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Abstract
Modelling criminal trial verdict outcomes using social network measures is an emerging

research area in quantitative criminology. Few studies have yet analyzed which of these

measures are the most important for verdict modelling or which data classification tech-

niques perform best for this application. To compare the performance of different tech-

niques in classifying members of a criminal network, this article applies three different

machine learning classifiers–Logistic Regression, Naïve Bayes and Random Forest–with a

range of social network measures and the necessary databases to model the verdicts in

two real–world cases: the U.S.Watergate Conspiracy of the 1970’s and the now–defunct

Canada–based international drug trafficking ring known as the Caviar Network. In both

cases it was found that the Random Forest classifier did better than either Logistic Regres-

sion or Naïve Bayes, and its superior performance was statistically significant. This being

so, Random Forest was used not only for classification but also to assess the importance of

the measures. For theWatergate case, the most important one proved to be betweenness
centrality while for the Caviar Network, it was the effective size of the network. These results

are significant because they show that an approach combining machine learning with social

network analysis not only can generate accurate classification models but also helps quan-

tify the importance social network variables in modelling verdict outcomes. We conclude

our analysis with a discussion and some suggestions for future work in verdict modelling

using social network measures.
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Introduction
Although modelling criminal trial verdict outcomes is a classic problem in predictive criminology
[1], building verdict classification models for criminal networks is a relatively new area of
research. This paper compares the performance of different analytic techniques for addressing the
problem of verdict outcome classification using machine learning and social network measures.

The scientific investigation of social networks in criminal organizations is a branch of quan-
titative criminology that generates knowledge regarding such networks through the analysis of
links between network members [2]. Such an analysis requires data that, unlike the information
normally employed by criminologists, bears directly on these membership ties. By examining
these data, the researcher can explore in detail the social behaviour of criminal groups and
organizations [3–12] and terrorists operations [13–15]. This focus on the ties or links between
group members is what accounts for the success of social network analysis in the study of crim-
inal organizations [16–25].

The problem of verdict outcome classification in particular is of great interest to various
actors in criminal justice systems, and especially to forensic criminologists faced with the task
of converting a set of data into evidence of a network’s criminal conduct. To our knowledge,
however, only three academic studies have analyzed the relationship between verdicts and
social network measures: the pioneering work by Baker and Faulkner [26] and, more recently,
the papers by Faulkner and Cheney [27] and Morselli, Masías, Crespo and Laengle [28]. These
authors have used different sets of social network measures to test their relationships with ver-
dict outcomes. Their general conclusion is that social networks have much potential for con-
structing models that can successfully predict verdicts.

Valuable though these three analyses are, they all confine their methodologies to the use of
Logistic Regression as a data classifier. Studies in other contexts comparing different classifiers
have shown that that their performance can vary significantly depending on the data domain
they are applied to [29–35]. This suggests that classification techniques other than Logistic
Regression should be evaluated to determine how well they perform comparatively with crimi-
nal network data.

The present article is an attempt to carry out just such comparisons. Two real-world cases
will be used for the purpose: (1) theWatergate Conspiracy (WC), the American political scan-
dal of the 1970’s; and (2) the Caviar Network (CN), a now-dismantled international drug traf-
ficking ring that was based in Montréal, Canada. The classifiers whose performance will be
evaluated and compared in addition to Logistic Regression (LR) [36] are Naïve Bayes (NB) [37]
and Random Forest (RF) [38]. Our contribution consists principally in demonstrating that an
approach combining machine learning with social network analysis not only can generate
accurate classification models but also helps quantify the importance social network variables
in modelling verdict outcomes. Both of these conclusions are new findings in the field of crimi-
nology and penology.

The remainder of the article is organized into four sections. Section 2 reviews the relevant
literature; Section 3 presents the methodology, the data, the social network measures, the analy-
sis and the models obtained; Section 4 sets out the results separately for the two cases studied
and the importance of each network measure; and finally, Section 5 discusses the results and a
number of specific issues raised by the analysis and states our final conclusion on the perfor-
mance of the three classifiers in modelling verdict outcomes.

