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Abstract A new methodology is laid out for the modeling of commodity prices, it departs
from the ‘standard’ approach in that it makes a definite distinction between the analysis of the
short term and long term regimes. In particular, this allows us to come upwith an explicit drift
term for the short-term process whereas the long-term process is primarily driftless due to
inherent high volatility of commodity prices excluding an almost negligible mean reversion
term. Not unexpectedly, the information used to build the short-term process relies on more
than just historical prices but takes into account additional information about the state of
the market. This work is done in the context of copper prices but a similar approach should
be applicable to wide variety of commodities although certainly not all since commodities
comewith very distinct characteristics. In addition, ourmodel also takes into account inflation
which leads us to consider a multi-dimensional system for which one can generate explicit
solutions.

Keywords Commodity prices · Epi-splines · Short and long term · Best fit · Scenario tree
JEL Classification C53

1 Conceptual framework

The modeling of a price process associated with one or more commodities is of fundamental
importance not only in the valuation of a variety of instruments and the derivatives associated
with these commodities but also in the formulation of optimization and equilibrium models,
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Fig. 1 Historical copper prices in US$ from 1980 to 2011

aimed at finding ‘optimal’ extraction and/or storage strategies, that are bound to involve
these prices as parameters. Although our overall approach should, at least conceptually,
be applicable to a wide range of commodities, in this article we restrict our attention to
copper prices that will allow us to highlight, in a practical instance, the main features of
our methodology. Copper prices are highly volatile and depend on many external factors:
existing copper stocks and contracts, deposits discoveries, the local andworld-wide economic
environment and technological innovations (Fig. 1), for example.

This inherent high volatility renders the modeling particularly challenging. Our approach
departs significantly from earlier efforts in a number of ways. To begin with, we make a
distinction between short- and long-term processes. Splitting time in short and long terms,
in the case of copper prices is consistent with the conclusions reached by Schwartz [18,19]
and in line with the more data driven study of Ulloa in [22, Capitulo 7: Tendencia y volatil-
idad del precio del cobre] who concludes after applying unit root tests to subsets of data
of different lengths that shocks only affect the short-term, because in the long term copper
prices essentially revert to their long term mean price, with in the interim, a high volatil-
ity. To find appropriate estimates for these processes we rely, as is standard, on historical
prices but take also advantage of market information to build the short-term component of
the process. A complete description of the state-of-the market, i.e., involving existing and
potential (under exploration) reserves, accumulated stocks, deliverable and ‘purely finan-
cial’ contracts might turn out to be useful, but actually such detailed analysis of the market is
reflected in the futures contracts quoted at various metal exchange markets: COMEX (New
York), LME (London) and SHME (Shanghai). However, to exploit this information, this mar-
ket information (futures) must be converted into “projected” spot prices and how we proceed
is explained in the section dealing with the short-term process. The main reason for making
a distinction between the short- and the long-term comes from the fact that the high volatility
suggests that no drift term can reliably be associated with the long-term process whereas
recent historical prices complemented with market information should allow us to identify a
drift in the formulation of the short-term process1. Ourmodel also takes into account inflation

1 The inclusion or not of a mean reversion term in the long-term process will be taken up in the section devoted
to the long-term process.
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which leads us to a multi-dimensional (slightly nonlinear) system for which we can generate
explicit solutions.

Both the need come up with reliable valuation of copper-related instruments and obtain-
ing optimal management decisions (mines, processors, etc.) give rise to the need to design a
copper-price process. There are however significant differences in the main concerns. Oper-
ational decision makers are mostly concerned with having an exceptionally well-designed
short-term process in combinationwith a reasonablywell-thought out long-term process. The
overall concerns of firm-strategy planners or traders are in some ways more comprehensive
and want the capability of both short- and (mostly) long-term valuations of instruments or
projects that they might be considering. For the operations oriented decision maker, a ‘static’
model will do: what is today’s best description of the copper-price process that will be helpful
as input in a stochastic optimization model to reaching (present) optimal extraction, storage,
. . . , decisions. In the second one, a more ‘dynamic’ version will be more appropriate because
it cannot content itself with the perceived view of the future market from today’s viewpoint;
it has to be understood that the short-term view of this process might need to be modified
significantly, over even relatively short time spans, in response to an evolving environment.

Although for both short- and long-term models, we allow for an arbitrary finite number
of factors, when dealing specifically with copper, we only consider two factors:

(1) In order to factor in the inflationary/deflationary component, we rely on copper spot
prices quoted in UF(CH)—UF is a Chilean monetary unit adjusted for inflation.

(2) Since market information is quoted in US$, the present reserve currency, the second
factor is the exchange rate between the UF and the US$.

(3) One might consider including other factors such as interest rates. In fact, to do so, our
methodology makes this quite easy, since good interest rates models come with the same
characteristics, namely, a ‘split’ between short- and long term models but with slightly
different characteristics that would unnecessarily render the validation of the model more
complex without, in view of our results, improving ‘accuracy’.

A word about our ‘practical’ results. As far as the long-term is concerned, our results
are comparable to the best results of Schwartz [18,19] and significantly better than those
obtained via alternative models. For the short-term, there is essentially no competition; more
about this when we analyze the results.

The remainder of this article is organized as follows. In § 2 and § 3, we introduce the
guiding models for the short- and long-term processes. The long-term process, except for
being multivariate, is analogous to other proposals found in the literature that we review
briefly. On the other hand, the short-term component of our model departs significantly
from standard approaches and allows us to obtain significantly better predictable behavior.
We discuss and even propose a ‘blending’ of the short- and long-term processes, but don’t
provide definite guidelines how this should be worked out practically since they would,
unavoidably, be data-availability driven.

