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Abstract

In this thesis we consider the resolution of some optimal design problems through the
asymptotic procedure of second order. These procedures provide us a simplified formulation
of the problem which allows it to be implemented to obtain the numerical results.

The techniques of the first order approximation have been taken into account in order
to show the importance of the second order model. Theoretical considerations reflect the
differences between the implemented models. In particular, the asymptotic procedure of
first order is based on the level-set method, while the procedure of second order is based on
relaxation processes.

The second order model is not well-posed in general, so that an optimal solution of the
problem might not exist in the class of the admissible sets. So, the relaxed problem is then
obtained as the result of the homogenization method which requires, through the processes,
the H-measure theory.

The addressed problems in this thesis are focused on finding the optimal configuration
of two isotropic materials (characterized by two different physical constants) within a fixed
bounded domain Ω in order to minimize an objective function associated to a state equation,
under the constraint that the materials are kept to constant volume proportion. Asymptotic
expansions are described by the scalar parameter ε which is defined as the “difference” between
the two magnitudes that characterize the behavior of the two materials. Additionally, this
parameter must be taken small enough to obtain the desired results.

The first problem of this thesis is to minimize the first eigenvalue λ of the diffusion
operator −div (σ∇·) in the H1

0(Ω) space where, as it is well known, σ represents the diffusion
density of the materials inside of the domain Ω.

The second problem is devoted to the study of maximizing the compliance or the stored
elastic energy of an elastic system with a mixed Dirichlet-Newmann condition.

The third and last problem of this thesis combines the obtained results of the two prob-
lems above to the partial resolution of the problem of minimizing the first eigenvalue of the
elasticity operator −div Ae(·) in the H1

0(Ω)d space, where A represents the fourth order ten-
sor which describes the elastic behavior of the materials within Ω and e is the differential
operator that generates the strain tensor of the system.
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Résumé

Cette thèse considère la résolution des problèmes de la conception optimale en utilisant des
procédures asymptotiques de deuxième ordre. Ces procédures nous donnent une formulation
simplifiée du problème qui nous permet d’obtenir des résultats numériques.

Les procédures asymptotiques de premier ordre ont été prises en compte afin de montrer
l’importance du modèle de second ordre. Les considérations théoriques expliquent les dif-
férences entre les modèles mis en œuvre. En particulier, la méthode asymptotique du premier
ordre est basé sur la technique des ensembles de niveau tandis que le deuxième ordre est basé
sur des processus de relaxation.

Le modèle de second ordre est généralement mal conditionnée parce que une solution
optimale pour le problème peut ne pas exister dans la classe des ensembles admissibles. Le
problème relaxé est alors obtenu à la suite de la méthode d’homogénéisation qui, au moyen
de processus, requiert la théorie des H-mesures.

Les problèmes abordées dans cette thèse visent à déterminer la configuration optimale
de deux matériaux isotropes (caractérisés par deux constantes physiques différentes) dans
un domaine borné fixe Ω afin de minimiser une fonction objectif associé à une équation
d’état, sous la contrainte que les matériaux sont maintenus à un rapport de volume fixe.
Le paramétre scalaire ε, avec lequel sont effectués les expansions asymptotiques, est défini
comme la “différence” entre les quantités qui décrivent le comportement des matériaux, qu’il
faut considérer suffisamment petit pour obtenir les résultats désirés

Le premier problème de la thèse consiste à minimiser la première valeur propre λ de
l’opérateur de diffusion −div (σ∇·) dans l’espace H1

0(Ω) où, comme on le sait, σ représente
la densité de diffusion des matériaux à l’intérieur du domaine Ω.

Le deuxième problème traite de l’étude de la maximisation de la compliance ou l’énergie
élastique accumulée d’un système élastique avec des conditions mixtes Dirichlet-Neumann.

Le troisième et dernier problème de cette thèse combine les résultats obtenus du premier
et deuxième problème pour la résolution partielle du problème de minimiser la première
valeur propre de l’opérateur d’élasticité −div Ae(·) dans l’espace H1

0(Ω)d, où A représente le
tenseur de quatrième ordre qui décrit le comportement élastique des matériaux à l’intérieur
de Ω et e est l’opérateur différentiel qui génère le tenseur de déformations du système.
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Resumen

En esta tesis se considera la resolución de problemas de diseño óptimo mediante procedi-
mientos asintóticos de segundo orden. Estos procedimientos nos proveen de una formulación
simplificada del problema que permite ser implementada para la obtención de resultados
numéricos.

Los procedimientos asintóticos de primer orden se han tenido en cuenta con el fin de
mostrar la importancia del modelo de segundo orden. Las consideraciones teóricas dan cuenta
de las diferencias entre los modelos implementados. En particular, el procedimiento asintótico
de primer orden está basado en la técnica de los conjuntos de nivel mientras que el de segundo
orden se basa en los procesos de relajación.

En términos generales el modelo de segundo orden está mal condicionado debido a que un
óptimo para el problema puede no existir en la clase de los conjuntos admisibles. El problema
relajado es obtenido entonces como resultado del método de homogeneización que, a través
de los procesos, requiere de la teoría de las H-medidas.

Los problemas abordados en esta tesis se enfocan en determinar la configuración óptima
de dos materiales isotrópicos (caracterizados por dos magnitudes físicas constantes distintas)
dentro de un dominio acotado fijo Ω con el fin de minimizar una función objetivo asociada
a una ecuación de estado, bajo la restricción de que los materiales se mantengan a una
proporción de volumen fija. El parámetro escalar ε, con respecto al cual se realizan las
expansiones asintóticas, se define como la “diferencia” entre las magnitudes que describen el
comportamiento de los materiales, el cual se debe tomar lo suficientemente pequeño para la
obtención de los resultados.

El primer problema de la tesis consiste en minimizar el primer valor propio λ del operador
de difusión −div (σ∇·) en el espacio H1

0(Ω) donde, como es bien sabido, σ representa la
densidad de difusión de los materiales al interior del dominio Ω.

El segundo problema está dedicado al estudio de la maximización de la “Compliance” o la
energía elástica acumulada de un sistema elástico con condiciones mixtas Dirichlet-Neumann.

El tercer y último problema de esta tesis combina los resultados obtenidos de el primer y
segundo problema para la resolución parcial al problema de minimizar el primer valor propio
del operador de elasticidad −div Ae(·) en el espacio H1

0(Ω)d, donde A representa el tensor de
cuarto orden que describe el comportamiento elástico de los materiales dentro de Ω y e es el
operador diferencial que genera el tensor de deformaciones del sistema.
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Chapter 1

Introduction

1.1 Asymptotic with respect to a small parameter
The homogenization techniques, so-called asymptotic analysis, are implemented to solve
many interesting and applied problems in Mechanics, Physics, Chemistry and Engineer-
ing [5]. Homogenization is the theory that allows us to characterize composite materials.
Roughly speaking these techniques consist in finding materials with fixed characteristics ob-
tained as “averages” from other heterogeneous materials. From a mathematical point of view,
a composite material is the “limit” of a sequence of geometries with lengthscale going to 0.
A composite material is characterized by a volume fraction of material and a microstructure.
These methods are based on convergence results and multiple scales asymptotic expansions.

HOMOGENIZATION

HETEROGENEOUS EFFECTIVE MEDIUM

Figure 1.1: Composite material

Some branches of analysis employing homogenization methods are, for example, shape
and topology optimization. Physically the idea is to produce the “best” material or structure
may be subject to certain constraints, for example structural design and manufacturing
resistant wings to many aircraft as well as design of bridges which generally includes specific
requirements (see fig.1.2 below).

One of the most important mathematical question in optimal design is the existence of
the optimal solution in the “admissible” set of shapes. This question involves some kind
of compactness argument (even convexity arguments). Unfortunately a great number of
optimal design problems are ill-posed. In particular there is not an optimal shape among the
admissible sets that optimize an objective function, i.e., such an optimization problem does
not admit a minimizer in general; see F. Murat [18].
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Chapter 1. Introduction

7✞✝ ☎✆Industrial applications

☞ Tremendous progresses were achieved on academic research about shape

and topology optimization.

☞ There are several commercial softwares used by industry.

☞ But manufacturability of the optimal shapes is not always guaranteed.

Geometrical constraints in topology optimization G. Allaire

Figure 1.2: Structural designs of bridges and wings1

Typically these kinds of problems are described by partial differential equations which
model, for instance, physical situations among others. A general presentation on this topic is
outlined as follows. A family of partial differential operators Lε, depending on a “small” pa-
rameter ε, is defined in a suitable Sobolev space Hs(Ω) (Ω ⊂ RN satisfying certain regularity
conditions; N = 2, 3 for applications).

One hence has a boundary value problem:{
Lεu

ε = f in Ω,

uε subject to boundary conditions,
(1.1)

which is assumed well-possed for ε > 0 fix. In many cases the data f is a regular given
function, so that the family of functions uε can be uniformly bounded by a priori estimatives;
that is the case when the family of differential operators are linear and uniformly elliptic in
the Sobolev Hilbert space H1

0. This is often useful to have uniform estimates, depending only
on the parameter ε, of the remainders with respect to asymptotic expansions.

The problem is now to obtain, if possible, an expansion of uε

uε =
∞∑
j=0

εjuj.

This series is inserted in the equation (1.1) getting a cascade of auxiliar equations which
allows to obtain the coefficients uj. A typical “result” is: one can construct a differential
operator L such that uε → u (in an appropriate topology) as ε → 0 where u is the solution
of {

Lu = f in Ω,

u subject to boundary conditions2.

The objective of the present work is to consider two-phase optimal design problems in
the context of conductivity or linearized elasticity. We use a strong simplifying assumption,
namely that the two component phases involved in the optimal design have close coefficients or
material properties (the low contrast regime). It shall allow to make an asymptotic expansion
of the coefficients in terms of the small parameter that characterizes the variations between

1From G. Allaire’s talks
2which of course will depend on those boundary conditions imposed on uε

2



1.2. First and second order approximation

the two phases. Let us now describe the general situation occurring in the problems that we
will consider in the work under these conditions. The main idea is to look for an optimal
distribution of the two-phase optimal design problem. More precisely, if Ω represents a fix
geometry (bounded domain) and ω is a subset of Ω, then we are interested in minimizing an
objective function of the type

J(ω) =

ˆ
Ω

F (x, uω(x),∇uω(x)) dx, (1.2)

where uω is solution of the system{
Lωu = f in Ω,

u subject to boundary conditions.

The dependence of the solution with respect to ω is given by the (linear and elliptic) differen-
tial operator who carries with it the two-phase coefficient. Since the problem of minimizing
(1.2) is in general not well posed, the problem may be relaxed by introducing composite
designs (homogenization method).

We take advantage of the “low contrast regime” assumption in order to simplify the
problem, so that we perform an asymptotic procedure with respect to the small parameter.
The obtained result is called “small amplitude” optimal design problem.

Next we look for an asymptotic expansion of the form

uεω(x) =
∞∑
j=0

εjuj,ω(x).

After determining the coefficients of uεω(x) we obtain uniform estimates which allows us to
conclude that the problem of minimizing the objective function is not far away from those
who we want to approximate when ε is taken to be small. However, the approximation of
the objective function is still ill-posed and we must use those already mentioned relaxation
process.

At first the relaxation process provides a sequence of inclusions ωn which are identified
with characteristic functions χωn ≡ χn in the L∞(Ω) space. The weak* topology allows to
find a weak* limit in the L∞(Ω; [0, 1]) space with positive values. On the basis of this, numer-
ical simulations are implemented to show the optimal configuration to the small amplitude
optimal design poblem (the relaxation of the approximation of the objective function).

1.2 First and second order approximation
Low contrast regime assumption allows us to greatly simplify optimal design problems as
mentioned above. In particular the “order of approximation” obtained in an asymptotic
approach can be implemented to solve numerically the associated relaxed problems with con-
siderable precision. The optimal design problems discussed in this thesis have been addressed
by the second order approximation.

Other contributions in trying to solve the same optimization problems with the asymptotic
analysis are those who have been raised by first order approximation, among them is the paper
written by Conca, Laurain and Mahadevan [8]. It shows how is the optimal distribution of two

3



Chapter 1. Introduction

conducting materials with respect to the minimization of the first eigenvalue of a Dirichlet
operator for different geometries. In particular that work refutes a conjecture about the
optimal distribution when the fixed domain is a ball.

What follows is a general mathematical description of the procedures done in the above
article.

One has a problem of the type

minimize J(ω) =
´

Ω
F (uω,∇uω) dx,

subject to |ω| = m

where uω is solution of {
−div σω∇u = f in Ω,

u subject to boundary conditions,

and 0 < m < |Ω| is the volume proportion.
One takes the truncated series of uεω up to first order

uεω = u0 + εu1(ω) +O(ε2).︸ ︷︷ ︸
dropped

Substituting this into J one also has

J(ω) =

ˆ
Ω

F1(u0,∇u0) dx+ ε

ˆ
Ω

F2(u1(ω),∇u1(ω)) dx+O(ε2).

From this the initial problem may be reduced to an equivalent (small amplitude) problem of
the type

minimize Jsa(ω) =
´
ω
F̃ (∇u0) dx,

subject to |ω| = m

which simplifies considerably the problem. Finally, F̃ ≥ 0 gives a strategy of solution, namely
the level-set method.

The methodology of the first order model motivates the study of the second order model
in order to increase the precision.

One of the most significant differences between first and second order models lies in the
relaxation and homogenization processes that are used in the second order model. More
precisely, in the energy estimatives where weak limits have to be calculated through H-
measures. This important tool provides us an explicit approximation of the objective function
that depends on ε in contrast to the first order approximation. These H-measures are
quadratic default measures introduced by Gerard [17] and Tartar [24]. It is a default measure
which quantifies the lack of compactness of weakly converging sequence in L2(RN). More
exactly, it indicates where in the physical space, and at which frequency in the Fourier space,
are the obstructions to strong convergence. In practice, one has the problem to pass to the
limit to the product of two sequences that, one only knows, are weakly convergent, so that H-
measures are the right tool in order to be able to pass to the limit. In the end, the limits will
depend on the H-measure of the sequence χn (which is thus a new variable for optimization).
This technique works in the context of pseudo-differential operators. A pseudo-differential
operator q is defined through its symbol (qij(x, ξ))1≤i,j≤p ∈ C∞(RN ,RN) by(

q(u)
)
i
(x) =

p∑
j=1

F−1
(
qij(x, ·)Fuj(·)

)
(x),

4



1.3. Intervals of fluctuation

where F symbolizes the Fourier transform. Furthermore, here is assumed that the symbol
(qij(x, ξ)) is homogeneous of degree 0 in ξ and with compact support in x.

The mathematical formulation in the application of the H-measures to pass to the limit
is as follows. Typically we have weak convergent sequences

χn
∗
⇀ θ and vn

H1

⇀ v.

Then we wish to calculate, for instance

lim
n→∞

ˆ
Ω

χn∇vn · ~p.

It is well known that this kind of limits may not exist. However, from the partial differential
equation satisfied by vn, we may prove that ∇vn is a pseudo-differential operator of order 0
depending on χn. According to the H-measure theory, the limit can be computed as

lim
n→∞

ˆ
Ω

χn∇vn · ~p =

ˆ
Ω

θ∇v · ~p+ Corrector (H-measure).

The corrector term depend on the symbol q by the expression
ˆ

Ω

ˆ
SN−1

q(x, ξ) · θ(1− θ)~p ν(dx, dξ).

Here SN−1 is the unit sphere in RN and the vectorial measure θ(1−θ)~p ν(dx, dξ) corresponding
to the sequence χn−θ is the so-called H-measure where, for given x, the measure ν(dx, dξ) is
a probability measure with respect to ξ. Furthermore, any such probability measure can be
attained as theH-measure of a sequence χε of characteristic functions that weakly* converges.
Additionally, we will find with the fact that, in our relaxed small ampitude problems, the
probability measure ν can be simplified by a Dirac mass (in ξ). In fact, this optimal Dirac
mass H-measure will not depend on the density θ. All the details will be complemented
through the presentation of the thesis.

We remark that each optimal design problems exhibited in this thesis are subject to
stationary partial differential equations.

1.3 Intervals of fluctuation
In order to compare the effective optimal relaxed objective function in both cases first and
second order models, we employ the same techniques to solve the counterpart of the optimal
design problem. That is to say, if we study the optimization problem

inf
ω
J(ω), (1.3)

its counterpart
sup
ω
J(ω), (1.4)

is then also addressed to obtain the intervals of fluctuation

inf
ω
J(ω) ≤ J(ω) ≤ sup

ω
J(ω).

5



Chapter 1. Introduction

The procedure to solve the counterpart problem is, in essence, totally the same to that
made for the previous one; the only difference lies in that the optimal Dirac mass H-measure
must be taken in a suitable single lamination direction ξ∗ which, of course, will depend on
the expression in the integral over SN−1 when we consider fixed x.

It is seen, by numerical examples, that for ε suficiently large, first and second order
models differ considerably. Moreover, in the optimal design problem of minimizing the first
eigenvalue of the two-phase escalar conductivity operator −div (αχω + βχΩ\ω)∇, perforated
domains are built to show those differences between both methods.

For the sake of completeness, we finally use a Monte-Carlo approach reinforcing the
obtained comparisons.

To end this introduction let us briefly outline the material of this doctoral thesis.
In section 2 we shall discuss the problem of minimizing, under the proportion volume

constraint, the first eigenvalue λ of the conductivity operator −div σ(x)∇ in H1
0(Ω). Here

σ(x) is the conductivity of the material at x.
In the third section it is addressed to the problem of maximizing the stored elastic energy

and the so-called compliance of structures clamped in a part of its boundary which has a free
boundary condition and has a load in the remaind boundary. The vectorial elasticity operator
is given by div Aωe(·) being Aω a Hooke law fourth order tensor and e(u) = 1

2
(∇u +∇uT )

the second order strain tensor for the displacement u.
Section 4 leads with the minimization of the first eigenvalue of the elasticity operator

−div Ae(·) in H1
0(Ω)N which was already mentionated above.

The problems of optimal design described in section 3 and 4 are also subject to the
proportion volume constraint.

6



Chapter 2

Minimization of the Ground State of the
mixture of two conducting materials in a
small contrast regime

Abstract. We consider the problem of distributing two conducting materials with a pre-
scribed volume ratio in a given domain so as to minimize the first eigenvalue of an elliptic
operator with Dirichlet conditions. The gap between the two conductivities is assumed to be
small (low contrast regime). For any geometrical configuration of the mixture, we provide
a complete asymptotic expansion of the first eigenvalue. We then consider a relaxation ap-
proach to minimize the second order approximation with respect to the mixture. We present
numerical simulations in dimensions two and three to illustrate optimal distributions and the
advantage of using a second order method.

2.1 Introduction

Problems of minimizing the ground state of composite materials appear frequently and are
of interest in applications. We refer to Henrot [20], Cox and McLaughlin [12, 13], Cox and
Lipton[11] and included references. In this article, we consider the following problem. Given
a domain Ω and a subdomain B and two nonnegative numbers α and β, we define the ground
state λ(B) of the mixture as the infimum of the λ such that there exists 0 6= u such that

− div
(
(α + (β − α)χB)∇u

)
= λu in Ω and u = 0 on ∂Ω . (2.1)

In other words, λ(B) is the smallest eigenvalue of the operator −div
(
(α + (β − α)χB)∇.

)
on

H1
0(Ω). We are then interested in minimizing λ(B) with respect to B among the subdomains

of Ω of given volume. In general, it is well-known that this problem is not wellposed: the
infimum is not usually reached at a given B and we have to consider a relaxed version
corresponding to a situation of homogenization (see [11]).

Nevertheless, when Ω is a ball, the infimum is reached on a radially symmetric domain
B∗ (see [4],[9]). In the recent years, much attention has been put on the determination of
the corresponding B∗. First, Conca and al. conjectured in [10] that the global minimizer B∗
in Ω should be a concentric ball of the prescribed volume. The conjecture was motivated by
the situation in dimension one and by numerical simulations. Then, Dambrine and Kateb
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reinforced the conjecture by an order two sensitivity analysis in [14] by proving that the
concentric ball of prescribed volume is a local strict minimizer of λ(B).