Literature Review
As noted in the Introduction, there are three case studies in the literature that investigate ver-
dict classification based on social network measures [26–28]. The specific problem these papers
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attempted to address is the following: given a set of evidence or data on the relations between
individuals in a social network suspected of criminal activity, what can be inferred with a cer-
tain degree of confidence regarding their guilt or innocence? Traditionally, the data criminolo-
gists work with do not include information on such relations. By contrast, the relatively new
social network approach focuses explicitly on these interdependencies.

The three studies explored the predictive power of various measures of centrality, which
“quantify an intuitive feeling that in most networks some vertices or edges are more central
than others” ([39] [p.16]). All three found the centrality of a criminal network member to be
correlated with verdict outcomes. In [26], the earliest of the articles, Baker and Faulkner inves-
tigated illegal networks in theHeavy Electrical Equipment Industry (HEEI) that were involved
in conspiracies to fix the prices of switchgears, transformers and turbines. Their analysis chose
78 individuals from 13 companies who directly participated in the price-fixing, 37 of whom
were eventually found guilty or pleaded no contest (nolo contendere). The authors discovered
that the centrality degree indicator, which measures the number of direct contacts an individ-
ual has with others, had a positive and significant relationship to the verdict. As centrality
degree increased, the probability that a given agent was found guilty increased as well. Using
this metric Baker and Faulkner were able to identify 87% of the individuals who were found
guilty and 78% of those who were found innocent.

The second case study [27] analyzed the Watergate scandal [40], a highly complex criminal
case in which various individuals were found guilty or innocent and a number of the sentences
handed out were subsequently increased, reduced or revoked [41, 42], but initially 7 persons
were convicted. The authors showed that the betweenness centrality indicator [43], which mea-
sures the number of shortest paths from all vertices to all others that pass through a given net-
work member, contributed significantly to the guilty verdict classifications. As betweenness
centrality increased, the probability that a given conspirator was found guilty also increased [27].

The third case study, a collaborative effort by Canadian and Chilean researchers, analyzed
the Caviar Network, a former Canada-based drug trafficking operation as noted in the Intro-
duction [28]. This work is particularly revealing because unlike the other two cases, it used data
collected from real communications between the network members. The police investigation
of the network resulted in the arrest of 25 individuals, of whom 22 were charged and 14 found
guilty. The study found that the out-degree centrality indicator [44], which measures the agent
out-flow communication edge, made a significant contribution to the verdict classifications. As
out-degree centrality increased, so did the probability that a given conspirator was found guilty
[28]. The findings of this analysis and the two other studies just discussed are summarized in
Table 1, showing the different measures tested in each case and the statistical significance of
the results.

In brief terms, the three studies found empirical support for the hypothesis that social net-
work indicators show considerable potential for modelling verdict outcomes. This suggests that
the degree of responsibility of an individual in a network can be related to their networked
behaviour. These are new findings given that most previous studies have attempted to make
predictions based on social, demographic, economic or ethnic variables, or on variables relating
to the functioning of the judicial system, among other factors [45–52].

The demonstration of this working hypothesis opens up an area of research that raises vari-
ous predictive analysis problems. One of these problems relates to the data. A promising
approach to the data sets is provided by the NB and RF classifiers referred to earlier. Although
there appear to be no previous works applying these classification techniques to the issues inves-
tigated here, some studies have shown that NB and RF perform better than LR in the identifica-
tion of terrorist attacks [53–57]. For example, Graham et al. [58] reported that NB correctly
identified roughly 80% of the perpetrators of terrorist group events in the Philippines. In another
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paper comparing the three classifiers, Hill et al. [54] found that RF outperformed LR and NB in
correctly identifying the guilty parties in one of the world’s major terrorism hot spots.

With the above considerations regarding the state of the art in mind, the next section
describes the experimental method adopted for the present study.

