold. First, continuous representations of the model solutions are required for the initialization
of the numerical model. Second, in calculating the modal solutions, the amplitude of the interface
displacement can be taken as a significant fraction of the upper layer thickness without introducing
density overturns, whereas if the equations are first linearized about a smooth but sharp density
interface, modal amplitudes are restricted to values significantly smaller than the interface scale δi.

Figure 4.1.1 shows a schematic of the conceptual model, where the subscripts 1 and 2 indicate the
upper and lower layer, respectively. The horizontal and vertical length scales are the diameter D, equal
to twice the radius R, and the sum of the two layer thicknesses H = h1+h2, respectively; ρ` denotes the
density of the `th layer. Rotation is characterized by the inertial frequency f , which, together with the
linear internal celerity, ci =

√
g′h1h2/H, define the internal Rossby radius of deformation, Ri = ci/f ,

from the boundary to the interior, where g′ = g∆ρ/ρ1 is the reduced gravity and ∆ρ = ρ2 − ρ1. The
vertical displacement of the density interface is defined as ηi, whose maximum initial amplitude is
hereinafter denoted by η0 = max {ηi (t = 0, ~x)}. Note that because of the spatial structure of IKWs,
η0 occurs at the shoreline (Csanady, 1967), i.e. near the vertical sidewalls in our experiments. Our
experiments consist of initializing the flow with instantaneous snapshots of smoothed IKW modal
solutions at various initial amplitudes η0 and allowing these initial conditions to evolve under the
nonlinear, non-hydrostatic equation of motion. The outline of the paper is as follows. In S4.2 we
introduce the equations of motion, dimensionless parameters and the set of numerical experiments.
In S4.3 the IKW response is described in terms of dynamic regimes, while in S4.4 we analyse the
spatiotemporal distribution of the turbulent activity, focusing on those IKWs in the laminar-turbulent
transition regime. Finally, we summarize and discuss our results in S4.5.
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Figure 4.1.1: Schematic of conceptual model. (a) Three-dimensional view of the domain, a two-layer
rotating cylindrical basin of radius R and total depth H. (b) Two-dimensional plane across a diameter
of the basin. (c) Vertical density profile at the centre of the basin (continuous line denotes a smooth
two-layer stratification).

4.2 Formulation

4.2.1 Governing equations and boundary conditions

We study the IKW flow via the numerical solution of the Boussinesq equations of motion for a rotating
stratified fluid on an f -plane with a m-order viscosity/diffusion operator, written as

D~v

Dt
+ (fk̂)× ~v + ρ

ρ0
gk̂ = − 1

ρ0
∇p+Dm (~v) ; Dρ

Dt
= Dm (ρ) ; ∇ · ~v = 0 (4.2.1)

where D/Dt is the material derivative, ~v = (u, v, w) is the velocity vector, ρ0 and ρ are the ambient
reference density and the Boussinesq density difference from ρ0. Further, p is the pressure field, k̂ is the
unit vertical vector (positive upward), whilst Dm represents an m-order viscosity/diffusion operator
acting on the momentum and the mass transport, defined as follows (Winters & D’Asaro, 1997):

Dm (·) ≡
{
νm,j∂

2m
j dissipation

κm,j∂
2m
j diffusion ;with νm,j = κm,j ≡

1
TD

(
Lj
πnj

)2m

; j ∈ {x, y, z} (4.2.2)

where νm,j and κm,j are the m-order viscosity/diffusivity coefficient, respectively, whose physical
dimensions are

[
L2m/T

]
. The operator ∂2m

j corresponds to the 2m-order partial derivative with respect
to the spatial coordinate j (with j = x, y, z). Lj and nj are the computational domain size and the
number of equally spaced grid points in the jth direction. TD is a time scale chosen by trial and error to
minimize the range of damped scales while maintaining numerical stability (Winters & D’Asaro, 1997).
The choice m = 1 results in the standard Navier-Stokes equations, which should be solved down to the
Kolmogorov length scale which is barely possible given the available computing power. Alternatively,
for example, the viscosity could be chosen by trial and error to be just large enough to damp the
downscale energy transfer for a given problem resolved over a fixed number of grid points. However,
if the goal is to allow the inertial subrange to be as broad as possible for a given grid resolution, then
larger values of viscosity are inefficient and smaller values require finer grids to resolve the dissipative
scales and maintain stability. Similar arguments apply for the m-order operators. We use m = 3 for
this study and note that the use of this type of closure implicitly assumes a downscale energy cascade
with the rate of energy transfer controlled by the nearly inviscid processes in the inertial subrange.
This rate can then be measured at small scales by directly evaluating the kinetic energy dissipation
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rate whose mathematical form depends on the value of m chosen as shown in the appendix 4.6.

We impose no-flux and free-slip boundary conditions on the top, bottom and sidewalls of the
cylindrical domain to avoid having to resolve small viscous boundary layers. The initial condition
of the IKW is constructed from the linear normal mode solution derived by Csanady (1967) for a
discontinuous two-layer stratification in a cylindrical domain. This solution is written as

ηi (t, r, θ) /η0 = I1 (β1 · r) · cos (θ − ω1t− φ) (4.2.3)

where ηi(t, r, θ) is the modal structure of the interface displacement and β1 = R−1
i

√
1− σ2

1. The radial
shape of the solution is characterized by the first-kind modified Bessel function of the azimuthal gravest
mode, I1 (Abramowitz & Stegun, 1965), while the temporal and azimuthal components are given by
the cosine periodic function. The wave frequency, ω1, and dimensionless frequency, σ1 = ω1/f , of the
IKW are obtained by solving the dispersion relation derived from the boundary condition for ηi at
r = R (Csanady, 1967; Stocker & Imberger, 2003):

1− σ2
1M2 = 0 ; with M2 ≡ β1 ·R

I0 (β1 ·R)
I1 (β1 ·R) − 1. (4.2.4)

From the linearized inviscid governing equations and solution (4.2.3), we obtain the density and
velocity field for a discontinuous two-layer stratification (Csanady, 1982; Antenucci & Imberger, 2001).
However, solution (4.2.3) cannot be directly used to specify the initial condition of an IKW in a smooth
two-layer stratified fluid. Moreover, a derivation of continuous eigenfunctions after introducing a small
transition scale δi into the density profile is also inconvenient because such solutions are both formally
and practically restricted to have displacement amplitudes much smaller than δi. Here we wish to
study the nonlinear transition regime, and waves in this regime have initial amplitudes substantially
larger than δi.

For a given δi � hj , j = 1, 2, the linear, discontinuous solution (4.2.3) can be specified with an
amplitude η0 significantly larger than δi. We prescribe such a solution, expecting that its subsequent
evolution will be nonlinear. We then smooth out the discontinuities by allowing the density and
momentum to diffuse over a finite time scale such that the interface thickness is of O(δi). In contrast,
solving the linear equations for a continuously varying but sharply transitioning stratification produces
overturns in the density field when η0 approaches or exceeds δi (see e.g. Kundu et al. (2012): Chapter
13, on normal modes in a continuously stratified layer).

The equations of motion (4.2.1), with the smoothed version of the initial condition (4.2.3), are
numerically solved using the three-dimensional spectral model flow_solve (Winters & de la Fuente,
2012). The model is based on expansions in terms of trigonometric functions of the dependent variables
over regular meshes in a cubic domain (Lx, Ly, Lz), inside which a cylindrical domain (R,H) is
immersed. The variables are expanded in cosine or sine series in each spatial component, depending on
the boundary conditions to be satisfied. For example, in the vertical direction, the horizontal velocity
components, u and v, and the density field, ρ, are expanded in cosine series while the vertical velocity
component, w, is expanded in sine series to satisfy the free-slip wall and no-flux condition on the top
and bottom boundaries. The boundary conditions on the curved sidewall are implemented using an
immersed boundary approach introduced by Winters & de la Fuente (2012).
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Symbol Dimensions Property Definition Location
ηi(t, ~x), ηi(t, r, θ) m Vertical displacement of density interface in Cartesian and polar coordinates 4.1, figure 4.1.1, (4.2.3)
η0 m Initial wave amplitude max {ηi (t = 0, ~x)} 4.1, figure 4.1.1
h`, ` = 1, 2 m Thickness of the `th layer h1 = 0.07, h2 = 0.13 4.1, figure 4.1.1
H m Depth of the cylindrical basin h1 + h2 = 0.2 4.1, figure 4.1.1
η0/h1 − Dimensionless amplitude ∈ [0.07, 0.60] 4.1, figure 4.1.1
δi m Length scale of the transition layer ≈ 0.02 4.2.1, figure 4.1.1
λk m wavelength of the internal Kelvin wave 2πR 4.2.2, (4.2.5)
ρ`, ` = 1, 2 kg m−3 Density of the `th layer ρ1 = 1000, ρ1 = 1015 4.1, figure 4.1.1
∆ρ kg m−3 Density difference ρ2 − ρ1 = 15 4.1
g m s−2 Gravity acceleration 9.81 4.1, figure 4.1.1
g′ m s−2 Reduced gravity acceleration (∆ρ/ρ0) g ≈ 0.147 4.1
ci m s−1 Linear internal celerity

√
g′h1h2/H ≈ 0.082 4.1

f s−1 Inertial frequency 0.361 4.1, figure 4.1.1
R m Radius of the cylindrical basin 0.9 4.1, figure 4.1.1
D m Diameter of the cylindrical basin 2R = 1.8 4.1, figure 4.1.1
Ri m Internal Rossby radius of deformation ci/f ≈ 0.225 4.1, figure 4.1.1
~v m s−1 Velocity field (u, v, w) 4.2.1, (4.2.1)
ρ0 kg m−3 Ambient reference density 1000 4.2.1, (4.2.1)
ρ kg m−3 Boussinesq density difference from ρ0 4.2.1, (4.2.1)
p Pa Pressure field 4.2, (4.2.1)
Lj , j = x, y, z m Computational domain size in the jth coordinate Lx × Ly × Lz = 1.95× 1.95× 0.2 4.2.1, (4.2.2)
nj , j = x, y, z − Number of grid points in the jth coordinate 4.2.1, (4.2.2), , Table 4.2
kv m−1 Vertical grid wavenumber 4.2.3
kr, kθ m−1 Horizontal grid wavenumber in cylindrical coordinates 4.2.3
kδi m−1 Wavenumber associated to the interfacial transition scale 4.2.3
kKHh m−1 Wavenumber of the most unstable interfacial wave ≈ 2π/ (7δi) 4.2.3
νm,j m2m s−1 Hyper-viscosity coefficient T−1

D

(
Lj
πnj

)2m
4.2.1, (4.2.2)

κm,j m2m s−1 Hyper-diffusivity coefficient T−1
D

(
Lj
πnj

)2m
4.2.1, (4.2.2)

TD s Numerical damping time-scale 4.2.1, (4.2.2)

Dm (·) s−1 m-order viscosity/diffusion operator
{
νm,j∂

2m
j dissipation

κm,j∂
2m
j diffusion 4.2.1, (4.2.2)

I1 − First kind modified Bessel function of order 1 4.2.1, (4.2.3)
φ rad Phase of wave 0 4.2.1, (4.2.3)
ω1 s−1 Wave frequency of the Kelvin gravest mode ≈ 0.104 4.2.1, (4.2.3)
σ1 − Dimensionless wave frequency of the Kelvin gravest mode ω1/f ≈ 0.288 4.2.1, (4.2.4)
Bi − Burger number Ri/R ≈ 0.25 4.2.2, (4.2.5)
Tk s Kelvin wave period ≈ 60.45 4.2.2, (4.2.5)
Tsk − Steepening parameter λk/ (∆ciTk) ∈ [3.6, 34.6] 4.2.2, (4.2.5), Table 4.2
Tνk − Damping parameter η2m

0 / (νmTk) ∈
[
10−1, 4× 104] 4.2.2, Table 4.2

Tνk/Tsk − Ratio of advective to viscous forces ∆ciη
2m
0 / (νmλk) ∈

[
3× 10−3, 104] 4.2.2, Table 4.3

Rem − Hyper-viscous Reynolds number ∆ciη
2m−1
0 /νm 4.2.2, (4.2.7)

