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Platelet degranulation allows the release of a large amount of soluble mediators, is an

essential step for wound healing initiation, and stimulates clotting, and angiogenesis. The

latter process is one of the most critical biological events observed during tissue repair,

increasing the growth of blood vessels in the maturing wound. Angiogenesis requires the

action of a variety of growth factors that act in an appropriate physiological ratio to assure

functional blood vessel restoration. Platelets release main regulators of angiogenesis:

Vascular Endothelial Growth Factors (VEGFs), basic fibroblast growth factor (FGF-2), and

Platelet derived growth factors (PDGFs), among others. In order to stimulate tissue repair,

platelet derived fractions have been used as an autologous source of growth factors

and biomolecules, namely Platelet Rich Plasma (PRP), Platelet Poor Plasma (PPP), and

Platelet Rich Fibrin (PRF). The continuous release of these growth factors has been

proposed to promote angiogenesis both in vitro and in vivo. Considering the existence

of clinical trials currently evaluating the efficacy of autologous PRP, the present review

analyses fundamental questions regarding the putative role of platelet derived fractions

as regulators of angiogenesis and evaluates the possible clinical implications of these

formulations.

Keywords: platelet poor plasma, platelet rich plasma, angiogenesis, tissue engineering, growth factors

INTRODUCTION

Wound healing, a natural restorative response to tissue injury, is governed by an elaborate response
driven by resident and circulating cells, homing to the injury site, that release soluble mediators or
signals generated from the extracellular matrix (ECM; Guo and DiPietro, 2010). In adult humans,
optimal wound healing involves a cascade of complex, orderly, and predictable events that include
four overlapping phases: hemostasis, inflammation, proliferation, and remodeling. The adequate
timing of these phases is decisive for ultimate restoration of the vascular system (Gosain and
DiPietro, 2004; Eming et al., 2007). Platelets regulate hemostasis through vascular obliteration
and fibrin clot formation (Guo and DiPietro, 2010). Platelets are anucleated cell fragments that
originate frommegakaryocytes in the bone marrow (Speth et al., 2015). Among the three-reservoir
organelles described in platelets, namely lysosomes, alpha granules, and dense granules, the biggest
compartments for protein storage are alpha granules. The latter are considered key organelles
with respect to platelet function. In the clot, platelets are responsible for the activation and release
of important biomolecules from their alpha granules, including platelet-specific proteins, growth
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factors, coagulation factors, adhesion molecules, cytokines,
angiogenic factors, proteoglycans, and cytokines/chemokines
(Nurden, 2011). The release of cytokines, chemokines, and
growth factors induces proliferation and activation of the
cells that are involved in wound healing such as fibroblasts,
neutrophils, monocytes, smooth muscle cells, and mesenchymal
stem cells (MSC) (Thushara et al., 2015).

Biological products for wound treatment and surgical
interventions have been an area of enormous growth in the last
two decades, as our understanding of wound healing response
has increased. In particular, the use of human plasmatic fractions
has been proposed to locally deliver platelet-derived factors as
an autologous source of biomolecules for tissue healing. In this
review, we summarize (1) the importance of growth factors
and biomolecules related to angiogenesis present in plasmatic
fractions with different concentrations of platelets and (2) the
clinical rationale for their use in cell therapies involved in the
treatment of traumatic injuries as well as degenerative diseases.

CONTRIBUTION OF PLATELETS TO
ANGIOGENESIS

After the inflammatory phase has been initiated, the wound
healing response requires angiogenesis as a process that
modulates the activation, proliferation, and migration of
endothelial cells to establish new blood vessels from pre-existing
vasculature (Oklu et al., 2010). Platelets play a critical role
in regulating angiogenesis. Nevertheless, their contribution to
blood vessel repair in the course of wound healing is still
poorly understood (Eming et al., 2007; Klement et al., 2013).
Alpha granules are a reservoir of biological factors for platelet
physiological and pathological angiogenic responses (Peterson
et al., 2010; Table 1). The release of these crucial angiogenic
factors in platelet derived fraction preparations could be useful
in tissue regeneration and wound healing.