2 The short-term process

As already mentioned earlier, our principal contributions lay (i) in recognizing that the short-
and long-term processes have to be dealt with separately and (ii) in the less than standard
estimation of the parameters of the short-term process. The underlying reason is that for
the short-term process one is able to come up with drift terms that are crucial to setting
up a ‘robust’ process, both when working with (short-term) valuations and in the design
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of discretized versions (scenario trees) of this process that would be appropriate as input in
operational models. We cast our short-termmodel as a geometric brownian motion, precisely
because this model allows us to capture the drift components exploiting both historical and
market information; it also eludes the possibility of negative prices. The innovative features
of our approach are mostly in the construction of this short-term process. Our approach is
consistent with the fundamental principle that (probabilistic) estimations should be based
on all the information that can be collected rather than just ‘observations’. Taking this into
account, the inclusion of market information is crucial since it implicitly incorporates all the
information available: market expectations/beliefs, stocks, production costs and other factors
that influence prices. In addition, we propose a model that could incorporate in the volatility
component the role played by other indexes (variables) that may affect future commodity
prices, such as inflation, productivity indexes, . . . This leads us to a (stochastic) system
described by

xti = x0i exp

⎡
⎣
⎛
⎝μi − 1

2

J∑
j=1

b2i j

⎞
⎠ t +

⎛
⎝

J∑
j=1

bi j
(
wt

j

)⎞⎠
⎤
⎦

with initial conditions at time t = 0

x0i for i = 1, . . . , n,

where each xi corresponds to an ‘index’ of interest: commodity (copper) prices, inflation
rate(s), foreign exchange rates, interest rates, etc. The drift of the process is captured by the
coefficient μi whereas its diffusion coefficients bi j model the volatility-interaction between
these indexes as well as, potentially, some additional ones;w j , j = 1, . . . , J are independent
(standard) wiener processes. A 1-dimensional version of this process would read

xt = x0 exp

[(
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2
σ 2
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where ε follows a standard gaussian distribution. Hence, x follows a log-gaussian distribution
with parameters

(
(μ − 1

2σ
2)�t, σ 2�t

)
. It follows,

E[xt ] = x0e
μt , V[xt ] = x20e

2μt
(
eσ 2t − 1

)

and in the multi-dimensional case: for i = 1, . . . , n,

E[xti ] = x0i e
μi t , V[xti ] = (

E[xti ]
)2 (

e|t |∑n
j=1 b

2
i j − 1

)
.

It’s immediate that our x-process is the solution of a systemof stochastic differential equations
of the following type:

dxti =
⎛
⎝μi dt +

J∑
j=1

bi j dwt
j

⎞
⎠ xti , x0i = x0i , i = 1, . . . , n

Of course, the system’s parameters will be estimated by ‘short term data’ meaning relatively
recent historical prices complemented by market information as explained next.

2.1 Exploiting market information

Usually the information available about a commodity, in our instance copper, is manifold:
existing contracts, producers and consumers’ stocks, exploration activity, location of recent

123



Math Finan Econ (2015) 9:247–270 251

discoveries, economic predictions (future demand), and so on. In order to take such a wide
range of information into account, one needs a dedicated research division to amalgamate it
so that it can be included in a model. We suppose that the traders in this commodity, and other
agents thatmight affect its prospective value, have actually taking all these factors into account
when selling or buying futures2 If we accept this as a premise, obtaining market information
that can actually be exploited in our modeling requires transforming the information one can
collect about futures’ prices and converting it into “projected” spot prices for the next few
months, say 9–12 months. We shall then rely on the recent (historical) prices in combination
with these projected spot prices to build the ‘short-term stochastic process’. This conversion
relies mainly on the fact that we can deduce the projected spot rate curve from the futures
prices by relying on the epi-spline technology [17,23,24].

In this instance, it will suffices to consider epi-splines of second order, i.e., twice differ-
entiable which take the following (particular) form:

z(t) = z0 + v0t +
∫ t

0

∫ τ

0
x(s) ds dτ, t ∈ [0, T ]

where

• x : (0, T ) → IR is an arbitrary piecewise constant function that corresponds to the 2nd
derivative of z,

• {v0, z0} are constants that can be viewed as integration constraints.

Our construction is similar, at least in purport, to that in [23]: split the interval [0, T ] into
N sub-intervals of length δ = T/N and let the function x , the second derivative of z, be
constant on each one of these intervals, say,

x(t) = xk, t ∈ (tk−1, tk) , k = 1, . . . , N

where 0, t1, . . . , tL are the end points of the N sub-intervals. The curve z ∈ [0, T ] is com-
pletely determined by the choice of

z0, v0 and x1, . . . , xN ,

i.e., by the choice of a finite number (N + 2) of parameters. Then, for t ∈ (tk−1, tk
]
one has,

z(t) = z0 +
∫ t

0
z′(s)ds = z0 +

k−1∑
j=1

∫ t j

t j−1

z′(s) ds +
∫ t

tk−1

z′(s) ds

= z0 + v0t + δ

k−1∑
j=1

(
t − t j + δ

2

)
x j + 1

2
(t − tk−1)

2 xk;

such a function belongs to C1,pl , i.e., it’s continuously differentiable with piece-wise lin-
ear derivative. In our particular case, we want to generate a (projected) spot curve for the
commodity prices by minimizing the deviations from the available data, i.e.,

find z ∈ C1,pl ([0, T ] , N ) such that ‖�s − z(�t)‖p is minimized (1)

where �s = (s1, . . . , sL ) corresponds to the present net value of the assets being considered
and �t = (t1, . . . , tL ) are the dates when these assets generate ‘cash-flow’ via deliveries.

2 How futures’ prices are determined is not of immediate concern including the role played by any of the
factors mentioned above; one could consult [5,8] for an analysis of how they might depend on stock levels
and spot prices associated with contracts involving actual deliveries.
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To model commodity prices, here copper, we actually derive the corresponding discount
factor curve d f which will be used to generate the ‘projected’ spot prices. It’s a function with
the following properties:

• it should be nonnegative, decreasing and with d f (0) = 1;
• the net present value of the ‘cash-flows’ must be as close as possible to zero,
• all the associated, forward-rates and spot, curves should be smooth.