Re − Reynolds number (m = 1) ∆ciη0/ν 4.2.2, (4.2.8)
N s−1 Buoyancy frequency

√
gρ−1

0 ∂zρ 4.2.2, (4.2.5)
N0 s−1 Maximum buoyancy frequency max {N (t = 0, ~x)} 4.4.3
TN0 s Buoyancy period at the pycnocline 2π/N0 ≈ 1 4.2.3
S s−1 Vertical shear in the horizontal velocity

√
(∂zU)2 + (∂zV )2 4.4.3

J − Gradient Richardson number N 2/S2 4.2.2, (4.2.5)
J0 − Gradient Richardson number at t = 0 J (t = 0, ~x) 4.2.3, Table 4.2
Tns s Total simulation time 3Tk ≈ 181.35 4.2.3
εm m2 s−3 Hyper-viscous kinetic energy dissipation rate νm |∇m~v|2 4.2.2, (4.2.10), Appendix 4.6, (4.6.4)
Im − Turbulence intensity parameter N−1 {(εm)m /νm}2/(3m−1) 4.2.2, (4.2.10), Appendix 4.6, (4.6.9)
〈Im〉H − Vertical average of Im H−1 ∫H

0 Imdz̃ 4.4
〈Im〉V − Bulk average of Im V −1 ∫

V ImdṼ 4.4.2, Table 4.3
〈Im〉V,T − Spatial and temporal average of Im (Tns)−1 ∫

Tns

{
V −1 ∫

V ImdṼ
}

dt̃ 4.4.2
b m s−2 Buoyancy field (1− ρ/ρ0) g 4.2.2, (4.2.10), Appendix 4.7, (4.7.6)
z∗ m Reference height in the minimum potential energy state of a fluid 4.2.2, (4.2.10), Appendix 4.7, (4.7.1)
Km − Diffusivity parameter |∇mb|2 · |dmb/dzm∗ |

−2 4.2.2, (4.2.10), Appendix 4.7, (4.6.8)
〈Km〉V − Bulk average of Km V −1 ∫

V KmdṼ 4.4.2, Table 4.3
〈Km〉V,T − Spatial and temporal average of Km (Tns)−1 ∫

Tns

{
V −1 ∫

V KmdṼ
}

dt̃ 4.4.2
zi m Height of the density interface (ρ (t, ~x) = ∆ρ/2) 4.4
Aθ − Area defined by z/H ∈ [0, 1], θ ∈ [0, 2π] and r/R = 0.98 4.4.3
~ω s−1 Vorticity field ∇× ~v 4.4.3
`K m Hyper-viscous Kolmogorov length scale

{
ν3
m/εm

}1/(6m−2) Appendix 4.6, (4.6.5)
`O m Ozmidov length scale

{
εm/N 3}1/2 Appendix 4.6, (4.6.6)

Table 4.1: Glossary of symbols used in text.
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4.2.2 Dimensionless numbers

The initial dynamics of the IKW are parametrized by four dimensionless parameters:

Bi ≡
Ri
R

; Tsk ≡
λk

∆ciTk
; Tνk ≡

η2m
0

νmTk
; J ≡ N

2

S2 . (4.2.5)

Here Bi is the Burger number (Antenucci & Imberger, 2001) that characterizes the influence of rotation.
If Bi ≥ 1, rotation is weak while if Bi < 1, rotational effects are important. In the IKW case, as
Bi → 0, the wave energy becomes concentrated near the boundary with the fluid motions parallel to
the shoreline.

Tsk is the steepening parameter and it is interpreted as the rate at which the spatial differences
of the internal wave celerity induced by η0 lead to wavefronts and nonlinearities, Ts ∼ λk/∆ci, over
an IKW period Tk. Therefore, Tsk quantifies how fast an IKW with amplitude η0 tends to produce a
nonlinear wavefront (Boegman et al., 2005b; de la Fuente et al., 2008) and thus to concentrate energy
at smaller length scales in the near-shore region.

Tνk ∼ η2m
0 /νm is the dissipation time scale for motions of vertical scale ηo and Tνk gives the ratio of

this time scale to the Kelvin wave period. To quantify the relative importance of viscous to nonlinear
effects in the context of this flow we have defined a dimensionless number that is the ratio of the
(hyper-)viscous time scale to the nonlinear steepening time of the primary Kelvin wave:

Tνk
Tνk
≡ ∆ciη

2m−1
0
νm

(
η0
λk

)
. (4.2.6)

In this sense, this ratio is similar to the standard Reynolds number that relates inertial to viscous forces.
The definition of the m-order hyper-viscous Reynolds number is (Lamorgese et al., 2005; Spyksma et
al., 2012)

Rem ≡
∆ciη

2m−1
0
νm

, (4.2.7)

which formally reduces to the classic viscous Reynolds number when m = 1:

Re ≡ ∆ciη0
νm

. (4.2.8)

High values of Rem imply energetic regimes, dominated by inertial forces, whereas low values of Rem
imply flow regimes dominated by (hyper-)viscous forces. The parameter Tνk/Tνk can be written in
terms of the hyper-viscous Reynolds number as follows:

Tνk
Tsk
≡ Rem

(
η0
λk

)
. (4.2.9)

Note that η0/λk is the aspect ratio of the Kelvin wave and it is a measure of its hydrostaticity. Steeper,
non-hydrostatic waves are more nonlinear and enhance the energy transfer to small scales.

J is the gradient Richardson number, with N the buoyancy frequency and S the vertical shear in
the horizontal velocity (Miles, 1961). In our problem, both N and S have maxima at the height of the
density interface but the magnitude and spatial distribution of J will depend both on η0 and Bi. The
maximal shear S, for example, occurs in the shore region, near the maximum vertical displacement of
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the interface. For a fixed rotation regime, the initial minimum value of J decreases as η0 is increased.

The dissipation and mixing involved in the IKW evolution are characterized in terms of dimensionless
turbulence activity parameters that quantify the dissipation rates of kinetic energy and buoyancy
variance given by

Im ≡
1
N 2

{(εm)m

νm

}2/(3m−1)
, Km ≡ |∇mb|2 ·

∣∣∣∣dmbdzm∗

∣∣∣∣−2
, (4.2.10)

where Im denotes the turbulence intensity parameter expressed in terms of the hyper-viscosity approach
of the kinetic energy dissipation rate, εm, and derived from the ratio of the Ozmidov and Kolmogorov
scales (see Appendix 4.6). This parameter can be interpreted as the destabilizing effects of turbulent
stirring compared to the stabilizing effects produced by the combined action of hyper-viscosity and
buoyancy. Finally, Km is the ratio of the diapycnal flux and a reference laminar diffusive flux, both in
terms of the hyper-diffusion approach and the buoyancy, b. This diffusivity parameter measures the
increase in diffusive flux due to turbulent stirring and straining relative to the laminar, diffusive flux
with the same background buoyancy that is not stirred or strained (see appendix 4.7).

4.2.3 Set of numerical experiments

We consider a single rotation regime, Bi = 0.25, and a range of dimensionless amplitudes η0/h1 ∈
[0.07, 0.60] and aspect ratios η0/λk ∈

[
8.8× 10−4, 7.5× 10−3] that allow Tsk ∈ [3.6, 34.6], Tνk ∈[

10−1, 4× 104] and initial minimum values of J between min {J0} = 31.86, for η0/h1 = 0.07, and
min {J0} = 0.13, for η0/h1 = 0.60. With these parameters, we have performed six numerical
experiments using spatial and temporal scales similar to those used in recent laboratory experiments
carried out in a rotating table by Ulloa et al. (2014). The dimensions of the domain are Lx×Ly×Lz =
1.95×1.95×0.2m3, and in its interior there is a circumscribed cylinder of radius R = 0.9 m and depth
H = h1 + h2 = 0.07m + 0.13m = 0.2m. The difference of densities is ∆ρ = ρ2 − ρ1 = 15kg/m3, the
effective thickness of the interfacial transition is δi ≈ 0.02m, and the inertial frequency f = 0.361hz,
with an IKW period of Tk = 60.45 s and a total simulation time Tns = 3Tk = 182 s. Figure 4.2.1 shows
that the initial transition layer is resolved by about 12 - 14 grid points. The horizontal wavelength
of the most unstable mode for a smooth, sheared density transition is about π times the interface
thickness (see e.g., Kundu et al., 2012, Section 11.7, p. 506). This corresponds to about 10 - 11 times
our horizontal grid spacing and so the most unstable mode is resolved on our spatial grid, though
significantly smaller motions are not. Table 4.2 summarizes the parameters used in the numerical
experiments.
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Figure 4.2.1: Density, ρ(z)/ρ, and buoyancy frequency, N (z)/max (N ), profiles in the initial condition
of a discontinuous two-layer stratification δi = 0 (grey line) and a smooth two-layer stratification δi > 0
(red line) after a vertical diffusion over a time interval tδi . The blue circles denote the equidistant grid
points along the transition layer.
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4.3 Dynamic regimes

Figure 4.3.1 illustrates time series of a density profile at r/R = 0.98 and θ = 0 where ηi (t = 0) ≈ η0 ,
and the power spectral density (PSD) of the density interface displacement ηi (t, 0.98 ·R, 0). The IKW
response is classified in four distinct regimes: damped linear (DLR), nonlinear (NLR), nonlinear/
non-hydrostatic (NHR) and laminar-turbulent transition regime (TR). The regimes have been defined
in terms of their dynamics characteristics (Tsk, Tνk,J ) and through the visual inspection of the density
field evolution, in similar terms as Horn et al. (2001) classified the degeneration of large scale internal
waves in a non-rotating basin. We examine each regime in the follow subsections.
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Figure 4.3.1: Left panels: time series of density field along the vertical profile where the maximum
wave amplitude is achieved. Right panels: power spectral density of vertical displacement of density
interface ηi; Kelvin wave frequency: H, Inertial frequency (f/ωk): ·− (dot-dash line), Initial buoyancy
frequency (N0/ωK):−−(dash line). T.R., transition regime.

4.3.1 Damped linear regime (DLR)

The DLR is characterized by the evolution of an IKW that retains most of its initial linear features,
with negligible nonlinear steepening and strongly controlled by viscosity. This regime describes the
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results of experiment 1 shown in figures 4.3.1(a, b); in this case, η0/h1 = 0.07 (η0/δi ≈ 1.0), Tνk/Tsk ≈
3 × 10−3 < 1 and min {J0} ≈ 31.86, which suggests an extremely viscous flow with a negligible
steepening capacity and a strong hydrodynamic stability in the density interface. Therefore a linear
and damped IKW dynamics along the 3Tk periods is expected. The PSD in figure 4.3.1(b) shows a
single strong energy peak at ω/ωk = 1, indicating that the initial IKW mode stored the energy of the
flow.

4.3.2 Nonlinear regime (NLR)

The NLR is characterized by weak nonlinear degeneration, without dispersion of the IKW (in the KdV
theory sense). This regime starts with the IKW steepening, as a consequence of a wave amplitude large
enough to induce significant changes in the wave celerity, leading the wavefront and the formation of
a solitary-type wave (Fedorov & Melville, 1995; de la Fuente et al., 2008). This regime describes the
results of experiment 2 shown in figure 4.3.1(c,d); in this case η0/h1 = 0.18, Tνk/Tsk ≈ 1.9 > 1 and
min {J0} ≈ 3.04, and therefore we expect a weakly nonlinear steepening controlled by viscosity and a
stable flow around the density interface. In fact, figure 4.3.1(c) shows a slightly steep wavefront after
the first wave period and a solitary-type wave structure around t/Tk ≈ 2.45. The PSD in figure 4.3.1(d)
shows a wider energy cascade due to transfer of energy involved in the weakly nonlinear degeneration,
with a main energy peak at ω/ωk = 1, and two lower peaks of sub-inertial frequencies attributed to
sub-azimuthal Kelvin waves (see the dash-dot line).

