Development of the Standards of Reporting of Neurological Disorders (STROND) checklist

A guideline for the reporting of incidence and prevalence studies in neuroepidemiology

ABSTRACT

Background: Incidence and prevalence studies of neurologic disorders play an important role in assessing the burden of disease and planning services. However, the assessment of disease estimates is hindered by problems in reporting for such studies. Despite a growth in published reports, existing guidelines relate to analytical rather than descriptive epidemiologic studies. There are also no user-friendly tools (e.g., checklists) available for authors, editors, and peer reviewers to facilitate best practice in reporting of descriptive epidemiologic studies for most neurologic disorders.

Methods: A review of previously developed guidance was used to produce a list of items required for incidence and prevalence studies in neurology. A 3-round Delphi technique was used to identify the “basic minimum items” important for reporting, as well as some additional “ideal reporting items.” An e-consultation process was then used in order to gauge opinion by external neuro-epidemiologic experts on the appropriateness of the items included in the checklist.

Findings: Of 38 candidate items, 15 items and accompanying recommendations were developed along with a user-friendly checklist.

Conclusions: The introduction and use of the STROND checklist should lead to more consistent, transparent, and contextualized reporting of descriptive epidemiologic studies resulting in more applicable and comparable findings and ultimately support better health care decisions.

Neurology® 2015;85:821–828

GLOSSARY

GBD = Global Burden of Disease and Injuries; HIC = high-income countries; LMIC = low- to middle-income countries; PD = Parkinson disease; STROBE = Strengthening the Reporting of Observational Studies in Epidemiology; STROND = Standards of Reporting of Neurological Disorders.

Neurologic diseases are becoming more prevalent as the world’s population ages and their burden is expected to increase globally. These conditions are often subtle in their clinical manifestation and are prone to misconceptions and misinterpretations. In epidemiologic studies, neurologic conditions can provide particular challenges including: (1) the diagnostic criteria tend to be variable, or subjective, or prone
to misclassification; (2) the diagnosis of the condition is based on the clinical phenotype but also on data that may require the use of sophisticated technology such as MRI or measuring biomarkers from plasma and CSF; this may require both access to such equipment and specialist skills in order to accurately determine whether an individual is a case (and it is subject to a certain degree of operator-dependent error); (3) there can be considerable heterogeneity in latency periods resulting in variable and long gaps between disease onset and manifestation of symptoms; (4) pathologic confirmation in vivo may be difficult or unavailable for certain neurologic conditions; and (5) many neurologic conditions are rare.

High-quality prevalence and incidence studies of neurologic conditions that follow a systematic approach are essential for estimating the burden of disease globally, for comparison of estimates between various countries and populations, for priority setting, resource allocation, and planning public health approaches. For neurologic conditions, descriptive epidemiologic studies can provide important information on (1) trends and gaps in the health service needs; (2) estimates of morbidity, mortality, and economic burden from these diseases; and (3) can be used for generating new hypotheses on causation or natural history of the disease. Descriptive epidemiologic studies are particularly useful for estimating prevalence, incidence, and morbidity and mortality time trends for studies where global health is of concern. For instance, there is usually more information available for high-income countries (HIC), but for low- to middle-income countries (LMIC), the number of descriptive epidemiologic studies conducted is sparse. However, studies from both HIC and LMIC can be of poor quality because of poor reporting, poor methodology, or both. It is becoming increasingly important to collect high-quality routine information on neurologic disorders from LMIC in addition to those from HIC because these populations are likely to be the ones where the greatest future need for health services and treatment will be required by the middle of this century.