Our problem can thus be reformulated as

find d f ∈ C1,pl ([0, T ] , N ) so that ‖v‖p is minimized.

If I is our collection of instruments, �v = (
v1, . . . , v|I |

)
is the corresponding vector of net

present values, i.e.,

vi =
Li∑
t=1

d f (til)sil , ∀i ∈ I ;

usually in the case of futures only a single delivery takes place but our formulation also
allows for instruments with layered deliveries. For t ∈ (

δ(k − 1), δk
]
, δ = T/N , d f ∈

C1,pl ([0, T ] , N ) can be expressed as:

d f (t) = 1 + v0t + δ

k−1∑
j=1

(
t − t j + δ

2

)
x j + 1

2
(t − tk−1)

2 xk with τ = t − δ(k − 1) (2)

and v0, x1, . . . , xN are the parameters that need to be determined. It’s noteworthy that d f is
linear in those parameters! As criterion, we rely on minimizing maximum error, i.e., p = ∞,
the problem then takes the following form, with d f as defined above,

min max
i∈I

∣∣∣∣∣∣
Li∑
l=1

d f (til)sil

∣∣∣∣∣∣
d f ′(t) ≤ 0, ∀t ∈ [0, T ]
d f (T ) ≥ 0,

v0 ≤ 0, xk ∈ IR, k = 1, . . . , N ;
note that since d f (0) = 1, the two first constraints will imply that d f ≥ 0 on [0, T ].
Finding adiscount factor curve is fundamentally an infinite dimensional optimizationproblem
but the use of the epi-spline representation reduces it to a finite dimensional one that can
exploit the well-tested standard optimization routines. How this is actually carried out, cf.
[24, Sect. 6.2].

2.2 ‘Projected’ spot rates, drift and initial conditions

Given the discount curve d f , the (projected) spot prices curve is immediately available since

sp(t) = d f (t)−1/t − 1 for t ∈ [0, T ].
We have at our disposal recent historical prices, say for the last 9 ≤ τ ≤ 12 months, today’s
price and the market prices for the next τ months. It’s this information that will be used, as
explained in the next section to build the drift of the short-term process. Again, we rely on an
epi-spline fit to these prices to determine the ’drift’ of the short-term process. Combining this
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prices-information (short term past and relatively short term market projected spot-prices)
to obtain the drift of the process, i.e., we ‘fit’ as well as possible our drift curve to these spot
prices. The drift fit is obtain by solving the following optimization problem:

find u0, v0 and x j , j = 1, . . . , N such that

‖(sp(t) − u(t)), t = −τ, . . . , τ‖p with

u(t) = u0 + v0t + δ

k−1∑
j=1

(
t − t j + 0.5δ

)
x j + τ 2

2
xk, ∀t ∈ [0, T ]

where the interval [−τ, τ ], the time span we want to take into account, has been subdivided
in a 2τ/N mesh and sp(t) for t = −τ, . . . , 0 are the observed historical prices and sp(t) are
the (calculated) market projected spot-prices for t = 1, . . . , τ . The drift of the short-term
process will then be taken to be the optimal solution of this optimization program u∗(t) for
t ≥ 0.

One noteworthy consequence of this approach is that the initial condition of our process
will be u∗(0) and not today observed price sp(0). One justification for proceeding in this
fashion is that one should view today’s (observed) spot price as the ‘actual’ spot price per-
turbed by some noise; our empirical calculation confirm that choosing u∗(0) as the initial
point for the short-term process yields substantially better results.

We proceed similarly to obtain the drift component of the UF(CH) versus US$ as well as
any other index, e.g., interest rates, that might have been included in the model.

2.3 Volatility components

Since V[xti ] = (
E[xti ]

)2 (
e|t |∑n

j=1 b
2
i j − 1

)
, once the drift terms have been determined, the

estimation of the volatility component (covariance) will rely on a (standard) least squares
estimate, cf. Appendix 2.

3 The long-term process

Our long-term process is pretty much in line with what can be found in the literature for
the ‘overall’ process. Since this is to a large extent familiar territory, we won’t provide a too
detailed analysis. The only issue that needs some concern is to decide if the model should be
build with or without mean reversion and there is really no consensus that has emerged from
rather elaborate analyses.

Basicmicroeconomics theory tells us that high prices should lead to increased supply since
because higher cost producers will enter the market and that, in turn, will push down prices,
returning to the market to its ‘equilibrium’ price. Conversely, if prices are relatively low some
producers will not be able to enter the market and the supply will decrease, stimulating a rise
in prices. The mean reversion theory, introduced by [21], is supported by many authors: [3]
confirms mean reversion in spot asset prices of a wide range of commodities using the term
structure of future prices; [1] proves the same using the ability to hedge option contracts as a
measure of mean reversion; [18] compare three models of commodity prices that takes into
account mean reversion, and there are many other authors that use mean reverting processes
to model commodity prices.

On the other side, results show that in some cases mean reversion is, at best, very slow,
and in others the unit root test fails to reject the random walk hypothesis. For example,
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[7] apply this test to crude oil and copper prices over the past 120 years, and they reject
the random walk hypothesis, which confirms that these prices are mean reverting. However,
when they perform the unit root test using the data for only the past 30 or 40 years, they fail to
reject the random walk hypothesis. The explanation they give for this result is that the speed
of reversion is very slow, so using ’recent’ past data is difficult to statistically distinguish
between a mean-reverting process and a random walk. They conclude that one should rely
more on the theoretical and economical consistency (for example, intuition concerning the
operation of equilibrium mechanisms) than in statistical tests when deciding which kind of
model is better. Another example is given by [9], where they test many different models to
predict medium term copper prices (from one to five years) and they conclude that the two
models with better performance are the first-order autoregressive process and the random
walk.