Materials and Methods

Methodological Setup
The method and strategy followed in our comparative analysis is depicted in the flowchart in
Fig 1. A set of 16 social network measures were chosen to be the independent variables and in
both cases the dependent variable was the verdict outcome, which categorized each criminal
agent binarily as either guilty or innocent. The next step was to calculate the various social net-
work measures using the original data sets for the WC and CN cases. Predictive models based
on LR, NB and RF classifiers were then constructed. To address the class imbalance in the two
data sets, the Synthetic Minority Oversampling Technique (SMOTE) was used [59]. The models
were validated using the 10–fold Cross–Validation (10–fold–CV) technique [60]. To compare
their respective performances, various performance measures were applied. These included
Accuracy[61], Precision[62], Recall[62], the Area under the ROC curve (AUC) [63, 64] and the
Matthews Correlation Coefficient[65]. Finally, a series of tests using Cochran’s Q andMcNe-
mar’s test statistic (w2

Mc) [66, 67] were conducted to determine whether the differences recorded
were statistically significant. More detailed information on these various steps is given in the
following subsections.

Data sources and networks for analysis
The data sets for the WC and CN cases are described below:

WCWorking Web. The source of our data for the WC case was the documentary research
carried out by Faulkner and Cheney [27, 68]. Each author individually coded the information
they collected to establish the relations between network members and determine who did
what with whom in the various Watergate activities, and then compared their results. Finding
that they agreed 100% of the time on which actors worked with whom, they concluded that
their coding was highly reliable. A sociogram of the WC data set is shown here in Fig 2.

CN Communication Flow. The source of our data for the CN case was the documentary
research conducted by Morselli [69], who collected evidence derived from electronic surveil-
lance transcripts presented in court during the trials of some of the network participants. The
more than 1,000 pages of transcripts released to the public revealed the communication flow

Table 1. Results of three case studies testing social networkmeasures as predictors of verdict outcomes.

Case Study HEEI CN WC

Source [26] [28] [27]

Social Network Measure Tested Significant Tested Significant Tested Significant

Authority centrality No No Yes No No No

Betweenness centrality No No Yes No Yes Yes

Closeness centrality Yes No Yes No No No

Degree centrality Yes Yes Yes No No No

Hub centrality No No Yes No No No

In–Degree centrality Yes No Yes No No No

Out–Degree centrality Yes No Yes Yes No No

doi:10.1371/journal.pone.0147248.t001
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Fig 1. Methodological Setup.

doi:10.1371/journal.pone.0147248.g001
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Fig 2. TheWorkingWeb of Watergate (n = 61). The coding was used to map these relationships, generating what the authors [27, 68] call a “WorkingWeb
of Watergate”. If two agents (co-conspirators) worked together on illegal activities (i.e., illegal espionage, money laundering, or sabotage) a 1 was entered in
the corresponding cell of an adjacency matrix, otherwise a 0 was entered. Thus, the link values in the completed matrix were binary.

doi:10.1371/journal.pone.0147248.g002
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that existed inside the network of drug trafficking operations. A sociogram of the CN data set
is shown here in Fig 3.

Compute selected social network measures
The 16 social network measures serving as the independent variables are briefly described in
Table 2. Some of them were found to be statistically significant in the previous studies (see
Table 1) while others were tested here for the first time. Also, whereas all 16 measures could be
calculated for CN, only 12 could be for WC because of the binary or non–binary nature of the
data or the symmetry or asymmetry of the matrix (S1 Supporting Information).

Run machine-learning classifiers
In what follows we describe some of the techniques used in building the models, balancing the
classes, and running, validating and evaluating the models.

Classifiers. The three machine-learning classifiers used in this study described below:

• The LR classifier learns probability functions of the form P(Y|X), where Y is the class variable
and X the attribute vector [36]. LR assumes a parametric function for the distribution of P(Y|
X), and based on the training data it estimates the distribution’s parameters. The distribution
is usually a logistic function, thus justifying its name as well as ensuring the probabilities range
between 0 and 1. P(Y|X) can then be a linear combination of the predictor attribute vector.

• NB computes the conditional a posteriori probabilities of a class variable given some set of
predictor variables using the Bayes rule [37]. It is simple to implement and has proven to per-
form very well with a variety of data types in supervised learning settings even though it
implicitly assumes independence of attributes [79]. NB theoretically works best when there
are independent features as predictor variables. However, as has been pointed by Rish, “The
naive Bayes classifier greatly simplify [sic] learning by assuming that features are indepen-
dent given class. Although independence is generally a poor assumption, in practice naive
Bayes often competes well with more sophisticated classifiers” ([80] [p. 41]). We chose this
classifier in light of the view expressed in another study that “NB is the best choice under the
condition of highly imbalanced class distribution” ([81] [p. 454]).