Any approach to attempt to bridge the gap worldwide would require methods or guidelines that reduce inconsistencies in reporting that may identify health disparities between resource-rich and resource-poor regions that are disseminated widely. Good reporting strategies for neuroepidemiologic studies can be used to facilitate meta-analyses and systematic reviews, and are therefore of critical importance. General quality checklists and reporting standards are common for particular types of studies (and, increasingly, expected) in health services research; see, for example, CONSORT for randomized controlled trials, PRISMA for systematic reviews, and SQUIRE for quality-improvement studies. They have 2 main purposes: to help researchers design, undertake, and report robust studies, and to help reviewers and potential users of research outputs assess risk of bias (in terms of validity and reliability). The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) guidelines are well known and widely used but were devised for analytical epidemiology (i.e., case-control studies, cohort studies, and cross-sectional studies). We aim to develop a reporting guideline that outlines the key information to be reported for descriptive health policy research (such as Global Burden of Disease and Injuries [GBD]-type studies), as studies that are not necessarily obviously population-based, particularly those from settings where there are few data, might be of greater value to projects such as the GBD that need to synthesize evidence, if they were reported better. For example, a systematic review of incidence and prevalence of multiple sclerosis across the Americas found that there were inconsistencies in methodologies and reporting quality among the published studies. A review of dementia in Parkinson disease (PD) found that PD and the prevalence rates of dementia were usually reported in the different age groups, and age-specific prevalence rates of dementia in PD were usually not reported, which made comparisons between studies infeasible. Another review of the most populous countries found that it was not possible to make a distinction between burden based on the absolute number of cases of PD and burden based on the relative mix of severity of disease as this was poorly reported. The recent GBD 2013 report on all-cause and cause-specific mortality noted that the estimates of Alzheimer disease would be improved by more population-based prevalence studies that use and report standardized definitions and methods.

The primary objective was to develop reporting guidance for incidence and prevalence studies specifically related to neurologic disorders using a consensus-based process, but this information may also be of interest to a general epidemiologic audience.

METHODS

We followed the Guidance for Developers of Health Research Reporting Guidelines and developed a 3-phase consensus process (figure).

Phase I. The process consisted of empirical work, split into 4 different components: (1) a systematic review of reporting guidelines for incidence and prevalence studies in general and reporting guidelines specific to a common neurologic condition (we used stroke as an example for our initial investigations); (2) production of a core set of important items for the reporting of incidence and prevalence studies based on the review of the evidence; (3) assess the quality of reporting of a random sample of published incidence and prevalence studies of the common neurologic condition (stroke); and (4) proposed an initial checklist of a “core set of items” that were then discussed with members of the Standards of Reporting of Neurological Disorders (STROND).
STROND Collaborative Group assembled (International membership):
- Neurologists
- Epidemiologists
- Methodologists/Guideline development experts
- Low-income, middle-income and high-income countries

Phase I: Empirical work and initial checklist
- Systematic review of published guidelines for incidence or prevalence studies in general and those related specifically to stroke
- Systematically review a random sample of incidence and prevalence studies of stroke
- Based on the evidence, identify core set of items to report for stroke and obtain details of items that could be reported for other common neurologic disorders
- Core team produced an ‘initial checklist’ outlining key items for reporting based on the literature

Phase II: Three-round Delphi process
- Invited representatives from national and international neurologic societies/funding agencies
- Journal editors
- Neurologists and epidemiologists working on neurologic disorders

Phase III: E-consultation/Piloting process
Draft of checklist circulated to independent experts in order to obtain comments from the wider neuroepidemiologic community

STROND Collaborative Group produces a draft of the final guideline

STROND = Standards of Reporting of Neurological Disorders.

collaborative group. Appendix e-1 (on the Neurology® Web site at Neurology.org) summarizes the results of phase I of the development of the STROND guideline.

Phase II. A 3-round Delphi process was conducted using a group of individuals who had expertise in neuroepidemiologic research (who were not members of the STROND group) and agreed to take part in a series of 3 consecutive rounds of questionnaires designed to achieve increasing consensus of opinion on which items should be included in the checklist. A 3-round Delphi process was conducted using a group of individuals who had expertise in neuroepidemiologic research (who were not members of the STROND group) and agreed to take part in a series of 3 consecutive rounds of questionnaires designed to achieve increasing consensus of opinion on which items should be included in the checklist. The Delphi process participants were identified by contacting members of neurologic societies via e-mail. An online questionnaire (that included tick boxes and free text comments) was devised based on the relevant version of the questionnaire (and took no more than 15 minutes to complete). This questionnaire was circulated to participants who had agreed to take part in each of the 3 rounds of the Delphi process. Participants remained anonymous, which enabled them to comment freely, but they were required to give their initials and a memorable date when completing the questionnaire for tracking purposes. Respondents were asked to suggest additional items, that they believed were important, that were missing from the initial checklist. After each round, the results were summarized (both quantitative and free text information was summarized) and fed back to the respondents along with the updated version of the checklist that had been revised in the light of the comments received.
Phase III. Once consensus had been reached on the items to be included in the checklist based on phase I and II findings, then a group of internationally recognized experts on neurologic disorders (as nominated by members of the STROND collaborative group) were contacted as part of a further e-consultation process in order to assess their views (or “pilot”) on the contents of the checklist. Once this 3-phase consensus process was completed, a “final checklist” was produced based on the feedback received from all the individuals who had participated.