4.3.3 Nonlinear and non-hydrostatic regime (NHR)

Nonlinear steepening and non-hydrostatic dispersion of the initial IKW (in the KdV theory sense)
characterize the NHR. As the wave steepens, its azimuthal length scale decreases until the non-hydrostatic
terms can be important enough to balance the nonlinear steepening, avoiding the wave breaking
(Helfrich & Melville, 2006) and leading the degeneration of the IKW into a package of solitary-type
waves (Grimshaw, 1985). This process induces an important energy cascade from the basin scale to
smaller scales. The NHR regime is identified in experiments 3, 4, 5 and 6 (see figures 4.3.1e−l). In these
experiments the Reynolds number increases from Tν/Ts ≈ 4× 102, for η0/h1 = 0.38, to Tνk/Tsk ≈ 104,
for η0/h1 = 0.60. Increasing Tν/Ts corresponds to increasing nonlinearity and concentration of energy
at smaller scales. Experiments 3 and 4 show hydrodynamic stable flows in the density interface region,
with min {J0} ≈ 0.58 and min {J0} ≈ 0.30, respectively, whereas experiments 5 and 6 show evidence
of the emergence of hydrodynamic interfacial instabilities, with min {J0} ≈ 0.20 and min {J0} ≈ 0.13,
respectively.

4.3.4 Laminar-turbulent transition regime (TR)

The TR is characterized by the growth and occurrence of interfacial instabilities. Depending on how
energetic the shear flow is, the instabilities can grow and generate turbulent patches in the density
interface region or can be damped. The hydrodynamic stability of the IKW sheared flow can be
studied via the gradient Richardson number, J , whose critical value J = 0.25 (Miles, 1961) is neither
a necessary nor a sufficient condition to trigger interfacial instabilities in our sheared-type flow, but
it is still a very useful criterion that can give us an order of magnitude. In our results only two
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experiments show the presence of interfacial instabilities, experiments 5 and 6, with min {J0} ≈ 0.20
and min {J0} ≈ 0.13, respectively. Only they have initial J < 0.25. Both experiments exhibit the
emergence of Kelvin-Helmholtz-type billows on the wavefront of strongly nonlinear IKWs (Tνk/Tsk ∼
5× 103 − 104). However, the results of experiment 5 show fast damping of the interfacial instabilities,
while the results of experiment 6 shows a complex spatial and temporal dynamic, in which large scales,
attributed to the IKW and internal solitary-type waves, coexist and interplay with turbulent small
scales, associated with interfacial instabilities/breaking and turbulent patches.

The first three regimes have been analysed in previous numerical (de la Fuente et al., 2008; Sakai &
Redekopp, 2010) and experimental studies (Wake et al., 2005; Ulloa et al., 2014), whereas the TR on
IKWs has been observed only in field data (Lorke, 2007; Preusse et al., 2010) and to date in numerical
experiments.

4.4 Internal Kelvin wave: transition from laminar to turbulent regime

Hereafter we focus on the spatial and temporal evolution of the IKW in the TR (analysing results of
experiment 6), aiming to link the dynamic wave response with turbulent activity. Figure 4.3.2 shows
the evolution of the vertical velocity, w(t, r, θ, z), at the density interface zi to illustrate the strongly
nonlinear dynamics of the IKW in experiment 6. Here zi(t) is defined as the vertical position of the
ρ (t, ~x) = ∆ρ/2 iso-scalar surface. Figure 4.3.2(a) shows the initial condition of the IKW (t/Tk = 0).
The degeneration of the IKW begins with the emergence of instabilities of Kelvin-Helmholtz (KH) type
on the wavefront that starts to steepen at t/Tk = 0.128 (see figure 4.3.2b); it is in this region where the
minimum Richardson number, J ≈ 0.13, is achieved. Figures 4.3.2(c) and 4.3.2(d) (t/Tk ∈ [0.25, 0.5])
show the formation of a turbulent patch induced by the breakdown of the KH type billows; this patch
evidences a slight spread along the azimuthal and radial axes. Figure 4.3.2(d) shows the formation
of the first solitary-type wave around t/Tk ∈ [0.5, 0.625], while figures 4.3.2(e) and 4.3.2(f) show a
solitary wave train confined to the near-shore region around t/Tk ∈ [0.75, 1.0]. After the first IKW
period (see figures 4.3.2f, g) the leading wave starts to interact with the pre-existing turbulent patch.
This interaction is accompanied by the regrowth of interfacial instabilities upstream of the wavefront
and a subsequent interfacial turbulent wake on the solitary wave train (see figure 4.3.2g). The regrowth
of interfacial instabilities generate a new turbulent patch that holds the same azimuthal location while
it is vertically advected upward and downward by the solitary wave train (see figure 4.3.2h). During
and after the interaction between the large internal waves and the turbulent patch, inertial waves of
different scales are radiated to the offshore region (see figures 4.3.2h−k). At t/Tk = 3 (see figure 4.3.2l)
there is no longer evidence of the initial IKW; the internal waves in the near shore region have decayed
in amplitude, whilst a range of smaller length scales have been excited in the interior. During the first
three IKW periods we observe that different nonlinear processes coexist, enhancing the degeneration
of the initial long wave and promoting a forward energy cascade.

4.4.1 Spatialtemporal distribution of turbulence

Figure 4.4.1 shows the vertical average of the turbulence intensity parameter, 〈Im〉H ; the dashed line
defines the radial position of the internal Rossby radius of deformation, Ri, from the boundary to the
interior.
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Figure 4.4.1(a) shows the initial distribution of 〈Im〉H induced by the IKW itself. Kinetic energy
dissipation is concentrated within Ri and decays to low values towards the centre of the domain. The
nonlinear dynamics of the IKW induces distinct zones of elevated values in the near-shore region,
associated with turbulent patches produced by the breakdown of interfacial instabilities (see figures
4.4.1b − d). As the initial IKW degenerates, the turbulence intensity increases at the front of each

(a) t/Tk = 0 (b) t/Tk = 0.128 (c) t/Tk = 0.25

(d) t/Tk = 0.5 (e) t/Tk = 0.75 (f) t/Tk = 1.0

(g) t/Tk = 1.5 (h) t/Tk = 1.75 (i) t/Tk = 2.0

(j) t/Tk = 2.25 (k) t/Tk = 2.75 (l) t/Tk =3.0

Figure 4.3.2: Results of Exp. 6: evolution in time t/Tk ∈ [0, 3] of the vertical velocity w at the density interface
region ρ(t, ~x) = ∆ρ/2.
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Figure 4.4.1: Results of experiment 6: spatialtemporal distribution of the turbulent intensity, 〈Im〉H .

solitary-type wave along the shore region (see figures 4.4.1d− f) achieving values of 〈Im〉H ∼ O
(
102),

while most of the offshore region shows a low activity with values of 〈Im〉H ∼ O
(
10−1). However, after

the first period, and particularly after the strong reactivation of the pre-existing turbulent patch, there
is a steady increase of 〈Im〉H to the interior of Ri, with values in the range O

(
100) ≤ 〈Im〉H ≤ O (101)

(see figures 4.4.1f−h). This process is again observed after the second period (see figure 4.4.1j). After
three periods elevated values of 〈Im〉H are distributed throughout the domain (see figures 4.4.1k, l).
Nevertheless, there are clear differences in the intensity between the near-shore and interior regions,
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Figure 4.4.2: Results of experiment 6: spatialtemporal distribution of the vertical vorticity, (~ω/f) · k̂, at
z/H = 0.80.
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where the internal Rossby radius of deformation (dashed-line) seems to define a transition length scale
of the turbulent activity along the radial component.

The azimuthal distribution of the turbulence intensity parameter shows features of baroclinic
instabilities. This is also observed in figure 4.4.2, which shows the relative vertical vorticity, ~ω · k̂,
normalized by f at z/H = 0.8 (horizontal plane) and the density interface structure ρ(t, ~x) = ∆ρ/2 in
purple. Initially we observe the formation of one turbulent patch in the shore region around t/Tk = 0.25
(see figure 4.4.2c), which grows and spreads along the shore until approximately the first period (see
figure 4.4.2d − f). After the first period, the initial turbulent patch is separated into two (see figure
4.4.2d, h, i) that also remain trapped on the shore, and a third vortex structure grows on the shore region
during the second period (see figure 4.4.2k, l). It is observed that turbulent patches tend to aggregate
in large horizontal motions that scale with Ri. Figure 4.4.2(m) shows a close-up of the vertical vorticity
at t/Tk = 3, where three large-scale vortex-type motions are identified in the near-shore region (see
dashed ellipses). We can study the existence of baroclinic instability via a simplified model. Pedlosky
(1970) considered a quasi-geostrophic two-layer model in an inviscid flow rotating on an f -plane, with
uniform velocities U1 and U2 in each layer (U1 6= U2). The flow is unstable to disturbances with
horizontal wavelengths, λ, larger than πRi (See e.g., Pedlosky, 1987, Chapter 7, p. 556). Then,
considering the azimuthal wavelength of the IKW, λk = 2πR, and the internal Rossby radius here
adopted, it is obtained that the flow induced by the IKW admits the growth of baroclinic instabilities
because πRi/λk = Bi/2 = 0.125. In addition, the interaction between the vortex-type motions and
the vertical shear flow driven by the internal gravity waves could be supporting the emergence of
baroclinic instabilities (Sakai, 1989; Gula et al., 2009; Flór et al., 2011). Note that these large-scale
vortex motions are not observed in the interior of the basin.

Figure 4.4.3 shows the time series of extreme and bulk values of the turbulence intensity parameter,
within and outside Ri. The red vertical lines identify events (ei) with high turbulent activity (local
maxima) in the time series of experiment 6 (−•−), whose horizontal positions can be identified in figure
4.4.1(b,d, g, i, j). In figure 4.4.3(a) the values of min {Im} are comparable for all experiments except
experiments 1 and 2 (blue lines), with min {Im} ∼ O

(
103). Values of max {Im}, however, increase

with increasing nonlinearity, causing the separation of the time series between O
(
10−1) ≤ max {Im} ≤

O
(
102) (red lines). In the case of experiment 6, peak turbulence intensity values are O

(
105) times

the background laminar value. These results show a significant heterogeneity of Im in both time and
space. We have divided the domain into two volumes: Vin and Vout denote the volumes within and
outside Ri, respectively, and over these volumes bulk quantities of Im have been calculated. Within
Ri (see figure 4.4.3b), time series of 〈Im〉Vin show distinct differences between each experiments. The
highest values and the most interesting temporal fluctuations are observed in experiment 6 (− • −).
Outside Ri (see figure 4.4.3c), time series show that 〈Im〉Vout tends to grow as a function of time,
and shows only one peak at e2 attributed to the formation of the first turbulent patch; figure 4.4.1(d)
shows that this event (e2) affects a small region outside Ri. Comparing both volumes, early in time,
the distinction between the turbulent activity within and outside Ri is quite important, but by the
later times in the experiments, Im is only about a factor of 3 higher (see figures 4.4.3(b) and 4.4.3(c)
for the most energetic case) and the tendency is to reduce the difference between both regions.

4.4.2 Turbulence intensity and effective diffusivity

Figures 4.4.4(a) 4.4.4(b) show time series of the bulk averages of the turbulence intensity parameter,
〈Im〉V , and the diffusivity parameter, 〈Km〉V , respectively.
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Figure 4.4.3: Evolution in time (scaled by TK) of (a) the maxima and minima values of the turbulence
intensity parameter, (b) the bulk turbulence intensity parameter within Ri, 〈Im〉Vin , and (c) the bulk
turbulence intensity parameter outside Ri, 〈Im〉Vout . Legend: Exp. 6: − • −; Exp. 5: −+−; Exp. 4:
−H−; Exp. 3: −×−; Exp. 2: −�−; Exp. 1: −�−.

The temporal structure of 〈Im〉V (see figure 4.4.4(a)) is forced by the turbulent activity in the
near-shore region (see peaks denoted by vertical dashed lines) but with lower magnitudes because
of the low turbulent activity on the offshore region. Meanwhile, the time series of 〈Km〉V can be
clustered into three groups (see figure 4.4.4(b)): a first group with experiments 1-3, a second group
with experiments 4-5 and a third group with experiment 6. The first group contains experiments
with the lowest and almost constant value of 〈Km〉V , the second includes experiments with weak
fluctuations of 〈Km〉V and the third group has the highest values and the strongest fluctuations of
〈Km〉V . Experiment 6 is unique in that it yields substantially increased values of 〈Km〉V that are
clearly correlated with individual breaking events (−•− and vertical dashed line in figure 4.4.4b). The
temporal structure of 〈Km〉V indicates that episodic increases of the bulk diffusivity parameter are not
directly correlated with the bulk-averaged turbulence intensity.