• RF trains various unpruned decision trees by iteratively sampling the original data set with-
out replacement. Each tree is then used to classify an instance individually [38] and the
instance is assigned to a class by counting. One of RF’s features is that it can calculate
strength or importance measures using the Out–of–Bag (OOB) method, which enhances
understanding of which attributes have greater predictive power. The only parameter that
has to be chosen is n, the number of variables selected randomly in each node of the N avail-
able variables. The value of n is determined experimentally by selecting the value that mini-
mizes the error rate for the OOB data. In our study the number of variables selected at
random was n = 8 for WC and n = 3 for CN. For both data sets, RF was trained with 500
trees to grow to ensure every input row was predicted at least a few times. We chose this clas-
sifier because it performs well in databases with relatively few cases, high–dimensional fea-
ture space and complex data structures [82, 83].

Addressing unbalanced class distribution. A dataset is unbalanced if the classes are not
more or less equally represented. This is true of both of our case studies. In WC, 7 of the 61
individuals in the network were found guilty while in CN, it was 14 out of 110. If the imbalance
is not corrected it may result in very low levels on the recall and precision performance
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Fig 3. CN communication flow (n = 110). The data set maps a communication flow between agents indicating who was communicating with whom. Each
cell of the adjacency matrix created for the case contains the number of times the corresponding pair of agents communicated with each other. So as not to
reveal the identity of the monitored individuals, an identification number was assigned to each. Thus, the link values of the completed matrix were non–
negative integers.

doi:10.1371/journal.pone.0147248.g003
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measures. To rebalance the two data sets we therefore applied the SMOTE approach [59], one
of the most widely used strategies in the machine learning community for dealing with unbal-
anced classes in classification problems. This technique over–samples the minority class by cre-
ating synthetic examples rather than over–sampling with replacement. It is administered “by
taking each minority class sample and introducing synthetic examples along the line segments
joining any/all of the kminority class nearest neighbours. Depending upon the amount of
over–sampling required, neighbours from the k nearest neighbours are randomly chosen”
([59] [p. 328]). SMOTE has been successfully used to balance classes in classification problems
involving social network data [84–86]. Here, for the WC case SMOTE obtained 42 synthetic
observations for class 1 and 70 for class 0 while in the CN case, the corresponding numbers
were 84 and 140.

Model validation. In order to prevent overfitting, the models generated by LR, NB and
RF were validated using the 10–fold–CV technique. Previous research has recommended the
use of k–fold cross-validation sampling in networked data given that “the test accuracies of
classifiers that use network information are always better. This is due to the fact that with
random partition the nodes in the test partition will naturally have more neighbours from
train and validation partitions, which have the actual labels, as opposed to the labels esti-
mated by the classifiers” ([87] [p. 146]). The 10–CV technique has been used in cultural
modelling, an emerging field aimed at developing computational models of small groups [81,
88–90]. The 10–CV randomly splits the original sample into 10 “folds” or subsamples. One
of the nine subsamples is only used to test the model, while the remaining nine are used for
the algorithm training process. This process is repeated 10 times for each of the k subsamples.
Thus, 10 outcomes are obtained that are then averaged to evaluate the performance of the
classifier.

Table 2. Definition of independent variables.

Measure Meaning [70] Reference

Degree centrality The number of neighbours of a agent [44]

In–Degree centrality Agent in–flow communication edge [44]

Out–Degree centrality Agent out–flow communication edge [44]

Eigenvector centrality Degree of connected agents who are themselves connected to many players [71]

Authority centrality An agent is authority–central to the extent that its in–links are from agents that have many out–links [72]

Hub centrality A node is hub–central to the extent that its out–links are to agents that have many in–links [72]

Betweenness centrality Across all agent pairs that have the shortest path containing the player, the percentage that pass through the
player

[43]

Information centrality Calculates the Stephenson and Zelen information centrality measure for each agent [73]

Triad count Number of triads centred at the agent [74]

Interlockers Interlocker are agents that have a triad count (the number of triads each node is in) that is greater than the
mean plus one standard deviation

[74]

Radials Radial are agents that have a triad count (the number of triads each node is in) that is less than the mean minus
one standard deviation