This evidence suggest that in the short term (±a couple of years) there may be no mean
reversion, which is very logical because a producer can not open suddenly a new plant if
prices are high or close the mine if prices are low. Again this argument supports our approach
that disconnects short and the long term effects and will rely to a large extent on a different
data base to build the two main components of our model.

For the long termwe set up a stochastic stochastic process that ismean reverting determines
the drift of the long-term process. We rely on a variant of geometric brownian motion with
mean reversion which is also in tune with our choice of inflation free ‘currency’.

Our model for the long term process: for i = 1, . . . , n,

yti = υi
(
1 − e−μi t

)+ y0i exp

⎡
⎣−

⎛
⎝μi + 1

2

J∑
j=1

b2i j

⎞
⎠ (t − t0) +

J∑
j=1

bi j

(
wt

j − w
t0
j

)⎤
⎦

and with t0 = 0,

yti = υi
(
1 − e−μi t

)+ y0i exp

⎡
⎣−

⎛
⎝μi + 1

2

J∑
j=1

b2i j

⎞
⎠ t +

J∑
j=1

bi jw
t
j

⎤
⎦ ; (3)

i.e., also a (shifted) log-gaussian process; the 1-dimensional version reads,

yt = υ
(
1 − e−μt )+ y0 exp

[(
μ + 1

2
σ 2
)
t + σwt

]
.

The long-term system can be viewed as an approximate solution of the system of stochastic
differential equations,

dyti = μi
(
υi − yti

)
dt +

⎛
⎝

J∑
j=1

bi j dwt
j

⎞
⎠ yti , i = 1, . . . , n, (4)

yt0i = y0i , i = 1, . . . , n (5)

where y0i is the present value of index i (is given), μi and bi j are constants that need to
be estimated, yt = (

yt1, . . . , y
t
n

)
is the state of the system at time t , w j , j = 1, . . . , J are

independent (standard) wiener processes, υi is and index to which yti reverts in the log term
and μi is the ’speed’ at which yti reverts to υi ; in view of our earlier discussion, the strategy
is to include mean-reversion drifts at a very slow rate and, consequently, its influence is quite
attenuated.
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This model was proposed by [7], and also used in [15] to model oil prices3. The solution
of this system is: for i = 1, . . . , n,

yti = yt0i exp

⎡
⎣
⎛
⎝μi + 1

2

J∑
j=1

b2i j

⎞
⎠ (t − t0) +

⎛
⎝

J∑
j=1

bi j

(
wt

j − w
t0
j

)⎞
⎠ (t − t0)

⎤
⎦

+μiυi

∫ t

0
eri (t,s)ds

where,

ri (t, s) = −
⎡
⎣μi + 1

2

J∑
j=1

b2i j

⎤
⎦ (t − s) +

J∑
j=1

bi j
(
wt

j − ws
j

)
.

We substituted the term μiυi
∫ t
0 e

ri (t,s)ds by its expectation; calculated in Appendix 1. We
proceed in this manner since for all practical purposes the error introduced by this approxi-
mation is negligible and that the, eventual estimation of the coefficients μi , υi and bi j would
be very onerous if not practically impossible.

Finally, to calculate the mean and the covariance terms of the n-dimensional process, we
rely again on the properties of gaussian processes and obtain, for i = 1, . . . , n,

E[yti ] = υi + (
y0i − υi

)
e−μi t (6)

cov{ytk, ytl } = y0k y
0
l e

−(μk+μl )t

⎛
⎝exp

⎡
⎣t

n∑
j=1

bkj bl j

⎤
⎦− 1

⎞
⎠ (7)

and, in particular, V[ytk] = (
y0k e

−μk t
)2 (

et
∑n

j=1 b
2
k j − 1

)
; in the 1-dimensional case,

E[yt ] = υ + (y0 − υ) e−μt , V[yt ] = (
y20e

−μt )2 (eσ 2t − 1
)

.

4 Blending short- and long-term processes

There remains only to pass from the short- to the long-term process to end up with a ‘global’
process. How to do this is still very much an open question that we only deal with exper-
imentally complemented by data analysis, and consequently, only in the context of copper
prices and exchange rates. Moreover, there seems to be a consensus in the literature, see the
next section, that the long-term model reflects pretty well the behavior starting somewhere
between the third and fourth year and up to that point is rather unsatisfactory. This was
corroborated by our own numerical experimentation which suggests that the ‘reign’ of the
short-term process is relatively short, the market reverts rather rapidly to its natural state.

3 In the Pilipovic model, prices are modeled by a system of two stochastic differential equations: the first one
for the spot price, which is assumed to mean-revert toward the equilibrium price level, and the second for the
equilibrium price level, which is supposed to follow a log-gaussian distribution,

dSt = α (Lt − St ) dt + σ St dwt

dLt = μLt dt + Lt yidzt
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On the basis of these considerations, we posit that the overall process X is a blending of the
short-term process x and the long-term process y:

Xt = λt x
t + (1 − λt ) y

t , (8)

with Xt0 = X0 the initial state vector derived for the short-term process and λt is a (decreas-
ing) function of time. It’s natural to think that in the short term λt = 1, i.e., X = x , and
eventually, for t ≥ 4, λt = 0, which means that there is no longer any influence of the
short-term behavior. In the case of copper prices (and exchange rates), we set

λt =
⎧⎨
⎩
1 t ∈ [0, t1],
γ t1−t t ∈ [t1, t2],
0 t ∈ [t2,∞)

with: t1, t2 and γ are, in principle, parameters to be estimated. The estimation of these
parameters is a serious challenge because no such study is available at this time for copper
prices or any other commodity, for that matter. However, we relied on our own data analysis
to set t1 = 1, t2 = 4 and γ = 2; one could also rely on experts’ advice. Once the parameters
t1, t2 and γ have been selected a blended process can be built; cf. the follow up sections for
a specific example.