PLATELET DERIVED FRACTIONS

The use of platelet-derived fractions in tissue repair is a
developing area for clinician’s and researchers. Marx et al.
demonstrated a potential use of Platelet Rich Plasma (PRP)
in craniofacial bone grafts in the late nineties (Marx et al.,
1998), and since then, plasmatic fractions have been promoted
as suitable sources of autologous growth factors. PRP may be
defined as a component of plasma fraction of autologous venous
blood with platelet counts in the range between 4 and 6 times
above baselines considered to be of therapeutic benefit (1 million
platelets/L; Chen and Liu, in press). The preparation of PRP by
centrifugation was initially completed by a “two-step gradient
centrifugation method.” A strong first spin was used first in order
to separate the erythrocytes from the clotting factors, platelets,
and leukocytes. Then, the plasma was subjected to a second
centrifugation step, to harvest the PRP fraction from the platelets
and leukocytes. Finally, platelets in PRP were activated to release
the biomolecules, using thrombin or calcium chloride. Other
authors have proposed alternative methods to liberate growth

factors from platelets, such as lysing the platelets by freezing them
or using sonication or ultrasound (Weed et al., 2004). Once the
release of biomolecules from platelets is activated, a network is
formed to establish a fibrin clot that acts as scaffold for growth
factors over a limited period of time (Mautner et al., 2015).

Nowadays most of the commercially accessible kits involve a
one-step method to separate the plasma into three distinct layers:
the erythrocytes, the buffy coat containing PRP, and the Platelet
Poor Plasma (PPP) (Bausset et al., 2012; Burnouf et al., 2013).
Currently, plasmatic fractions have been classified according to
at least two key parameters: the presence of leukocytes and the
fibrin architecture (Dohan Ehrenfest et al., 2014). Following these
criteria, we can find four family fractions:

Pure Platelet-rich Plasma (P-PRP) low or without

Leukocytes: Plasmatic preparations from anticoagulated
venous blood “without leukocytes and with a low- density fibrin
network.” The white blood cell count of these samples is less
than the whole blood percentage (Riboh et al., 2015). After its
activation with calcium chloride or thrombin, this preparation
can be used as a liquid solution or as a gel (Gobbi and Vitale,
2012; Dohan Ehrenfest et al., 2014; Mautner et al., 2015).

Platelet-rich Plasma (L-PRP) with Leukocytes: Plasmatic
fractions from anticoagulated venous blood “with leukocytes and
with a low-density fibrin network.” The leukocytes content in
these preparations is at least five times compared with the base
line of whole blood counting (Filardo et al., 2013). Following
activation, L-PRP might be used either as a liquid solution or in
an activated gel form. Among the commercial systems available
are Harvest Smart- PreP (Harvest Technologies, Plymouth,
MA, USA), Biomet GPS III (Biomet Inc., Warsaw, IN, USA),
Plateltex (Prague, Czech Republic), and Regen PRP (RegenLab,
Le Mont-sur-Lausanne, Switzerland; Gobbi and Vitale, 2012;
Dohan Ehrenfest et al., 2014; Mautner et al., 2015).

Pure Platelet-rich Fibrin (P-PRF) low or without

Leukocytes: These correspond to “preparations without
leukocytes and with a high-density fibrin network.” Fibrin, in
combination with growth factors, has been shown to effectively
support cell adhesion and proliferation. P-PRF only exists in a
solid activated gel form. To date, only one product of this family
is commercially available, known as Fibrinet PRFM (Platelet-
Rich Fibrin Matrix, Cascade Medical, Wayne, NJ, USA; Gobbi
and Vitale, 2012; Dohan Ehrenfest et al., 2014; Mautner et al.,
2015).

Platelet-rich Fibrin (L-PRF) with Leukocytes: Also named
Choukroun’s PRF. In this preparation venous blood is obtained
without any anticoagulant and directly centrifuged. A cascade
of calcium chloride or thrombin is used, which results in the
isolation of this plasmatic fraction without any biochemical
modifications. These preparations, existing only in gel form, have
leukocytes and a high-density fibrin network (Dohan Ehrenfest
et al., 2009, 2014; Gobbi and Vitale, 2012; Mautner et al.,
2015).

For a complete and updated overview of platelet-derived
fractions and the requirements for their preparation for clinical
use, please refer to the following other excellent reviews:
De Pascale et al. (2015), Kawase (2015), and Mautner et al.
(2015).
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TABLE 1 | Growth factors stored in platelets alpha granules involved in angiogenesis.