However, Conca et. al. proved in [8] that the conjecture is false. Their strategy was
the following. They consider the case of small contrast, that is to say, α and β such that
the difference of both conductivities is small: β = α(1 + ε) and provide the first order
asymptotic expansion λ1(B) of λ(B) with respect to the small parameter ε for any admissible
domain B ⊂ Ω. Then, they minimize the new objective functional λ1(B) with respect to
B and observe that the minimizer B1 of this approximation is not always the concentric
ball of prescribed volume. Finally, thanks to a precise estimate of the remainder in the
approximation, they prove that λ(B1) < λ(B∗).

Finally, Laurain proved in [21] that the global minimum of the first eigenvalue in low
contrast regime is either a centered ball or the union of a centered ball and of a centered ring
touching the boundary, depending on the prescribed volume ratio between the two materials.
Thus the small contrast case is well understood when the domain is a ball.

We aim in this work to make a precise analysis of the small contrast case in general do-
mains. In Section 2, to begin with, we characterize completely the full asymptotic expansion
of λ(B) with respect to the small parameter ε. Subsequently, we obtain a second order ap-
proximation λ2(B) of λ(B) with uniform estimates for the remainder, uniform with respect
to B. This means that minimizers for the second order approximation λ2(B) are approxi-
mate minimizers for the original objective functional λ(B). With this motivation, in Section
3, we study the problem of minimizing λ2. Unlike the first order approximation λ1(B), the
minimization problem for λ2(B) is not, a priori, well posed and thus, qualitatively, resembles
more closely the minimization problem for λ(B). A relaxed formulation for the minimization
problem for λ2(B) is obtained using H-measures. It can be seem that the relaxed problem for
λ2(B) has a much more simple aspect compared to the relaxed problem for λ(B) obtained in
Cox and Lipton [11]. Then, in Section 4, the optimality conditions for the relaxed problem
for λ2(B) are obtained and the minimization problem is studied numerically using a descent
algorithm. Finally, we present a numerical comparison of optimal solution obtained for first
and second order.

2.2 Asymptotic expansion of the first eigenvalue with re-
spect to the constrast.

We consider the low contrast regime, that is to say, α and β such that the difference of both
conductivities is small: β = α(1 + ε). We shall denote the first eigenvalue in the problem
(2.1) by λε(B) for a given distribution B of the material with conductivity β and a given
value of the contrast parameter ε > 0.

The existence of an asymptotic development for λε(B), for given B, is classical from
perturbation theory of simple eigenvalues. By the Krein-Rutman theorem, the first eigenvalue
λε(B) in (2.1) is simple. The corresponding normalized eigenfunction, with unit L2 norm and
taken to be non-negative, will be denoted by uε(B). So, by classical results from perturbation
theory (see, for instance, Theorem 3, Chapter 2.5 of Rellich [23] ), for a given B, the map
ε 7→ (λε, uε) is analytic in (R,H1

0(Ω)). Therefore there are sequences (λi) of real numbers
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constrast.

and (ui) of functions in H1
0(Ω) such that:

λε =
∞∑
i=0

λiε
i and uε =

∞∑
i=0

uiε
i. (2.2)

As a consequence, there are constants Cn(B) such that∣∣∣∣∣λε −
n∑
i=0

λiε
i

∣∣∣∣∣ ≤ Cn(B)εn+1 and

∥∥∥∥∥uε −
n∑
i=0

uiε
i

∥∥∥∥∥
H1

0

≤ Cn(B)εn+1.

In this section, we will first identify the coefficients λi, ui then prove that the constants Cn(B)
can be taken uniform in B. This will serve in obtaining an approximate model problem for
the eigenvalue minimization problem.

2.2.1 Computation of the coefficients of the asymptotic expansions

The terms in the asymptotic expansions in (2.2) may be identified, formally, by injecting the
expansions in the equations defining (λε, uε), that is,

−div

(
α(1 + χBε)∇

(
∞∑
i=0

uiε
i

))
=

(
∞∑
i=0

λiε
i

)(
∞∑
i=0

uiε
i

)
in Ω,

∞∑
i=0

uiε
i = 0 on ∂Ω,

ˆ
Ω

(
∞∑
i=0

uiε
i

)2

= 1.

and we obtain then the following relationships by identifying the coefficients of same order
in the previous power series.

−α∆u0 − λ0u0 = 0 in Ω
u0 = 0 on ∂Ω ∀i ≥ 0,ˆ

Ω

u2
0 = 1 .

(2.3)


−α∆ui − λ0ui = div (αχB∇ui−1) +

i∑
k=1

λkui−k in Ω ∀i ≥ 1,

ui = 0 on ∂Ω ∀i ≥ 0,
i∑

k=0

ˆ
Ω

ukui−k = 0 ∀i ≥ 1.

(2.4)

It is possible to rigorously justify the relations by using the expansions (2.2) in the weak
formulation of the partial differential equation in (2.1). We then have an iterative procedure
to compute the pair (λi, ui).
The case: i = 0. By definition, one has:

−α∆u0 − λ0u0 = 0 in Ω (2.5)
u0 = 0 on ∂Ω. (2.6)
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Hence, the couple (λ0, u0) is an eigenpair of −α∆ with homogeneous Dirichlet boundary
condition. Clearly u0 ≥ 0 in Ω since uε → u0 as ε → 0 and the eigenmodes uε are non-
negative. Now, by the Krein-Rutman theorem, since all eigenmodes change sign except those
associated to the first eigenvalue, we obtain that λ0 is the ground state of −α∆ with Dirichlet
boundary condition and u0 is the positive eigenmode with L2-norm 1.

Now assume that, for a given i, we have knowledge of all the λk, uk for k < i. We now
then treat
The case: k = i. We know that ui satisfies the equation

−α∆ui − λ0ui = div (αχB∇ui−1) +
i∑

k=1

λkui−k in Ω, (2.7)

ui = 0 on ∂Ω,

Notice that the right hand side has the unknown quantity λi. We shall first obtain an
expression for λi in terms of λk’s and uk’s for k < i which have been assumed to be calculated
previously. The compatibility condition, the Fredholm alternative for the equation (2.7),
imposes the orthogonality of the right hand side of the former equation to the kernel of
−α∆− λ0I with Dirichlet boundary condition which is spanned by u0

ˆ
Ω

(
div (αχB∇ui−1) +

i∑
k=1

λkui−k

)
u0 = 0.

This gives the expression for the eigenvalue λi

λi =

ˆ
B

α∇ui−1 · ∇u0 −
i−1∑
k=2

ˆ
Ω

λi−ku0uk (2.8)

taking into account the fact that the L2 norm of u0 is 1 and, u0 and u1 are orthogonal. In
the sequel, whenever there is a sum whose upper limit is less than the lower limit, we shall
adopt the convention that the sum is 0.

Now, to end, we note that ui is not completely determined by the equation (2.7), but only
upto the kernel of −α∆ − λ0I. For i = 0, the non-negativity of u0 and the normalization
condition (the third relation in (2.3)) determines uniquely u0. For general i, having deter-
mined uniquely the uk for k < i, the term ui is determined uniquely using the normalization
condition (the third relation in (2.4) which can be written as

ˆ
Ω

uiu0 = −1

2

i−1∑
k=1

ˆ
Ω

ukui−k. (2.9)

and should be understood as the orthogonality relation
´

Ω
uiu0 = 0 when i = 1.

2.2.2 Uniform estimate of the remainders

We seek to estimate the remainder in the expansions (2.2), uniformly in B. Our main results
in this section are the following estimates.
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Proposition 2.1 There exists a constant C, independent of B, such that

|λε − (λ0 + ελ1)| ≤
√
λ0

α
Cε2. (2.10)

Proposition 2.2 There is a constant C > 0 independent of B such that:

|λε − (λ0 + ελ1 + ε2λ2)| ≤ 2Cε3

√
λ0

α
. (2.11)

The main tool we use for the estimation of the remainders is the notion of h-quasimode with
h = O(εk), for k = 1, 2 in the sequel. The notion of quasimode is defined as follows.

Definition 1 Let A be a self-adjoint operator on a Hilbert space H with domain D(A). For
a fixed h > 0, a pair (λ, u) ∈ R×D(A) \ {0} is called a h-quasimode if we have

‖(A− λ)u‖H ≤ h‖u‖H .

The interest of such a definition relies on the following fact: if (λ, u) is a h-quasimode of A,
then the distance from λ to the spectrum of A is less than h and the distance between u and
certain eigenspaces of A can be estimated (See Lemma 2-2 in [15]). We will prove that our
truncated power series expansions are quasimodes in the Hilbert space H−1(Ω).

Remainder of order one.

The first step is to prove a uniform bound in B of ‖u‖H1(Ω).

Lemma 2.1 There exists C, which is independent of B, such that:

‖u1‖H1
0(Ω) ≤ C and |λε − λ0| ≤ Cε. (2.12)

Proof of Lemma 2.1: By using (2.8), with i = 1, we have the following expression and
uniform bounds for λ1(B)

λ1 =

ˆ
B

α|∇u0|2 ≤ α

ˆ
Ω

|∇u0|2 = λ0 . (2.13)

By (2.4), for i = 1, u1 satisfies the following:

−α∆u1 − λ0u1 = div (αχB∇u0) + λ1u0 in Ω, (2.14)
u1 = 0 on ∂Ω, (2.15)ˆ

Ω

u0u1 = 0. (2.16)

After multiplying the first relation by u1 and integrating over Ω, by integration by parts, we
get ˆ

Ω

α|∇u1|2 − λ0

ˆ
Ω

u2
1 = −

ˆ
B

α∇u0 · ∇u1.

By the characterization of the spectrum of an elliptic self-adjoint operator using the Rayleigh’s
quotient, we know that for all v in H1

0(Ω) orthogonal to the first eigenfunction u0, it holds
that

λ1

ˆ
Ω

v2 ≤ α

ˆ
Ω

|∇v|2, (2.17)
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where λ1 > λ0 is the second eigenvalue of −α∆ in H1
0(Ω). We have used the superscript

here to distinguish the second eigenvalue λ1 from λ1 which appears in the second term of the
expansion (2.2). Since u1 is orthogonal to u0, it follows using (2.17) that

α

(
1− λ0

λ1

) ˆ
Ω

|∇u1|2 ≤
ˆ

Ω

α|∇u1|2 − λ0

ˆ
Ω

u2
1 ≤ α‖u0‖H1

0(Ω)‖u1‖H1
0(Ω) (2.18)

where at the end we have used (2.14) and followed it by a simple estimation. We have
obtained the upper bound for u1. Finally, using the variational characterization of the first
eigenvalue for elliptic self-adjoint operators, we obtain

λ0 =

ˆ
Ω

α|∇u0|2 ≤
ˆ

Ω

α|∇uε|2 ≤
ˆ

Ω

α(1 + χBε)|∇uε|2 = λε

≤
ˆ

Ω

α(1 + χBε)|∇u0|2 ≤ (1 + ε)

ˆ
Ω

α|∇u0|2 = (1 + ε)λ0

which allows us to conclude that |λε − λ0| ≤ Cε.

To use the quasimode strategy, we compute:

−div (α(1 + χBε)∇(u0 + εu1))− (λ0 + ελ1)(u0 + εu1)

= −α∆u0 − λ0u0 + ε (−α∆u1 − λ0u1 − λ1u0 − div (αχB∇u0))

+ ε2 (−λ1u1 − div (αχB∇u1))

= ε2 (−λ1u1 − div (αχB∇u1)) (2.19)

where we have used (2.5) and, (2.7) with i = 1.

Proof of Proposition 2.1: We need a uniform bound on the normalized right-hand
side: λ1u1 + div (αχB∇u1). Obviously, this term is only defined in H−1(Ω) hence we have
to make the estimation in the H−1(Ω) norm. To that end, we use a test function ϕ ∈ H1

0(Ω)
and compute the duality product:

〈−div (αχB∇u1), ϕ〉H−1(Ω)×H1
0(Ω) =

ˆ
Ω

αχB∇u1 · ∇ϕ =

ˆ
B

α∇u1 · ∇ϕ

≤ α‖u1‖H1
0(Ω)‖ϕ‖H1

0(Ω).

This proves that
‖div α(χB∇u1)‖H−1(Ω) ≤ α‖u1‖H1

0(Ω). (2.20)

And

〈λ1u1, ϕ〉H−1(Ω)×H1
0(Ω) =

ˆ
Ω

λ1u1ϕ ≤ λ1‖u1‖L2(Ω)‖ϕ‖L2(Ω)

≤ λ1‖u1‖H1
0(Ω)‖ϕ‖H1

0(Ω) ≤ C‖ϕ‖H1
0(Ω)

using the estimation (2.13) and the fact that u1 is bounded independently of B proved in
Lemma 2.1. This gives

‖λ1u1‖H−1(Ω) ≤ C . (2.21)
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Hence, we obtain from (2.19), using (2.20) and (2.21) that there exists a constant C inde-
pendent of B such that

‖ − div (α(1 + χBε)∇(u0 + εu1))− (λ0 + ελ1)(u0 + εu1)‖H−1(Ω) ≤ Cε2 (2.22)

Moreover, using u0 ∈ H1
0 as test function in the definition of the H−1-norm of u0 + εu1, we

obtain

‖u0 + εu1‖H−1(Ω) = sup
ϕ∈H1

0(Ω)

〈u0 + εu1, ϕ〉H−1,H1
0

‖ϕ‖H1
0(Ω)

= sup
ϕ∈H1

0(Ω)

ˆ
Ω

(u0 + εu1)ϕ

‖ϕ‖H1
0(Ω)

≥

ˆ
Ω

(u0 + εu1)u0

‖u0‖H1
0(Ω)

=

ˆ
Ω

u2
0(ˆ

Ω

|∇u0|2
) 1

2

=

√
α

λ0

. (2.23)

Hence, by (2.22) and (2.23), we obtain

‖ − div (α(1 + χBε)∇(u0 + εu1))− (λ0 + ελ1)(u0 + εu1)‖H−1(Ω) ≤
√
λ0

α
Cε2 ‖u0 + εu1‖H−1(Ω)

As a consequence of the theory of quasi mode, there is an element of the spectrum of the self-
adjoint operator −div (α(1 + χBε)∇·) in H−1(Ω) at distance at most

√
λ0

α
Cε2 from λ0 + ελ1.

To finish, we need to argue that this element of the spectrum is λε, the first eigenvalue of
−div (α(1 + χBε)∇·). If these were higher eigenvalues, then as ε → 0, they would tend to
a higher eigenvalue of the operator −α∆. But this would lead to a contradiction, since this
sequence is within a distance O(ε2) from the sequence λ0 + ελ1 which tends to λ0, the first
eigenvalue of −α∆ which is simple.

Remainder of order two

We first prove an uniform upper bound for λ2 and u2.

Lemma 2.2 There exists C, which is independent of B, such that:

‖u2‖H1
0(Ω) ≤ C and λ2 ≤ C. (2.24)

Proof of Lemma 2.2: First, notice that by (2.8) applied with i = 2, we get

λ2 =

ˆ
B

α∇u0 · ∇u1 ≤ α‖u0‖H1
0(Ω)‖u1‖H1

0(Ω) ≤ C (2.25)

where C is independent of B by the estimate (2.12). In a second step, we search a uniform
estimate for u2. To that end, we follow the strategy already used to estimate u1. The
main change is that u2 is not orthogonal to u0 so the adaptation is not straightforward. To
overcome the difficulty we introduce the combination u2 + au0 where

a = −
ˆ

Ω

u2u0

13
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is chosen such that u2 + au0 is L2(Ω)-orthogonal to u0.
By (2.9) for i = 2 we have ˆ

Ω

u2u0 = −1

2

ˆ
Ω

u2
1 (2.26)

which gives

a =
1

2

ˆ
Ω

u2
1 ≤

1

2
‖u1‖2

H1(Ω) ≤ C (2.27)

with C independent of B (by (2.12)). We now estimate u2 + au0. For this, we multiply
equation (2.5) by a and add it to equation (2.7) to obtain:

−α∆(u2 + au0)− λ0(u2 + au0) = div (αχB∇u1) + λ1u1 + λ2u0, in Ω

u2 + au0 = 0 on ∂Ω

Using u2 + au0 as test function, it follows that

α

ˆ
Ω

|∇(u2 + au0)|2 − λ0

ˆ
Ω

(u2 + au0)2

= −
ˆ
B

α∇u1 · ∇(u2 + au0) +

ˆ
Ω

λ1u1(u2 + au0) +

ˆ
Ω

λ2u0(u2 + au0)

≤
(
α‖u1‖H1

0(Ω) + λ1‖u1‖H1
0(Ω) + |λ2| ‖u0‖H1

0(Ω)

)
‖u2 + au0‖H1

0(Ω)

≤ C ‖u2 + au0‖H1
0(Ω) (2.28)

where C is independent of B, by estimates (2.13), (2.12) and (2.25). Since u2 + au0 is
orthogonal to u0, similarly as in the estimation (2.18), we conclude that u2 + au0 is bounded
in H1

0(Ω) uniformly in B. Therefore,

‖u2‖H1
0(Ω) ≤ C + a‖u0‖H1

0(Ω) ≤ C ′

with C ′ independent of B by estimate (2.27).

Proof of Proposition 2.2: We compute

− div
(
α(1 + χBε)∇(u0 + εu1 + ε2u2)

)
− (λ0 + ελ1 + ε2λ2)(u0 + εu1 + ε2u2)

= −α∆u0 − λ0u0 + ε (−α∆u1 − λ0u1 − λ1u0 − div (αχB∇u0))

+ ε2 (−α∆u2 − λ0u2 − λ1u1 − λ2u0 − div (αχB∇u1))

+ ε3 (−λ1u2 − λ2u1 − div (αχB∇u2)) + ε4(λ2u2)

= ε3 (−λ1u2 − λ2u1 − div (αχB∇u2)) + ε4(λ2u2) (2.29)

using equations (2.5), and (2.7) for i = 1, 2. Then, since

‖ − div (αχB∇u2)‖H−1(Ω) ≤ α ‖u2‖H1
0(Ω),

it follows from equation (2.29) and estimates (2.13), (2.12), and (2.24), that for ε� 1,

‖div
(
α(1 + χBε)∇(u0 + εu1 + ε2u2)

)
+ (λ0 + ελ1 + ε2λ2)(u0 + εu1 + ε2u2)‖H−1(Ω)

≤
(

(α + λ1)‖u2‖H1
0(Ω) + |λ2| ‖u1‖H1

0(Ω)

)
ε3 + (|λ2| ‖u2‖H1

0(Ω))ε
4

≤ C1ε
3 + C2ε

4 ≤ Cε3, (2.30)
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Moreover, one has

‖u0 + εu1 + ε2u2‖H−1(Ω) = sup
ϕ∈H1

0(Ω)

ˆ
Ω

(u0 + εu1 + ε2u2)ϕ

‖ϕ‖H1
0(Ω)

≥

ˆ
Ω

(u0 + εu1 + ε2u2)u0

‖u0‖H1
0(Ω)

=

ˆ
Ω

u2
0 + ε2

ˆ
Ω

u0u2

‖u0‖H1
0(Ω)

.

Then, using relation (2.26), we obtain

‖u0 + εu1 + ε2u2‖H−1(Ω) ≥
1−

ε2

2

ˆ
Ω

u2
1

‖u0‖H1
0(Ω)

≥
1− ε2

2
C2

‖u0‖H1
0(Ω)

,

since u1 is bounded in H1
0 (Ω) and consequently, in L2(Ω) as shown in (2.12). For ε < 1

C
, we

get

‖u0 + εu1 + ε2u2‖H−1(Ω) ≥
1

2‖u0‖H1
0(Ω)

=
1

2

√
α

λ0

(2.31)

By (2.30) and (2.31), we then have for ε < 1/C small enough

‖−div
(
α(1 + χBε)∇(u0 + εu1 + ε2u2)

)
− (λ0 + ελ1 + ε2λ2)(u0 + εu1 + ε2u2)‖H−1(Ω)

≤ 2Cε3

√
λ0

α
‖u0 + εu1 + ε2u2‖H−1(Ω). (2.32)

By the quasimode argument, there is an element of the spectrum of −div (α(1 + χBε)∇·) in

H−1(Ω) whose distance from λ0 + ελ1 + ε2λ2 is at most 2Cε3
√

λ0

α
. By similar arguments as

those at the end of Proposition 2.1, one concludes that such an element is precisely λε, the
first eigenvalue of −div (α(1 + χBε)∇·).