Figure 4.4.4(c) shows the volumetric and temporal averages, 〈·〉V,T , of Im and Km. Red symbols
correspond to 〈Km〉V,T against 〈Im〉V,T while the clusters of symbols around each red symbol correspond
to 〈Km〉V (t) against 〈Im〉V (t) (data shown in figures 4.4.4a, b). Further, the standard deviations (s.d.)
of the bulk values 〈·〉V over time are shown (bars in the red symbols). We only see significant temporal
variability in experiment 6, shown by −•− in figure 4.4.4(b) and the cluster of circles in figure 4.4.4(c).
The large deviations seen in experiment 6 are a consequence of having approximately steady values
of turbulence intensity (see figure 4.4.4a) but with very episodic elevated mixing (see figure 4.4.4b),
suggesting that an instantaneous and local sampling of dissipation can be very misleading in terms of
predicting the instantaneous mixing rate. On the other hand, averaging over all the events we identify
a simple relation between 〈Km〉V,T and 〈Im〉V,T . For values of O

(
10−2) ≤ 〈Im〉V,T ≤ O (10−1) we find

that 〈Km〉V,T ∼ O
(
100), i.e. that the total diffusivity is not substantially elevated over that expected

by laminar diffusion. For O
(
10−1) ≤ 〈Im〉V,T ≤ O (101), however, the observed diffusivity is greater

than that expected in a laminar flow and increases approximately linearly with turbulence intensity.
The data fit a power law 〈Km〉V,T ∼ a {〈Im〉V,T }b, with parameters a = 12.2 and b = 1.1. In the next
subsection we describe the Kelvin wave evolution in the near-shore region and analyse the vertical
distribution of Im during the events e2 and e3.
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Figure 4.4.4: Evolution in time (scaled by TK) of (a) the bulk turbulence intensity parameter, 〈Im〉V , and (b)
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4.4.3 Flow evolution in the near-shore region

Figure 4.4.5 shows a summary of the vertical stratification in experiment 6, N 2/N 2
0 (where N 2

0 ≡
max

{
N 2(t = 0)

}
), in the area Aθ defined by z/H ∈ [0, 1], θ ∈ [0, 2π] and r/R = 0.98, for 12 different

times t/Tk ∈ [0, 3]. The region Aθ allows us to observe the IKW evolution near the boundary where the
wave displacements are maximal and where the maximal values of the turbulent activity are observed
(see figure 4.4.1). Figure 4.4.5(b) shows KH-type instabilities in the early stages of the experiment
(t/Tk ≈ 0.128) because of the strong initial shear near the crest of the IKW. Figure 4.4.5(c) shows the
collapse or breakdown of the shear instabilities at t/Tk ≈ 0.25. This process induces the formation of a
turbulent patch and a local thickening of the density interface region that propagates along the shore
region (see figure 4.4.5d and 4.4.1c). Simultaneously, the IKW has begun to steepen and form a solitary
wave train (see figure 4.4.5d − f). After the first period, the leading wave of the solitary wave train
interacts with the pre-existing stirred region (see figure 4.4.5g). The interaction generates interfacial
breaking near the trough of the leading wave and a turbulent patch that subsequently spreads along
the shore, over the solitary wave train (see figure 4.4.5g, h). This sequence of events is also observed
after the second period (see figure 4.4.5(j)), where interfacial instabilities on the trough and tail of the
leading wave can be seen. After t/Tk ≈ 3, the initial IKW has evolved into a solitary wave train that
covers the area Aθ and a significant thickening and weakening of the density interface as a consequence
of vertical mixing is observed (see figures 4.4.5(k, l)).

Turbulent patch and detrainment of vortices:

Figure 4.4.6 shows the turbulence intensity parameter, Im, and the radial vorticity scaled by the
initial maximum buoyancy frequency, (~ω · r̂/ |N0|), in the region Aθ, within the window time t/Tk ∈
[0.25, 0.75]. During this time the first two peaks of 〈Im〉V are registered (see figure 4.4.3a, e1 − e2).
Figure 4.4.6(a) shows the turbulent activity during the breakdown of KH-type billows around t/Tk ≈
0.25. The maximum magnitudes of Im (∼ 101 − 102) are identified in the density interface and the
upper layer, near the crest and over the wavefront. We identify high-intensity spots of Im (in red) that
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are ejected from the interfacial turbulent patch towards the top layer (blue arrow in figure 4.4.6a).
Figure 4.4.6(b,d, f, h) illustrates the evolution (red arrows) of two red spots with 102 ≤ Im ≤ 103. The
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radial vorticity field (see figure 4.4.6c, e, g, i) shows that these spots correspond to a coherent pair of
counter-rotating vortices escaping from the interface region (see blue arrow in figure 4.4.6(c)) by their
mutual interaction, carrying small scale turbulent fluid within their circulating cores into the ambient,
non-turbulent water, thus enhancing the turbulent activity in the top layer (see figures 4.4.6j, l, n, p
and 4.4.6k,m, o, q). This process is correlated with a local peak of the bulk turbulence intensity (event
e2 in figure 4.4.4a), but not with a local peak of the effective diffusivity parameter (see figure 4.4.4b).
In this event, most of the higher spots of turbulence intensity are located near the top boundary, not in
the the mixing interface; therefore we expect a weaker response of the effective diffusivity parameter.

Interfacial breaking and turbulent wake:

Figure 4.4.7 shows the density field and the turbulence intensity during the highest peaks of the
turbulence activity parameters observed in experiment 6 (see event e3 in figure 4.4.4a, b). During
this time interval the solitary-type waves encounter and interact with the pre-existing turbulent patch
shown in figure 4.4.6. The leading solitary-type wave induces a compression of the isopycnals in the
density interface, increasing the buoyancy effects in the wavefront N 2 ∼ |∂zρ|, but also enhancing
the shear and the turbulent activity, εm ∼ |∂mz U |

2, on the flat density region, upstream of the leading
wave, from where interfacial instabilities start to re-emerge (see figure 4.4.7a, b). As the leading solitary
wave crosses the sheared region, cores of interfacial fluid are ejected and transported through the top
layer flow (see figure 4.4.7c,d). These processes induce local convection, which in turn enhances the
turbulent activity on the internal face of the leading wave. Figure 4.4.7(e, f) shows a strong interfacial
breaking on the trough of the leading wave. The interaction between this new source of turbulence and
the solitary wave train induces an interfacial turbulent wake that is spread over the wave train. The
turbulent wake is characterized by the growth and collapse of Kelvin-Helmholtz-type billows that lead
to local unstable density conditions, which in turn trigger baroclinic-type instabilities by free convection
(Matsumoto & Hoshino, 2004; van Haren, 2015) (see figure 4.4.7g− l). The wave breaking process and
the subsequent turbulent wake is schematized in figure 4.4.8; similar schematics have been previously
introduced by Moum et al. (2003) and Carr et al. (2008). The results suggest that the coupling of shear
and convective flows plays an important role in the emergence of interfacial instabilities and breaking
in steepened wavefronts (Preusse et al., 2012b,a).

4.5 Summary and discussion

Direct numerical simulations of the Boussinesq equations with a hyper-viscosity/diffusivity (H-VD)
approach have been conducted to examine the transition from a laminar to a turbulent regime in a
flow induced by the gravest internal Kelvin wave (IKW) in a continuous two-layer cylindrical domain
at laboratory scale.

A range of values of the steepening parameter Tsk, the damping parameter Tνk and the Richardson
number J , all related to the initial wave amplitude η0, have been explored for a single Burger number
Bi = 0.25. Under this rotating regime, the IKW structure is strongly confined to the shore (Stocker &
Imberger, 2003). The results show the existence of four dynamic regimes and two regimes of turbulent
activity.

The first three dynamic regimes have been analysed in previous numerical studies (de la Fuente et al.,
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2008; Sakai & Redekopp, 2010), here called damped linear (DLR), nonlinear (NLR) and non-hydrostatic
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Figure 4.4.7: Results of experiment 6: evolution in time t/Tk ∈ [1.12, 1.44] of the density field and turbulence
intensity parameter during the breaking wave process in the region θ ∈ [0, π], z/H ∈ [0, 1] at r/R = 0.98.

(NHR) regimes. These three regimes can also be identified in laboratory experiments conducted by
Ulloa et al. (2014), which studied the evolution of internal wave fields composed by rotating, basin-scale
internal gravity waves. In particular, for similar dimensionless numbers, numerical and experimental
results show clear similarity (e.g., compare figure 5a in Ulloa et al. (2014) with figure 4.2.1k of this
paper). However, despite the similarities, our numerical results cannot be directly contrasted with
those laboratory results because they substantially differ in the initial and boundary conditions. In
the laboratory experiments the flow was induced by linear tilting of the density interface, and energy
damping was governed by wall-friction. Here we present a fourth regime called the laminar-turbulent
transition regime (TR). The TR is characterized by the growth of interfacial instabilities and the
formation of turbulent patches as a consequence of the IKW degeneration. Observation of the TR
motivates the analysis of the turbulent activity involved in the IKW evolution.

The first regime of the turbulent activity is related to the linear and weakly nonlinear dynamics
of the IKW. Increasing η0 to transition from the LR to the weakly nonlinear NHR produces only a

69



CHAPTER 4. NUMERICAL EXPERIMENTS

Figure 4.4.8: Schematic of the breaking wave process.

Exp. Tνk/Tsk min
z∼zi
{J } DLR NLR NHR TR I.I.(1) I.B.(2) 〈Im〉V 〈Km〉V

1 3× 10−3 31.86 X × × × 0 0 O
(
10−3 − 10−2) O

(
100)

2 2× 100 3.04 X X × × 0 0 O
(
10−2 − 10−1) O

(
100)

3 4× 102 0.58 X X X × 0 0 O
(
10−1) O

(
100)

4 2× 103 0.30 X X X × 0 0 O
(
10−1 − 100) O

(
100 − 101)

5 5× 103 0.19 X X X X 2 0 O
(
10−1 − 100) O

(
100 − 101)

6 104 0.13 X X X X 4 1 O
(
100 − 101) O

(
101 − 102)

Table 4.3: Regimes observed in the IKW evolution. (1): Number of interfacial instabilities observed,
(2): Number of interfacial breaking observed.

moderate increase of the low values of the bulk turbulence intensity parameter 〈Im〉V . It does not,
however, significantly increase the overall rate of fluid mixing measured by the bulk effective diffusivity
parameter 〈Km〉V (see the results of experiments 1-3 in figure 4.4.4). In this regime the sheared
flow induced by the IKW and its weakly nonlinear degeneration is fully suppressed by the buoyancy,
thus avoiding the transition from laminar to turbulent flow. The second regime of turbulent activity
is related to the strong nonlinear dynamics of the IKW. The results show a substantial increase in
turbulent activity as the flow evolves from the strong NHR to the TR (see the results of experiments
4-6 in figure 4.4.4). The strong degeneration of the IKW and the intensification of the shear flow
in the wavefront of the leading wave destroy locally and intermittently the interface stability within
the Rossby radius from the boundary, triggering the formation of intermittent turbulent patches from
the growth and breakdown of Kelvin-Helmholtz-type billows. On the other hand, buoyancy imposes
stability in the interior regions, though the turbulent activity there tends to increase as a consequence
of the inertial gravity wave radiation from the near-shore to the offshore region (see figures 4.3.2-4.4.1).
In this second regime, the nonlinear degeneration of the IKW and the turbulent episodes observed in
experiments 4-6 are directly correlated with increases in the turbulence activity parameter, showing
a power dependence between 〈Im〉V and 〈Km〉V (see figure 4.4.4(c)). Table 4.3 summarizes the IKW
regimes.