RESULTS The initial checklist based on a systematic review of the evidence yielded 27 items that were used as part of the first round of the Delphi exercise. Another 11 items that were not included in the initial checklist were included based on feedback from the first round. Table 1 gives details of the background of the participants in the Delphi and the e-consultation processes. Seventy-nine individuals participated in the first round of the Delphi process and described their area of expertise as clinical (80%), research (77%), policy (10%), or methodologic (20%) (Delphi process respondents were allowed to check more than one general area of expertise in the online questionnaire). The 79 individuals were from a variety of countries and with contributions from respondents based in high-income (52%), middle-income (30%), and low-income (18%) countries. Of the 79 individuals who completed the first round, 65 individuals took part in the second round (82%) and 61 took part in the third and final round (77%). Consensus was deemed to be reached when ≥70% of the respondents were in agreement about the utility of a particular checklist item in each successive round of the Delphi process. The e-consultation process invited 30 individuals who were prominent researchers, policymakers, or methodologists in the field of neuroepidemiology. Of the 30 invited individuals, 18 (60%) agreed to participate in the e-consultation/piloting process.

The responses received from the e-consultation/piloting process were then used to construct the STROND guideline checklist, which is provided in table 2. The checklist was structured to correspond to key components that should be reported in the final manuscript in a similar manner to the STROBE checklist. The checklist has 15 key items and distinguishes between items that are deemed to be “basic minimum reporting” requirements (items in nonitalic font), and items that are deemed to be “ideal reporting” requirements (items in italic font).

DISCUSSION We envisage that the STROND checklist will only be used to assess the reporting of prevalence and incidence studies of neurologic disorders. Although this checklist is aimed at reporting of descriptive epidemiologic studies of neurologic disorders, we believe that it would also be of interest to researchers wishing to report their descriptive epidemiologic studies of nonneurologic disorders. The 15-item checklist provides a framework to satisfy the need for completeness and transparency of reporting of incidence and prevalence studies of neurologic disorders. We attempted to strike a balance between adequate detail and concise reporting so we incorporate both “basic minimum reporting” standards as well as “ideal reporting” criteria in the checklist. There is substantial evidence that reporting guidelines improve the completeness of published reports based on natural experiments. As has been done with other reporting guidelines, we aim to develop a more detailed explanation and elaboration report that provides more detail on the rationale for each item included in the checklist and provides some empirical evidence of good reporting of incidence and prevalence studies for neurologic disorders. The preliminary aims and objectives of the guideline have been posted on the EQUATOR (Enhancing the Quality and Transparency of Health Research) Network and we plan to post the checklist and the explanation and elaboration report on the EQUATOR Web site (http://www.equator-network.org).

The limitations of this project are that the STROND reporting guideline was developed using

Table 1 General area of expertise of the Delphi and e-consultation process respondents

<table>
<thead>
<tr>
<th>Self-identified area of expertise*</th>
<th>Delphi process</th>
<th></th>
<th></th>
<th></th>
<th>e-Consultation/piloting process (n = 18)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Round 1 (n = 79)</td>
<td>Round 2 (n = 65)</td>
<td>Round 3 (n = 61)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical</td>
<td>63 (80)</td>
<td>51 (80)</td>
<td>50 (82)</td>
<td>10 (55)</td>
<td></td>
</tr>
<tr>
<td>Research</td>
<td>61 (77)</td>
<td>45 (70)</td>
<td>44 (72)</td>
<td>16 (89)</td>
<td></td>
</tr>
<tr>
<td>Policy</td>
<td>8 (10)</td>
<td>6 (9)</td>
<td>7 (11)</td>
<td>2 (11)</td>
<td></td>
</tr>
<tr>
<td>Methodology</td>
<td>16 (20)</td>
<td>18 (28)</td>
<td>15 (24)</td>
<td>6 (33)</td>
<td></td>
</tr>
</tbody>
</table>

Data are n (%).