[74]

Clique count The number of distinct cliques to which each agent belongs [75]

Constraint The degree to which an agent is constrained by its current communication network [76]

Effective network size The effective size of a agent’s communication network based on redundancy or ties [76]

Clustering coefficient
(local)

Density of the agent’s ego network, which is subgraph induced by its immediate neighbours [77]

Simmelian ties Number of ties with strongly, reciprocally connected players when there are one or more third–party agents who
commonly have strong and reciprocal edges to themselves and the connected agent

[78]

doi:10.1371/journal.pone.0147248.t002
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Performance measures
The performance measures for the above techniques were calculated using a confusion matrix,
that is, a matrix containing the numbers of positive and negative predictions made by a classifi-
cation system (see Fig 4).

The three classifiers’ respective performances were evaluated using standard measures of
Accuracy[61], Precision[62], Recall[62] and the Area under the ROC curve (AUC) [63, 64], the
lattermost computed via Leave–One–Out Cross–Validation (LOOCV) [91] as suggested by Air-
ola et al. [92, 93] for small data sets. Also applied was theMatthews Correlation Coefficient
(MCC) [65], which is often used to measure performance with unbalanced databases (see
Table 3).

Statistical evaluation of models
Two tests were used to evaluate the performance of LR, NB and RF: Cochran’s Q test [94],
which evaluates the three classifiers simultaneously, and McNemar’s test (w2Mc) [66], which

Fig 4. Confusion matrix for a two–class problem. TP is the number of correct predictions that an instance
is positive (true positive), FN is the number of incorrect predictions that an instance is negative (false
negative), FP is the number of incorrect predictions that an instance is positive (false positive) and TN is the
number of correct predictions that an instance is negative (true negative).

doi:10.1371/journal.pone.0147248.g004

Table 3. Performance measures for binary classification problems.

Performance Measure Formula

Accuracy TPþTN
TPþFPþFNþTN

Precision TP
TPþFP

Recall TP
TPþFN

MCC TP�TN�FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþFPÞðTPþFNÞðFPþTNÞðFNþTNÞ

p

ROC Area 1
2

TP
TPþFN þ TN

TNþFP

� �

Note: Formulas are based on the confusion matrix classifications of Fig 4. Each measure varies between 0

and 1 except MCC, which takes values between −1 and +1. In every case, values close to +1 indicate a

good performance.

doi:10.1371/journal.pone.0147248.t003
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evaluates them pair by pair. For Cochran’s Q the null hypothesis (H0) was that the three per-
formed similarly whereas the alternative hypothesis (H1) was that they did not, that is, that
they performed differently. For McNemar’s test, the null hypothesis (H0) was that the three
models performed similarly while the alternative hypothesis (H1) was that their performances
differed.

Softwares
The social network measures were computed using the Organization Risk Analyzer
(ORA) software tool [70, 95, 96]. We also used the following R packages for data analysis:
DMwR R package for SMOTE [97], r-base-core for LR [98], e1071 R package for NB [99],
RandomForest R package for RF and variable importance analysis [100], cvTools R pack-
age for computing 10–fold–CV and ROC with LOOCV [101], RVAideMemoire R package
for the Cochran’s Q Test [102], and Package exact2x2 for McNemar’s test [103]. Questions
or comments regarding the quantitative data analysis using the ORA and R Packages may be
addressed to the authors.

Results
In this section we present and compare the performance scores for the WC and CN cases, and
also set out the importance values of the variables in the best predictive model obtained.

Classification results for the WC case
The results for the WC case are summarized in Table 4, which shows the average performance
scores (AVG) and their standard deviations (SD) for the three classification models. As can be
seen, RF was the classifier with the highest average scores (in bold type) and the lowest stan-
dard deviations (underlined) for the accuracy, precision, recall, MCC measures, and ROC Area
(AUC) (see Fig 5). Also apparent is that LR outperformed NB on all of the measures except
Recall, where NB did better.

Cochran’s Q test rejected the null hypothesis (Q = 5.09 with p<0.10), although only at the
10% significance level, meaning that performances of LR, NB and RF were statistically differ-
ent. McNemar’s pair–by–pair test with continuity correction found that RF’s higher scores
were significant in comparison to both NB (H0 is rejected, w2

Mcð1Þ = 29.6, p<.001) and LR (H0

Table 4. Classifier performance in theWC case.