5 Brief overview of the literature

Although there is some overlap between the design of the long-term component of our model
with some earlier work, it’s difficult to make an orderly comparison sincemuch of the novelty
in our approach isn’t featured, as far as we can tell, in any other proposed model. In order to
emphasize, the departure of the proposedmodel from the relevant alternatives, we go through
a brief review pointing out their salient features.

In general terms the literature oriented to modeling commodity prices can be classified in
two categories: structural models and reduced formmodels. The first family aims to represent
how partial equilibriums are reached in these markets. Then, a typical application considers
models for the demand, the supply and the storage, and an expression of the equilibrium
price is derived from them. The basic equilibrium model is described in [25] and examples
of this approach are featured in [2] and [16].

On the other hand, reduced formmodels assumes that the stochastic behaviour of commod-
ity prices can be captured by stochastic differential equations. This approach is very popular
because of its relative simplicity, and in absence of big changes in the market structure their
predictive accuracy outperforms structural models [9]. However, most of the work has been
oriented to the valuation of contingent claims, where a mean-reverting spot price model is
combined with other factors to obtain a process for the valuation of different derivatives.

One of the most important examples of this approach is given by Schwartz [18] who
compares three models for the valuation of commodity contingent claims. In the first model,
the logarithm of the spot price is considered as the unique factor and is assumed to follow a
mean reverting Ornstein-Uhlenbeck process. Then, the spot price is given by:

dS = κ (μ − ln S) dt + σ Sdz.

In his second model, [18] provides a variation of the two-factor [10] model with the spot
price following a mean reverting process given by:

dS = (μ − δ) Sdt + σ1Sdz1,
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where δ is the convenience yield which is also assumed to be stochastic. In fact, its behaviour
is modeled by the SDE:

dδ = (α − δ) dt + σ2dz2

and the correlation between both processes is incorporated with the condition dz1 ·dz2 = ρ1.
Finally, in his third model [18] introduces a three factor model that extends the previous one
by including the interest rates as a third stochastic factor. For this purpose, interest rates are
modeled as a mean-reverting process, and the join process is given by:

dS = (r − δ) Sdt + σ1Sdz1

dδ = (α − δ) dt + σ2dz2

dr = a (m − r) dt + σ3dz3

dz1 · dz2 = ρ1, dz2 · dz3 = ρ2, dz1 · dz3 = ρ3

Extensions of [18]’s two and three-factor models are presented by [11,13,14] and [16].
On the other hand, there are some multi-factor models that make an implicit distinction

between short and long term. [15] defines a two-factor model by considering the spot price
(S) and the long term equilibrium price (L). The first factor is assumed to mean-revert toward
the equilibrium price level, and the second is assumed to follow a log-gaussian distribution:

dSt = α (Lt − St ) dt + σ Stdzt

dLt = μLtdt + ξLtdwt .

A similar approach is followed by [20] which proposes a two factor-model which includes
the short-term deviation in prices (χt ) and the equilibrium price level (ξt ) as factors:

dχt = −κχt dt + σχdzχ

dξt = μξdt + σξdzξ

dzχ · dzξ = ρχξdt

From these factors one builds the process for the spot price,which is given by ln (St ) = χt+ξt .

6 Data

The data used to estimate and test the models described above consist of monthly average
observations of the LME spot copper price, from 01/1980 to 11/2012. Having a good amount
of data is particularly important to estimate the long-term process, because one of our goals
is to test the performance of our method varying the forecast’s horizon.

In particular, for our experiments with all the information available and the long-term
process we proceeded to deflect prices by the US CPI, in order to avoid inflation effects. This
wasn’t done for the short-term process experiments because market data comes in nominal
terms, and also because in the short-term prices do not change considerably due to inflation.

In addition to this, in order to include market information in the estimation of the short-
termprocesswe used the first twelve LMEcopper future contracts. Then, for eachmonth from
01/2000 to 10/2012 we used the average future price for each contract, and we combine this
information with the short-term historical spot prices to get an estimation of the parameters
involved in each short-term model.

Finally, here we consider just two factors to estimate the short- and long-termmultivariate
processes: the spot copper price and the exchange rate between US$ dollars and UF(CH).
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Table 1 Unit root tests applied to the data used in our experiments

ADF test KPSS test VRatio test

LME spot copper prices 1980–2012 0.337 5.405 2.693

(0.775) (0.010) (0.007)

LME deflected spot copper prices 1980–2012 −0.756 4.949 2.737

(0.374) (0.010) (0.006)

LME spot copper prices 2005–2012 0.284 0.471 2.445

(0.752) (0.010) (0.010)

For this purpose, we take into account monthly average data for the exchange rate, from
01/1984 to 10/2012. Those used for the exchange rate in our copper price model is based
on the work of Chen et al. [4], where it is shown that “the Chilean exchange rate has strong
predictive power for future copper prices.” Furthermore, the inclusion of this factor allows us
to incorporate a measure of the Chilean inflation, which might also be important in modeling
copper prices. As proposed by Schwartz [18] in his three factor model, interest rates are
included as a third factor which could also be easily be included to our model. However, for
the sake of simplicity, we restrict ourselves to the two principal factors: copper prices and
US$-UF(CH) exchange rates. The actual data used can be found on the journal web-page
under Electronic Supplementary Material.

Unit root tests As discussed already earlier, there is no consensus if commodity prices exhibit
mean reversion and copper prices are no exception. So, we proceeded to apply the best known
unit root tests—Augmented Dickey–Fuller (ADF), Kwiatkowski-Phillips-Schmidt-Shin and
Variance Ratio test—to the data we use in our experiments4.

The results in Table 1 allow to conclude that the ADF test fails to reject the existence of
a unit root in every set of data considered. In the same line, the null hypothesis of the KPSS
test is rejected in all cases, so it confirms the results obtained by the ADF test. However, from
the results of the Variance Ratio test it follows that we can reject their null hypothesis at a
confidence level of 95 % in every case, which allow to conclude that the stochastic processes
considered do not follow a randomwalk. This result contradicts those obtained by other tests,
and confirms the difficulty of determining the existence of unit roots in times series by using
those tests.