*Respondents were allowed to identify more than one area of expertise.
Table 2 Standards of Reporting of Neurological Disorders (STROND): A guideline for the reporting of incidence and prevalence studies in neuroepidemiology

<table>
<thead>
<tr>
<th>Section/topic</th>
<th>No.</th>
<th>Recommendation</th>
</tr>
</thead>
</table>
| Title & abstract | 1 | (a) Give the type of study design employed using a widely recognized term in the title or abstract
(b) The abstract should give an accurate summary of how the study was conducted and the main findings |
| Introduction | 2 | Details of the scientific rationale for the study should be reported
Background | 3 | State the specific aims and objectives of the study
Aims and objectives | 4 | Give a full description of the study design
4a | | Give details of any study protocol (published or unpublished that gives additional useful information on the study design) |
4b | | If a pilot study has been conducted to inform the main study design, then the findings should be referenced |
| Methods | 5 | Details of the scientific rationale for the study should be reported
Setting | 6 | Description of how all eligible members of the population were identified and through what data sources (e.g., hospitals, outpatient clinics, death certificates)
Source population | 6a | Source of data used for the study (e.g., administrative database, medical records). If administrative database used, algorithms for data extraction should be described |
6b | | Description of the rate of hospital admission (if applicable) for the neurologic condition in the population
6c | | Details of health care system in the country (study region) where the study was conducted (e.g., public vs private health care system)
6d | | Description of how a person with the neurologic condition is referred (with the filters) in the country (study region) where the study was conducted
6e | | Description and characteristics of response rate/dropouts and exclusion rate if applicable
| Participants | 7 | Definition of cases is clearly identified and presented in sufficient detail
7a | | Details of the sampling method are described (are participants representative of the source population?)
7b | | Fully validated source of diagnosis or “reference-standard” criteria applied
7c | | Definition and justification of the disease severity (preferably using a standardized severity scale) or staging of the disease
7d | | Description of how types/subtypes of the neurologic disorder of interest are distinguished (if relevant)
7e | | Description of how completeness of case ascertainment was assessed
7f | | Description of whether completeness of case ascertainment was adequate
| Ethical approval | 8 | Details of ethics approval/informed consent/data governance should be reported
| Measurement | 9a | Incidence studies
9b | | Prevalence studies
9c | | Give details of how incidence was determined (based on timing of data collection either prospectively or retrospectively)
9d | | Definition and justification of timing of measurements
9e | | The data presented to some specified time period (usually whole years or person-time)
9f | | Raw numbers are reported in sufficient detail to calculate the appropriate rates (e.g., by age or sex)
9g | | Give details of specific time points over which estimates are derived (usually defined as the number of cases existing in a specific time point)
Continued
a consensus process and thus may only represent the opinions of the participants. However, consensus was reached on both the “basic minimum reporting” standards and the “ideal reporting standards” with >70% of respondents in agreement on the items included in successive rounds of the Delphi exercise. Furthermore, the independent group of experts who participated in the e-consultation were all in broad agreement about the items included. In addition, the Delphi technique has been used widely in medical research as a survey method to gain consensus among a group of respondents. For example, a Delphi exercise process was employed by the Consolidated Standards of Reporting Trials (CONSORT) investigators when developing this widely used reporting guideline.

Large-scale projects like the GBD Study need to utilize prevalence and incidence studies that use consistent methods and terminology and also require high-quality reporting in order to provide the required information for their disease-modeling algorithms to adequately estimate disease burden due to these disorders. It is well known that rigorous population-based studies from LMIC are sparse for neurologic disorders (even for stroke), and the quality of reporting in LMIC as well as HIC is in need of improving. We will aim to translate the checklist into languages other than English as required as well.

Table 2

<table>
<thead>
<tr>
<th>Section/topic</th>
<th>No.</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical methods</td>
<td>10</td>
<td>If rates have been standardized (e.g., by age or sex), then the details of the standard population used should be given</td>
</tr>
<tr>
<td></td>
<td>10a</td>
<td>If possible, 2 standard populations should be used, one with local relevance and the other to facilitate international comparisons</td>
</tr>
<tr>
<td></td>
<td>10b</td>
<td>Description of any assumptions made in the calculations should be reported</td>
</tr>
<tr>
<td></td>
<td>10c</td>
<td>An explanation of how missing data were addressed in the analyses</td>
</tr>
<tr>
<td></td>
<td>10d</td>
<td>Provide a priori estimates of sample size/power assessment/precision of estimates assessment</td>
</tr>
<tr>
<td></td>
<td>10e</td>
<td>Description of any sensitivity analyses</td>
</tr>
</tbody>
</table>