2.3 Minimization of the first order approximation of the
ground state

Although our main interest is to minimize the ground state λε with respect to the set B,
given ε > 0, the general feeling is that the optimization problem is not well posed. A
relaxed problem which is not so simple to describe was obtained in Cox and Lipton [11]. In
order to understand the nature of the problem for small contrasts Conca et. al. used a first
order approximation [8]. Indeed, after proving a slightly weaker estimate as compared to
Proposition 2.1 using a more ad hoc method of estimation, they conclude that∣∣∣inf

B
λε(B)− λ0 − ε inf

B
λ1(B)

∣∣∣ ≤ Cε
3
2 . (2.33)

This permits to obtain approximate minimizers for the eigenvalue functional λε by minimiz-
ing, instead, the functional λ0 + ελ1. This is a well posed problem and since the original
problem may not be well posed it may fail to capture some of the features of the original
minimization problem.
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2.3.1 Optimality conditions for the first order approximation.

One of the contribution of this thesis is to improve the estimative (2.33). Indeed, Proposition
2.1 shows an uniform bound composed by a power 2 of ε which is sensitive better to that
obtained in [8], namely, that shown in (2.33) which has an uniform bound composed by a
power 3/2 of ε. Thus, minimizers for λ1 are nearly optimal for λε in the above sense. The
following theorem provides us a numerical approximation of the minimum value of λε (see
[8] for more details).

Theorem 2.1 There exists c∗ ≥ 0 such that whenever B is a measurable subset of Ω satis-
fying |B| = m and

{x : |∇u0(x)| < c∗} ⊂ B ⊂ {x : |∇u0(x)| ≤ c∗},

then B is an optimal solution for the problem of minimizing λ1.

2.3.2 Random inclusions

In order to check the accuracy of the estimated bound obtained by the first order model of
Conca and al., we now consider random inclusions and we will evaluate on these random
distributions of the two materials the first eigenvalue of the Dirichlet Laplacian. We will first
explain how we generate the random inclusions, then present some histograms resulting com-
putations made for the previous algorithm of random domain generation and finaly we will
illustrate numerically how sensitive is the result to an important parameter in the algorithm.

Random inclusions generation

Unless the fact that the literature contains many works on the generation of random domains
especially union of balls, the main difficulty here is the volume constraint which turns out
to be non standard in the cases studied by probabilists. Hence our approach is empirical in
particular we do not hope to obtain strong result in terms of probability. In this section, the
event is denoted by e.

The idea of our approach is to use a level set point of view. The inclusion will be the set
of point where a scalar stochastic field f takes values less or equal than a threshold α(f).
More precisely, our random domains B will be calculated through the expression

B(e) = {(x, y), f(x, y, e) ≤ α(f)}.

The algorithm has then two steps:

1. determine a realization of the random field f . The idea there is to choose a model of
random fields that mimic the Karhunen-Loeve decomposition of the random field with
a L2-covariance kernel. In other words, we choose f as:

f(x, y, e) =
N∑
k=0

αk(e) ϕk(x, y)

where the αk are independent random variable following the same distribution (in the
sequel, we take the uniform distribution on [−1/2, 1/2]) and the ϕk are an Hilbert Base
of L2(Ω) (in the sequel, we choose the spectral basis of the Dirichlet-Laplacian. This
is a possibility that presents the advantage to be avaible for all domain Ω), and N is
an integer the parameter of the method.
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2.3. Minimization of the first order approximation of the ground state

2. determine the threshold α(f) corresponding to that realization. This is achieved by a
binary search by solving the equation

|B(e)| = m

up to a given small tolerance.

We present in Figure 2.1 some realizations for a fraction of volume fixed to m/|Ω| = 0.4:

Figure 2.1: Some realizations with N = 16 on the first line, N = 64 on the second line and
N = 196 on the third line.

Some experiments.

Let us now present some experimentations performed in order to obtain a rough idea of
the distribution of the first eigenvalue of the mixture. The simulations are performed with
the Freefem++ library developped at the Laboratoire Jacques Louis Lions of the university
Paris 6. We consider the unit square as Ω and choose the parameter N as 36. We plot the
histograms of λ1 obtained thanks to 4000 samples. This size is relatively small but the main
behavior already appears as one can see in Figure 2.2, 2.3, 2.4 and 2.5 for various volume
fraction.

We also have plotted the distribution of eigenvalues computed for samples of random
elements obtained by applying the method of Conca and al. We observe that this lower
bound seems to well provide an attained lower bounds for the first eigenvalues but that this
lower bound is far from the typical eigenvalue at least for the inclusions under consideration.

On the influence of the parameter of truncation N .

The generated random inclusions clearly varies with the value taken by the parameter N . In
Figure 2.1, it appears that the size of each connected componant of the inclusion decrease
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Figure 2.2: Histograms for m/|Ω| = 0.2 and ε = 10−3 (left), 10−2 (center) and 10−1 (right).

1.74 1.76 1.78 1.80 1.82 1.84
0

20

40

60

80

100
Epsilon = 0.1      Fraction = 0.4

Random
Worst 1st order

1.728 1.730 1.732 1.734 1.736 1.738
0

20

40

60

80

100
Epsilon = 0.01      Fraction = 0.4

Random
Worst 1st order

0.0002 0.0004 0.0006 0.0008 0.0010
+1.7272

0

20

40

60

80

100
Epsilon = 0.001      Fraction = 0.4

Random
Worst 1st order

Figure 2.3: Histograms for m/|Ω| = 0.4 and ε = 10−1 (left), 10−2 (center) and 10−3 (right).
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Figure 2.4: Histograms for m/|Ω| = 0.6 and ε = 10−1 (left), 10−2 (center) and 10−3 (right).
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Figure 2.5: Histograms for m/|Ω| = 0.8 and ε = 10−1 (left), 10−2 (center) and 10−3 (right).

(and of course their number increases) when N increases. This is heuristically due to the
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2.4. Minimization of the second order approximation of the ground state

higly oscillating functions ϕk that appeared in the definition of the random field f . In order
to explore the influence of this observation on our quantity of interest, let us focus on a
special case: the contrast ε = 0.5, the volume fraction m/|Ω| = 0.4 and we make vary the
number of used modes. The obtained histograms are presented in Figure 2.6.
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Figure 2.6: Histograms for N = 2 (left), 4 (center) and 7 (right).

We observe that the variance of the distribution of the eigenvalues seems to decrease as N
increases. Since we are not able to derive any clear probabilistic description of the randoms
inclusions (in term of laws for example), we are far from being able to justify the observed
behavior. Nevertheless, an heuristic explanation is that with typical inclusions being smaller
and smaller, one should observe a passage to the limit in some sort of homogenization limiting
the range of possible “material” and hence of the eigenvalues. In the converse, with small N ,
the two materials do not really mix and drastic choices are made.

2.4 Minimization of the second order approximation of
the ground state

In order to be more precise, we go further and do a second order approximation. Indeed,
Proposition 2.2 allows us to conclude that∣∣∣inf

B
λε(B)− inf

B
(λ0 + ελ1(B) + ε2λ2(B))

∣∣∣ ≤ Cε3 . (2.34)

Thus, we can obtain approximate minimizers for the functional λε, for given ε > 0 small
enough, by minimizing the functional λ0 + ελ1 + ε2λ2 which is a second order approximation
of λε. We then study the problem:

minimize {λ0 + ελ1(B) + ε2λ2(B) ; B ⊆ Ω, |B| = m}, 0 < m < |Ω|, m fixed

or equivalently
minimize {λ1(B) + ελ2(B) ; B ⊆ Ω, |B| = m},

since λ0 is independent of B and ε > 0 is fixed. From the expressions for λ1(B), λ2(B)
computed in the previous section, we finally consider the problem

minimize F (χ) := α

ˆ
Ω

χ(∇u0 + ε∇v(χ)) · ∇u0

over the class of admissible domains represented by their characteristic functions

Uad := {χ ; χ = χB, B ⊆ Ω, |B| = m} ⊆ L∞(Ω),

19



Chapter 2. Minimization of the Ground State of the mixture of two
conducting materials in a small contrast regime

and v = v(χ) ∈ H1
0(Ω) satisfisfies

−α∆v − λ0v = λ1(χ)u0 + div (αχ∇u0), (2.35)

λ1(χ) :=

ˆ
Ω

αχ|∇u0|2, (2.36)

v ⊥ u0 in L2(Ω).

2.4.1 Relaxation of the minimization problem

The functional F is lower-semicontinuous for the weak-∗ topology on L∞(Ω), being quadratic
with respect to χ, but the admissible set Uad is not closed for this topology. In order to have
a well-posed minimization problem we need to work on the closure Uad and calculate the
lower semicontinuous envelope of F with respect to the weak-∗ topology on L∞(Ω).

F̄ (θ) := inf{lim inf F (χn) : χn ⇀ θ in L∞(Ω)∗}, θ ∈ Uad,

where
Uad = Uad

L∞(Ω)∗

= {θ ∈ L∞(Ω) ; 0 ≤ θ ≤ 1,

ˆ
Ω

θ = m}.

We shall follow the general procedure to compute F̄ and obtain the following theorem.

Theorem 2.2 For any θ ∈ Uad, we have

F̄ (θ) = α

ˆ
Ω

θ [∇u0 + ε∇v∞(θ)] .∇u0 − εθ(1− θ)|∇u0|2,

where v∞(θ) ∈ H1
0(Ω) is solution of

−α∆v − λ0v = λ1(θ)u0 + div (αθ∇u0), (2.37)

λ1(θ) :=

ˆ
Ω

αθ|∇u0|2, (2.38)

v ⊥ u0 in L2(Ω).

The proof of the Theorem 2.2 will use some results on H-measures. This tool was introduced
by P. Gérard in [17] and L. Tartar in [24] to understand the obstruction to compactness via
a matrix of complex-valued Radon measures (µij(x, ξ))1≤i,j≤p on RN × SN−1 on the space-
frequency domain associated to weakly convergent sequences. We refer to the two previous
references for a complete presentation of H-measures and to [3] for their applications in small
contrast homogenization. We will need the two following results (Theorem 2-2 and Lemma
2-3 in [3]).

Theorem 2.3 [3] Let uε be a sequence which weakly converges to 0 in L2(RN)p. There exists
a subsequence and a H-measure µ such that

lim
ε→0

ˆ
RN

q(uε).ūε =

ˆ
RN

ˆ
SN−1

p∑
i,j=1

qij(x, ξ)µij(dx, dξ)

for any polyhomogeneous pseudo-differential operator q of degree 0 with symbol (qij(x, ξ)).
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2.4. Minimization of the second order approximation of the ground state

We shall also use the following lemma due to Kohn and Tartar that deals with the special
case of sequences of characteristic functions.

Lemma 2.3 [3] Let χε be a sequence of characteristic functions that weakly-∗ converges to
some θ in L∞(Ω, [0, 1]). Then the corresponding H-measure µ for the sequence (χε − θ) is
necessarily of the type

µ(dx, dξ) = θ(x)(1− θ(x))ν(dx, dξ),

where, for a given x, the measure ν(dx, dξ) is a probability measure with respect to ξ.
Conversely, for any such probability measure ν ∈ P(Ω,SN−1), there exists a sequence χε

of characteristic functions which weakly-∗ converges to θ ∈ L∞(Ω, [0, 1]) such that θ(1− θ)ν
is the H-measure of (χε − θ).

Proof of Theorem 2.2: Let θ ∈ Uad. Let {χn} be a sequence in Uad such that

χn
?
⇀ θ ∈ Uad. (2.39)

We then analyze the limit of

F (χn) = α

ˆ
Ω

χn|∇u0|2︸ ︷︷ ︸
An

+α ε

ˆ
Ω

χn∇vn · ∇u0︸ ︷︷ ︸
Bn

,

with vn := v(χn) ∈ H1
0(Ω) such that

−α∆vn − λ0vn = λ1(χn)u0 + div (αχn∇u0), (2.40)

λ1(χn) =

ˆ
Ω

αχn|∇u0|2,

vn ⊥ u0 in L2(Ω). (2.41)

Step 1: Passing to the limit in An is easy. By the convergence (2.39), we have

An = λ1(χn) −→ α

ˆ
Ω

θ |∇u0|2 = λ1(θ). (2.42)

Step 2: Now we study the limit of the sequence vn. By (2.41), we know that(
1− λ0

λ1

) ˆ
Ω

|∇vn|2 ≤ C,

using a similar estimation as (2.18). Then ‖vn‖2
H1

0
≤ C and hence,

vn ⇀ v∞ = v∞(θ) weak-H1
0(Ω)

up to a subsequence. Since H1
0(Ω) is compactly embedded in L2(Ω),

vn −→ v∞ in L2(Ω)

up to a subsequence. Therefore, we can pass to variational limit from (2.40) to obtain,

− α∆v∞ − λ0v∞ = λ1(θ)u0 + div (α θ∇u0). (2.43)
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Moreover, passing to the limit from (2.41), we have

v∞ ⊥ u0 in L2(Ω),

accordingly, since ‖u0‖L2 = 1, v∞ = v∞(θ) is uniquely defined in (2.43) and v∞ depends
(linearly) only on θ and not on the convergent subsequence of {vn}.
Step 3: The main difficulty is to pass to the limit in Bn which is quadratic with respect to
χn. First, we can rewrite Bn as

Bn =

ˆ
Ω

χn∇wn · ∇u0 +

ˆ
Ω

χn∇zn · ∇u0, (2.44)

wn, zn ∈ H1
0(Ω) such that

− α∆wn = λ0vn + λ1(χn)u0, (2.45)

−∆zn = div (χn∇u0). (2.46)

On the one hand, since

λ0vn + λ1(χn)u0 −→ λ0v∞ + λ1(θ)u0 in L2(Ω),

(2.45) implies
wn −→ w in H1

0(Ω),

where w ∈ H1
0(Ω) satisfies the equation

−α∆w = λ0v∞ + λ1(θ)u0

and, in consequence, ˆ
Ω

χn∇wn · ∇u0 −→
ˆ

Ω

θ∇w · ∇u0. (2.47)

The difficulty is now to calculate the limit in the second term of Bn in (2.44). We observe that
div χn∇u0 ⇀ div θ∇u0 weakly in H−1(Ω) and since (−∆)−1 is a isomorphism from H−1(Ω)
into H1

0(Ω), we get L2-weak convergence of ∇zn. However, this is not enough for passing
to the limit in the second term of Bn because, in the product χn∇zn, both sequences χn
and ∇zn only converge weakly. For handling this convergence problem we use the results on
H-convergence stated before. To this end, we calculate heuristically the associated symbol q
of the pseudo-differential operator Q as the gradient of the solution of (2.46) with θ replaced
by χn in whole space RN . As a result of this, let us state the following lemma

Lemma 2.4 Let ū0 ∈ H1(RN) be the usual extension of u0 by zero in the whole space RN .
For θ ∈ L∞(RN), if z ∈ H1(RN) is such that lim|x|→∞ z(x) = 0 and verifies

−∆z = div (θ∇ū0) in RN , (2.48)

then θ 7→ Q(θ) := ∇z defines a linear pseudo-differential operator with symbol

q(x, ξ) = − ξ · ∇ū0(x)

|ξ|2
ξ. (2.49)

Note that q is homogenous of degree 0 in ξ.

22



2.4. Minimization of the second order approximation of the ground state

Heuristic calculation of q :
Denote by ̂ the Fourier transform and assume that the variable x is fixed in ∇ū0(x).

Then, using Fourier calculus and starting from Equation (2.46), formally we can calculate as
follows

(−∆z)̂(ξ) = (div (θ∇ū0(x)))̂(ξ)

−(−|ξ|2ẑ) = −iξ · ∇ū0(x)θ̂

ẑ = −iξ · ∇ū0(x)

|ξ|2
θ̂,

which gives

∇̂z(ξ) = −iξẑ(ξ) = −iξ
(
−iξ · ∇ū0(x)

|ξ|2
θ̂

)
=

(
−ξ · ∇ū0(x)

|ξ|2
ξ

)
︸ ︷︷ ︸

q(x,ξ)

θ̂.

For a more rigorous obtention of q we refer the reader to [24], Sect. 4.2, or [17], Thm. 1.
Step 4: For simplicity if Ω is RN , in view of Theorem 2.3 and Lemma 2.3, the limit of the
second term in (2.44) can be written as

lim
n→∞

ˆ
RN

χn∇zn · ∇ū0 = lim
n→∞

ˆ
RN

(χn − θ + θ)Q(χn − θ + θ) · ∇ū0

=

ˆ
RN

θ Q(θ) · ∇ū0 + lim
n→∞

ˆ
RN

(χn − θ)Q(χn − θ) · ∇ū0

=

ˆ
RN

θ Q(θ) · ∇ū0 +

ˆ
RN

ˆ
SN−1

q(x, ξ) · ∇ū0 θ(1− θ) ν(dx, dξ)

=

ˆ
RN

θ Q(θ) · ∇ū0 −
ˆ
RN

θ(1− θ)M∇ū0 · ∇ū0,

where the pseudo-differential operator Q is defined in Lemma 2.4 and its symbol q has been
calculated therein and,

M =

ˆ
SN−1

ξ ⊗ ξ ν(x, dξ),

ν = ν(x, ξ) is a probability measure with respect to ξ that depends on the sequence {χn}
and Q(θ) = ∇z with z ∈ H1(Ω) verifies the equation

−∆z = div (θ∇ū0), in RN .

Step 5: But we need to work on Ω bounded. To that end, we use a localization procedure.
This argument proceeds as follows. Let (ζk) be a sequence of smooth compactly supported
functions in C∞0 (RN) such that supp ζk ⊂ Ω for all k and ζk converges to 1 strongly in L2(Ω).
Then the second term on the right hand side of (2.44) can be written as

ˆ
Ω

χn∇zn · ∇u0 =

ˆ
RN

ζkχn∇zn · ∇u0 +

ˆ
RN

(1− ζk)χn∇zn · ∇u0. (2.50)

Note that the last term in (2.50) converges to 0 uniformly with respect to n when k
tends to infinity because zn is bounded in H1(Ω). We now fix k and consider another smooth
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compactly supported function ψk ∈ C∞0 such that ψk ≡ 1 inside the support of ζk. The first
term on the right hand side of (2.50) is thus equal to

ˆ
Ω

ζk(ψkχn)∇(ψkzn) · ∇u0. (2.51)

Rewriting the equation (2.46) in RN as

−∆(ψkzn)−∆((1− ψk)zn) = div (ψkχn∇u0) + div ((1− ψk)χn∇u0),

we can show that the function ψkzn is the sum of z̃n, žn on the support of ζk being z̃n, žn
solutions of the following equations in the whole space RN

−∆z̃n = div ψkχn∇u0 in RN ,

∆žn = div zn∇ψk +∇ψk · (χn∇u0 +∇zn) in RN .

We then notice that

div ψkχn∇u0 ⇀ div ψkθ∇u0 weakly in H−1(RN) and

div zn∇ψk +∇ψk · (χn∇u0 +∇zn)→ div z∇ψk +∇ψk · (θ∇u0 +∇z) strongly in H−1(RN)

since this last term clearly converges weak-L2(Ω). Using the fact that (−∆)−1 is an isomor-
phism from H−1(RN) into H1(RN), we thus have

z̃n ⇀ z̃ weakly in H1(RN)

and
žn → ž strongly in H1(RN)

where z̃, ž verify

−∆z̃ = div ψkθ∇u0 in RN ,

∆ž = div z∇ψk +∇ψk · (θ∇u0 +∇z) in RN .