We have identified four sources of turbulence in the TR: (i) interfacial instabilities driven by shear
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flows, (ii) the transport of vorticity from the interfacial region to well-mixed layers driven by the
mutual interaction of vortex pairs (with opposite sign), (iii) interfacial breakings, associated with
the interaction of convective and shear flows over steep solitary-type waves and (iv) baroclinic-type
instabilities presumably supported by the combination of vortex-type motions and shear flow in the
near-shore region. The analysis of the emergence of interfacial instabilities in internal solitary waves
(ISWs) has been addressed mainly via numerical study in a two-layer fluid, in a two-dimensional
channel (Barad & Fringer, 2010; Carr et al., 2011; Almgren et al., 2012; Preusse et al., 2012a). The
numerical experiments of Carr et al. (2011) and Almgren et al. (2012) have shown that the growth of
Kelvin-Helmholtz-type billows near the trough and tail of ISW amplitude (compare figures 7 and 8
by Carr et al. (2011) and Almgren et al. (2012), respectively, with our figure 4.4.5i, j) is close to the
thickness of the top layer, η0/h1 ≈ 1. In addition, the propagation of shear instabilities can disturb
the tail and interact with a solitary wave train, giving rise to a turbulent wake in the density interface
region, as shown by Barad & Fringer (2010) (see their figures 3 and 4 and our figures 4.4.5h and
4.4.7g, i, k). Parts of these previous results have been supported by laboratory experiments (Grue et
al., 1999, 2000). Moreover, recent laboratory results have shown that convective instabilities in ISWs
due to small-scale overturns may aid shear-induced instabilities on the wavefront (Carr et al., 2008;
Fructus et al., 2009), giving feedback to the unstable state of the flow and enhancing the turbulence
and mixing in the wave vicinity. In this context, our numerical study extends the analysis to nonlinear
internal waves in enclosed rotating water bodies, such as medium or large lakes.

Field studies in stratified medium or large lakes have identified important sources of turbulence
in the density interface attributed to shear instabilities (Kelvin-Helmholtz-type billows) riding over
the slope of IKWs (Lorke, 2007; Preusse et al., 2010). Furthermore, density inversion and interfacial
breakings at the trough of a solitary wave train of large amplitudes have also been associated with the
nonlinear degeneration of basin-scale IKWs (Preusse et al., 2010, 2012b,a). Both nonlinear processes
have been observed in the TR of experiment 6. However, the interaction between interfacial turbulent
patches and steep internal waves has not been studied and detected in detail in stratified lakes.
This process can be a periodic source of turbulence and mixing in stratified lakes. In addition, the
results suggest that the turbulence intensity is linked to the internal Rossby radius, and its horizontal
distribution could be driven by the behaviour of the vertical vorticity (mainly observed in the near-shore
region) and radial vorticity (mainly generated in the density interface region by shear flow), both
processes as a consequence of the evolution and degeneration of the IKW.

The classification of the ‘dynamic regimes’ can be adopted for further use, nut it is important to
note that the regimes were established for a particular configuration of stratification (h1/H = 0.35)
and rotation (Bi = 0.25) and, indeed, the conditions to achieve them (LR, NL, NHR, TR) can change
in terms of h1/H and Bi (see e.g., Horn et al., 2001; Boegman et al., 2005b; Ulloa et al., 2014).

To analyse the effect of rotation in the spatial distribution of turbulence as a consequence of the
IKW degeneration, further studies are required. However, if the rotating regime changes (e.g., due to
seasonal variations), for example to higher Burger numbers (larger Ri), the radial velocity component
plays a more active role in the IKW propagation and the IKW can store more available potential
energy within Ri. Therefore, variations in the rotating regime could change both the thresholds of
dynamics regimes and the spatial distribution of turbulence induced by the IKW evolution.

As in Thomson (1880) and Csanady (1967), our study adopts the simplest representation possible
for a rotating, stratified lake: a cylindrical basin with uniform depth. Moreover, to highlight the
processes that promote wave steepening, degeneration and instability, we have excluded the effects of
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bottom friction. Real lakes, of course, have irregular shapes, frictional bottom boundary layers and
shoaling bathymetry. How these features influence and modify the wave dynamics discussed here are
important practical issues (see e.g., Beletsky et al., 1997; Boegman et al., 2003; Sakai & Redekopp,
2010) that warrant further work.
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4.6 Appendix A. Derivation of the turbulence activity parameter

We can derive the equation of the kinetic energy budget by taking the scalar product of the velocity
field ~v with the momentum equation (see 4.2.1). Then

∂tEk + (~v · ∇) Ek = − ~v
ρ0

(
∇p+ ρgk̂

)
+ νm~v · ∇2m (~v) , (A.1)

where Ek ≡ (~v · ~v) /2 is the kinetic energy per mass unit. Rearranging terms, the local time rate of
change of kinetic energy can be expressed as follows:

∂tEk = −∇ ·
{
~v

(
Ek + p

ρ0

)
− νm∇h−1 (~v · ∇m~v)

}
− ρ

ρ0
gw − νm |∇m~v|2 . (A.2)

The first term of the right-hand side of equation (A.2) gives the rate change of the kinetic energy
resulting from advection, pressure and hyper-viscous diffusion of energy, the second term gives the
reversible rate of exchange with potential energy due to buoyancy flux, while the third term gives the
irreversible rate of hyper-viscous kinetic energy dissipation. Averaging equation (A.2) over a closed
volume V , we obtain the following kinetic energy budget:

∂t〈Ek〉V = − 1
V

∫
V

{
gw

ρ

ρ0

}
dV − 1

V

∫
V

{
νm |∇m~v|2

}
dV. (A.3)

We are interested in the second term of equation (A.3):

εm = νm |∇m~v|2 . (A.4)
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From εm and νm, the hyper-viscous Kolmogorov length scale can be calculated using the same arguments
that set the ordinary (m = 1) Kolmogorov scale, resulting in

`K ≡
{
ν3
m

εm

}1/(6m−2)

. (A.5)

This scale defines where viscous forces balance inertial forces and the cascade is ultimately dissipated.
The activity parameter is fundamentally the ratio of the Ozmodiv scale and the Kolmogorov scale.
The Ozmidov scale depends on the kinetic energy dissipation and the buoyancy frequency, and it is
defined as follows:

`O ≡
{
εm
N 3

}1/2
. (A.6)

This is the buoyancy scale at which the buoyant forces balance the inertial forces. A turbulence activity
parameter will be a ratio, to some power (p) for convenience, of these two scales, i.e., a measure of how
much bandwidth there is in the flow between the Ozmidov scale and the Kolmogorov scale (Barry et
al., 2001):

Im,p ≡
{
`O
`K

}p
=
{
εm
ν3
m

}p/(6m−2)
·
{
εm
N 3

}p/2
. (A.7)

In the viscous case (m = 1), the turbulence activity parameter has been defined using p = 4/3. Thus

Im ≡
{
`O
`K

}4/3
= ε

N 2ν
. (A.8)

If we keep the power p = 4/3 for the hyper-viscous version of the turbulence intensity parameter we
obtain the following expression:

Im ≡
1
N 2

{(εm)m

νm

}2/(3m−1)
. (A.9)

4.7 Appendix B. Derivation of the diffusivity parameter

We are interested in estimating how the mass diffusivity changes as a consequence of the evolution of
an IKW in a two-layer flow. For this we will study the scales associated with the fluid mixing due
to the flow and molecular action. We can analyse the fluid mixing via the time rate of change of the
background potential energy per mass unit, Eb = ρgz∗/ρ0:

∂tEb = g

ρ0
∂t {z∗(~x, t)ρ(~x, t)} = g

ρ0
{z∗∂tρ+ ρ∂tz∗} , (B.1)

where z∗ is the reference height in the minimum potential energy state of a fluid parcel at position
(~x, t) (Winters et al., 1995; Winters & D’Asaro, 1996). From the mass transport equation (see 4.2.1),
we can obtain the term ∂tρ and replace it in equation (B.1), yielding

∂tEb = − g

ρ0
z∗
{
∇ (~vρ)− κm∇2mρ

}
+ gρ

ρ0
∂tz∗. (B.2)
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Because the z∗ vertical coordinate depends implicitly on the density distribution ρ(~x, t), we can write

z∗∇ρ = ∇ξ where ξ =
∫ ρ

z∗ (ρ̂) dρ̂, (B.3)

noting that ∇z∗ = (dz∗/dρ)∇ρ. Using equation (B.3) and rearranging terms, the background potential
energy budget can be written as follows:

∂tEb = − g

ρ0
∇
{
~vξ − κm∇

(
z∗∇2m−1ρ

)}
− g

ρ0
κm

( dρ
dz∗

)−1
|∇mρ|2 + gρ

ρ0

∂z∗
∂t

. (B.4)

Averaging ∂tEb over a closed volume V, the first and the third terms of the right-hand side of equation
(B.4) are zero due to the no-flux boundary conditions and the mathematical construction of z∗,
respectively (Winters et al., 1995), respectively. Hence, the background potential energy budget in
a closed domain is reduced to the following expression:

∂t〈Eb〉V = 1
V

∫
V
−
{
g

ρ0
κm

( dρ
dz∗

)−1
|∇mρ|2

}
dV. (B.5)

Notice that the background density gradient, dρ/dz∗, is a negative or null quantity, therefore −dρ/dz∗
is a null or positive quantity, and therefore ∂t〈Eb〉V is always positive. The expression integrated in the
equation (B.5) corresponds to the diapycnal flux given our m operators, φhd, which can be expressed
in terms of the ‘buoyancy’, b, writing the density as ρ = ρ0(1− g−1b):

φhd = κm
|∇mb|2

db/dz∗
. (B.6)

When the flow is turbulent, the buoyancy field is stirred and filamented and the numerator greatly
exceeds the denominator. If we move to the laminar limit and imagine that the fluid is not at all
stirred or filamented, but rather exists in its minimum potential energy state, then we can define a
reference laminar diffusive flux for comparison. We call this flux φ∗, where

φ∗ = κm
|dmb/dzm∗ |

2

db/dz∗
. (B.7)

We can now define an ‘enhancement’ parameter, measuring the increase in diffusive flux due to
turbulent stirring and straining relative to the laminar, diffusive flux in a fluid with the same background
buoyancy profile that is not stirred or strained:

Km ≡
φhd
φ∗

= |∇
mb|2∣∣∣ dmb

dzm∗

∣∣∣2 . (B.8)

Note that this reduces to the Cox number when m = 1 and always represents a ratio of turbulent
diffusive flux to laminar diffusive flux for the same collection of fluid parcels, i.e. for a fluid with the
same sorted state of buoyancy profile state.
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Concluding remarks

In this thesis we investigated the degeneration of basin-scale internal gravity waves in an idealized
two-layer stratified rotating basin via numerical and laboratory experiments. The dynamics of the
basin-scale internal gravity waves was controlled by four main parameters: (i) a first parameter
associated to the relevance of rotation in the wave dynamics; (ii) a second parameter associated
to the relative phase velocities across the domain, which can admit internal waves, and thus lead
to steepening when the wave amplitude is not neglected; (iii) a third parameter associated to the
relevance of viscosity, which can control the wave damping; and (iv) a fourth parameter associated to
the local hydrodynamic stability of stratified shear flows. The basin-scale internal gravity waves were
energized by initial displacements of the density interface under different background environments
(rotation and stratification structure).