7 Validation and experiments

7.1 Short-term drift estimation

Having the historical information and also market information converted in projected spot
prices,

sp(t), t = −12(9), . . . , 0, . . . , 12(9),

we can compute the drift term of the process. To accomplish this we rely on three methods:

4 We also implemented the Phillips–Perron test but the results obtained were the same as for the ADF test.
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1. The classical approach in the literature, which is

μ̂ = E

[
ln

(
sp(t + 1)

sp(t)

)]
+ 1

2
σ̂ 2

σ̂ = V

[
ln

(
sp(t + 1)

sp(t)

)] (9)

Under this approach the spot price at time 0 is assumed to be the initial state of the system,
i.e., θ = sp(0). This approach is referred to as “Classic” approach in the results.

2. A second approach is to estimate the initial state and the drift term by fitting a curve to
the data. In particular, if we assume that spot prices can be approximated according to
the expression,

sp(t) = θeμt+εt ,

where θ is the initial state,μ the drift term and εt an error, we can estimate the parameters
by minimizing the sum of the errors, i.e.,

(
θ̂ , μ̂

)
∈ argmin

(θ,μ)

12∑
t=−12

∣∣∣∣μt − ln

(
sp(t)

θ

)∣∣∣∣ . (10)

We refer to this method as “Novel” approach.
3. Another approach to estimate the drift term is to fit another curve (we relied on an epi-

spline fit) aiming to minimize the deviations from the data, i.e., find a curve z such
that

‖z(t) − sp(t), t = −12, . . . , 12‖p (11)

is minimized under certain norm p. Then, the initial state can be obtained from the value
of this curve at time 0, i.e. θ̂ = z(0), and the drift term can be assumed to be time
dependent and computed by,

μ̂t = 1

t
ln

[
z(t)

z(0)

]
.

In our case, we use epi-splines to fit this curve. Then, we refer as thismethod of estimating
θ and μ as the “Epi” approach.

To measure the impact of including market information into the drift estimation and also
the performance of our method against benchmark approaches in the literature we proceed
as follows:

1. For each time t we proceed to estimate the parameters (μ̂ and θ̂ ) using only histori-
cal information, {t − 12, . . . , t − 1}, and also combining this with market information
converted into future spot prices, {t + 1, . . . , t + 12},

2. Compute a forecast for the next 12 months using the expression,

f(t+i) = θ̂eμ̂t

3. Compute the in-sample error between the forecast in the observed spot prices,

εi = St−i − ft−i , i = 12, . . . , 0

and the out-of-sample error,

εi = St+i − ft+i , i = 1, . . . , 12
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Fig. 2 Montly average LME spot prices from 2000 to 2012

To measure the errors we used the following metrics:

• In and out-of sample mean absolute error (MAD)
• In and out-of sample mean absolute percentage error (MAPE)
• In and out-of sample mean squared error (MSE)
• In and out-of sample weighted average error (WAE), weighted by 1/ti , where ti is the

period considered.
• In and out-of-sample maximum absolute error (MAE)
• In and out-of-sample root mean square error (RMSE)

Data To perform the experiments concerning drift estimation in the short term we use
monthly average spot prices obtained form the LME between 2000 and 2012, in combination
to future contracts for each month up to one year. However, looking at the data depicted
in Fig. 2 we can see that there is an structural change in 2004 who produced a positive—
permanent shock in prices. Then, to avoid problems in the estimation we proceed to run our
experiments in two separated time intervals:

• From January 2000 to July 2004,
• From October 2005 to October 2011.

7.2 Analysis of the short term drift estimation

As indicated earlier, we implement three methods to estimate the drift and the initial state
of our short-term model. In addition to this, we evaluate the impact of including market
information in the estimation of these parameters. Figure 3 records the errors in and out of
sample obtained for the period between 2000 and 2004, while Fig. 4 records those between
2005 and 2011. It’s important to remark that we don’t perform any estimates for 2012 in
order to use that data to measure the errors of the forecasts made in 2011. In these plots,
for each measure of errors we have three columns, one for each drift estimation method. In
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(a) (b)

Fig. 3 In and out-of-sample errors obtain between 01/2000 and 07/2004. a In-sample. b Out-of-sample

(a) (b)

Fig. 4 In and out-of-sample errors obtain between 10/2005 and 10/2012. a In-sample. b Out-of-sample

addition to this, the first two columns of each error measure contain two colors: one referring
to the estimation only considering historical data, and the other one reflecting the results of
combining historical and market information.

FromFigs. 3b and 4bwe observe that the use of epi-splines outperforms the othermethods,
decreasing by around 6 % the different measures of error considered. In addition to this, we
can see that the inclusion of market information reduce the errors out of sample regardless
of the method employed to estimate the drift and the initial state of the process. However
it’s not clear what estimation method benefited the most by including market information:
in the period 2000–2004 the “novel” approach presents savings of around 40 %, whereas in
the next period, the “classic” method is the one with the highest savings.

Finally, we observe that estimating the initial state of the system invariably leads to better
results than just considering the spot price at time 0 as the initial state of the system.

Another way to visualize the impact of including market information is by plotting the
forecasts and confidence intervals obtained with and without market information. In Fig. 5
two examples of this are provided, considering the data from 01-2001 and 10-2010. These
plots consider the forecasts for the next 12months, and the confidence intervals were obtained
with one standard deviation.

From these plots is clear that the inclusion of market information in the drift estimation
contributes to improve our results.
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Fig. 5 Forecasts and confidence intervals obtained with and without market information. a Only historical
information. b Historical and market information

7.3 Benchmark comparison

In [9] a comparison between different methods to estimate short and middle term copper
prices (from 1 to 5 years) is performed. Among their conclusions the authors state that in
the short-term (less than one year) the best model to represent the stochasticity of copper
prices is the random walk, whereas in longer periods the AR(1) process outperforms more
sophisticated methods as the one, two and three factor models in [18], ARIMA’s and non-
linear ESTAR models, among others.