Angiogenic factor Function References

Vascular endothelial growth factors (VEGFs) Regulates angiogenesis Min Park et al., 2014

Controls proliferation, morphogenesis, migration, and survival of endothelial cells. Carmeliet and Jain, 2011

Promotes the enlargement and branching of blood vessels.

Platelet Derived Growth Factors (PDGF) PDGF-B and PDGF-C isoforms are involved in vessel maturation and recruitment

of endothelial progenitor cells from the bone marrow.

Raz et al., 2014

Recruits pericytes and vascular smooth muscle cells to maintain the blood

vessel wall.

Dimmeler, 2005; Herbert and Stainier,

2011

Hepatocyte Growth Factor (HGF) Mitogen for endothelial cells and stimulates secretion of VEGF. Matsumura et al., 2013

Basic fibroblast growth factor (bFGF) Induces proliferation and tubule formation of endothelial progenitor cells. Litwin et al., 2015

Stimulates secretion of VEGF on endothelial progenitors in vitro.

Connective tissue growth factor (CTGF) Regulates vascular remodeling by controlling pericyte recruitment and inducing

PDGF-B expression on endothelial cells.

Hall-Gleen et al., 2012

Angiopoietins Maintains vessel and vascular leakiness, and induces pericyte chemotaxis Nurden, 2011; Klement et al., 2013;

Hwang et al., 2015

Stromal cell derived factor (SCGF) Induces chemotaxis of endothelial precursors and increases formation of

vascular structures.

De Falco et al., 2004

Epidermal Growth Factor (EGF) Induces tubule formation, endothelial cell proliferation, and migration. Klement et al., 2013

PLATELET CONCENTRATES AND
ANGIOGENESIS

Diverse growth factors are involved in the process of
angiogenesis, of which many are secreted by platelets (Peterson
et al., 2010). Given the critical role of angiogenesis in modulating
wound healing and considering that platelet-derived factors are
critical for vascular activation and stabilization, it is tempting
to speculate whether any of the platelet-derived formulations
currently used in regenerative medicine stimulate angiogenesis.
Preclinical studies, using in vitro assays and animal models have
suggested a positive influence of platelet-derived fractions on
angiogenesis.

In vitro Studies
In order to identify the mechanisms whereby platelet-derived
fractions may stimulate angiogenesis, Bertrand-Duchesne et al.
(2010) evaluated the presence of angiogenic growth factors in
PRP samples. They detected high levels of VEGF, PDGF-BB, EGF,
and basic fibroblast growth factor (bFGF). PRP supernatants
were incubated with blocking antibodies to neutralize each of
these growth factors and the response to these treatments was
evaluated via proliferation assays in Human Umbilical Vein
Endothelial Cells (HUVEC). Notably, the use of EGF neutralizing
antibodies decreased significantly the proliferation of HUVEC,
while the other antibodies did not affect this response. Another
mechanistic study by Mammoto et al. evaluated the role of
angiopoietin-1 in driving the vascular response in mouse PRP
and PRF formulations. They found that mouse platelet derived
fractions containing angiopoietin-1 (Ang) were responsible for

increasing proliferation, migration, and differentiation of human
microvascular endothelial cells (Mammoto et al., 2013). Li
et al. (2014) observed that PRP might promote vascular growth
andstimulate endothelial progenitor cells to form vessel-like
structures. Anitua et al. (2015) recently studied the effect of a
platelet concentrate displayed within a plasma suspension that
forms a fibrin matrix system on angiogenesis. This product,
called PRGF (plasma rich in growth factors) (P-PRP low
leukoyte content), stimulated an increase in cell proliferation
and a reduction in apoptosis in primary HUVEC and skeletal
myoblasts.