The free evolution of basin-scale gravity waves in a two-layer stratified rotating cylindrical basin
was analysed via laboratory experiments conducted in cylindrical tank on a rotating table. Although
most of the experiments were developed under nonlinear wave regimes, the linear theory predicted with
good agreement the frequency structure of the basin-scale internal gravity wave field. In addition, the
laboratory experiments showed similar results to those predicted by numerical experiments performed
by de la Fuente et al. (2008) and Sakai & Redekopp (2010), in weakly nonlinear and non-hydrostatic
regimes. In this context, both numerical and laboratory results have shown the nonlinear degeneration
of the basin-scale internal wave and the formation of a train of solitary type waves, as a consequence
of steepening and non-hydrostatic wave dispersion, which propagate along the shoreline. Moreover,
the results suggested a nonlinear interaction between Kelvin and Poincaré waves, which could lead to
pseudo-resonant states and the transfer of energy from lower modes to higher modes. The nonlinear
dynamic of basin-scale internal gravity waves showed a relevant dependence between the wave amplitude
and the stratification structure, in agreement with the theory of nonlinear wave dynamics. However,
additionally, we identified that rotation also play a role in the degeneration of basin-scale internal
waves. In fact, the laboratory results showed that the scales of the solitary type waves driven by
the degeneration of the IKW had better agreement with KdV type models when the background
rotations were more important or stronger. The results showed that the intensity of the nonlinear
dynamics affected the decay rate of the internal gravity wave field and, particularly, the decay rate
of the IKW, which showed a strong sensibility at the background stratification/rotation conditions.
The main decay mechanisms identified were the Ekman layers damping, the nonlinear disintegration
via steepening and non-hydrostatic process, and the consequently transfer of energy from the IKW to
sub-modes. Although the characterization and quantification of the decay time scale of the IKW is
important, it is essential to understand how the basin-scale motions lose energy. This quantity does
not give information about where, how and how much energy dissipation occurs in the flow, in terms of
the internal wave field dynamics at laboratory scale. The quantification of the spatiotemporal energy
dissipation and mixing processes continues to be a challenge in this type of laboratory experiments.

The numerical experiments were performed using spectral based direct numerical simulations with
an hyper-viscosity/diffusivity approach, which assumes a downscale energy cascade with the rate of
energy transfer controlled by the nearly inviscid processes in the inertial subrange. This approach
allows the inertial subrange to be as broad as possible for a given grid resolution, which is convenient
when no extensive computational resources are available. In addition, the employed numerical method
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required suitable initial conditions characterized by smooth fields. Therefore, the classic normal mode
solutions obtained from discontinuous two-layer stratifications were not suitable (Csanady, 1967), but
neither the normal mode solutions obtained from continuously stratified systems (Kundu et al., 2012,
See Chapter 13, sub-section 13.9). The analytical construction of smooth linear normal modes proposed
in Chapter 2 solved the discontinuity problem of the layered solutions through the use of a Laplacian
diffusion on the density and momentum fields, over a finite time scale, in order to induce a smooth
transition between the bottom and top layer. This approach allowed the energization of the wave
through the increment of its amplitude, which leads to a direct increment of the vertical shear at
the density interface region. The solutions proposed in Chapter 2 were derived from an inviscid
fluid, hence, free-slip boundary conditions were adopted for the numerical experiments. This physical
characteristic implies that the energy dissipation occurs only in the interior of the fluid, which is a
clear difference and restriction of the conceptual model with respect to real scenarios. For the use of
no-slip boundary conditions (which take into account the presence the viscous boundary layers), new
or modified solutions are required.

Smooth linear normal modes, introduced in Chapter 2, were used to compute the free evolution of
the gravest internal Kelvin waves (IKW) via direct numerical simulations of the Boussinesq equations
with a hyper-viscosity/diffusivity approach. From the numerical experiments, we identified four
dynamics regimes, here called damped linear (DLR), nonlinear (NLR), non-hydrostatic (NHR), and
laminar-turbulent transition (TR). The three first regimes have been analysed in previous numerical
studies (de la Fuente et al., 2008; Sakai & Redekopp, 2010). We focused the analysis in the TR,
which was characterized by the growth of interfacial instabilities and the formation of turbulent
patches as a consequence of the IKW degeneration. To quantify the increment of the dissipation
rates of kinetic energy and the buoyancy variance, we derived turbulence activity parameters for
the hyper-viscosity/diffusivity approach. Both parameters are analogous to the turbulence intensity
parameter (Barry et al., 2001) and the Cox number (Winters & D’Asaro, 1996) for Newtonian fluids.
From this analysis, two energetic regimes were found. The first energetic regime was linked to linear
and weakly nonlinear dynamics of the IKW. In this regime, no important increments of the effective
mass diffusivity in terms of increments of turbulence intensity were observed. The second energetic
regime was linked to strong NHR to the TR. In this regime, the strong nonlinear degeneration of
the IKW and the turbulent episodes were directly correlated with the increment of both turbulence
activity parameters, showing a power dependence between the turbulent intensity and the effective
mass diffusion. We highlight the spatial and temporal distribution of the turbulence activity. Most of
the turbulent activity was observed within the internal Rossby radius of deformation, near the shore
region, whereas the temporal structure showed periodic increments associated to the interaction of
basin-scale internal waves with interfacial turbulent patches. These two regimes have been previously
identified both in field and numerical stratified flows, but not specifically for stratified flows driven
by IKW. Our numerical experiments achieved a limited range of values for the turbulence activity
parameters, thus, in order to compare with previous observations (e.g., Shih et al., 2005; Bouffard &
Boegman, 2013), we require to extend the range of values of the turbulence activity parameters, which
means further numerical experiments with higher numerical resolutions.
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Appendix A

Governing equations

In this appendix, the equation of motions of stratified fluids in rotating environments (‘geopgysical
flows’) are stated from several conservation laws and the so-called Boussinesq approximation. This
appendix has mostly based on Pedlosky (1987), Cushman-Roisin & Beckers (2011) and Kundu et al.
(2012) as references.

A.1 Equations of fluid motion

In this section the mass, momentum and energy budgets for a newtonian fluid on a f–plane are stated.

A.1.1 Mass budget

The conservation of mass for a material volume V (t) bounded by volume’s surface A(t) in a flowing
fluid is a fundamental law in fluid mechanics. This statement takes the following form:

d
dt

∫
V (t)

ρ(~x, t)dV ≡ 0, (A.1.1)

where ρ is the fluid density. Applying both the Reynolds transport theorem and the Gauss’ divergence
theorem the differential equation that represents mass budget is obtained:∫

V (t)

{
∂ρ(~x, t)
∂t

+∇ · (ρ(~x, t)~v(~x, t))
}

dV ≡ 0, (A.1.2)

where ~v = (u, v, w) is the velocity field. The last equality is possible if the integrand is nulled at every
point in space. Thus, (A.1.2) requires:

∂ρ(~x, t)
∂t

+∇ · {ρ(~x, t)~v(~x, t)} ≡ 0, or, 1
ρ(~x, t)

D

Dt
ρ(~x, t) +∇ · ~v(~x, t) ≡ 0, (A.1.3)

where D/Dt = ∂/∂t+(~v · ∇) is the material derivative. The relationship in (A.1.3) is called ‘continuity
equation’. Dρ/Dt is the time rate of change of fluid density following a fluid particle. This rate is zero
for constant density where ρ is constant throughout the flow field, and for incompressible flow where
the density of fluid particles does not change but different fluid particles may have different density.
Then, assuming Dρ/Dt = 0, the continuity equation for incompressible flows is reduced to

∇ · ~v(~x, t) ≡ 0. (A.1.4)
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A.1.2 Momentum budget

The Newton’s second law is the fundamental principle governing fluid momentum. This conservation
law is better stated per unit volume with density replacing mass. For geophysical flows, or flows in
rotating environments, the momentum equation is

ρ

{
D~v

Dt
+
(
fk̂ × ~v

)}
≡ −∇p− ρgk̂ + µ∆~v, (A.1.5)

where f is the inertial frequency or the Coriolis parameter, p is the pressure field, g is the gravity
acceleration, is the unit vertical vector (positive upward), ∆ represents the Laplace operator acting on
the momentum transport, with ν the dynamic viscosity coefficient. Notice that (A.1.5) is the standard
Navier-Stokes equations in a rotating environment in which only the vertical component of angular
velocity is important.

A.1.3 Equation of state

For an incompressible fluid, such as pure water at ordinary pressures and temperatures, density can
be assumed constant. However, in environmental fluids, such as oceans and lakes, water density is
a function of pressure, temperature and salinity, mainly. But for most applications in environmental
waters, density variations as a consequence of pressure variations can be neglected. A simplified linear
model has been used to describe the relationship between density, temperature and salinity for water:

ρ = ρ0 [1− α (T − T0) + β (S − S0)] , (A.1.6)

where T is the temperature (in degrees Celsius or Kelvin), S is the salinity (in practical salinity
units ‘psu’). The constants ρ0, T0 and S0 are reference values of density, temperature, and salinity,
respectively. The terms α and β are called ‘thermal expansion (in [T ]−1)’ and ‘saline contraction (in
[S]−1)’ coefficients, respectively. We have added one equation, and by doing so, we have introduced
additional variables, temperature and salinity.

A.1.4 Energy budget

The equation governing temperature arise from the principle of energy conservation, also known as the
first law of thermodynamics, which states that internal energy gained by a parcel of matter is equal to
the heat it receives minus the mechanical work it performs, i.e.,

De
Dt

= Q−W (A.1.7)

where e is the internal energy, Q is the rate of heat gain, and W is the rate of work done by the
pressure force onto the surrounding fluid, all per unit mass. The internal energy is proportional to the
temperature:

e = CvT, (A.1.8)

where Cv is the hear capacity at constant volume, and T is the absolute temperature. The Q term
includes only the heat gained by a parcel through its contact with its neighbors throughs the process
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of diffusion. Using the Fourier law of heat conduction, Q can be written as follows:

Q = kT
ρ

∆T, (A.1.9)

where kT is the thermal conductivity of the fluid. The work done by the fluid is the pressure force
multiplied by the displacement in the direction of the force. Hence, W can be written as follows:

W = − p

ρ2
Dρ

Dt
(A.1.10)

Using the second relation of the continuity equation (A.1.3), assuming an incompressible flow, ∇·~v ≡ 0,
and replacing (A.1.8), (A.1.9) and (A.1.10) into (A.1.7) leads to:

DT

Dt
= kT
ρCv

∆T. (A.1.11)

This is the energy equation, which governs the evolution of temperature.

A.1.5 Salt budget

For seawater (or salty waters), density varies with the salinity as stated in (A.1.6). Its evolution is
governed by the Fick’s second law:

DS

Dt
= κS∆S, (A.1.12)

which is analogous to the energy equation. This equations states that a seawater parcel conserves its
salt content, except for redistribution by diffusion. The term κS is the salt diffusion coefficient, which
plays a role analogous to the hear diffusivity kT .

In this context, the set of governing equations in now complete. There are seven variables {u, v, w, ρ, p, T, S},
for which we have seven governing equations: a continuity equation (A.1.4), three momentum equations
(A.1.5), an equation of state (A.1.6), an energy equation (A.1.11) and a salt equation (A.1.12).

A.1.6 Boussinesq approximation

In most geophysical systems, the fluid density varies, but not greatly around a mean reference value,
ρ0. No losing generality, we can write the density field as following:

ρ = ρ0 + ρ′(~x, t), with
∣∣ρ′∣∣� ρ0, (A.1.13)

where the density perturbation ρ′ caused by the existing stratification and/or fluid motions is small
compared with the reference value ρ0. Adopting this assumption, governing equations can be simplified.

First, substituting (A.1.13) into continuity equation (A.1.3):

1
ρ0 + ρ′

(
∂ρ′

∂t
+ ~v · ∇ρ′

)
+∇ · ~v = 0 (A.1.14)

Geophysical flows indicate that relative variations of density in time and space are usually much less
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than the variations of the velocity field. Therefore, the first term (A.1.14) can be neglected and
continuity equation is reduced to (A.1.4).

Second, we are going to substitute (A.1.13) into the momentum equations (A.1.5), but making the
difference between horizontal components and the vertical component. The x- and y- (horizontal)
momentum equations can be treated simultaneously. Wherever ρ′ occurs, the dominant quantity of
density will be ρ0, therefore the density factor ρ in the left-hand front can be approximated by ρ0.
Dividing by ρ0, the resultant horizontal momentum equations are the following:

Du

Dt
− fv = − 1

ρ0

∂p

∂x
+ ν∆u, (A.1.15a)

Dv

Dt
+ fu = − 1

ρ0

∂p

∂y
+ ν∆v, (A.1.15b)

where ν = µ/ρ0 is the kinematic viscosity coefficient. In the z- (vertical) momentum equations ρ
appears as a factor not only in the left-hand front but also in the gravity force on the right-hand side.
Operating analogously than the horizontal momentum simplifications, ρ′ can be neglected from the
factor ρ in the left-hand side, but on the right, it can not be done. Indeed, the term ρgk̂ considers
the fluid weight, which causes the increment of pressure with depth in fluids columns. In hydrostatic
balance, gravity force balances the vertical pressure gradient. If ρ ≈ ρ0, yiels

dp0
dz = −ρ0g, (A.1.16)

where p0 is the pressure associated to the hydrostatic limit or ‘hydrostatic pressure’. Thus, we can
write the pressure field as the sum of a hydrostatic component, which is only z dependent, and a
perturbation, which depends of time and space:

p = p0(z) + p′(~x, t), with p0(z) = P0 − ρgz, (A.1.17)

so that the vertical momentum equations becomes

Dw

Dt
= − 1

ρ0

∂p′

dz −
ρ′

ρ0
g + ν∆w. (A.1.18)

Note that the hydrostatic pressure p0(z) can be subtracted from p in the reduced horizontal momentum
equations (A.1.15), because it has no derivatives with respect to x and y, an it is dynamically inactive.