Obviously z = z̃ + ž on the support of ζk.
Now noting that the integral (2.51) has close relationship with the formulation of the H-

measures, we see that, as in the whole space case, ∇z̃n depends linearly on (ψkχn) through
the pseudo-differential operator Q of symbol (2.49). Therefore applying Theorem 2 of [17],
we conclude that the limit of the first term on the right hand side of (2.50) is equal to

lim
n→∞

ˆ
RN

ζk(ψkχn)∇(žn + z̃n) · ∇u0 =

ˆ
RN

ζk(ψkθ)∇ž · ∇u0

+ lim
n→∞

ˆ
RN

ζk(ψkχn)∇z̃n · ∇u0

=

ˆ
RN

ζk(ψkθ)∇ž · ∇u0 +

ˆ
RN

ζk(ψkθ)∇z̃ · ∇u0 −
ˆ
RN

ζkψkθ(1− θ)M∇u0 · ∇u0

=

ˆ
Ω

ζkθ∇z · ∇u0 −
ˆ

Ω

ζkθ(1− θ)M∇u0 · ∇u0.
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Finally, making k tends to ∞, we obtain the desired bounded domain case.
We go back to the calculation of the limit in (2.44). Indeed, gathering the limit (2.47)

and limit calculated above, it follows that

lim
n→∞

Bn =

ˆ
Ω

θ∇v∞(θ) · ∇u0 −
ˆ

Ω

θ(1− θ)
ˆ
SN−1

(ξ · ∇u0)2 ν(dx, dξ). (2.52)

From (2.42) and (2.52), finally one has

lim
n→∞

F (χn) = lim
n→∞

An + ε lim
n→∞

Bn

=
1

α
λ1(θ) + ε

ˆ
Ω

θ∇v∞(θ) · ∇u0 − ε
ˆ

Ω

θ(1− θ)
ˆ
SN−1

(ξ · ∇u0)2 ν(dx, dξ).

Step 6: Now we calculate
F̄ (θ) = inf

ν
limF (χn).

To that end, we notice thatˆ
SN−1

(ξ · ∇u0)2 ν(dx, dξ) ≤ |∇u0|2(x) a.e. x ∈ Ω,

since ν is a probability measure with respect to ξ a.e. x ∈ Ω. Moreover, this value is reached
when we take the Dirac measure δ∇u0(x), i.e., when

ν(x, ξ) = δξxdx, ξx = ∇u0(x)/|∇u0(x)|.

From the converse part of Lemma 2.3 in [3], the minimum for

inf
ν

limF (χn)

is also achieved. So, finally we can conclude

F̄ (θ) =

ˆ
Ω

θ (∇u0 + ε∇v∞(θ)) · ∇u0 − ε
ˆ

Ω

θ (1− θ) |∇u0|2. (2.53)

Recall that v∞ = v∞(θ) depends linearly on θ.

2.4.2 Optimality conditions for the relaxed problem.

The relaxed functional F̄ achieves its minimum of Uad since it is lower-semicontinuous and
the constraint set is compact for the weak-∗ topology. We first investigate the differentiability
properties of F̄ in order to obtain optimality conditions for a minimizer of F̄ on the compact
convex set Uad.

Proposition 2.3 The functional F̄ is Fréchet differentiable of every order and we have the
following expressions for the Gateaux derivatives of first and second order

F̄ ′(θ)ϕ =

ˆ
Ω

[
2ε(∇v∞(θ) + θ∇u0) + (1− ε)∇u0

]
· ∇u0 ϕ. (2.54)

and
F̄ ′′(θ)(ϕ, ϕ) = 2ε

ˆ
Ω

(∇v∞(ϕ) + ϕ∇u0) · ∇u0 ϕ. (2.55)
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Proof: The linearity of the application θ 7→ v∞(θ) and the expression for F̄ show clearly
that it is quadratic with respect to θ. So, the Fréchet derivatives exist. In order to calculate
the first order derivative, we rewrite (2.53) as

F̄ (θ) = ε

ˆ
Ω

θ∇v∞(θ) · ∇u0 + ε

ˆ
Ω

θ2|∇u0|2 + (1− ε)
ˆ

Ω

θ|∇u0|2.

But, using v∞(θ) as test function in (2.43), we get

F̄ (θ) = −ε
ˆ

Ω

|∇v∞(θ)|2 − λ0

α
v2
∞(θ) + ε

ˆ
Ω

θ2|∇u0|2 + (1− ε)
ˆ

Ω

θ|∇u0|2.

A simple calculation gives us

F̄ ′(θ)ϕ = −2ε

ˆ
Ω

∇v∞(θ) · ∇v∞(ϕ)− λ0

α
v∞(θ)v∞(ϕ) + 2ε

ˆ
Ω

θ|∇u0|2ϕ+ (1− ε)
ˆ

Ω

|∇u0|2ϕ.

We now notice that v∞(ϕ) satisfies (2.43). Then, again taking v∞(θ) as test function, we can
explicitly write the above expression in terms of ϕ to obtain (2.54) then (2.55).

We wish to investigate the critical points for the constrained minimization problem of mini-
mizing F̄ over Uad. To that end, we use the Lagrange’s multipliers method with the constraint

C(θ) :=

ˆ
Ω

θ = m, θ ∈ Uad hence C ′(θ)ϕ =

ˆ
Ω

ϕ.

Therefore, the critical points satisfy the Euler-Lagrange equation: for all admissible ϕ

[F̄ ′(θ) + ΛC ′(θ)]ϕ = 0

for some Λ ∈ R; i.e.
ˆ

Ω

[
2ε(∇v∞(θ) + θ∇u0) + (1− ε)∇u0

]
· ∇u0 ϕ+ Λ

ˆ
Ω

ϕ = 0 ∀ϕ.

Consequently the density of Uad in L2(Ω) implies

2ε∇v∞(θ) · ∇u0 + (2εθ + 1− ε)|∇u0|2 = Λ on Ω.

Proposition 2.4 If θ∗ is optimal in the relaxed formulation, then there is real Λ such that:

2ε∇v∞(θ) · ∇u0 + (2εθ + 1− ε)|∇u0|2 = Λ in Ω.

Integrating over Ω and considering u0 as test function in (2.43), we get the following conse-
quence ˆ

Ω

∇v∞(θ) · ∇u0 = 0 and 2ε

ˆ
Ω

θ|∇u0|2 +
1− ε
α

λ0 = Λ|Ω|.
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2.5 Maximization of the ground state by the first and sec-
ond order approximation in the low contrast regime

This section was intended as an attempt to complement the minimization of the first eigen-
value λε(B) of (2.1) in order to know whether the minimization by asymptiotic approximation
has some validity in some sense to be specified. Actually, we are first interested in investi-
gating the range of variation of the first eigenvalue in the respecive first and second order
approximation. That is to say, we want to find the interval of fluctuation of λε(B) in those
orders of approximation. But this holds if we only maximize λε(B).

The procedure is then to perform the maximization process for the ground state in the
first and second asymptotic order cases.

2.5.1 Maximization by the first order approximation

We know that λε(B) = λ0 + ελ1(B) +O(ε2) where

λ0 =

ˆ
Ω

α|∇u0|2,

(λ0, u0) is eigenpair of −α∆ in H1
0(Ω) with λ0 the first eigenvalue and ‖u0‖L2(Ω) = 1. Addi-

tionally

λ1(B) =

ˆ
B

α|∇u0|2 ≤ λ0.

Furthermore, for ε < 1,

λε(B) = inf
u∈H1

0(Ω)
‖u‖L2(Ω)=1

ˆ
Ω

α(1 + εχB)|∇u|2 ≤ 2 inf
u∈H1

0(Ω)
‖u‖L2(Ω)=1

ˆ
Ω

α|∇u|2 = 2λ0.

Since |λε(B)− (λ0 + ελ1(B))| ≤ Cε2, we get∣∣∣∣ sup
|B|=m

λε(B)− λ0 − ε sup
|B|=m

λ1(B)

∣∣∣∣ ≤ Cε2.

Theorem 2.4 There exists c∗ ≥ 0 such that whenever B is a measurable subset of Ω satis-
fying

{x : |∇u0(x)|2 > c∗} ⊆ B ⊆ {x : |∇u0(x)|2 ≥ c∗}

and |B| = m, then B is an optimal solution for the problem of maximizing λ1(B).

Proof: Set f(c) := |{x ∈ Ω : |∇u0(x)|2 ≥ c}|. Then f is decreasing function and
0 ≤ f(c) ≤ |Ω|. Set c∗ := sup{c : f(c) ≥ m}. Notice that, on one hand, f(c∗) ≥ m and,
on the other hand, |{x : |∇u0(x)|2 > c∗}| ≤ m. Indeed, let ck < c∗ be a increasing sequence
such that ck ↗ c∗. As f(ck) ≥ m, limk f(ck) ≥ m. But

lim
k
f(ck) = lim

k
|{x ∈ Ω : |∇u0(x)|2 ≥ ck}|

= | ∩k {x ∈ Ω : |∇u0(x)|2 ≥ ck}|
= |{x ∈ Ω : |∇u0(x)|2 ≥ c∗}| = f(c∗).

27



Chapter 2. Minimization of the Ground State of the mixture of two
conducting materials in a small contrast regime

Taking now ck ↘ c∗ (ck > c∗), we have f(ck) < m, so that limk f(ck) ≤ m. But

lim
k
f(ck) = lim

k
|{x ∈ Ω : |∇u0(x)|2 ≥ ck}|

= | ∪k {x ∈ Ω : |∇u0(x)|2 ≥ ck}|
= |{x ∈ Ω : |∇u0(x)|2 > c∗}|.

So, this allows to consider the subsets B ⊆ Ω with the property |B| = m and {x : |∇u0(x)|2 >
c∗} ⊆ B ⊆ {x : |∇u0(x)|2 ≥ c∗} in order to prove that these sets are optimal solutions of
maximization of λ1(B). In fact, if D ⊂⊂ Ω with |D| = m, then

ˆ
D

|∇u0|2 =

ˆ
D∩B
|∇u0|2 +

ˆ
D\B
|∇u0|2

≤
ˆ
D∩B
|∇u0|2 +

ˆ
D\B

c∗

=

ˆ
D∩B
|∇u0|2 +

ˆ
B\D

c∗

≤
ˆ
D∩B
|∇u0|2 +

ˆ
B\D
|∇u0|2

=

ˆ
B

|∇u0|2,

so that λ1(D) ≤ λ1(B).

Theorem 2.4 provide us of a similar algorithm to that made in [8]. This will be useful
numerically to compare with the second order approach.

2.5.2 Maximization by the second order approximation

In this part, we know that λε(B) = λ0 + ελ1(B) + ε2λ2(B) +O(ε3), where

λ2(B) =

ˆ
Ω

αχB∇u0 · ∇u1(B)

and u1(B) is the solution in H1
0(Ω) of the system

−α∆u1 − λ0u1 = λ1u0 + div αχB∇u0,ˆ
Ω

u1u0 = 0.

By (2.18), we obtain

|λ2(B)| ≤
ˆ

Ω

α|∇u0| |∇u1(B)| ≤
√
αλ0 ‖u1(B)‖H1

0(Ω) ≤ C
√
αλ0,

where C is a constant independent of B.
Since |λε(B)− (λ0 + ελ1(B) + ε2λ2(B))| ≤ Cε3, it holds∣∣∣∣ sup

|B|=m
λε(B)− λ0 − εα sup

|B|=m

ˆ
Ω

χB∇u0 · (∇u0 + ε∇u1(B))

∣∣∣∣ ≤ Cε3.
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In order to maximize
´

Ω
χB∇u0 · (∇u0 + ε∇u1(B)) we consider the relaxation procedure as

follows: we define the general problem

sup
χ∈Uad

[
F (χ) :=

ˆ
Ω

χ∇u0 · (∇u0 + ε∇v(χ))

]
,

where v = v(χ) is the solution in H1
0(Ω) of the system

−α∆v − λ0v = λ1u0 + div αχ∇u0,

λ1 = λ1(χ) =

ˆ
Ω

αχ|∇u0|2,ˆ
Ω

vu0 = 0.

Here Uad = {χ ∈ L∞(Ω; {0, 1}) :
´

Ω
χ = m}.

Since
sup
χ
F (χ) = − inf

χ
(−F (χ)),

it is sufficient to study

inf
χ∈Uad

[
G(χ) := −

ˆ
Ω

χ∇u0 · (∇u0 + ε∇v(χ))

]
.

To that end, we introduce a usual relaxation. In this direction is useful to consider the weak-*
topology of L∞(Ω) and so we pass to calculate

G(θ) = inf{lim inf G(χk) : ∃χk
∗
⇀ θ}

with θ ∈ {ϕ ∈ L∞(Ω; [0, 1]) :
´

Ω
ϕ = m}.

Proposition 2.5 For any θ ∈ L∞(Ω; [0, 1]) such that
´

Ω
θ = m, it holds

G(θ) = −
ˆ

Ω

θ∇u0 · (∇u0 + ε∇v(θ)),

v = v(θ) ∈ H1
0(Ω) solution of

−α∆v − λ0v = λ1u0 + div αθ∇u0,

λ1 = λ1(θ) =

ˆ
Ω

αθ|∇u0|2, (2.56)
ˆ

Ω

vu0 = 0.

Proof: Following the same ideas made in section 2.4, we can assert that

G(θ) = inf
ν
ε

ˆ
Ω

θ(1− θ)
ˆ
SN−1

|ξ · ∇u0|2ν(x, ξ)−
ˆ

Ω

θ∇u0 · (∇u0 + ε∇v(θ)),
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where ν = ν(x, ξ) is a probability measure in the sphere SN−1 for a.e. x ∈ Ω and v = v(θ) is
the solution in H1

0(Ω) of the system

−α∆v − λ0v = λ1u0 + div αθ∇u0,

λ1 = λ1(θ) =

ˆ
Ω

αθ|∇u0|2,ˆ
Ω

vu0 = 0.

According to Lemma 2.3 in [3] and taking into account |ξ · ∇u0|2 ≥ 0, we may consider the
probability measure ξ 7→ ν(·, ξ) as

ν(x, ξ) = δξxdξ

with ξx ∈ SN−1, ξx ⊥ ∇u0. Therefore we finally obtain

G(θ) = −
ˆ

Ω

θ∇u0 · (∇u0 + ε∇v(θ)).

Proposition 2.6 The Fréchet derivative of G is given by the expression

G ′(θ) = −∇u0 · (∇u0 + 2ε∇v(θ)).

Proof: It is clear that

G ′(θ)ϕ = −
ˆ

Ω

ϕ∇u0 · (∇u0 + ε∇v(θ))−
ˆ

Ω

θ∇u0 · ε∇v(ϕ) ∀ϕ ∈ L∞(Ω; [0, 1]),

since ∇v is linear in θ.
From the system (2.56), we can see

ˆ
Ω

θ∇u0 · ε∇v(ϕ) =

ˆ
Ω

ϕ∇u0 · ε∇v(θ).

Indeed, multiplying the first equation in (2.56) for v(ϕ) and integrating by parts, yields
ˆ

Ω

α∇v(θ) · ∇v(ϕ)− λ0

ˆ
Ω

v(θ)v(ϕ) = −
ˆ

Ω

αθ∇u0 · ∇v(ϕ).

The symmetry in the left hand side shows the result and the proof of proposition 2.6 is
completed.

2.6 Numerical illustration
Let us emphasize that the original problem of minimizing the leading eigenvalue with respect
to the inclusion B is not well posed; usually, it admits no solution.

In this section we shall illustrate the behavior of the solution of the approximated problem
through numerical simulations. To that end, we place ourselves under assumption of low
contrast regime, i.e. β = α(1 + ε) for small ε. In the following examples, we will consider
ε = 0.1 and ε = 10−6.
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2.6. Numerical illustration

We use an optimization algorithm to minimize F̄ : we have implemented a gradient-
based steepest descend numerical algorithm for the local proportion θ. At each step of the
optimization algorithm, we update the local proportion with a step ρi > 0 by

θi = min(1,max(0, θ̃i)) with θ̃i = θi−1 − ρi(F̄ ′(θi−1) + Λi)

where Λi is the Lagrange multiplier for the volume constraint. The Lagrange multipliers
Λi are approximated at each iteration by simple dichotomy in order to get the constraint´

Ω
θi = m corresponding to a fixed proportion.
The optimization procedure is coupled with finite elements approximations of the bound-

ary values problems needed to compute both F̄ and its derivative F̄ ′. To calculate the eigen-
pair (λ0, u0) and all the states vi,∞, we use P2 finite elements while the local proportions θi
have been discretized with P1.

We will present examples in dimension two and three. The computations have been made
with the FEM library FreeFem++ [19]. The subsequent figures show the local proportion
of the material with higher conductivity. We do a comparative analysis in dimension two
and three for square and cube cases respectively confirming the mentioned properties in [8]
with respect to the distribution of the material with higher conductivity that depends on the
shape of the domain Ω. The volume always refers to the percentage of volume occupied by
the higher conductivity material.

2.6.1 The square and the cube.

The computations are made on the unit square [0, 1]2 with a regular mesh of 80000 triangles.
For a very small value of ε here 10−6, we have obtained the optimal designs displayed into
Figure 2.7 for different volume proportions. The dark red region corresponds to B and
material β, the local proportion is then 1. The blue region correspond to material α, the
local proportion is then 0.

(a) m/|Ω| = 0.2 (b) m/|Ω| = 0.4 (c) m/|Ω| = 0.7 (d) m/|Ω| = 0.9

Figure 2.7: Nearly optimal distribution B in the square case for ε = 10−6 .

The numerically computed optimal region B contains neighborhoods around corners and
the center always is also included. Similar results were obtained by Conca, Laurain and
Mahadevan in [8] with a first order approximation only. Nevertheless, the local proportion
is very often either 0 or 1. Let us now consider the same cases with a much larger parameter
ε. In Figure 2.8, we present the results obtained with ε = 0.1.

We observe that the mixture is much more important: the interest of higher order ap-
proximation appear, as one can expect, for reasonably large value of the small parameter ε.
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(a) m/|Ω| = 0.2 (b) m/|Ω| = 0.4 (c) m/|Ω| = 0.7 (d) m/|Ω| = 0.9

Figure 2.8: Nearly optimal distribution B in the square case for ε = 0.1 .

For very small values of ε like 10−6, the first order model should already provide a very good
approximation.

Let us now present in Figure 2.9 simulations on the unit cube [0, 1]3. For the visualisation,
we have remove the phase where θ = 0. Since the computation have been made on a Laptop,
the resolution is coarser in these simulations in dimension three, we kept the same numbers
of degree of freedom.

(a) m/|Ω| = 0.125 (b) m/|Ω| = 0.25 (c) m/|Ω| = 0.375 (d) m/|Ω| = 0.5

Figure 2.9: Nearly optimal distribution B in the cube case for ε = 10−6.

2.6.2 Numerical comparison of first and second order model.

Since the original problem does not have in general a solution, it makes little sense to test
how good are the optimal domains obtained by the first order approximation method (see
[8]) and by the second order method. Nevertheless, one may wonder if the optimal solution
obtained by the first and second order methods really differ. We claim that the optimal
design really differ in general. Of course, it depends on the range of the small parameter ε.
In order to illustrate and defend this claim, we have plotted in Figure 2.10 the absolute value
of the difference between the characteristic function of the optimal domain computed by the
method of [8] (based on the first order approximation) and the optimal density computed
with the method presented in this work. In order to catch more precisely this gap, we use a
refined mesh made of 180 000 triangles and P2 finite elements.

It appears that the second order method really differ for rather large values of ε and
brings a real gain in decreasing the leading eigenvalue by generating mixture in a transition
zone between the two phases as it is expected. The size of the mesh appears in the last line
when ε = 10−6, it corresponds to the width of the light curved lines. In the contrary, the
mixing zone has the size of several element when ε take larger values.
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(a) m/|Ω| = 0.2 (b) m/|Ω| = 0.4 (c) m/|Ω| = 0.7 (d) m/|Ω| = 0.9

(e) m/|Ω| = 0.2 (f) m/|Ω| = 0.4 (g) m/|Ω| = 0.7 (h) m/|Ω| = 0.9

(i) m/|Ω| = 0.2 (j) m/|Ω| = 0.4 (k) m/|Ω| = 0.7 (l) m/|Ω| = 0.9

Figure 2.10: Absolute value of the gap between optimal design for first and second order
models. The parameter ε takes the value 10−1 on the first line, 5.10−3 on the second line and
10−6 on the third line.

2.6.3 Others domains

For the sake of completeness, we present computations in other plane domains for the com-
parison with [8]: a crescent in Figure 2.11 and a perforated ellipse in Figure 2.12.