Results

<table>
<thead>
<tr>
<th>Main findings</th>
<th>11</th>
<th>Consider a flow diagram that describes how participants were included in the study (useful in order to assess how a person with the neurologic condition of interest is referred)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11a</td>
<td>Give appropriate rates with their associated 95% confidence intervals</td>
</tr>
<tr>
<td></td>
<td>11b</td>
<td>Report results of any sensitivity analyses</td>
</tr>
</tbody>
</table>

Discussion

<table>
<thead>
<tr>
<th>Key findings</th>
<th>12</th>
<th>Summarize the key findings in relation to the study aims and objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limitations</td>
<td>13</td>
<td>Discuss potential limitations of the study</td>
</tr>
<tr>
<td></td>
<td>13a</td>
<td>Include details of risk of bias (e.g., selection bias), completeness of case ascertainment, and data quality (assessment of its probability, size, and potential importance)</td>
</tr>
<tr>
<td>Interpretation</td>
<td>14</td>
<td>Interpret the results in the context of the evidence from other well-performed studies with similar designs and objectives</td>
</tr>
<tr>
<td></td>
<td>14a</td>
<td>Reliability of the estimates (i.e., based on the reporting of the statistical methodology, and study design, measurement of key information)</td>
</tr>
<tr>
<td>Generalizability</td>
<td>15</td>
<td>Discuss the external validity of the study findings</td>
</tr>
<tr>
<td></td>
<td>15a</td>
<td>Are the results consistent with meta-analyses of descriptive epidemiologic studies on the same topic that cover different settings (if applicable)?</td>
</tr>
</tbody>
</table>
as aiming to conduct and support research that investigates the impact of the guidelines on the reporting quality of incidence and prevalence studies in neurologic disorders. We hope that the introduction and use of the STROND checklist will lead to more consistent, transparent, and contextualized reporting of population-based prevalence and incidence studies of neurologic disorders and that these more applicable findings will lead ultimately to better health care decisions.

APPENDIX

Standard of Reporting of Neurological Disorders (STROND) collaboration. Professor Michael Brainin (Department for Clinical Medicine and Preventive Medicine, Danube-University Krems, Austria); Professor Pierre-Marie Pons (Institute of Tropical Neurology, University of Limoges, France); Professor Peter Rothwell (Stroke Prevention Unit, University of Oxford, UK); Dr. Pablo M. Lavados (Vascular Neurology and Stroke Unit, Neurology Service, Department of Medicine, Clínica Alemana de Santiago, Universidad del Desarrollo and Department of Neurological Sciences, Universidad de Chile, Institute of Neurosurgery, Santiago, Chile); Emeritus Professor John F. Kurtzke (Georgetown University USA); Dr. Suzanne Barnes-Collo (Department of Psychology, University of Auckland, New Zealand); Dr. Daniel Davis (Faculty of Population Health Sciences, University College London, UK); Dr. Valentina Gallo (Centre of Primary Care and Public Health, Blizard Institute, Queen Mary University of London, UK); Dr. Nathalie Jetté (Department of Clinical Neurosciences and Hutchins Brain Institute, Department of Community Health Sciences and O’Brien Institute for Public Health, University of Calgary, Canada); André Karch (Research Group Epidemiology and Statistical Methods, Helmholtz Centre for Infection Research), Lawrence W. Svenson (School of Public Health, University of Alberta, Canada); Professor Giancarlo Logroscino (Neurodegenerative Diseases Unit, Department of Basic Medicine, Neurosciences and Sense Organs, and Department of Clinical Research in Neurology presso Fondazione Card Panico, Tricase, University Aldo Moro, Bari, Italy); Gabriele Nagel (Institute of Epidemiology and Medical Biometry, University of Ulm, Germany).

Received June 6, 2015. Accepted in final form June 10, 2015.

REFERENCES

Development of the Standards of Reporting of Neurological Disorders (STROND) checklist: A guideline for the reporting of incidence and prevalence studies in neuroepidemiology

Derrick A. Bennett, Carol Brayne, Valery L. Feigin, et al.

Neurology 2015;85:821-828 Published Online before print July 10, 2015
DOI 10.1212/WNL.0000000000001866

This information is current as of July 10, 2015