For water, the energy equation can be subjected to the same approximation used in the momentum
equations, ρ ≈ ρ0. This leads to the following equation:

DT

Dt
= κT∆T, (A.1.19)

where κT = kT /(ρ0Cv) is the heat kinematic diffusivity, which is analogous to the salt equation
(A.1.12).

For sea water, the combination of equations (A.1.12) and (A.1.19) allows determining the evolution
of density. However, in some water environments, the density is strongly dominated by only one of
them, such as in lakes, in which the water density is strongly defined by the thermal structure, or
estuaries with salty wedges, in which the water density is mainly defined by the salt distribution. In
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these scenarios is possible to define a unique equation for the density evolution, combining (A.1.12)
and (A.1.19) and the state equation:

Dρ′

Dt
= κ∆ρ, (A.1.20)

where ρ′ = ρ − ρ0 is the Boussinesq density and κ can take the value of κT or κS , depending if
temperature or salt dominates the density field. Under this assumption the energy and salt equations
have been merged into a density equation, which is not to be confused with mass conservation.

In summary, the Boussinesq approximation, rooted in the assumption that the density does not
move away much from a mean value, has allowed the replacement of the actual density ρ by its reference
density ρ0 everywhere, except in the term of the gravitational force, and in the energy equation, which
has become an equation governing density variations (Cushman-Roisin & Beckers, 2011). At this
point, since the original variables ρ and p no longer appear in the equations, it is customary to drop
the primes from ρ′ and p′ without risk of ambiguity. From hereinafter, the variables ρ and p will denote
the perturbation density or Boussinesq density and the perturbation pressure, respectively.
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Appendix B

Internal gravity waves

In this appendix we briefly introduce the main linear gravity waves involved in this thesis. In presence of
horizontal boundaries, a stratified and rotating flow can admit the existence of two type of gravitational
oscillations, the so-called Kelvin and Poincare waves. Here we present the derivation of the normal
modes that characterize the Poincaré and Kelvin waves in a smooth two-layer stratified cylindrical
domain.

B.1 Equations of motion

We consider an inviscid stratified fluid with a background density ρ̄(z), contained in a cylindrical
domain C of depth H, bounded both above and below by flat rigid boundaries, with outer vertical
boundary, ∂C , at r = R. Then, the linearized equations of motions on an f -plane are:

∂~v

∂t
+ fk̂ × ~v = − 1

ρ0
∇p− ρ

ρ0
gk̂, (B.1.1a)

∇ · ~v = 0, (B.1.1b)
∂ρ

∂t
+ w

dρ̄
dz = 0, (B.1.1c)

where ~v = (u, v, w)t is the vector velocity field, p is the pressure field, ρ0 is the reference density,
ρ is the Boussinesq density and g is gravity. Here u and v denote the radial and azimuthal velocity
components, respectively, whereas w denotes the vertical velocity component. The boundary condition
is the following:

~v · n̂ = 0 on ∂C , (B.1.2)

where n̂ is the unit inward normal for ∂C .

B.1.1 Wave equation and modal structure

Via a suitable combination of mathematical operations of (B.1.1), we derive a wave equation for the
vertical velocity component, w:{

∂2

∂t2
+ f2

}
∂2w

∂z2 +
{
∂2

∂t2
+N 2(z)

}
∆Hw = 0, (B.1.3)

where ∆H is the horizontal Laplace operator and N (z) =
√
−(g/ρ0)dzρ̄ is the buoyancy frequency.

We search modal solutions of the type:

w̃(r, θ, z, t) = AwW(r, z) sin (nθ − ωt− ϕ) (B.1.4)
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where Aw is the modal amplitude and W(r, z) is radial and vertical modal structure of w, n ∈
{1, 2, 3, ...} is the azimuthal mode, and ϕ is a wave phase. Substituting (B.1.4) into (B.1.3) yields:(

ω2 − f2

ω2 −N 2

)
∂W
∂z2 + ∂2W

∂r2 + 1
r

∂W

∂r
− n2

r2W = 0. (B.1.5)

Assuming the radial structure is uncoupled of the vertical structure, then we can express W(r, z) =
Gw(r)·Fw(z), whereGw and Fw denote the radial and vertical modal structure, respectively. Substituting
W(r, z) = Gw(r) · Fw(z) into (B.1.5) and dividing by Gw(r) · Fw(z), the equation (B.1.5) is reduced to(

ω2 − f2

ω2 −N 2

)
1
Fw

d2Fw
dz2 + 1

Gw

(
d2Gw
dr2 + 1

r

dGw
dr −

n2

r2 Gw

)
= 0. (B.1.6)

The last expression can be written as follows:

1
Gw

(
d2Gw
dr2 + 1

r

dGw
dr −

n2

r2 Gw

)
= −

(
ω2 − f2

ω2 −N 2

)
1
Fw

d2Fw
dz2 = −α2, (B.1.7)

where α is an arbitrary complex parameter. Hence, we have two ordinal differential equation (ODE)
instead of one partial differential equation for W:

d2Fw
dz2 + α2

(
N 2(z)− ω2

ω2 − f2

)
Fw = 0, (B.1.8a)

d2Gw
dr2 + 1

r

dGw
dr −

(
n2

r2 − α
2
)
Gw = 0. (B.1.8b)

Boundary conditions for (B.1.8) are directly derived from (B.1.2) and the algebra is detailed in
Sub-Appendix B.3:

Fw = 0, at z = 0, H, (B.1.9a)(
f

r

∂

∂θ
+ ∂2

∂t∂r

)
Gw(r) sin (nθ − ωt− ϕ) = 0 at r = R. (B.1.9b)

B.1.2 Stratification: ρ̄, N

To solve the equations (B.1.8) we require to know the background stratification. In general terms, the
environmental stratification can be characterized by a scalar density field:

ρ(~x, t) = ρ0 + ρ̄(z, t) + ρ′(~x, t) (B.1.10)

where ρ0 is the reference density, ρ̄(z, t) is the background density profile, which depends of the
z–coordinate and time t, and ρ′(~x, t) is the perturbed density component. In order to calculate the
vertical structure of normal modes we will assume ρ′(~x, t) = 0, and a monotonic decreasing density
function ρ̄(z, t) in terms of z (stable stratification) for a specific time t = t0. A continuous two-layer
density profile has been characterized by the following function:

ρ̄(z, t0) = ∆ρ zi
H

+
∞∑
k=1

ak cos
(
kπ

z

H

)
e−γkt0 , (B.1.11)
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with
ak = 2∆ρ

kπ
sin
(
kπ

zi
H

)
, γk = (kπ)2Dc

H2 , t0 = δ2
i
Dc
, (B.1.12)

where zi = h2 is the position of the density interface, measured from the bottom upward, ∆ρ = ρ2−ρ1
is the density difference among the bottom layer and the top layer, Dc represents a diffusion coefficient,
and δi is a length scale that characterizes the thickness of the transition among the bottom layer and
the top layer. All the above parameters must to be known to define the density vertical structure.
From (B.1.11) we derive the vertical buoyancy frequency structure N (z):

N (z) =

√
− g

ρ0

d ¯rho
dz =

√
g′

H/2

{ ∞∑
k=1

sin
(
kπ

zi
H

)
sin
(
kπ

z

H

)
e−γkt0

}1/2

. (B.1.13)

Figure B.1.1 show the vertical structure of the background density.
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Figure B.1.1: (a) Background density profile ρ̄(z)/∆ρ. (b) Background buoyancy frequency N (z)/max (N )

B.1.3 Bounds of the wave frequency: ω

Before to solve (B.1.8a) and obtain Fw(z), we can study the bounds of the wave frequency ω in terms
of the α-value. For this, we apply and integral technique similar to that used to analyse the stability
of shear flows. First, we multiply equation (B.1.8a) by the complex conjugate F∗w, obtaining:

d2Fw
dz2 F

∗
w + α2

(
N 2(z)− ω2

ω2 − f2

)
FwF∗

w = d
dz

(
dFw
dz F

∗
w

)
− dFw

dz
dF∗

w

dz + α2
(
N 2(z)− ω2

ω2 − f2

)
FwF∗

w. (B.1.14)

Second, rewritting FwF∗w = |F(z)|2 and (dFw/dz)(dF∗w/dz) = |dF/dz|2 and integrating vertically
across the domain equation (B.1.14), we obtain:∫ H

0

d
dz

(dFw
dz F

∗
w

)
dz −

∫ H

0

∣∣∣∣dF(z)
dz

∣∣∣∣2 dz +
∫ H

0
α2
(
N 2(z)− ω2

ω2 − f2

)
|F(z)|2dz = 0. (B.1.15)
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Then, we can perform an integration by part on the first term of (B.1.15) and use the boundary
conditions (B.1.9a), obtaining the following relationship:∫ H

0

∣∣∣∣dF(z)
dz

∣∣∣∣2 dz =
∫ H

0
α2
(
N 2(z)− ω2

ω2 − f2

)
|F(z)|2dz. (B.1.16)

The left-hand term corresponds to a non-negative quantity, therefore the right-hand term must to
satisfy the same condition. In the case of α2 > 0, as long as ω is real, we must impose

N 2(z)− ω2

ω2 − f2 ≥ 0 (B.1.17)

From (B.1.17) and assuming f2 < N 2, the common situation, we can define a range of values for the
wave frequency:

f2 ≤ ω2 ≤ N 2
max (B.1.18)

This means when α2 > 0, we expect, as solutions, super-inertial wave frequencies. The normal modes
with this type of frequency are usually called Poincaré waves. In the case of α2 < 0, as long as ω is
real, we must impose

N 2(z)− ω2

ω2 − f2 ≤ 0 (B.1.19)

From (B.1.19) and assuming f2 < N 2, the common situation, we can define two possible range of
values for the wave frequency:

ω2 ≤ f2 ≤ N 2
max or f2 ≤ N 2

max ≤ ω2 (B.1.20)

This means when α2 < 0, we expect, as solutions, sub-inertial wave frequencies. The normal modes
with this type of frequency are usually called Kelvin waves. The second range, in which N 2

max ≤ ω2,
cannot be possible in linear internal wave theory. In both cases we can note that if a wave frequency
ω exists, so does one of frequency −ω, corresponding to propagation in the opposite direction.

To obtain w̃ we require to solve (B.1.8); both equations depend of α and ω. First, we focus the
analysis in the cases α2 < 0 and α2 > 0, where the particular case α2 = 0 is discussed the Sub-Appendix
B.4.