(a) m/|Ω| = 0.2 (b) m/|Ω| = 0.4 (c) m/|Ω| = 0.6 (d) m/|Ω| = 0.8

Figure 2.11: Nearly optimal distribution B in a crescent for ε = 10−6 .
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(a) m/|Ω| = 0.1 (b) m/|Ω| = 0.2 (c) m/|Ω| = 0.4

(d) m/|Ω| = 0.5 (e) m/|Ω| = 0.6 (f) m/|Ω| = 0.8

Figure 2.12: Nearly optimal distribution B in a perforated ellipse for ε = 10−6 .

Let us emphasize that in the last case, even for ε = 10−6, we observe clearly in Figure
2.12(c) a small area where θ takes values strictly between 0 and 1 where we see the effect of
the modelling with a second order approximation. This can be explained by the fact that
the first eigenmode is more oscillating in a more complex geometrical configuration.

In order to enlight this observation let us consider a perforated square. The need of relax-
ation appears clearly in Figure 2.13 and Figure 2.14 for various configurations of perforated
squares.

(a) m/|Ω| = 0.125 (b) m/|Ω| = 0.25 (c) m/|Ω| = 0.38 (d) m/|Ω| = 0.465

(e) m/|Ω| = 0.55 (f) m/|Ω| = 0.665 (g) m/|Ω| = 0.789 (h) m/|Ω| = 0.9

Figure 2.13: Optimal design for second order model for various fractions. The parameter ε
takes the value 10−1.

The results illustrated through Figures 2.13 and 2.14 for domains with many inclusions
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2.6. Numerical illustration

provide a convincing case for the use of the second order approximation. The used meshes
involve around 110 000 triangles.

(a) m/|Ω| = 0.38 (b) m/|Ω| = 0.665 (c) m/|Ω| = 0.789 (d) m/|Ω| = 0.9

(e) m/|Ω| = 0.38 (f) m/|Ω| = 0.665 (g) m/|Ω| = 0.789 (h) m/|Ω| = 0.9

Figure 2.14: Absolute value of the gap between optimal design for first and second order
models. The parameter ε takes the value 10−1 on the first line, 10−3 on the second line.

2.6.4 Numerical comparison of the methods

Next we illustrate the differences between both models first and second order approximation.
We plot the gap between the original value λ0 and the approximated values of the infimum
by first and second model. From the Figure 2.15 below we can check how close are the models
for ε larger than 0.1 for different volume constraints in the unit square case. It seems that
for such a large value of ε the second order model really differs from the first order’s one.
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Figure 2.15: Gap between the approximated model and λ0 of the homogeneous operator
for different volume constraints with interpolation points for ε = 0.05, 0.1, 0.2, . . . , 0.9: unit
square case

Let us now illustrate the same comparison curves but in the small range of values of ε,
[0.01, 0.1]. This allows us to observe more accurately the small differences between the both
approximation methods for ε small (see Figure 2.16 below).
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Figure 2.16: Gap between the approximated model and λ0 of the homogeneous operator for
different volume constraints in the unit square case: ε ∈ [0.01, 0.1]

In the Figure 2.17 the drawn curves represent the made comparisons in the case of the
square with holes for the same volume fractions and same values for ε as before (same domain
as in Figure 2.14).
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Figure 2.17: Gap between the approximated model and λ0 of the homogeneous operator for
different volume constraints: case of the unit square with holes, ε ∈ [0.05, 0.9]

The Figure 2.18 below shows the small differences between first and second order approx-
imations for ε ∈ [0.01, 0.09] in the case of the unit square with holes
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Figure 2.18: Gap between the approximated model and λ0 of the homogeneous operator for
different volume constraints in the case of the unit square with holes: ε ∈ [0.01, 0.1]
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Chapter 3

A second order approach for worst-case
analysis of the compliance for a mixture
of two materials in the low contrast
regime

3.1 Introduction

In this chapter, we are interested in fundamental quantity of interest in linear elasticity:
the compliance or work done by the loads or the stored elastic energy. The compliance
is an appropriate indicator for the global rigidity of structure. In general, one considers
structures made of a single material: homogeneous concrete or steel. Concrete structure can
been made in different steps with diverse mixture in concrete mixers and the assumption of
an homogeneous material is questionable in practice. Knowing how a structure is sensitive
to material perturbation and performing a “worst-case" analysis is then of high engineering
interest. Our motivation in this work is to study the optimal design problem under this
uncertainty of material characteristics.

To make things clear, let d = 2, 3 be the dimension and take a domain Ω in Rd as regular
as we need. Its boundary ∂Ω is decomposed in three complementary parts ΓD, ΓN and
Γ where homogeneous Dirichlet (respectively Neumann) boundary conditions are imposed.
Let H1

D(Ω)d the space of vector fields in H1(Ω)d which satisfy the homogeneous Dirichlet
boundary conditions1 on ΓD. The domain Ω is filled with two isotropic materials of different
fourth-order Hooke elasticity tensors A0 and A1: the second material lays in the open subset
ω of Ω and the background material fills the complement so that the Hooke law is written in
Ω as

Aω(x) = A0 + (A1 − A0)χω(x) = A1χω(x) + A0χΩ\ω(x),

where χω denotes the indicator function of ω. The displacement field uω in Ω is the solution

1it’s well known that continuity of the trace operator implies that this set is closed in H1 and thus it’s a
Hilbert space.
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of the linear elasticity system2 
−div Aωe(uω) = 0 in Ω,

uω = 0 on ΓD,

(Aωe(uω))n = g on ΓN ,

(Aωe(uω))n = 0 on Γ,

(3.1)

where g ∈ H−1/2(ΓN) is a given surface load, e(u) = (∇u+∇uT )/2 is the strain tensor and

Figure 3.1: Model of Compliance

n the outer unitary normal field. The compliance is then defined as

C(Ω, ω, g) := 〈 g,uω〉− 1
2
, 1
2
,ΓN

= E(Ω, g,uω) = Max
v∈H1

D(Ω)d
E(Ω, g,v),

where E is the elastic energy

E(Ω, g,v) = −
ˆ

Ω

Aωe(v) : e(v) + 2〈 g,v〉− 1
2
, 1
2
,ΓN
.

For a given fraction α ∈ (0, 1), we consider the worst case or robust compliance as

J(Ω) = Sup
ω⊂Ω,
|ω|=α|Ω|

C(Ω, ω, g). (3.2)

The concept of robust compliance is not new: the case of uncertain loadings has been studied
in topology structural optimization [6, 7] and in the context of the level set methods [16].
In this work, the uncertain parameter is not the applied forces but the material parameter
through the mixture distribution.

The aim in this work is try to approximate the maximization problem (3.2) with respect
to the material parameter when it is small.

2with Aω satisfying the respective coercivity conditions.
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3.2 Asymptotic analysis of the robust compliance prob-
lem in the low contrast regime

In this section, the domain Ω is fixed and we are interested in finding ω∗ solving the opti-
mization problem:

maximize C(Ω, ω, g) =

ˆ
Ω

Aωe(uω) : e(uω)

subject to ω ⊂ Ω, |ω| = α|Ω|.
(3.3)

In general, this question is a difficult shape optimization problem: the objective involves
uω the solution of the boundary value problem (3.1) depending on ω. Here, we take advantage
of the low contrast assumption which allows to highly simplify the problem by performing
the asymptotic expansion of the solution uω and then of the cost function itself in term of
the contrast parameter ε. Here, this assumption is written as

A1 = A0 + εB which leads to Aω = A0 + εBχω,

where B is a given fourth order tensor. Since we make no positive assumptions on B (the
only restriction is that A1 is nonnegative). We assume in the sequel that ε > 0.

3.2.1 Asymptotic analysis and approximated robust compliance

Next, we study the boundary value problem
−div (A0 + εBχω)e(uε) = 0 in Ω,

uε = 0 on ΓD,

((A0 + εBχω)e(uε))n = g on ΓN ,

((A0 + εBχω)e(uε))n = 0 on Γ,

where the displacement uε is written as a power series in ε

uε =
∑
k≥0

εkuk.

In order to get the coefficients uk, we plug the ansatz in the equation to obtain

−div

(∑
k≥0

εkA0e(uk) +
∑
k≥0

εk+1χωBe(uk)

)
= 0 in Ω,∑

k≥0

εkuk = 0 on ΓD,∑
k≥0

εk(A0e(uk))n +
∑
k≥0

εk+1χω(Be(uk))n = g on ΓN ,∑
k≥0

εk(A0e(uk))n +
∑
k≥0

εk+1χω(Be(uk))n = 0 on Γ.

We now proceed iteratively starting with the first order k = 0:
−div A0e(u0) = 0 in Ω,

u0 = 0 on ΓD,

(A0e(u0))n = g on ΓN ,

(A0e(u0))n = 0 on Γ,

(3.4)
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and for k ≥ 1 it holds the iterative scheme
−div A0e(uk) = div χωBe(uk−1) in Ω,

uk = 0 on ΓD,

(A0e(uk))n = −χω(Be(uk−1))n on ΓN ∪ Γ.

(3.5)

Here, the meaning of the above system is seen through its variational formulationˆ
Ω

(A0e(uk) + χωBe(uk−1)) : e(ϕ) = 0 ∀ϕ ∈ H1
D(Ω)d (3.6)

Note that all the coefficients uk are obtained as solutions of boundary value problem (3.5)
where only the ground Hooke tensor A0 appears in the whole domain Ω. We take advantage
of this to state a first result on the quality of the second order approximation3 u2 := u0 +
εu1 + ε2u2 of the displacement field uε.

Lemma 3.1 There is a constant C independent of ω such that

‖uε − u2‖H1(Ω)d ≤ Cε3.

Proof of Lema 3.1: The proof is straightforward and can be directly adapted to any
order k. For that, first of all consider the test function ϕ = uk in the variational formulation
(3.6). The classical a priori estimates gives

C‖uk‖2
1,Ω ≤

ˆ
Ω

A0e(uk) : e(uk) ≤ C(B)‖uk−1‖1,Ω‖uk‖1,Ω,

where the constant C in the left hand side depends only on4 Ω and A0. Thus

‖uk‖1,Ω ≤ C‖uk−1‖1,Ω k ≥ 1.

Since u0 does not depend on ω, the above scheme produces a uniform bound for uk. From
(3.6) we check that the committed error r2 := uε − u2 is the solution of

−div Aωe(r
2) = ε3div (χωBe(u2)) in Ω,

r2 = 0 on ΓD,

(Aωe(r
2))n = −ε3χω(Be(u2))n on ΓN ∪ Γ.

The usual a priori estimates and the uniform bound of u2 in H1
D(Ω)d end the proof.

We now plug the expansion of uε into the expression of the compliance:

C(Ω, ω, g) =

ˆ
Ω

Aωe(uε) : e(uε)

=

ˆ
Ω

(∑
k≥0

εkA0e(uk)

)
:

(∑
k≥0

εke(uk)

)
+

ˆ
Ω

(∑
k≥0

εk+1χωBe(uk)

)
:

(∑
k≥0

εke(uk)

)

=
∑
k≥0

εk
k∑
p=0

ˆ
Ω

A0e(up) : e(uk−p) +
∑
k≥0

εk+1

k∑
p=0

ˆ
Ω

χωBe(up) : e(uk−p).

3the study of the first order approach is done using level sets methods.
4by Korn’s inequality.
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Hence the above expression is written to second order terms as:

C(Ω, ω, g) =

ˆ
Ω

A0e(u0) : e(u0) + ε

(
2

ˆ
Ω

A0e(u1) : e(u0) +

ˆ
Ω

χωBe(u0) : e(u0)

)
+ ε2

(
2

ˆ
Ω

A0e(u2) : e(u0) + 2

ˆ
Ω

χωBe(u1) : e(u0) +

ˆ
Ω

A0e(u1) : e(u1)

)
+O(ε3) (3.7)

where the meaning of the remainder O(ε3) will be made precise at the final calculus.
Using u0 as test function in (3.6), k = 1, we observe that:

ˆ
Ω

A0e(u1) : e(u0) = −
ˆ

Ω

χωBe(u0) : e(u0). (3.8)

Similar argument applies to the case k = 2 to obtain
ˆ

Ω

A0e(u2) : e(u0) +

ˆ
Ω

χωBe(u1) : e(u0) = 0. (3.9)

Replacing (3.8) and (3.9) in (3.7) yields

C(Ω, ω, g) =

ˆ
Ω

A0e(u0) : e(u0)− ε
ˆ

Ω

χωBe(u0) : e(u0)

+ ε2

ˆ
Ω

A0e(u1) : e(u1) +O(ε3). (3.10)

Nevertheless, using u1 as test function in the variational formulation (3.6), k = 1, gives
ˆ

Ω

A0e(u1) : e(u1) = −
ˆ

Ω

χωBe(u0) : e(u1).

Finally (3.10) becomes
C(Ω, ω, g) = C2(Ω, ω, g) +O(ε3),

where the “second order approximate" robust compliance C2(Ω, ω, g) is defined by

C2(Ω, ω, g) =

ˆ
Ω

A0e(u0) : e(u0)− ε
ˆ

Ω

χωBe(u0) :
(
e(u0) + εe(u1)

)
. (3.11)

To measure the perpetrated error, we can use an alternative definition of the approximate
robust compliance C2(Ω, ω, g) obtained by approximating the compliance

C(Ω, ω, g) = 〈 g,uε〉− 1
2
, 1
2
,ΓN

by
C2(Ω, ω, g) = 〈 g,u2〉− 1

2
, 1
2
,ΓN
.

The systematic error we commit in such an approximation is

|C(Ω, ω, g)− C2(Ω, ω, g)| =
∣∣∣〈 g,uε − u2〉− 1

2
, 1
2
,ΓN

∣∣∣ ≤ Cε3,

where the constant C is independent of ω.
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3.2.2 Solving the approximated worst case problem

The question is now to find ω∗ solution of the maximization problem:

maximize C2(Ω, ω, g)

subject to ω ⊂ Ω, |ω| = α|Ω|.

In view of (3.11) this maximization problem is equivalent to

minimize
ˆ

Ω

χωBe(u0) :
(
e(u0) + εe(u1)

)
subject to ω ⊂ Ω, |ω| = α|Ω|,

(3.12)

where u1 = u1(ω) depend on ω as the solution of the system5
−div A0e(u1) = div χωBe(u0) in Ω,

u1 = 0 on ΓD,

(A0e(u1))n = −χω(Be(u0))n on ΓN ∪ Γ.

We now study the above problem through the general relaxed problem. For this purpose, we
set

Uad := {χ; χ = χω, ω ⊂ Ω, |ω| = α|Ω|}.
Then, our optimization problem over the last admissible set is formulated as

minimizeχ∈UadF (χ)

where
F (χ) :=

ˆ
Ω

χBe(u0) :
(
e(u0) + εe(u)

)
and u = u(χ) ∈ H1

D(Ω)d is the solution of the system
−div A0e(u) = div χBe(u0) in Ω,

u = 0 on ΓD,

(A0e(u))n = −χ(Be(u0))n on ΓN ∪ Γ.

(3.13)

3.2.3 Relaxation of the minimization problem.

In order to derive optimization results, we employ the relaxation approach and we thus equip
to the admissible set, Uad, of the weak-? topology where it is possible to get a minimum for
the lower semicountinuos envelop of F .

It is well know that

U ?

ad = {θ ∈ L∞(Ω; [0, 1]),

ˆ
Ω

θ = α|Ω|}.

From now on, we assume that the fourth order elasticity tensor A0 is isotropic, i.e., there
exist two positive constants µ and λ such that

A0η = 2µ η + λ(Tr η)Id, (3.14)

where λ is a Lamé coefficient, Id is the identity matrix of order d× d and Tr η is the trace of
the matrix η.

5recall that this system makes sense from its variational formulation (3.6).
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Proposition 3.1 Let us denote by F the lower semicountinuous envelop of F , i.e. for any
θ ∈ U ∗ad

F (θ) := inf
{

lim inf F (χk) : ∃ a sequence χk in L∞(Ω; {0, 1}) s.t. χk
∗
⇀ θ

}
.

Then the explicit expression for F (θ), depending only on θ, is given by

F (θ) =

ˆ
Ω

θBe(u0) :
(
e(u0) + εe(v(θ))

)
− ε
ˆ

Ω

θ(1− θ)h(ξ∗), (3.15)

where
h(ξ∗) = max

ξ∈Sd−1

[
h(ξ) ≡ −(σ0ξ)2

µ
+

(µ+ λ)(σ0ξ · ξ)2

µ(2µ+ λ)

]
, σ0 := Be(u0).

ξ∗ and h(ξ∗) will be made precise in Lemma 3.3.

Remark 3.1 The proof of Proposition (3.1) is based on the context of the H-measures which
is formulated through the symbols of the pseudo-differential operators (see Th. 2.2 and Lem.
2.3 in [1]). Therefore, as we did in the heuristic obtention of the symbol in the scalar case
(see Lemma 2.4), before proving Proposition 3.1, we state the following lemma.

Lemma 3.2 If v solves:
− div A0e(v) = div χσ0 in Rd, (3.16)

then
e(v) = P (χ),

where P is a pseudo-differential operator, the symbol of which is (homogenous of degree 0 in
ξ)

q(x, ξ) = −σ
0ξ ⊗ ξ + ξ ⊗ σ0ξ

2µ|ξ|2
+

(µ+ λ)(σ0ξ · ξ)ξ ⊗ ξ
µ(2µ+ λ)|ξ|4

. (3.17)

Heuristic computation of the symbol q of the pseudo-differential operator P :
Fixing x ∈ Rd in σ0(x) and taking Fourier transform in (3.16) we get

−A0ê(v)(ξ)ξ = σ0ξ χ̂(ξ).

The definition of the strain tensor e(v) yields

ê(v)(ξ) = 1
2
(∂̂jvi(ξ) + ∂̂ivj(ξ)) = 1

2
c (ξj v̂i + ξiv̂j) =

c

2
(v̂ ⊗ ξ + ξ ⊗ v̂) = c (v̂(ξ)� ξ),

where c = 2πi and v̂(ξ)� ξ := 1/2 (v̂ ⊗ ξ + ξ ⊗ v̂).
Taking into account the expression (3.14) and the above calculus, it holds

−c
(

2µ(v̂(ξ)� ξ) + λTr (v̂(ξ)� ξ)
)
ξ = σ0ξ χ̂(ξ).

Since

(v̂(ξ)� ξ)ξ =
v̂iξj + v̂jξi

2
ξi = 1

2
(ξ ⊗ ξ + |ξ|2Id)v̂(ξ)

and
Tr (v̂(ξ)� ξ)ξ = 1

2
Tr (v̂iξj + v̂jξi)ξ = v̂iξiξj = (ξ ⊗ ξ)v̂(ξ)
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we have
− c
(

(µ+ λ)ξ ⊗ ξ + µ|ξ|2Id
)
v̂(ξ) = σ0ξ χ̂(ξ). (3.18)

We are interested in finding expressions like

v̂(ξ) = q χ̂(ξ),

where the coefficient q is to be determined. For this purpose, let us first analyse the symmetric
matrix ξ⊗ξ. Note that Im(ξ⊗ξ) ⊂ Span {ξ} and, if ξ 6= 0, |ξ|2 is the only non-zero eigenvalue,
the associated eigenvector of which is ξ. Therefore, we can decompose ξ ⊗ ξ as

ξ ⊗ ξ = Q


|ξ|2

0
. . .

0

QT

for certain orthogonal matrix Q which will be described below. According to the above
decomposition, (3.18) becomes

−c|ξ|2Q


2µ+ λ

µ
. . .

µ

QT v̂(ξ) = σ0ξ χ̂(ξ).

It follows that

v̂(ξ) = − 1

c|ξ|2
Q


1/(2µ+ λ)

1/µ
. . .

1/µ

QTσ0ξ χ̂(ξ)

= −Q

{
1

(2µ+ λ)|ξ|2


|ξ|2

0
. . .

0

+
1

µ
I2 −

1

µ


1

0
. . .

0


}
QT σ

0ξ

c|ξ|2
χ̂(ξ)

= − 1

c|ξ|2

{
ξ ⊗ ξ

(2µ+ λ)|ξ|2
+

1

µ
Id −

1

µ
Q


1

0
. . .

0

QT

}
σ0ξ χ̂(ξ).

Since Q is a orthogonal matrix associated with the decomposition of ξ ⊗ ξ, we can write

Q =

 | | |
ξ/|ξ| θ2 · · · θd

| | |


where {ξ/|ξ|, θ2, . . . , θd} is an orthonormal basis of Rd. It is easy to check that

Q


1

0
. . .