Preclinical Animal Studies
In a recent study, Zhou et al. (2013) investigated the effect
of the application of a PRP gel in open abdominal wounds
performed in rats. After inducing a peritonitis lesion they
performed laparotomies and animals were treated with either
PPP or PRP. After 1 week of healing, the animals treated
with PRP demonstrated higher blood perfusion in the original
lesion as well as a more mature granulation tissue when
compared to those treated with PPP. In addition, injection of
the product within the injured muscle tissue of mice induced
the reperfusion of blood into the lesion. Using an innovative
approach to release platelet-derived growth factors in a drug-
delivery system, Notodihardjo et al. (2015) used a gelatin
hydrogel compound coupled to platelet rich plasma molecules
to stimulate wound healing. They observed an increase in
epithelialization and vascular growth when compared to other
treatments, including the gelatin hydrogel system (drug delivery
system) and the PRP group. In another approach to stabilize
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growth factors released from platelets, a fragmine-protamine
micro-nanoparticle system was used to promote healing events
of skin grafts showing a positive effect on wound epithelialization
and angiogenesis (Takabayashi et al., 2015). Using autologous
activated platelet supernatant; Kang et al. (2014) studied their
effects on vasculogenesis in peripheral blood stem cells of human
origin. With this approach they observed that stem cells primed
with this platelet fraction stimulated vascular growth in athymic
mice (Kang et al., 2014). In skin ulcers performed in porcine, Roy
et al. (2011) showed that a platelet-rich fibrin matrix was able
to stimulate wound healing by enhancing angiogenesis. In order
to stimulate tendon regeneration, tendon healing was studied in
New Zealand rabbits in which Achilles tendons were sectioned
and subsequently treated with PRP or saline. PRP treated-
tendons demonstrated increased angiogenesis and better collagen
fiber re-alignment when compared to saline treated specimens
(Lyras et al., 2009). To this end, Mammoto et al. (2013) identified
that angiopoietin-1 is highly represented in PRP. Moreover, they
observed that inhibition of angiopoietin-1-Tie2 signaling was
able to suppress the angiogenic induction by a platelet-rich fibrin

matrix in vivo. These studies show that in general, platelet-

derived fractions may exert a potent pro- angiogenic response in
different organs or anatomical locations and clearly justify further
research.

POTENTIAL APLICATIONS OF PLATELET
DERIVED FRACTIONS: TISSUE
ENGINEERING

As stated by Vishwakarma et al. (2015): “Tissue engineering
and regenerative medicine is a rapidly growing multidisciplinary
field involving the life, physical, and engineering sciences that
seeks to repair, regenerate, or replace biological cell, tissue,
and organ substitutes that have been lost due to congenital
abnormalities, injury, disease, or aging.” The development of
tissue-engineered products must involve a vascular support.
Cellular function and viability are highly dependent on the
effective diffusive exchange of nutrients through tissue. In vivo,
cells are found within 200µm-away from the nearest capillary
network, otherwise they may suffer from ischemia and necrosis.
Most of the tissue engineering scaffolds and composites are
typically avascular. Therefore, it is essential that revascularization
strategies stimulate regeneration of vascular networks in order
to obtain a successful clinical outcome of an implanted cell-
construct (Upputuri et al., 2015). The scaffolds need to support
cell proliferation and differentiation to replace specific tissue loss
in vivo. However, they must also provide a suitable substrate
that allows adequate blood vessel growth to supply nutrients
and oxygen to the cells located inside this engineered composite

FIGURE 1 | Platelet derived fractions and involvement of angiogenic growth factors in angionesis. (A) Four platelet-derived fractions are illustrated. Two with

low leucocyte content (PPP and P-PRP), and two with high leucocyte quantities (L-PRP and L-PRF). (B) Angiogenic growth factors are represented with the indicated

color code. (C) Illustration of a capillary blood vessel in physiological conditions. (D) Influence of angiogenic growth factors during angiogenesis initiation, endothelial