Performance measure LR NB RF

Accuracy

(AVG) .866 .652 .973

(SD) .077 .172 .044

Precision

(AVG) .794 .525 .986

(SD) .182 .225 .045

Recall

(AVG) .860 .963 .966

(SD) .198 .084 .074

MCC

(AVG) .880 .684 .991

(SD) .079 .093 .003

doi:10.1371/journal.pone.0147248.t004
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is rejected, w2Mcð1Þ = 20.3, p<.001). The tests also demonstrated that LR’s superior performance
to NB was significant (H0 is rejected, w2Mcð1Þ = 6.68, p = .0087). Clearly, then, RF was the classi-
fier that performed best in modelling verdict outcomes in the WC case while LR did better
than NB.

Classification results for the CN case
The results in the CN case are summarized in Table 5. Once again, they show that RF was the
classifier with the highest average performance scores (in bold) and the lowest standard devia-
tions (underlined) for the accuracy, precision, recall, MCC measures, and ROC Area (AUC)
(see Fig 6). LR outperformed NB on all of the measures except Precision, where NB did better.

Cochran’s Q test rejected the null hypothesis (Q = 31.75 with p<0), meaning that perfor-
mances of LR, NB and RF were statistically different. McNemar’s pair–by–pair test with conti-
nuity correction found that as in the WC case, RF’s higher performance scores were significant
in comparison with both NB (H0 is rejected, w2Mcð1Þ = 30.1, p< 0.001) and LR (H0 is rejected,
w2Mcð1Þ = 9.63, p< 0.001). The tests also showed that LR’s superior performance relative to NB

Fig 5. ROC curve for Watergate (using LOOCV).

doi:10.1371/journal.pone.0147248.g005

Table 5. Classifier performance in the CN case.

Performance measure LR NB RF

Accuracy

(AVG) .889 .785 .951

(SD) .067 .067 .038

Precision

(AVG) .881 .904 .943

(SD) .139 .130 .057

Recall

(AVG) .796 .507 .979

(SD) .188 .143 .034

MCC

(AVG) .814 .734 .999

(SD) .187 .147 .001

doi:10.1371/journal.pone.0147248.t005
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was again significant (H0 is rejected, w2Mcð1Þ = 6.68, p = .0087). Thus, in the CN case the RF clas-
sifier performed best in modelling verdict outcomes while LR did better than NB.

Since RF obtained the best results in both cases, the following subsection presents the
importance values of the social network measures in the predictive models.

Importance of social network measures in verdict classification
RF is used not only for classification but also to assess variable importance. The latter concept
is defined as the total decrease in node impurities from splitting on the variable, averaged over
all trees, where node impurity is measured by the Gini index [38, 104]. The variable with the
highest index has the greatest impact on classifier performance of all the variables tested in cor-
rectly modelling what class each instance belongs to.

The importance analysis for RF was conducted following the procedure proposed by Brei-
man [38]. The permutation–based mean decrease in accuracy was used to measure the impor-
tance of each variable in the classification. The importance values for each variable in the WC
and CN cases are displayed in Figs 7 and 8, respectively. In the WC case, centrality betweenness
was the most important social network measure as measured by the Gini index in discriminat-
ing between innocent and guilty parties. The next five most important variables were the sim-
melian ties, clique count, degree centrality, triad count and clustering coefficient measures.

In the CN case, effective network size was the social network measure of greatest importance
as indicated by the Gini index in discriminating between innocent and guilty parties. The next
two in importance were out–degree centrality and then eigenvector centrality.

Discussion
The results set out in the previous section demonstrated clearly that RF performed better, and
in a statistically significant manner, than either NB or LR on the accuracy, recall, precision,
MCC, and ROC measures. We may therefore conclude that RF produced better verdict out-
come classifications in the two cases studied than the other two classifiers. But beyond this
basic conclusion there are a number of important issues raised by the analysis presented thus
far that are taken up in the following subsections.