0

QT =
ξ

|ξ|
⊗ ξ

|ξ|
=
ξ ⊗ ξ
|ξ|2

.

44



3.2. Asymptotic analysis of the robust compliance problem in the low
contrast regime

Therefore
v̂(ξ) = − 1

c|ξ|2

[
1

µ
Id −

µ+ λ

µ(2µ+ λ)|ξ|2
ξ ⊗ ξ

]
σ0ξ χ̂(ξ).

Finally,

ê(v)(ξ) = c v̂(ξ)� ξ

=

(
− 1

|ξ|2

[
1

µ
Id −

µ+ λ

µ(2µ+ λ)|ξ|2
ξ ⊗ ξ

]
σ0ξ χ̂(ξ)

)
� ξ

=

(
−σ

0ξ � ξ
µ|ξ|2

+
(µ+ λ)(ξ ⊗ ξ σ0ξ)� ξ

µ(2µ+ λ)|ξ|4

)
χ̂(ξ).

The definition of � implies

(ξ⊗ ξ(σ0ξ))� ξ = [(ξ⊗ I2ξ)(σ
0ξ)]� ξ = [ξ(I2ξ)

T (σ0ξ)]� ξ = ξξT (I2σ
0ξ� ξ) = (σ0ξ · ξ)ξ⊗ ξ,

we then obtain

ê(v)(ξ) =

(
−σ

0ξ ⊗ ξ + ξ ⊗ σ0ξ

2µ|ξ|2
+

(µ+ λ)(σ0ξ · ξ)ξ ⊗ ξ
µ(2µ+ λ)|ξ|4

)
︸ ︷︷ ︸

q(x,ξ)

χ̂(ξ)

which gives the desired symbol q(x, ξ).

Proof of Proposition 3.1: Let {χk} be a sequence of characteristic functions in Uad (not
necessarily minimizing) which converges weakly-? to a limit density θ. We denote by vk the
solution in H1

D(Ω)d of (3.13) associated to χk. Then, the a priori estimates in (3.13) shows
that the sequence vk is bounded in H1

D(Ω)d and, up to a subsequence, it converges weakly
to a limit v in H1

D(Ω)d which is solution of
−div A0e(v) = div θBe(u0) in Ω,

v = 0 on ΓD,

(A0e(v))n = −θ(Be(u0))n on ΓN ∪ Γ.

(3.19)

We now turn to calculate

lim
k→∞

F (χk) = lim
k→∞

ˆ
Ω

χkBe(u0) : e(u0) + ε

ˆ
Ω

χkBe(u0) : e(vk). (3.20)

It is straightforward to calculate the limit of the first term on the right hand side in (3.20).
In fact, since χk

∗
⇀ θ, then

lim
k→∞

ˆ
Ω

χkBe(u0) : e(u0) =

ˆ
Ω

θBe(u0) : e(u0). (3.21)

The limit of the second term is more tricky and we use H-measure results, since this term
contains the quadratic form χke(vk) in the context of pseudo-differential operators.

Since the above Lemma 3.2 is referred to the solution of (3.16) in whole space Rd and our
problem is referred to the bounded domain Ω, we divide the proof into the following steps:
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Step 1: The expression (3.16) holds for Ω = Rd. Indeed, let σ0 be defined by σ0 = Be(u0).
Then, from Theorem 2.3 and Lemma 2.3, it follows that

lim
k→∞

ˆ
Ω

χkBe(u0) : e(vk) = lim
k→∞

ˆ
Ω

e(vk) : χkσ
0

=

ˆ
Ω

e(v) : θσ0 +

ˆ
Ω

ˆ
Sd−1

q(x, ξ) : θ(1− θ)σ0 ν(dx, dξ),

(3.22)

where ν = ν(x, ξ) is a probability measure on the sphere Sd−1 for a.e. x ∈ Ω and q is the
symbol of the pseudo-differential operator P ; i.e., q is that given in Lemma 3.2.

Let us now define the function h on Sd−1 by h(ξ) = q(x, ξ) : σ0. Hence

h(ξ) = −(σ0ξ ⊗ ξ) : σ0 + (ξ ⊗ σ0ξ) : σ0

2µ|ξ|2
+

(µ+ λ)(σ0ξ · ξ)(ξ ⊗ ξ) : σ0

µ(2µ+ λ)|ξ|4
.

Using the facts: |ξ| = 1 on Sd−1, v⊗ ξ : A = v ·Aξ = ξ ⊗ v : A and A : ξ ⊗ ξ = Aξ · ξ for any
symmetric matrix A and any vector v, yields

h(ξ) = −(σ0ξ) · (σ0ξ)

µ
+

(µ+ λ)(σ0ξ · ξ)(σ0ξ · ξ)
µ(2µ+ λ)

. (3.23)

Note that h does not depend on θ and

F̄ (θ) = inf
ν

lim
k→∞

F (χk). (3.24)

So, if we take an optimal direction ξ∗ which maximizes h(ξ) on Sd−1 and we choose the
measure ν(x, ξ) as the Dirac mass in the optimal direction ξ∗, then, gathering (3.21) and
(3.22), we finally obtain (3.15) in the case Ω = Rd.
Step 2: In the case of a bounded domain Ω we use a further localization argument.

We focus in the second term in (3.20). In order to simplify the calculus, let us consider
fA0(ξ) as a fourth-order tensor which is defined, for any symmetric matrices σ, σ′, by

fA0(ξ)σ : σ′ =
σξ · σ′ξ
µ

− (µ+ λ)(σξ · ξ)(σ′ξ · ξ)
µ(2µ+ λ)

.

Hence (3.22) can be rewritten as

lim
k→∞

ˆ
Ω

χkBe(vk) : e(u0) =

ˆ
Ω

e(v) : θσ0 −
ˆ

Ω

ˆ
Sd−1

θ(1− θ)fA0(ξ)σ0 : σ0 ν(dx, dξ). (3.25)

Moreover, the introduction of a fourth-order tensor M(x) defined, for any symmetric matrix
σ, by

Mσ : σ =

ˆ
Sd−1

fB(ξ)σ : σ ν(x, dξ),

allows to rewrite (3.25) as

lim
k→∞

ˆ
Ω

χkBe(vk) : e(u0) =

ˆ
Ω

θBe(v) : e(u0)−
ˆ

Ω

θ(1− θ)BMBe(u0) : e(u0).
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Consider a sequence (ζm)m≥1 of smooth compactly support functions in C∞c (Rd) such that
supp ζm ⊂ Ω and ζm converges strongly to 1 in L2(Ω). Then
ˆ

Ω

χkBe(vk) : e(u0) =

ˆ
Rd

ζmχkBe(vk) : e(u0)−
ˆ
Rd

(ζm − 1)χkBe(vk) : e(u0). (3.26)

Clearly the second term on the right hand side goes to 0 (whenm goes to +∞) uniformly with
respect to k since vk is bounded in H1(Ω)d. Set ψm another smooth compactly supported
function in C∞c (Rd) such that suppψm ⊂ Ω and ψm ≡ 1 inside the support of ζm. Note that

ζm

ψm

Supp ζm

Suppψm

Figure 3.2: Localization argument

ˆ
Rd

ζmχkBe(vk) : e(u0) =

ˆ
Rd

ζm(ψmχk)Be(ψmvk) : e(u0).

Now, from (3.13), we can write

−div A0e(ψmvk)− div A0e((1− ψm)vk) = div ψmχkBe(u0) + div (1− ψm)χkBe(u0)

in Rd. So, computing the second terms on both sides of the last equation, we get

− div A0e(ψmvk) + A0e(vk)∇ψm − (1− ψm)div A0e(vk) + div A0(vk �∇ψm)

= div ψmχkBe(u0) + (1− ψm)div χkBe(u0)− χkBe(u0)∇ψm.

Thus

−div A0e(ψmvk) = div ψmχkBe(u0)− div A0(vk �∇ψm)−
(
A0e(vk) + χkBe(u0)

)
∇ψm

in Rd which allows to show that ψmvk = ṽk + v̌k on the support of ζm, where the last two
functions are the solutions of the following equation in the whole space Rd

−div A0e(ṽk) = div (ψmχk)Be(u0) in Rd, (3.27)
−div A0e(v̌k) = −div A0(vk �∇ψm)−

(
A0e(vk) + χkBe(u0)

)
∇ψm in Rd. (3.28)

According to the compact imbedding of the space H1
0(Ω)d into the space L2(Ω)d, the

weak convergence in H1
0(Ω)d of the sequence vk to the limit v can be assumed L2-strong

convergence up to a subsequence. Then, since the function ψm is fixed, we notice that the
term on the right hand side in (3.28) is L2-strongly convergent and so, the elliptical regularity
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of the equation implies v̌k converges strongly in H1(Rd)d to a limit v̌. Furthermore, clearly
the term on the right hand side in (3.27) isH−1-convergent and, again, in view of the elliptical
regularity of the equation, ṽk converges merely weakly in H1(Rd)d to a limit ṽ which satisfies
v = v̌ + ṽ on the support of ζm. However, as in the case Ω = Rd, e(ṽk) depends linearly on
ψmχk through the pseudo-differential operator P of symbol (3.17). Therefore, we can apply
Theorem 2 of [17] to the product of χk and e(ṽk).

Finally, the limit of the first term on the right hand side of (3.26) becomes

lim
k→∞

ˆ
Rd

ζm(ψmχk)Be(ṽk + v̌k) : e(u0) =

ˆ
Rd

ζm(ψmθ)Be(v̌) : e(u0)

+ lim
k→∞

ˆ
Rd

ζm(ψmχk)Be(ṽk) : e(u0)

=

ˆ
Rd

ζm(ψmθ)Be(v) : e(u0)−
ˆ
Rd

ζmψmθ(1− θ)BMBe(u0) : e(u0)

=

ˆ
Ω

ζmθBe(v) : e(u0)−
ˆ

Ω

ζmθ(1−θ)BMBe(u0) : e(u0),

and making m→ +∞, (3.22) holds for the case Ω bounded, which proves Proposition 3.1.

In the next section we shall present the numerical implementation for the relaxed problem
obtained in this section, for this reason, it is of particular interest to have a completely explicit
formula rather than (3.15). For that purpose we enunciate and prove the following lemma
(see [1], Lem. 2.3.21).

Lemma 3.3 Let η1 ≤ · · · ≤ ηd be the eigenvalues of the symmetrical matrix σ0 = Be(u0).
Then if d = 2 or λ ≥ 0, the maximum value of h on Sd−1 is given by

h(ξ∗) =



(η1 − ηd)2

4µ
+

(η1 + ηd)
2

4(λ+ µ)
if ηd >

2µ+ λ

2(µ+ λ)
(η1 + ηd) > η1

η2
1

2µ+ λ
if η1 ≥

2µ+ λ

2(µ+ λ)
(η1 + ηd)

η2
d

2µ+ λ
if ηd ≤

2µ+ λ

2(µ+ λ)
(η1 + ηd).

(3.29)

ξ∗ is a combination of the eigenvectors associated with the extremal eigenvalues in the first
case and ξ∗ is an eigenvector associated to the corresponding eigenvalue η1,d in the remaining
cases.

Proof of Lemma 3.3: Let us first rewrite (3.23) as

h(ξ) =
1

µ

(
|σ0ξ|2 − (σ0ξ · ξ)2

)
+

1

2µ+ λ
(σ0ξ · ξ)2.

Then, applying the Lagrange multipliers method in ξ∗ to the function h with constraint
g(ξ) = |ξ|2 − 1 and combining the derivatives of h and gDh(ξ) =

2

µ

(
(σ0)2ξ − 2(σ0ξ · ξ)σ0ξ

)
+

4

2µ+ λ
(σ0ξ · ξ)σ0ξ,

Dg(ξ) = 2ξ,
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we have
1

µ

(
(σ0)2ξ∗ − 2(σ0ξ∗ · ξ∗)σ0ξ∗

)
+

2

2µ+ λ
(σ0ξ∗ · ξ∗)σ0ξ∗ = `ξ∗, (3.30)

for some real number `.
From (3.30) we see that (σ0)2ξ∗ is a linear combination of ξ∗ and σ0ξ∗. Let V be the

subspace of Rd spanned by ξ∗ and σ0ξ∗. Then, V is clearly stable under the action of the
symmetrical matrix σ0 and we can diagonalize σ0 on V . Indeed, if we set e ∈ V and η ∈ R
such that σ0e = ηe, then there exist constants c1, c2 such that e = c1ξ

∗ + c2σ
0ξ∗ from which

it follows that {
σ0e = c1σ

0ξ∗ + c2(σ0)2ξ∗ = c1σ
0ξ∗ + c2(α1ξ

∗ + α2σ
0ξ∗)

ηe = c1ηξ
∗ + c2ησ

0ξ∗,

where α1, α2 come from (3.30), so that the condition σ0e = ηe leads to an eigenvalue problem

Bc = ηc, c :=

(
c1

c2

)
.

Without loss of generality we can assume B symmetric (it is enough to assume {ξ∗, σ0ξ∗} is
orthonormal base of V ), since σ0 is symmetric. Hence σ0 has a diagonalization on V .

Let ei, ej ∈ V be two orthogonal unit eigenvectors of σ0 with corresponding eigenvalues
ηi, ηj. Then, the critical point ξ∗ is a linear combination of ei, ej, e.i.

ξ∗ = ciei + cjej

for some real constants ci, cj such that c2
i + c2

j = 1. Replacing this combination in (3.30)
yields

η2
pcp − 2(ηic

2
i + ηjc

2
j)ηpcp

µ
+

2(ηic
2
i + ηjc

2
j)ηpcp

2µ+ λ
= `cp, p = i, j. (3.31)

It is straightforward to see that if ci,j = 0 or ηi = ηj, then ξ∗ is an eigenvector of σ0 associated
to the eigenvalue ηj,i respectively, and the corresponding value of h(ξ∗) is

h(ξ∗) =
η2
j,i

2µ+ λ
. (3.32)

Now, if ci 6= 0 6= cj and ηi 6= ηj, then simplifying by cp and subtracting of the two components
of (3.31) we obtain

ηic
2
i + ηjc

2
j =

2µ+ λ

2(µ+ λ)
(ηi + ηj).

This equation together with c2
i + c2

j = 1 gives a linear system, the solution of which is
c2
i =

(2µ+ λ)ηi − ληj
2(µ+ λ)(ηi − ηj)

c2
j =

(2µ+ λ)ηj − ληi
2(µ+ λ)(ηj − ηi)

.

(3.33)

The assumption of no nullity of ci, cj yields its squares are positive, which is equivalent to
the condition

ηj >
2µ+ λ

2(µ+ λ)
(ηi + ηj) > ηi. (3.34)
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Here we suppose that ηj > ηi. Under these conditions the associated value of h(ξ∗) is

h(ξ∗) =
(ηi − ηj)2

4µ
+

(ηi + ηj)
2

4(µ+ λ)
. (3.35)

Since
(ηi − ηj)2

4µ
+

(ηi + ηj)
2

4(µ+ λ)
−

η2
j,i

2µ+ λ
=

(
(2µ+ λ)ηi,j − ληj,i

)2

4µ(µ+ λ)(2µ+ λ)
≥ 0

we see that (3.35) is always larger than both values of (3.32). Therefore, a maximum of h(ξ)
is either equal to (3.32), or to (3.35) if the condition (3.34) is fulfilled. Let us now analyze the
two-dimensional case d = 2. Then, considering η1 ≤ η2 the eigenvalues of σ0 and assuming
condition (3.34) is not satisfied, we then have either

η1 ≥
2µ+ λ

2(µ+ λ)
(η1 + η2) (3.36)

or

η2 ≤
2µ+ λ

2(µ+ λ)
(η1 + η2) (3.37)

Since µ > 0 and µ+ λ > 0 (µ is a shear moduli and λ is a Lamé coefficient), we can see that
(3.36) yields η2

1 ≥ η2
2. Indeed, (3.36) implies η1 ≤ 0 because if η1 > 0, from (3.36)

1 ≥ 2µ+ λ

2(µ+ λ)

(
1 +

η2

η1

)
≥ 2µ+ λ

µ+ λ
> 1.

A similar contradiction is obtained when we use (3.37) and suppose that η2 < 0. Since
2µ+λ

2(µ+λ)
> 0, the first case (3.36) shows that η1 ≤ η2 ≤ −η1, i.e., |η2| ≤ −η1. Thus η2

2 ≤ η2
1.

Similarly, the second case (3.37) shows that |η1| ≤ η2 and consequently η2
1 ≤ η2

2. This gives
the desired formula for h(ξ∗) in the case d = 2. To analyse the higher dimensional case d ≥ 3,
we assume that λ ≥ 0 which allows us to perform the computations in a greatly simplified
way. This assumption shows easily that if a couple of eigenvalues (ηi, ηj) verifies (3.34), then
the same is true for the extremal eigenvalues (η1, ηd). It follows that ξ∗ is a linear combination
of the eigenvectors e1, ed and additionally, the value

h(ξ∗) =
(η1 − ηd)2

4µ
+

(η1 + ηd)
2

4(µ+ λ)

is larger than value

f(ηi, ηj) :=
(ηi − ηj)2

4µ
+

(ηi + ηj)
2

4(µ+ λ)

since f is an increasing function of ηj and a decreasing function of ηi when condition (3.34)
is satisfied. Therefore, a maximum of h(ξ) is attained for a combination of the extreme
eigenvalues and we get the desired formula (3.29) for h(ξ∗) in the higher dimensional case
d ≥ 3.
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3.2.4 Optimality conditions for the relaxed problem.

Let us now conclude this section investigating the differentiablity properties of F which will
allow to obtain optimality conditions for a minimizer of F on the compact convex set U∗ad.
This will be crucial for the numerical implementation and will be reflected in the gradient-
based steepest descent algorithm that we will discuss in a posterior section.

Proposition 3.2 The Fréchet derivative of F is equal to

F ′(θ) = Be(u0) :
(
e(u0) + 2ε e(v(θ))

)
+ ε(2θ − 1)h(ξ∗). (3.38)

Proof: In view of the linearity of θ 7−→ v(θ) we see from (3.15) that F (θ) is quadratic
in θ. Hence F is Fréchet differentiable and its derivative can be computed by the Gâteaux
derivative. In order to get the derivative in θ we rewrite F (θ) as

F̄ (θ) =

ˆ
Ω

θ
(
Be(u0) : e(u0)− εh(ξ∗)

)
+ ε

ˆ
Ω

θe(v(θ)) : Be(u0) + ε

ˆ
Ω

θ2h(ξ∗).

Using v(θ) as test function in (3.19) and integrating by parts, the second term in the
right hand side can be rewritten asˆ

Ω

θe(v(θ)) : Be(u0) =

ˆ
Ω

A0e(v(θ)) : e(v(θ))

and we thus have

F ′(θ)ϕ =

ˆ
Ω

ϕ
(
Be(u0) : e(u0)− εh(ξ∗)

)
− 2ε

ˆ
Ω

A0e(v(θ)) : e(v(ϕ)) + 2ε

ˆ
Ω

θh(ξ∗)ϕ.

But v(ϕ) also verifies (3.19), so taking again v(θ) as test function and integrating by parts,
it follows that ˆ

Ω

A0e(v(θ)) : e(v(ϕ)) =

ˆ
Ω

ϕBe(u0) : e(v(θ)).

Thus, we can explicitly write the derivative in terms of ϕ as

F̄ ′(θ)ϕ =

ˆ
Ω

(
Be(u0) : e(u0)− εh(ξ∗) + 2εBe(u0) : e(v(θ)) + 2εθh(ξ∗)

)
ϕ. (3.39)

Consequently the density of U ∗ad in L2(Ω) establishes the formula (3.38).

3.3 Minimization of the Compliance by the first and sec-
ond order approximation in low contrast regime

This section is devoted to find the minimum of the compliance in the first and second order
approximation. We employ the same ideas to that done in the above chapter, specifically in
the maximization of the first eigenvalue of the diffusion escalar operator. As consequence,
we will obtain (again as before) the fluctuation interval which will be used in the numerical
implementations to compare the different models.