B.1.4 Sub-inertial modes: α2 < 0, (ω/f)2 < 1

We consider that α2 < 0. Just for mathematical convenience a new parameter β is defined as β2 = −α2.
Then, using a stretch variable rβ = βr and substituting r = β−1rβ in (B.1.8b) yields a new ODE for
G in terms of rβ:

d2Gw
dr2
β

+ 1
rβ

dGw
drβ

−
(
n2

r2
β

+ 1
)
Gw = 0. (B.1.21)

Equation (B.1.21) corresponds to a Modified Bessel equation whose solutions are Modified Bessel
functions (Abramowitz & Stegun, 1965):

Gw(r) = AIn (βr) +BKn (βr) . (B.1.22)
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Here In is the first kind Modified Bessel function and Kn is the second kind Modified Bessel function,
A and B are constant and n is the azimuthal mode. Since Kn(βr) → ∞ as r → 0, we must have
B = 0. Hence,

w̃(r, θ, z, t) = AwFw(z)In(βr) sin (nθ − ωt− ϕ) (B.1.23)

The structure of Fw(z) is obtained solving (B.1.8a) given the density structure ρ̄(z). The wave
frequency, ω, is obtained substituting Gw(r) in the boundary condition (B.1.9b).

fn

R
In(βR)− ωβdIn(βR)

drβ
= 0. (B.1.24)

The last expression corresponds to a dispersion equation for the eigenvalues β and ω. Solving the
modal velocity w̃, we proceed to find the modal density ρ̃ from (B.1.1c):

∂ρ̃

∂t
+ w

dρ̄
dz = −ω Gρ(r)Fρ(z) sin (nθ − ωt− ϕ) +AwIn(βr)Fw(z) sin (nθ − ωt− ϕ) ∂ρ̄

∂z
= 0 (B.1.25)

yields,
ρ̃(r, θ, z, t) = Aw

ω
In(βr)

[dρ̄
dzFw(z)

]
cos (nθ − ωt− ϕ) . (B.1.26)

From the vertical component of the momentum equation (B.1.1) we derive the modal pressure, p̃:

∂p̃

∂z
= −ρ0

∂w

∂t
− gρ = Aρ0Gw(r)

(
ω2 −N 2(z)

ω

)
Fw(z) cos(nθ − ωt− ϕ). (B.1.27)

Then, using the EDO (B.1.8a), yields

p̃(r, θ, z, t) = −Awρ0

(
ω2 − f2

β2ω

)
In(βr)dFw(z)

dz cos(nθ − ωt− ϕ). (B.1.28)

Finally, from the horizontal components of the momentum equation (B.1.1) and (B.1.28), we obtain
the modal structure for ũ and ṽ:

ũ(r, θ, z, t) = Aw
β2

{
n

(
f

ω

)
In(βr)
r
− dIn(βr)

dr

} dFw(z)
dz sin(nθ − ωt− ϕ), (B.1.29a)

ṽ(r, θ, z, t) = −Aw
β2

{
n
In(βr)
r
−
(
f

ω

) dIn(βr)
dr

} dFw(z)
dz cos(nθ − ωt− ϕ). (B.1.29b)

B.1.5 Super-inertial modes: α2 > 0, (ω/f)2 > 1

We consider that α2 > 0. Using a stretch variable rα = αr and substituting r = α−1rα in (B.1.8b)
yields a new ODE for G in terms of rα:

d2Gw
dr2
α

+ 1
rα

dGw
drα

−
(
n2

r2
α

− 1
)
Gw = 0. (B.1.30)

Equation (B.1.30) corresponds to a Bessel equation whose solutions are Bessel functions (Abramowitz
& Stegun, 1965):

Gw(r) = AJn (αr) +BYn (αr) . (B.1.31)
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Here Jn is the first kind Bessel function and Yn is the second kind Bessel function, A and B are constant
and n is the azimuthal mode. Since Yn(βr)→∞ as r → 0, we must have B = 0. Hence,

w̃(r, θ, z, t) = AwFw(z)Jn(αr) sin (nθ − ωt− ϕ) (B.1.32)

The wave frequency, ω, is obtained substituting Gw(r) in the boundary condition (B.1.9b).

fn

R
Jn(αR)− ωαdJn(αR)

drα
= 0. (B.1.33)

The last expression corresponds to a dispersion equation for the eigenvalues α and ω. Analogously to
the previous case, from w̃ we proceed to find ρ̃, p̃, ũ and ṽ:

ρ̃(r, θ, z, t) = Aw
ω
Jn(βr)

[dρ̄
dzFw(z)

]
cos (nθ − ωt− ϕ) . (B.1.34a)

p̃(r, θ, z, t) = Awρ0

(
ω2 − f2

α2ω

)
Jn(αr)dFw(z)

dz cos(nθ − ωt− ϕ). (B.1.34b)

ũ(r, θ, z, t) = Aw
α2

{
n

(
f

ω

)
Jn(αr)
r

− dJn(αr)
dr

} dFw(z)
dz sin(nθ − ωt− ϕ), (B.1.34c)

ṽ(r, θ, z, t) = −Aw
α2

{
n
Jn(αr)
r

−
(
f

ω

) dJn(αr)
dr

} dFw(z)
dz cos(nθ − ωt− ϕ). (B.1.34d)

B.2 Eigenvalue & eigenvector problem: Gw, Fw(z)

To characterize Gw and Fw(z) we must obtain the eigenvalues α and ω. For this, we must solve
equation (B.1.8a) and equations (B.1.24), (B.1.33), depending if α2 < 0 or 0 < α2, respectively. The
solution of both type of equations requires numerical approaches, which means spatial discretization,
and hence, discrete solutions for the wave numbers and frequencies. In addition, from each couple of
α and ω we can obtain the respective discrete phase velocity, c, via the dispersion relation:

c2 = ω2 − f2

α2 (B.2.1)

The relation (B.2.1) can be written in dimensionless terms introducing the radius of deformation
Ro = c/f and the horizontal length scale, R:

α2R2 = σ2 − 1
B2 , (B.2.2)

where σ2 = ω2/f2 is the dimensionless wave frequency, and B = Ro/R, hereinafter denoted as the
Burger number. Therefore, the set of equations (B.1.8a), (B.1.24), (B.1.33) can be solved in terms of
σ and B:

√
1− σ2

B
In−1

(√
1− σ2

B

)
+ n

( 1
σ
− 1

)
In

(√
1− σ2

B

)
= 0, for α2 < 0. (B.2.3a)
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√
σ2 − 1
B

Jn−1

(√
σ2 − 1
B

)
+ n

( 1
σ
− 1

)
Jn

(√
σ2 − 1
B

)
= 0, for α2 > 0. (B.2.3b)

d2Fw
dz2
∗

+ (Hα)2
(

[N (z)/f ]2 − σ2

σ2 − 1

)
Fw = 0, (B.2.4)

where z∗ = z/H ∈ [0, 1] is the dimensionless vertical coordinate. Then, setting the value of B, we can
obtain σ through the numerical solution of the nonlinear equations (B.2.3a)-(B.2.3b). Once knowing
σ and B, we obtain the eigenvalue α and the respective eigenvector Fw via the solution of (B.2.4).

We address the numerical problem via a straightforward finite-difference technique, adopting a
uniform grid spacing ∆z. We define the first and last grid point on the flat bottom and at the rigid
lid, respectively, since the boundary conditions on the Fw are imposed there. Dividing the vertical
domain (0 ≤ z ≤ H) in m grid points, the discrete version of z is given by:

z` = ∆z(`− 1), with ∆z = H/(m− 1) and ` ∈ {1, 2, 3, ...,m} . (B.2.5)

The ODE (B.2.4) can be written in its discrete version as following:

Fw(z`+1)− 2Fw(z`) + Fw(z`−1) + α2
∗L(z`)Fw(z`) = 0, (B.2.6a)

Fw(z1) = 0, Fw(zm) = 0, (B.2.6b)

with
α2
∗ = (∆z · α)2 , L(z`) =

(
[N (z`)/f ]2 − σ2

σ2 − 1

)
. (B.2.7)

Hereinafter Fw(z`) = F` and L(z`) = L`. This problem can be set in a matrix form as follows:

M(α2
∗) ~F = 0, (B.2.8)

where M is a tridiagonal matrix that depends on α2
∗. The possible eigenvalue α∗ are those that allow

a nonzero ~F , and this occurs if the system is singular:

det [M] = 0. (B.2.9)

The problem is reduced to finding the zeros of the determinant of M. For each value ω2 for which
det

[
M(α2

∗)
]

= 0, the corresponding discretized spatial eigenmode ~F is a solution of (B.2.8). Equation
(B.2.6) can be written as a generalized eigenvalue problem:

A ~F = α2
∗B ~F , (B.2.10)

where A and B are tridiagonal matrices and independent of α2
∗, with the following structure

A =



2 −1 0 . . . 0 0
−1 2 −1 . . . 0 0

0 −1 2 . . .
...

...
...

...
... . . . −1 0

0 0 . . . −1 2 −1
0 0 . . . 0 −1 2


, B =



L1 0 0 . . . 0 0
0 L2 0 . . . 0 0

0 0 L3 . . .
...

...
...

...
... . . . 0 0

0 0 . . . 0 Ln−1 0
0 0 . . . 0 0 Ln


. (B.2.11)
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Furthermore, A and B are symmetric positive definite matrices, since both are diagonally dominant.
Figures B.2.1 and B.2.1 show examples of the modal structure of the velocity field (ũ, ṽ, w̃) for B = 0.25.
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Figure B.2.1: (a) Vertical modal structure F`(z) of the vertical velocity component, w̃. (b) Horizontal modal
structure Gn(r) sin (nθ − σn` · tf) at θ = π/2 of the vertical velocity component w. Super-index, k : Kelvin
wave, p : Poincaré wave. Sub-index, n : azimuthal mode, ` : vertical mode.
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Kelvin wave, p : Poincaré wave. Sub-index, n : azimuthal mode.

B.3 Boundary condition for w at r = R

The vertical boundary conditions of w come directly into Fw; however, in the case of the radial
boundary condition, we require to write u in terms of w. First, from (B.1.1a) u can be written in
terms of the pressure field: (

∂2

∂t2
+ f2

)
u = −

(
f

ρ0r

∂

∂θ
+ 1
ρ0

∂2

∂t∂r

)
p. (B.3.1)
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From (B.1.1a) and (B.1.1c), w can be also written in terms of the pressure field:(
∂2

∂t2
+N 2(z)

)
w = − 1

ρ0

∂2p

∂t∂z
. (B.3.2)

From (B.3.1) and (B.3.2) we eliminate the pressure field and write w in terms of u:(
f

r

∂

∂θ
+ ∂2

∂t∂r

)(
∂2

∂t2
+N 2(z)

)
w =

(
∂4

∂z∂t3
+ f2

)
u. (B.3.3)

Then, at the boundary r = R, u = 0, resulting in:(
f

r

∂

∂θ
+ ∂2

∂t∂r

)(
∂2

∂t2
+N 2(z)

)
w = 0 (B.3.4)

Substituting (B.1.4) into (B.3.4) yields:(
f

r

∂

∂θ
+ ∂2

∂t∂r

)
Gw(r) sin (nθ − ωt− ϕ) = 0 at r = R, θ ∈ [0, 2π] , z ∈ [0, H], (B.3.5)

whereas substituting (B.1.4) into (B.1.2) yields:

Fw = 0, at z = 0, H, θ ∈ [0, 2π] , r ∈ [0, R] . (B.3.6)

B.4 Modal structure: case α2 = 0

We analyse the particular case α2 = 0. Then, the EDOs (B.1.8) are reduced to:

(
ω2 − f2

) d2Fw
d2z

= 0, (B.4.1a)

d2Gw
dr2 + 1

r

dGw
dr −

n2

r2 Gw = 0. (B.4.1b)

From (B.4.1a) is obtained that if ω2 6= f2, yields:

Fw(z) = Az +B, (B.4.2)

where A and B are constants. Substituting the boundary conditions Fw(z = 0) = 0 and Fw(z = H) =
0, it is obtained a trivial solution:

Fw(z) = 0. (B.4.3)

For non-trivial solutions, Fw(z) 6= 0, hence ω = ±f , and Fw(z) can take any form as long as it satisfies
the boundary conditions. Meanwhile (B.4.1b) corresponds to a Euler equation, and therefore we can
propose solutions as the following:

Gw(r) = Arn +Br−n, (B.4.4)
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where A and B are constants. In the same way than previous cases, Gw(r) < ∞ when r → 0, hence
B = 0. The solution for the radial structure is:

Gw(r) = Arn. (B.4.5)

Substituting Gw(r) in the boundary condition (B.1.9a), yields:

− ωnRn−1 + fn
Rn

R
= 0 → ω = f. (B.4.6)

Hence, for the particular case α = 0, the wave frequency takes the value of the inertial frequency,
but it is not possible to obtain an analytical expression for w̃ because the vertical structure Fw is
undefined.
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