cell (EC) proliferation, migration, and differentiation and finally, branching and stabilization of new blood vessels during a healing event.
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(Cenni et al., 2011). Considering the essential role of angiogenesis
during the tissue engineering process, it is important to evaluate
the scaffold features and properties to predict its vascularization
potential and its possible interactions with endothelial and stem
cells (Cenni et al., 2011). As already mentioned, plasmatic
fractions constitute a source of main angiogenic growth factors,
such as PDGF, VEGF, FGF-2, and EGF, as well as other proteins
involved in the angiogenic process. Platelet angiogenic potential
also resides in the presence of cytokines, integrins, hepatocyte
growth factor, interleukin-8 (IL-8), IL-3, αvβ3− integrin 212,
and matrix metalloproteinases (MMPs), which degrade ECM
facilitating endothelial cell migration (Cenni et al., 2011; Klement
et al., 2013). It is also important to note that the use of
platelet-derived fractions has a considerable advantage, offering
multiple pro-angiogenic factors compared to the application of
high doses of recombinant growth factors to the wound site.
Even the use of PPP could be a good alternative to the use of
autologous growth factors. Recently, our research team evidenced
the presence of angiogenic factors and biomolecules related to
bone differentiation on PPP (Martínez et al., 2015). These results,
combined with preclinical data provided by other research teams,
suggest that (1) this PPP fraction could potentially be considered
a good alternative to the use of autologous growth factors
and proteins in combination with tissue engineering scaffolds
and (2) that it might present an opportunity to increase the
effectiveness of treatments in clinical applications (Yilmaz et al.,
2011; Hateyama et al., 2014; Martínez et al., 2015). Angiogenic
factors found in platelet-derived fractions can participate in
cellular events involved in angiogenesis (Figure 1, Agren et al.,
2013; Amable et al., 2013; Martínez et al., 2015). The angiogenic
process requires the proliferation, migration, and adequate
differentiation of endothelial cells (EC). ECs, categorized as (1)
migrating leading “tip” cells to guide the direction of new blood
vessel formation and (2) trailing “stalk” cells to establish the
lumen of the new vessel, are indispensable to the branching
and stabilization of new blood vessels (Carmeliet and Jain,
2011, Figure 1). However, it is still unknown whether or not
“leukocyte mediators” have an effect on angiogenesis in the
platelet-derived fractions. Overall, the use of platelet-derived
fractions is promising in the process of angiogenesis during
wound healing and regeneration. However, there is no consensus
regarding the protocols utilized for their extraction, their effect
on target cells, the concentration of the growth factors, and the
effect of inflammatory mediators. Consensus needs to be reached
in order to better exploit the clinical potential of platelet-derived
fractions.

Platelet Derived Fractions and
Mesenchymal Stem Cells (MSC)
Many preclinical and clinical studies have demonstrated
the benefits of using MSC to promote tissue repair; MSC-
based therapies are gaining ground in wound management.

It has been shown that MSCs might repair damaged
endothelium by secreting trophic factors that allow the
recruitment of endogenous stem cells, which helps facilitate
angiogenesis (Bronckaers et al., 2014). MSCs’ activity depends
on the instructive microenvironment or niche. To date,
the positive influences of plasmatic fractions have been
reported mainly in relation to PRP, proliferation, stemness,
and preservation of the MSC immune-modulatory properties
(Chieregato et al., 2011; Copland et al., 2013; for recent
systematic review refer to Rubio-Azpeitia and Andia,
2014).

Additionally, translational medicine using MSC therapies
requires protocols that can rule out the possibility of
contamination or immunological reactions toward xenogeneic
compounds (i.e., animal serum) used in traditional cell culture
protocols (Lange et al., 2007; Goedecke et al., 2011). The use of
fetal bovine serum in the maintenance of MSCs is undesirable
because of viral/prion disease transmission risks that can
initiate xenogeneic immune responses (Doucet et al., 2005; Even
et al., 2006). Studies concerning bone marrow and periodontal
ligament MSCs have shown that supplementing medium with
autologous serum or platelet-derived fractions, instead of
animal serum, is a good source of growth factors due to the
fact that they provide sufficient ex vivo expansion, decrease the
time required to reach confluence, increase the size of colony
forming units, and maintain their osteogenic, chondrogenic, and
adipogenic differentiation capability (Tonti and Mannello, 2008;
Ben Azouna et al., 2012; Martínez et al., 2015). Advancement in
stem cell research will help to reveal the intimate mechanisms
and interactions between stem cells and platelet-derived growth
factors in wounds.

FINAL REMARKS

From a therapeutic viewpoint, platelet concentrate seems
to be quite promising. However, there is no consensus
regarding their use. The application of platelet-derived fractions
still demands standardization of its preparation, a more
detailed characterization of their biomolecule composition and
angiogenesis potential, as well as well-designed and controlled
clinical trials. Several important questions regarding the timing of
treatment and the actual impact of platelet fractions on restoring
angiogenic activity remain to answer.
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