Let us recall that in physic applications, the compliance is the store energy elasticity
which is an appropriate measure of the rigidity of structures (see fig 3.1). Mathematically, it
is defined through the solution of the elasticity system:

51



Chapter 3. A second order approach for worst-case analysis of the
compliance for a mixture of two materials in the low contrast regime


−div Aωe(uω) = 0 in Ω,

uω = 0 on ΓD,

(Aωe(uω))n = g on ΓN ,

(Aωe(uω))n = 0 on Γ,

(3.40)

by the expression

C(Ω, ω, g) :=

ˆ
ΓN

g · uω,

where g ∈ H−1/2(ΓN) is a given surface load, Aω is a fourth-order Hooke elasticity tensor
which represents the elasticity density inside the material Ω ⊂ Rd, e(v) = 1

2
(∇v +∇vT ) is

the second-order strain tensor and n is the outer normal vector. ω ⊂ Ω is a variable subset,
in the minimization process, to be set to fixed proportion with respect to Ω.

We assume that the condition of low contrast regime is satisfied, that is to say, we will
consider Aω = A0 + εχωB where A0 is the fourth-order Hooke tensor that was considered
in the beginning of this problem and which represents the material in the complement of ω,
and B is a given fourth-order tensor. ε > 0 is the minimization contrast parameter.

Since the variational formulation of (3.40) with test function uω is given by
ˆ

ΓN

g · uω =

ˆ
Ω

Aωe(uω) : e(uω),

we only need to minimize its right hand side. We now implement the asymptotic process
with respect to ε rewriting the displacement uω as

uω = u0 + εu1 + ε2u2 + · · ·

Replacing this ansatz in (3.40) we get
−div A0e(u0) = 0 in Ω,

u0 = 0 on ΓD,

(A0e(u0))n = g on ΓN ,

(A0e(u0))n = 0 on Γ,

(3.41)

and for k ≥ 1, 
−div A0e(uk) = div χωBe(uk−1) in Ω,

uk = 0 on ΓD,

(A0e(uk))n = −χω(Be(uk−1))n on ΓN ∪ Γ.

(3.42)

The meaning of (3.42) is giving by its variational formulation
ˆ

Ω

A0e(uk) : e(ϕ) = −
ˆ

Ω

χωBe(uk−1) : e(ϕ)

for all ϕ ∈ H1
D(Ω)d, i.e. the test functions being in the Hilbert space H1(Ω)d with null

Dirichlet condition on ΓN .
We are interested in studying the minimization process for the compliance in the first and

second asymptotically order cases.
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The a priori estimatives applied to the variational formulation of (3.41)-(3.42) yield

‖uε − (u0 + εu1)‖H1(Ω)d ≤ Cε2 (3.43)

as well as
‖uε − (u0 + εu1 + ε2u2)‖H1(Ω)d ≤ Cε3 (3.44)

3.3.1 Minimization of the first order approximation

The first a priori estimative (3.43) allows us to focus in minimizing

inf
|ω|=α|Ω|

ˆ
Ω

(A0 + εχωB)e(u0 + εu1) : e(u0 + εu1)

in order to minimize the compliance with an ε2-error. Here α ∈ (0, 1) is the proportion
between ω and Ω.

Combining (3.41) and (3.42) and dropping the terms of higher order than 1, the above
minimization problem can be simplified as

inf
|ω|=α|Ω|

ˆ
Ω

A0e(u0) : e(u0)− ε
ˆ
ω

Be(u0) : e(u0),

but since u0 is independent of ω and ε is positive, this problem is reduced to

sup
|ω|=α|Ω|

ˆ
ω

Be(u0) : e(u0). (3.45)

The following theorem provide admissible sets ω that maximize (3.45).

Theorem 3.1 Let ϕ be the density function Be(u0) : e(u0). Then, there exists c ≥ 0 such
that any measurable subset ω of Ω with |ω| = α|Ω| satisfying

{x ∈ Ω : ϕ(x) > c} ⊂ ω ⊂ {x ∈ Ω : ϕ(x) ≥ c}

is an optimal solution for the maximization of (3.45).

Proof: Set f(t) := |{x ∈ Ω : ϕ(x) ≥ t}|. Then f is nonincreasing function with values
in [0, |Ω|], so that the supremum c := sup{t, f(t) ≥ α|Ω|} is well defined. Notice that the
definition of c, for all a, b such that a < c < b one has:

f(b) < α|Ω| ≤ f(a).

In fact, f(c) ≥ α|Ω| and |{x ∈ Ω : ϕ(x) > c}| ≤ α|Ω|. Indeed, let ck < c be an increasing
sequence such that ck ↗ c. As f(ck) ≥ α|Ω|, limk f(ck) ≥ α|Ω|. But, since the level sets of
ϕ are nested,

lim
k
f(ck) = lim

k
|{x ∈ Ω : ϕ(x) ≥ ck}|

= | ∩k {x ∈ Ω : ϕ(x) ≥ ck}|
= |{x ∈ Ω : ϕ(x) ≥ c}| = f(c),
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so that f(c) ≥ α|Ω|.
Taking now ck ↘ c (ck > c), we have f(ck) < α|Ω|, so that limk f(ck) ≤ α|Ω|. But again,

by the fact that the level sets of ϕ are nested, we get

lim
k
f(ck) = lim

k
|{x ∈ Ω : ϕ(x) ≥ ck}|

= | ∪k {x ∈ Ω : ϕ(x) ≥ ck}|
= |{x ∈ Ω : ϕ(x) > c}|.

So, in view of the previous estimatives, we can consider subsets ω ⊂ Ω with the properties
|ω| = α|Ω| and {x ∈ Ω : ϕ(x) > c} ⊂ ω ⊂ {x ∈ Ω : ϕ(x) ≥ c}. Let us now to show that
those sets are optimal sets for the maximization problem (3.45).

Let D be a subset of Ω with |D| = α|Ω|. Since |ω| = |D|, it is clear that |ω \D| = |D \ω|.
Therefore ˆ

D

ϕ =

ˆ
D∩ω

ϕ+

ˆ
D\ω

ϕ ≤
ˆ
D∩ω

ϕ+

ˆ
D\ω

c

=

ˆ
D∩ω

ϕ+ c |D \ ω| =
ˆ
D∩ω

ϕ+ c |ω \D|

=

ˆ
D∩ω

ϕ+

ˆ
ω\D

c ≤
ˆ
D∩ω

ϕ+

ˆ
ω\D

ϕ

=

ˆ
ω

ϕ,

this means that ω is an optimal solution of (3.45).

Notice that the numerical implementations for this problem does not pose any new changes
with respect to that done in the maximization of the ground state, so that we will take
advantage of this in order to apply the same algorithms already obtained.

3.3.2 Minimization by the second order approximation

From a priori estimative (3.44) we can see that the minimization for the compliance may be
studied with a small error (‘cubic error’ for ε small) by replacing the second order expresion
into the elastic energy. To that end, we study the expresion

inf
|ω|=α|Ω|

ˆ
Ω

(A0 + εχωB)e(u0 + εu1 + ε2u2) : e(u0 + εu1 + ε2u2)

which reduces to

inf
|ω|=α|Ω|

ˆ
Ω

A0e(u0) : e(u0)− ε
ˆ

Ω

χωBe(u0) : (e(u0) + εe(u1)).

Here u1 = u1(χω) ∈ H1(Ω)d verifies
−div A0e(u1) = div χωBe(u0) in Ω,

u1 = 0 on ΓD,

(A0e(u1))n = −χω(Be(u0))n on ΓN ∪ Γ.

(3.46)
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The above minimization problem is then reduced to the maximization problem

max
|ω|=α|Ω|

ˆ
Ω

χωBe(u0) : (e(u0) + εe(u1)).

Relaxation procedure: Let us consider the general problem

sup
χ∈Uad

[
F (χ) :=

ˆ
Ω

χBe(u0) : (e(u0) + εe(v))

]
,

where v = v(χ) is the solution in H1(Ω)d of the system (3.46) with

Uad := {χ ∈ L∞(Ω; {0, 1}),
ˆ

Ω

χ = α|Ω|}.

Since
sup
χ
F (χ) = − inf

χ
(−F (χ))

we focus in the problem

inf
χ∈Uad

[
G(χ) := −

ˆ
Ω

χBe(u0) : (e(u0) + εe(v))

]
.

At this moment we are able to use the relaxation procedure. As usual, here we consider
the weak* topology of L∞(Ω). Then, the procedure is to find

G(θ) = inf{lim inf G(χk) : χk
∗
⇀ θ}

with θ ∈ {ϕ ∈ L∞(Ω; [0, 1]) :
´

Ω
ϕ = α|Ω|}.

Proposition 3.3 For any θ ∈ L∞(Ω; [0, 1]) such that
´

Ω
θ = α|Ω|, it holds

G(θ) = −
ˆ

Ω

θBe(u0) :
(
e(u0) + εe(v(θ))

)
+ ε

ˆ
Ω

θ(1− θ)h(ξ∗), (3.47)

where v = v(θ) ∈ H1(Ω)d is the solution of (3.46) when we replace χω by θ, and h(ξ∗) is
given by

h(ξ∗) =
1

2µ+ λ
min

(
η2

1, . . . , η
2
d

)
being η1 ≤ · · · ≤ ηd the eigenvalues of the symmetric matrix σ0 = Be(u0) and ξ∗ an eigen-
vector of σ0.

Proof: Following the same ideas as in the maximization of the compliance by the second
order approximation, we get

G(θ) = inf
ν
−
ˆ

Ω

θBe(u0) :
(
e(u0) + εe(v(θ))

)
+ ε

ˆ
Ω

ˆ
Sd−1

θ(1− θ)h(ξ) ν(dx, dξ)

where ν = ν(x, ξ) is a probability measure on the sphere SN−1 for a.e. x ∈ Ω, v = v(θ) is
the solution in H1(Ω)d of the system

−div A0e(v) = div θBe(u0) in Ω,

v = 0 on ΓD,

(A0e(v))n = −θ(Be(u0))n on ΓN ∪ Γ,
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and
h(ξ) =

1

µ
|σ0ξ|2 − µ+ λ

µ(2µ+ λ)
(σ0ξ · ξ)2,

where µ is a shear moduli and λ is a Lammé coefficient which come from the Hooke law:

A0 = 2µI4 + λI2 ⊗ I2.

According to Lemma 2.3.21 in [1] (see p. 151), the minimum of h is attained in an eigen-
vector ξ∗ of σ0 and its value is given by

h(ξ∗) ≡ min
ξ∈Sd−1

h(ξ) =
1

2µ+ λ
min

(
η2

1, . . . , η
2
d

)
η1 ≤ · · · ≤ ηd are the eigenvalues of σ0. In consequence, after taking ν as a Dirac mass in
the optimal direction ξ∗, G(θ) becomes in (3.47), which ends the proof.

Proposition 3.4 The Fréchet derivative of G is given by

G ′(θ) = ε(1− 2θ)h(ξ∗)−Be(u0) :
(
e(u0) + 2εe(v(θ))

)
,

Proof: Let us first rewrite (3.47) as
ˆ

Ω

θ
(
εh(ξ∗)−Be(u0) : e(u0)

)
− ε
ˆ

Ω

θBe(u0) : e(v(θ))︸ ︷︷ ︸
=
´
Ω A0e(v(θ)):e(v(θ))

−
ˆ

Ω

εθ2h(ξ∗).

From this is easy to check that

G ′(θ)ϕ =

ˆ
Ω

ϕ
(
εh(ξ∗)−Be(u0) : e(u0)

)
− 2ε

ˆ
Ω

A0e(v(ϕ)) : e(v(θ))︸ ︷︷ ︸
=
´
Ω ϕBe(u0):e(v(θ))

−2ε

ˆ
Ω

θϕh(ξ∗)

for all ϕ ∈ L∞(Ω; [0, 1]). Thus

G ′(θ) = εh(ξ∗)−Be(u0) : e(u0)− 2εBe(u0) : e(v(θ))− 2εθh(ξ∗).

Rearranging terms, we obtain the desired expression and the proof of Proposition 3.4 is
completed.

The algorithm of “gradient-based steepest descend method" is adapted to G and G ′ for
the local proportion θ in the numerical implementations so as to get the optimal distribution
which will be shown by graphics output.

3.4 Implementation and numerical results
In this section we are going to show the numerical tests that reinforce the obtained theoretic
results for the maximization of the compliance. All of them will be performed only in dimen-
sion 2. In fact, we will employ similar simulations to that made in the second chapter, so that
we take advantage of this to rewrite the algorithms that were employed in the scalar case
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for the ground state optimization problem. In addition to this, we have taken into account
the same comparisons beteween the first and second order models in order to emphasize the
differences between both methods. Those comparisons are done just as we did in the nu-
merical presentation of the previous chapter, namely the states ui = (u1

i , u
2
i ) are discretized

with P2 × P2 finite elements and the local proportions θi with P1 finite elements. At first,
by simplicity, the numerical results are carried out discretizing the states with P1 × P1 finite
elements and local proportions with P0. In all the following examples we take the material
B = A0. Furthermore, the Poisson ratio is taken as ν = 0.33 and Young’s modulus equal to
30.000. The blue color represents to the stiffer material in all graphics while the red color
represents the weakest material with proportion volume α.

3.4.1 The bar

We consider the bar problem whose geometry is the rectangle of dimensions 5 × 1, it is
clamped on its left boundary and the vertical traction of 1 N is applied on its right boundary.
We observe that the stiffer material is disconnected and concentrated around the clamped
part of the boundary.

Figure 3.3: Compliance maximization for the bar: ε = 10−6, α = 0.4

In this case, the difference between first and second order models is more important than
in the scalar case. This emphasizes the interest of the second order method that catch more
details than the first order one even in the case of a very small value of the parameter ε.

Different configurations for the bar are now shown when the gap ε takes the values
10−1, 10−3 and 10−6. In turn, the comparison with the first order is taking into account in
order to illustrate how sensitive are the differences between both models. We can observe
that the small contrast regime (for ε = 10−6, see Figure 3.6) in these examples does not have
significant differences for the two approximation methods. Every numerical implementation
here is made to a volume ratio of 25%.
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Figure 3.4: Difference between first and second order models for the Compliance maximiza-
tion for the bar: ε = 10−6, α = 0.4

(a) gap ε = 10−1

(b) gap ε = 10−3

(c) gap ε = 10−6

Figure 3.5: Second order model for the bar for different gaps to a volume ratio α = 0.25

Let us now illustrate the different configurations of the first order model and second order
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model to small contrast regime ε = 10−6.

(a) First order model

(b) Second order model

(c) Difference first and second order

Figure 3.6: First and second order models to a small contrast regime ε = 10−6 to a volume
ratio α = 0.25

To see the contrast between the two above simulations we end with ε = 10−3 and the
respective difference between the methods.

(a) Second order model

(b) Difference first and second order

Figure 3.7: Second order model and difference with first order model with ε = 10−3 to a
volume ratio α = 0.25
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3.4.2 The long cantilever

With respect to the long cantilever, we observe that the weak material is distributed in the
exterior of the domain, see Figure 3.8. That suggests that only the interior part of the
material plays a significant role. This explain why usually a cantilever present no interior or
many holes in order to get the lightest structure.

Figure 3.8: Compliance maximization of the long cantilever: ε = 10−6, α = 0.4

In this example we observe (see Figure 3.9) differences between first and second order
models that are supported in a single triangle of the mesh. This means that they are not
significant and may be only caused by the interpolation’s error.

Finally, we show in Figure 3.10 and 3.11 the configuration for the long cantilever for
ε = 0.1 and how this affects the transition between the stiffer and weakest material.

3.4.3 The short cantilever

We first consider the numerical illustrations for the short cantilever considering the optimal
distribution only in the first order approximation for different volume fraction (see Figure
3.12), namely α = 0.25, 0.5 and 0.75.

The following distribution of the weakest material in the domain for the short cantilever,
in the second order model, is placed in a v-form, which disconnects the strong material in
three parts, namely on the corners and on the middle of the clamped side, see Figure 3.13.

For the comparison of the first and second order models, from the Figure 3.14 we can see
that, as before, there are not significant and may be only by the interpolation’s error.

Figure 3.15 shows the configuration for the short cantilever when ε is taken to be larger
and the volume ratio is α = 0.25. As one expects, the transition zone between the materials
is broader. However, it is of interest to note that this is not so different to the above
configuration even for ε smaller. Compare with Figure 3.13.

60



3.4. Implementation and numerical results

Figure 3.9: Difference between first and second order models for the Compliance maximiza-
tion of the long cantilever: ε = 10−6, α = 0.4

(a) Second order model (b) Transition

Figure 3.10: Second order model for the long cantilever with ε = 10−1 to a volume ratio
α = 0.25
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(a) Second order model (b) Transition

Figure 3.11: Second order model for the long cantilever with ε = 10−3 to a volume ratio
α = 0.25

(a) volume ratio:
25%

(b) volume ratio:
50%

(c) volume ratio:
75%

Figure 3.12: First order model for the short cantilever for different volume fractions
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Figure 3.13: Compliance maximization of the short cantilever for the second order model:
ε = 10−6, α = 0.4

Figure 3.14: Difference between first and second order models for the Compliance maximiza-
tion of the short cantilever: ε = 10−6, α = 0.4
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Figure 3.15: Compliance maximization of the short cantilever for the second order model:
ε = 0.1, α = 0.25
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Chapter 4

Minimization of the First Eigenvalue of
the Elasticity System in Low Contrast
Regime

4.1 Introduction
In this chapter we consider the problem of minimizing the first eigenvalue associated to the
linear elasticity system with homogeneous Dirichlet boundary condition in a bounded domain
with a fixed volume, which is conformed by two materials distributed to fixed proportions. It
is well known that this kind of problem does not have solution in a general context. However,
we apply a strategy of approximation by a second order asymptotic procedure in order to
get possible outcomes in the relaxed problem for the second order approximation.

As usual, d = 2, 3 is the dimension of our euclidean space. We are interested in studying
the optimization problem

inf
ω⊂Ω
|ω|=α|Ω|

λ(ω) (4.1)

where ω represents a Lebesgue measurable set to be determined in the optimization process
which is always contained in a fixed bounded domain Ω with a regular boundary ∂Ω, | · | is
the Lebesgue measure in Rd, α is a positive constant that gives the proportions between ω
and Ω, so that α ∈ (0, 1), and finally λ denotes the first eigenvalue of the problem{

−div Aωe(uω) = λ(ω)uω in Ω,

uω = 0 on ∂Ω
(4.2)

being Aω a fourth order tensor conformed by two different fourth-order Hooke elasticity
tensors A0 and A1 which represent the distribution of two isotropic materials into Ω, namely
Ω \ω and ω respectively. uω is a vectorial eigenfunction, uω ∈ H1

0(Ω), and e(u) is the strain
tensor which is defined by

e(u) =
1

2
(Du +DuT ).

Here Du is the Jacobian matrix of u and DuT its transpose.
In order to get asymptotic results, we shall make the “ low contrast regime" assumption:

A1 = A0 + εB
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with the only restriction that A1 is nonnegative and B is a fixed fourth order tensor. Thus
we may assume hereinafter that ε > 0. Note that,

Aω = A0 + εBχω (4.3)

since Aω = A0 + (A1 − A0)χω.
From the variational formulation, it is well known that λ(ω) can be expressed by the

Rayleigh quotient:

λ(ω) = min
u∈H1

0(Ω)\{0}

ˆ
Ω

Aωe(u) : e(u)
ˆ

Ω

‖u‖2

=

ˆ
Ω

Aωe(uω) : e(uω)
ˆ

Ω

‖uω‖2

From now on we shall consider the normalization condition for the fixed vectorial eigenfunc-
tion: ‖uω‖L2(Ω) = 1. Hence, λ(ω) becomes

λ(ω) =

ˆ
Ω

Aωe(uω) : e(uω) (4.4)

4.2 Asymptotic development of order 2 with respect to
the gap

In this section our aim is to describe λ(ω) and uω “nearly" to a second-order representation
with respect to ε. To that end, let us consider the ansätze

λε(ω) :=
∑
j≥0

εjλj(ω) = λ0(ω) + ελ1(ω) + ε2λ2(ω) + · · · (4.5)

uεω :=
∑
j≥0

εjuj(ω) = u0(ω) + εu1(ω) + ε2u2(ω) + · · · (4.6)

In the sequel λ2
ε(ω) and u2

ε(ω) denote the truncated series of (4.5) and (4.6) in their order
2 respectively. The goal is then to show that |λ(ω)−λ2

ε(ω)| and ‖uω−u2
ε(ω)‖H1(Ω) are small

with respect only to ε for suitable coefficients; i.e., we wish to show uniform bounds with
respect to ω for the last remainders when ε is small enough.