Short-term Therefore, in Figs. 6 and 7 we compare our results to those obtained via the
random walk (RW), the random walk with drift (RWWD) and the first order autoregressive
process (AR(1)) in the periods 2000–2004 and 2005–2012 respectively.

The results depicted in Figs. 6b and 7b are consistent with the conclusions in [9]: the
random walk outperforms the random walk with drift and the AR(1) process. However, if
we look at the results we can see that the use of epi-splines leads to a reduction between 2.5
and 4 % depending on the measure of error considered.

Long-term estiamtes Fig. 8 records the results out-of-sample obtained from comparing
our long-term model against the AR(1) model, which is the best in the literature accord-
ing to [9]. In particular, for each month between 1980 and 2011 we estimated the
expected value of each process for the next N periods, with N = 12, 24, 48, 60 and 120
months.
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(a) (b)

Fig. 6 In and out-of-sample errors of benchmark methods between 01/2000 and 07/2004. a In-sample.
b Out-of-sample

(a) (b)

Fig. 7 In and out-of-sample errors of benchmark methods between 10/2005 and 10/2012. a In-sample.
b Out-of-sample

From this plot is clear that the AR(1) process is outperformed by our long-termmodel, which
leads to savings around 40 % in the MAPE.

7.4 Multivariate model

7.4.1 Short-term

As we discussed above, in our first approach we just considered two equations (n = 2) to
model the evolution of copper prices: one for the copper price in US dollars, and other
for the exchange rate between US dollars and UF. In addition, we considered the cop-
per price and the inflation (exchange rate US dollar - UF) as factors, i.e., J = 2, which
means that the system is closed and no other factors affect the evolution on the indexes
considered.

As we have seen before, μi , bi j , i, j ∈ {p, r} are parameters that need to be estimated.
For doing this, we use the recent historical information (for the last year)

x−12
i , x−11

i , . . . , x0i , i ∈ {p, r} ,

123



264 Math Finan Econ (2015) 9:247–270

Fig. 8 Long-term comparison

Fig. 9 CDF and PDF of the transient process estimated for 10/2011

and market information (futures) for copper prices,

x1p, . . . , x
12
p .

Having this data, we estimated the parameters using the methods described in Appendix 2
and we obtained the cumulative probability and the probability density functions of the
multivariate process for the next period (month). Figure 9 shows an example of the curves
obtained considering the data of 10/2011.

7.4.2 Long-term

As for the transient process, in our first approach we considered a closed system with 2
factors: spot copper price in US dollars and the exchange rate between US dollars and UF.
Then, using the historical data we can obtain the cumulative density and the probability
density functions. In Fig. 10 we show the results obtained considering the data from 01/1984
to 10/2011.
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Fig. 10 CDF and PDF of the stationary process estimated for 10/2011

Fig. 11 CDF and PDF of the blended process estimated for 10/2011

Finally, as it’s explained in Sect. 4 the transient and the stationary processes can be blend
to estimate copper prices in the mid term. In our case, as an example we proceeded to blend
the process estimated in this section and in the previous one, considering γ = 2, T1 = 1 and
T2 = 4. Figure 11 shows the results obtained.

8 Conclusions

We have described a stochastic process aimed at estimating copper prices. It models the
blending of two sub-models: short- and long-term models. As indexes, our focus was on
copper prices, the inflation adjusted prices UF(CH) and the corresponding exchange rate
with the US$; note, however, that the guiding models would allow for the inclusion of many
additional indexes if they were consider relevant.

We depart from previous work in several ways. The explicit differentiation of short and
long term regimes, the inclusion of market information in the estimation of the short term
drift and the capability to extend the model to incorporate any number of factors (indexes)
are examples os this.
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In addition , we have seen that the use of the rather novel epi-splines technology, to
distill market information to generate ‘projected’ spot prices improves remarkably the drift
estimation in the short-term, outperforming any, so far any suggested, models.

Because of our access to rather parsimonious data, wewere unable to provide a satisfactory
methodological answer to the blending of the short- and long-term processes, we relied on our
experimental results as well as the observations recorded in earlier studies; however access
to additional information, which is usually proprietary, should result in further improved
estimates for the coefficients of the blending function (λ).
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9 Appendix

9.1 Appendix 1: Approximate solution of the long-term process

The solution of the long-term process is given by,

xti = x0i exp

⎡
⎣−

⎛
⎝μi + 1

2

J∑
j=1

b2i j

⎞
⎠ (t − t0) +

J∑
j=1

bi j
(
wt

j − w
t0
j

)⎤⎦+ μiυi

∫ t

0
eri (t,s)ds

where ri (t, s) = −
[
μi + 1

2

∑J
j=1 b

2
i j

]
(t − s) + ∑J

j=1 bi j
(
wt

j − ws
j

)
. We are going to

approximate this solution replacing the term μiυi
∫ t
0 e

ri (t,s)ds by its expectation. Then,

E

(
μiυi

∫ t

0
eri (t,s)ds

)
= μiυi

∫ t

0
e
−
(
μi+ 1

2

∑J
j=1 b

2
i j

)
(t−s)

E

⎛
⎝exp

⎡
⎣

J∑
j=1

bi j
(
wt

j−ws
j

)⎤⎦
⎞
⎠ ds

= μiυi

∫ t

0
e
−
(
μi+ 1

2

∑J
j=1 b

2
i j

)
(t−s)

E

⎛
⎝

J∏
j=1

exp
[
bi j
(
wt

j − ws
j

)]⎞⎠ ds

= μiυi

∫ t

0
e
−
(
μi+ 1

2

∑J
j=1 b

2
i j

)
(t−s)

J∏
j=1

E

(
exp

[
bi j
(
wt

j − ws
j

)])
ds

But noting that
(
wt

j − ws
j

)
is a gaussian process with mean 0 and variance (t − s) we know

that,

= μiυi

∫ t

0
e
−
(
μi+ 1

2

∑J
j=1 b

2
i j

)
(t−s)

J∏
j=1

exp

[
1

2
b2i j (t − s)

]
ds

= μiυi

∫ t

0
e
−
(
μi+ 1

2

∑J
j=1 b

2
i j

)
(t−s)

exp

⎡
⎣1

2

J∑
j=1

b2i j (t − s)

⎤
⎦ ds

= μiυi

∫ t

0
e−(μi )(t−s)ds
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= μiυi e
−μi t

∫ t

0
eμi sds

= υi e
−μi t

(
eμi t − 1

)

= υi
(
1 − e−μi t

)

Finally, we can approximate the solution of the long-term process to,

xti = υi
(
1 − e−μi t

)+ x0i exp

⎡
⎣−

⎛
⎝μi + 1

2

J∑
j=1

b2i j

⎞
⎠ (t − t0) +

J∑
j=1

bi j
(
wt

j − w
t0
j

)⎤⎦

9.2 Appendix 2: Parameter estimation of the short-term process

The SDE that governs the short term process can be written as,

dSti =
⎛
⎝μi − 1

2

J∑
j=1

b2i j

⎞
⎠ dt +

J∑
j=1

bi j dwt
j

where Sti = ln xti . Then, we know that the dSti follows a gaussian distribution with the
following properties (see Dixit [6] and Hull [12]):

E
[
dSti

] =
⎛
⎝μi − 1

2

J∑
j=1

b2i j

⎞
⎠ dt

V
[
dSti

] =
J∑

j=1

b2i j dt

cov
[
dSti , dS

t
k

] =
J∑

j=1

bi j bk j dt

Considering the discrete case we have,

E

[
St+�t
i − Sti

]
=
⎛
⎝μi − 1

2

J∑
j=1

b2i j

⎞
⎠�t

V

[
St+�t
i − Sti

]
=

J∑
j=1

b2i j�t

cov
[
St+�t
i − Sti , S

t+�t
k − Stk

]
=

J∑
j=1

bi j bk j�t

Then, the easiest method to estimate the parameters of this model is using the fact that
Sti = ln xti and historical prices in such a way that,

μi = E

[
1

�t
ln

(
xt+�t
i

x ti

)]
+ 1

2

J∑
j=1

b2i j

J∑
j=1

b2i j = V

[
1√
�t

ln

(
xt+�t
i

x ti

)]
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J∑
j=1

bi j bk j = cov

[
1√
�t

ln

(
xt+�t
i

x ti

)
,

1√
�t

ln

(
xt+�t
k

x tk

)]

Another way to estimate these parameters is recalling that, for i ∈ {p, r}
E[xti ] = x0i e

μi t ,

where μi is the drift and x0i the initial value of index i .
Then, we estimateμi , i ∈ {p, r} and the initial state denoted by θi , i ∈ {p, r}. Estimating

the initial state is very important because in most applications is used the actual spot price
as initial condition, forgetting that this also has noise as it is a random variable.

Finally, assuming that the errors in the observations (xti ) come from white noise around
the drift term μi t , one has

xti = θi e
μi t+εti , t ∈ T

The main idea of this approach is to minimize the error associated to the estimation. For
doing so, we are going to minimize

∑
t∈T |εti |2, i.e.,

(
θ̂i , μ̂i

)
∈ argmin (θi , μi )

∑
t

∣∣∣∣μi t − ln

(
xti
θi

)∣∣∣∣
2

Differentiating with respect to θi and μi we get,

dυi

dθi
= 2

∑
t

(
ln

(
xti
θi

)
− μi t

)
1

θi

dυi

dμi
= 2

∑
t

(
ln

(
xti
θi

)
− μi t

)
t

Setting these derivatives equal to 0 we obtain,

dυi

dθi
= 0 ⇒ μi =

∑
t∈T ln

(
xti
θi

)
t

∑
t∈T t2

,
dυi

dθi
= 0 ⇒ μi =

∑
t∈T ln

(
xti
θi

)
∑

t∈T t
.

Solving the system and denoting a = ∑
t∈T t and b = ∑

t∈T t2 we obtain, for i ∈ {p, r}

θ̂i = exp

((
a2 − bη

)−1∑
t

(at − b) ln(xti )

)

μ̂i = b−1

(∑
t∈T

t ln

(
xti
θ̂i

))

where η is the number of observation, i.e., if we consider just the historical information of
the last 12 months η = 13.

Covariance matrix To estimate the covariance matrix with this method we know that,

cov
{
xti , x

t
j

}
= x0i x

0
j e

(μi+μ j )t

[
exp

(
t

J∑
k=1

bikb jk

)
− 1

]
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Assuming that observations are corrupted by a white noise εtkl that affects |t |∑ j∈{p,r} bkj bl j
and recalling that x̂ tk = θ̂keμ̂k |t |, i.e., for t = −12, . . . , 0,

(
xtk − x̂ tk

) (
xtl − x̂ tl

) = θ̂k θ̂l e
(μk+μl )t

⎡
⎣exp

⎛
⎝|t |

∑
j∈{p,r}

bkj bl j + εtkl

⎞
⎠
⎤
⎦

Then, seeking estimates that minimize
∑

t |εtkl |2, one obtains the estimate β̂kl for∑
j∈{p,r} bkj bl j :

β̂kl =
∑

t |t | ln
[
1 + (xtk−x̂ tk)(x

t
l −x̂ tl )

x̂ tk x̂
t
l

]
∑

t t
2

Thus, the estimate for cov
(
xtp, x

t
r

)
is,

σ̂ t
pr = θ̂p θ̂r e

(μp+μr )|t |
(
eβ̂pr |t | − 1

)

and the variance, for k ∈ {p, r},
σ̂ t
kk = θ̂2k

(
eβ̂kk |t | − 1

)
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