Replacing λ(ω), uω by (4.5), (4.6) in the equation (4.2) and using (4.3), we get the
following relationships by identifying the coefficients of same order, namely{

−div A0e(u0) = λ0u0 in Ω,

u0 = 0 on ∂Ω
(4.7){

−div A0e(u1(ω))− λ0u1(ω) = λ1(ω)u0 + div χωBe(u0) in Ω,

u1(ω) = 0 on ∂Ω
(4.8)

{
−div A0e(u2(ω))− λ0u2(ω) = λ2(ω)u0 + λ1(ω)u1(ω) + div χωBe(u1(ω)) in Ω,

u2(ω) = 0 on ∂Ω
(4.9)

From (4.7) we see that the eigen-pair (λ0,u0) does not depend on ω, since A0 is a given
constant tensor independent of ω. Moreover, it is well known that λ0 is nonsimple in general
(see for instance [2]). We analyze the case when eigenvalue λ0 is simple.
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4.2.1 Second order asymptotic analysis with respect to the simple
eigenvalue λ0

We notice, from the normalization condition of uω, that ‖u0‖L2(Ω) = 1. So, u0 may be
uniquely defined.

We now compute the coefficients λ0, λ1(ω), λ2(ω). To that end, on the one hand, we see
at once that

λ0 =

ˆ
Ω

A0e(u0) : e(u0), (4.10)

which is clear from (4.7).
On the other hand, the Fredholm Alternative applied to (4.8) yields u1(ω) is solution if

and only if the right hand side is orthogonal to u0. Thus u1(ω) is solution of (4.8) whenever

λ1(ω) =

ˆ
Ω

χωBe(u0) : e(u0). (4.11)

An easy computation, applying again the normalization of uω, shows that
´

Ω
u1(ω) ·u0 = 0,

so this allows to write the solution u1(ω) univocally.
We can now proceed analogously to the above computation to obtain, from the equation

(4.9),

λ2(ω) =

ˆ
Ω

χωBe(u1(ω)) : e(u0). (4.12)

Moreover, we can write the solution u2(ω) of (4.9) univocally since the normalization condi-
tion gives 2

´
Ω
u2(ω) · u0 +

´
Ω
u1(ω)2 = 0.

Estimate of the remainders

In this part we are interesting in finding an estimate for the remainder |λ(ω)−λ2
ε(ω)| uniformly

in ω. For this purpose, we use the notion of h-quasimode developed in [15] which is formulated
as follows

Definition 2 Let A be a self-adjoint operator on a Hilbert space H with domain D(A). For
a fixed h > 0, a pair (λ, u) ∈ R×D(A) \ {0} is called a h-quasimode if we have

‖(A− λ)u‖H ≤ h‖u‖H .

The main interest of such a definition relies on the following fact: if (λ, u) is a h-quasimode
of A, then the distance from λ to the spectrum of A is less than h and the distance between
u and certain eigenspaces of A can be estimated.

Below we prove that the approximations of order 2 actually form an h-quasimode in the
Hilbert space H−1(Ω) with h = O(ε3). Indeed, let us show first of all a uniform bound in ω
for u1(ω). Let us denote by λ1 the second eigenvalue associated to −div A0e(·). Then, λ1 is
characterized by its variational formulation:

λ1 = min
u∈H1

0(Ω)\{0}
u⊥L2u0

ˆ
Ω

A0e(u) : e(u)
ˆ

Ω

‖u‖2

> λ0.
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Using u1(ω) as test function in (4.8) and integrating by parts, yields
ˆ

Ω

A0e(u1(ω)) : e(u1(ω))− λ0

ˆ
Ω

‖u1(ω)‖2 = −
ˆ
ω

Be(u0) : e(u1(ω))

≤ CB‖u0‖H1(Ω)‖u1(ω)‖H1(Ω).

(4.13)

On the other hand, considering that u1(ω) is L2(Ω)-orthogonal to u0 and applying the Korn’s
inequality, we see that
ˆ

Ω

A0e(u1(ω)) : e(u1(ω))− λ0

ˆ
Ω

‖u1(ω)‖2 ≥
(

1− λ0

λ1

) ˆ
Ω

A0e(u1(ω)) : e(u1(ω))

≥ CΩ,A0

(
1− λ0

λ1

)
‖u1(ω)‖2

H1(ω).

(4.14)

Combining (4.13) with (4.14), we can conclude that ‖u1(ω)‖H1(Ω) ≤ C, where C is a constant
independent of ω. Hence, it follows inmediately that |λ2(ω)| ≤ C, which is clear from (4.12).
Note that |λ1(ω)| ≤ C it is also clear from (4.11). To estimate ‖u2(ω)‖H1(Ω), we take
advantage of the λ1-argument applied to estimate u1(ω). However we observe that u2(ω)
is not L2(Ω)-orthogonal to u0 since

´
Ω
u2(ω) · u0 = −1

2

´
Ω
‖u1(ω)‖2 and u1(ω) is not null,

which is clear from (4.8). Therefore, the strategy to consider is to look for ũ2(ω) such that

ũ2(ω) = u2(ω) + au0

and a ∈ R is taken so that ũ2(ω) is L2(Ω)-orthogonal to u0. Such L2-orthogonal condition
gives

a = a(ω) =
1

2
‖u1(ω)‖2

L2(Ω) ≤ C.

It is easy to check that ũ2(ω) verifies the equation (4.9). Analysis similar to that in the
estimate of ‖u1(ω)‖H1(Ω) shows that ‖ũ2(ω)‖H1(Ω) ≤ C with C independent of ω. Therefore

‖u2(ω)‖H1(Ω) ≤ a(ω)‖u0‖H1(Ω) + C ≤ C ′.

We are now in a position to show

Proposition 4.1 There exists a constant C, independent of ω, such that

|λ(ω)− λ2
ε(ω)| ≤ Cε3.

Proof of Proposition 4.1: By virtue of the assertion done below of the definition (2) it
is sufficient to prove that

‖ − div Aωe(u
2
ε(ω))− λ2

ε(ω)u2
ε(ω)‖H−1(Ω) ≤ Cε3‖u2

ε(ω)‖H−1(Ω). (4.15)

Indeed, an easy computation shows that

− div Aωe(u
2
ε(ω))− λ2

ε(ω)u2
ε(ω) =(

−div χωBe(u2(ω))− λ1(ω)u2(ω)− λ2(ω)u1(ω)
)
ε3 +

(
−λ2(ω)u2(ω)

)
ε4.
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Consequently, according to the above estimates, the canonical injections H1
0 ↪→ L2 ↪→ H−1,

and, considering ε� 1, we may obtain

‖ − div Aωe(u
2
ε(ω))− λ2

ε(ω)u2
ε(ω)‖H−1(Ω) ≤ Cε3. (4.16)

In order to finish the proof, we make the following estimate:

‖u2
ε(ω)‖H−1 = sup

ϕ∈H1
0\{0}

〈u2
ε(ω),ϕ〉H−1×H1

0

‖ϕ‖H1

≥
〈u2

ε(ω),u0〉H−1×H1
0

‖u0‖H1

=

1 + ε2

ˆ
Ω

u0 · u2(ω)

‖u0‖H1

=

1− ε2

ˆ
Ω

‖u1(ω)‖2

‖u0‖H1

≥ 1− ε2C

‖u0‖H1

.

Finally, taking ε2 ≤ 1/2C we thus get

‖u2
ε(ω)‖H−1 ≥ 1

2‖u0‖H1

. (4.17)

Gathering (4.16) and (4.17) we deduce (4.15) and hence the proof of proposition (4.1) is
completed.

Minimization of the second order approximation by relaxation process

Proposition 4.1 motivates the study of the following optimization problem

inf
ω⊂Ω
|ω|=α|Ω|

λ2
ε(ω). (4.18)

Since ε is taken positively and λ0 is independent of ω, the optimization problem (4.18)
may be reduced equivalently to the optimization problem

inf
ω⊂Ω
|ω|=α|Ω|

[
λ1(ω) + ελ2(ω) =

ˆ
Ω

χωBe(u0) : (e(u0) + εe(u1(ω)))

]
(4.19)

where u1(ω) is the solution of the system (4.8) with λ1(ω) given by (4.11) and u1(ω) L2(Ω)-
orthogonal to u0.

Since the infimum in (4.19) is not usually reached at a given ω, we have to consider a
relaxed version corresponding a situation of homogenisation (see, for instance, [11]). Let us
then consider the following optimization problem

inf
χ∈Uad

[
F (χ) =

ˆ
Ω

χBe(u0) : (e(u0) + εe(u(χ)))

]
(4.20)

where, as usual in this type of problems, the admissible set Uad is expressed by

Uad = {χ ∈ L∞(Ω ; {0, 1}) |
´

Ω
χ = α|Ω|}.

and u(χ), which we denote briefly by u, satisfies the conditions
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
−div A0e(u)− λ0u = λu0 + div χBe(u0) in Ω,

u = 0 on ∂Ω´
Ω
u · u0 = 0.

(4.21)

Here λ = λ(χ) =
´

Ω
χBe(u0) : e(u0).

Below we perform the general relaxation process. In this direction, we first introduce the
weak* topology of L∞(Ω) and then we compute the lower semi-continuous envelope (l.s.e.
for short) of the functional F , denoting by F̄ , in the weak* topology.

The sequential characterization of the l.s.e. (see, for instance, [22]) allows us to argue by
sequence limits.

Let χn be an arbitrary but fixed sequence in Uad such that χn
∗
⇀ θ ∈ Uad

∗
= {φ ∈

L∞(Ω ; [0, 1]) |
´

Ω
φ = α|Ω|}, and let un be the solution of (4.21) with χn replaced by χ and

λn := λ(χn).
In order to obtain an explicit limit of F (χn), we use the isotropic assumption for the

symmetric tensor A0, that is,

A0 = 2µA0I4 + λA0I2 ⊗ I2,

where µA0 is a shear moduli, λA0 is a Lammé coefficient, I2 is the identity matrix of order
d× d and I2 ⊗ I2 is the tensor product of the matrix I2.

Under the above assumptions, we have the following

Proposition 4.2 The explicit computation for the l.s.e. in the limit density θ is given by

F̄ (θ) =

ˆ
Ω

θBe(u0) :
(
e(u0) + εe(u(θ))

)
− ε
ˆ

Ω

θ(1− θ)g(ξ∗) (4.22)

where:

- u(θ) is the unique solution of the system (4.21) with θ replaced by χ and λ = λ(θ).

- g(ξ∗) is a function in C 0(Ω̄) which depends on an optimal direction ξ∗ = ξ∗(x) ∈ Sd−1

(the unit sphere in Rd), x ∈ Ω, by the expression

g(ξ∗) = max
ξ∈Sd−1

[
g(ξ) :=

1

µA0

(
|σ0ξ|2 − (σ0ξ · ξ)2

)
+

1

2µA0 + λA0

(σ0ξ · ξ)2

]
with σ0 := Be(u0).

Remark 4.1 [1] shows the explicit formulae to g(ξ∗) (see Prop. 2.3.20 and Lemma 2.3.21,
pg. 151) which depends on the optimal direction ξ∗ being a combination of the eigenvectors
associated with the respective extremal eigenvalues of σ0. Indeed, denoting by η1 ≤ · · · ≤ ηd
the eigenvalues of the symmetrical matrix σ0 yields if d = 2 or λA0 ≥ 0, the maximum value
of g on Sd−1 is given by

g(ξ∗) =



(η1 − ηd)2

4µA0

+
(η1 + ηd)

2

4(λA0 + µA0)
if ηd >

2µA0 + λA0

2(µA0 + λA0)
(η1 + ηd) > η1

η2
1

2µA0 + λA0

if η1 ≥
2µA0 + λA0

2(µA0 + λA0)
(η1 + ηd)

η2
d

2µA0 + λA0

if ηd ≤
2µA0 + λA0

2(µA0 + λA0)
(η1 + ηd).

(4.23)
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ξ∗ is a combination of the eigenvectors associated with the extremal eigenvalues in the first
case and ξ∗ is an eigenvector associated to respective eigenvalue η1,d in the other cases.

Proof of Proposition 4.2: The L2-orthogonal condition in (4.21) applied to un implies
un is bounded in H1

0(Ω). Consequently (up to subsequence) un ⇀ u, H1
0-weak, and hence

un → u, L2-strong. Therefore, letting n → ∞ in the variational formulation of (4.21), we
see that u = u(θ) is the solution of (4.21) with θ replaced by χ.

We now compute the limit of F (χn). To that end, we divide F (χn) as

F (χn) = λn + ε

ˆ
Ω

e(wn) : χnσ
0 + ε

ˆ
Ω

e(zn) : χnσ
0, (4.24)

where wn ∈ H1
0(Ω) is the solution of

− div A0e(wn) = λ0un + λnu0 in Ω, (4.25)

and zn ∈ H1
0(Ω) is the solution of

− div A0e(zn) = div χnσ
0 in Ω. (4.26)

From the weak* convergence of χn it is clear that

lim
n→∞

λn = λ(θ) =

ˆ
Ω

e(u0) : θ σ0 (4.27)

as well as, from (4.25) and the L2-strong convergence of un wn → w, H1
0-strong, and thus

lim
n→∞

ˆ
Ω

e(wn) : χnσ
0 =

ˆ
Ω

e(w) : θ σ0, (4.28)

where w ∈ H1
0(Ω) verifies (4.25) with u(θ), λ(θ) replaced by un, λn respectively.

The limit of the third term in (4.24) must be calculated carefully since the product χne(zn)
does not give a direct convergence. The key is to consider the H-measure approach (see [3]
and the references given there).

In the context of the pseudo-differential operators we easily see from (4.26) that e(zn)
depends linearly on χn and, moreover, e(zn) = Q(χn) with Q a pseudo-differential operator,
homogeneous of order 0, which has the following associated symbol

q(x, ξ) = −σ
0ξ ⊗ ξ + ξ ⊗ σ0ξ

2µA0 |ξ|2
+

(µA0 + λA0)(σ0ξ · ξ)ξ ⊗ ξ
µA0(2µA0 + λA0)|ξ|4

.

Therefore we can assert that the limit of the third term in (4.24) is given by (see [3], Th. 2.2
and Lemma 2.3)

lim
n→∞

ˆ
Ω

Q(χn) : χnσ
0 =

ˆ
Ω

Q(θ) : θ σ0 −
ˆ

Ω

ˆ
Sd−1

q(x, ξ) : θ(1− θ)σ0 ν(dx, dξ) (4.29)

whereQ(θ) is the respective pseudo-differential operator of e(z), being z ∈ H1
0(Ω) the solution

of (4.26) with θ replaced by χn, and, for given x, ν(dx, dξ) is a probability measure with
respect to ξ.
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An easy computation shows that

g(ξ) := q(x, ξ) : σ0 =
1

µA0

(
|σ0ξ|2 − (σ0ξ · ξ)2

)
+

1

2µA0 + λA0

(σ0ξ · ξ)2 (4.30)

for any ξ ∈ Sd−1.
Gathering (4.27), (4.28), (4.29) and (4.30), we finally get the limit of (4.24), namely

lim
n→∞

F (χn) =

ˆ
Ω

(
e(u0) + εe(u(θ))

)
: θ σ0 − ε

ˆ
Ω

θ(1− θ)
ˆ
Sd−1

g(ξ) ν(x, dξ)dx. (4.31)

We notice that the objective function F̄ may be expressed as inf
ν

limF (χn) (ν depends
on the sequence χn). Therefore we can conclude that the objective function is that given
by (4.22) when we “eliminate" the measure ν in (4.31) by considering the optimal Dirac
mass concentrated on ξ∗(x) which maximizes the function g(ξ) in Sd−1 and thus the proof of
Proposition 4.2 is completed.

Remark 4.2 From the definition of the function g(ξ) in (4.30) it is evident that ξ∗ does not
depend on θ and hence the objective function depends only on θ.

The following proposition is aimed at giving an explicit directional derivative of the ob-
jective function F̄ (θ) which is clearly differentiable with respect to θ.

Proposition 4.3 Let ϕ ∈ L∞(Ω; [0, 1]) be any directional limit density of the objective func-
tion F̄ . Then the directional derivative of F̄ at ϕ is given by

F̄ ′(θ)ϕ =

ˆ
Ω

ϕ θ
(
Be(u0) : e(u0)− g(ξ∗)

)
+ 2ε

ˆ
Ω

ϕ
(
θg(ξ∗) +Be(u0) : e(u(θ))

)
. (4.32)

Remark 4.3 By (4.32) it is obvious that the Fréchet derivative of F̄ is nothing more than

F̄ ′(θ) = θ
(
Be(u0) : e(u0)− g(ξ∗)

)
+ 2ε

(
θ g(ξ∗) +Be(u0) : e(u(θ))

)
. (4.33)

Proof of Proposition 4.3: Writing

F̄ (θ) =

ˆ
Ω

θ
(
Be(u0) : e(u0)− εg(ξ∗)

)
+ ε

ˆ
Ω

θ2g(ξ∗) + ε

ˆ
Ω

θBe(u0) : e(u(θ))

yields

F̄ ′(θ) =

ˆ
Ω

ϕ θ
(
Be(u0) : e(u0)− εg(ξ∗)

)
+ 2ε

ˆ
Ω

ϕ θg(ξ∗)

+ ε

ˆ
Ω

θBe(u0) : e(u(ϕ)) + ε

ˆ
Ω

ϕBe(u0) : e(u(θ))

since u depends linearly on the limit density.
Finally we check that

ˆ
Ω

θBe(u0) : e(u(ϕ)) =

ˆ
Ω

ϕBe(u0) : e(u(θ)),
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which concludes the proof of Proposition 4.3. Indeed, taking into account (4.21) with both
θ, ϕ instead of χ and integrating by parts, we deduce that

ˆ
Ω

θBe(u0) : e(u(ϕ)) = −
ˆ

Ω

div θBe(u0) · u(ϕ)

= −
ˆ

Ω

[
−div A0e(u(θ))− λ0u(θ)

]
· u(ϕ)

=

ˆ
Ω

div A0e(u(θ)) · u(ϕ) + λ0

ˆ
Ω

u(ϕ) · u(θ)

= −
ˆ

Ω

A0e(u(ϕ)) : e(u(θ)) + λ0

ˆ
Ω

u(ϕ) · u(θ)

=

ˆ
Ω

[
div A0e(u(ϕ)) + λ0u(ϕ)

]
· u(θ)

=

ˆ
Ω

−div ϕBe(u0) · u(θ)

=

ˆ
Ω

ϕBe(u0) : e(u(θ)).

4.3 Numerical illustrations

4.3.1 The bar

The numerical implementations for the bar have been performed under the following consid-
erations: the dimensions of the bar are 3 units in the base and 1 unit in hight; the proportion
volume is 0.4 in all cases and ε is always 10−6. The first ten calculated eigenvalues for the
first eigenvalue, λ0, of the operator −α∆ in the bar, are: 0.760116, 1.71331, 2.9541, 3.24305,
3.643, 3.91941, 5.55363, 6.11333, 7.23639, 9.5585 which confirms that this is a simple eigen-
value from a numerical point of view.

4.3.2 The long cantilever

4.3.3 The short cantilever
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Figure 4.1: Minimization of the second order approximation of the first elasticity eigenvalue:
bar, ε = 10−6, α = 0.4

Figure 4.2: Difference between first and second order models for the minimization of the first
elasticity eigenvalue: bar, ε = 10−6, α = 0.4
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4.3. Numerical illustrations

Figure 4.3: Minimization of the second order approximation of the first elasticity eigenvalue:
long cantilever, ε = 10−6, α = 0.4

Figure 4.4: Difference between first and second order models for the minimization of the first
elasticity eigenvalue: long cantilever, ε = 10−6, α = 0.4
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Figure 4.5: Minimization of the second order approximation of the first elasticity eigenvalue:
short cantilever, ε = 10−6, α = 0.4

Figure 4.6: Difference between first and second order models for the minimization of the first
elasticity eigenvalue: short cantilever, ε = 10−6, α = 0.4
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