Fig 6. ROC curve for Caviar Network (using LOOCV).

doi:10.1371/journal.pone.0147248.g006
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On social network measures
The three published works discussed here earlier [26–28] on modelling verdict outcomes with
social network measures used only seven, one and four measures, respectively (see Table 1
above). This contrasts with the present study in which 16 were employed (see Table 2 above). If
we compare the importance values we obtained for the measures using the RF model in the
WC case with the original WC study [27], we find that they agree on the primary importance
of betweenness centrality in determining verdict outcomes. The original study utilized this
measure to operationalise the notion that “political conspiracies rely on brokers between indi-
viduals and mediators between groups to integrate the cabals with each other and cabals with
the cadre” ([27] [p. 266]). We found, however, that betweenness centrality was not able to take
directly into account the small groups in which actors play the role of broker or gatekeeper.
Despite this measure’s importance, then, other measures pointing to the social microstructures
that agents intermediate must also be investigated.

Our results showed that there are in fact several other measures with degrees of importance
similar to that of betweenness centrality, such as simmelian ties, clique count, degree, triad
count and clustering coefficient. All of these indicators attempt to measure network substruc-
tures, the very phenomenon [27] referred to in the observation quoted above on the WC case
network being organized into cabals that are part of cadres. If we consider the WC study
authors’ assertion that “[a] cabal is a clandestine team assembled to carry out political sabotage,
espionage, and other illegal activities” ([27] [p. 266–267]), such social structures are precisely
the sort that can be detected by the simmelian ties (ties embedded in cliques), clique count,
degree, triad count and clustering coefficient measures. In the WC case network (i.e., a cadre),

Fig 7. Variable importance by Gini index (means, lower and upper limits of 95% confidence interval) for modelling verdict outcome inWC case.

doi:10.1371/journal.pone.0147248.g007
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the agents initially found guilty were those who developed a high degree of betweenness and
were organized into clandestine teams (i.e., a cabal).

If we compare the importance values of the RF model variables obtained above with the orig-
inal investigation in the CN case [28], we find that while out–degree centrality was important in
both studies, effective network size had greater importance in the RF model. This measure has
been explored empirically in a paper on criminal networks in Québec, Canada by Morselli and
Tremblay [105]. The two authors conducted a correlational analysis of the data gathered from a
survey of inmate volunteers in southern Quebec prisons, finding that “higher proportions of
nonredundancy in personal networks (networks with higher effective size) were positively asso-
ciated with criminal earnings, market crime commissions and low self–control, and negatively
related with the age of the offender”. And in a path analysis of the same data, Morselli, Tremblay
and McCarthy corroborated that “mentorship increases effective size, which in turn increases
criminal earnings. In other words, criminal mentors improve their protégés’ social capital and
such brokerage–like networking offers a competitive advantage in crime” ([106] [p. 35]). Thus,
both the present study and previous empirical evidence have found that the effective network
size measure plays a prominent role in this type of criminal network.

The importance value obtained for the eigenvector centrality measure in the CN case also
deserves comment. From a theoretical viewpoint, eigenvector centrality is designed to identify
central agents connected to others who are also central. As one author has put it, “[e]igenvector
centrality capitalizes on how differences in degree can propagate through a network (. . .) If
one believes that differences in degree drive centrality, status, or power, then eigenvector cen-
trality is called for” ([107] [p. 561]). Empirically, the measure has been successful in identifying

Fig 8. Variable importance by Gini index (means, lower and upper limits of 95% confidence interval) for modelling verdict outcome in CN case.

doi:10.1371/journal.pone.0147248.g008
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criminals. For example, it was used as an index for ranking the “Men of Honor” among mem-
bers of the U.S. Mafia and enabled the construction of a predictive model for detecting criminal
leaders [108]. Eigenvector centrality has also been proposed for locating central agents in co–
offending networks [109]. The measure’s importance in our RF model indicates the possibility
of a hierarchical typology of criminal networks in which there are agents in high positions con-
nected to many agents in low positions. Indeed, the three measures taken together suggest the
following is true of CN: (a) the network has an organizational style in which the criminals con-
trol the effective size of their ego–network to distribute their earnings (effective network size);
(b) it communicates directly with various agents (out–degree centrality); and (c) it has central
agents that connect with other central agents (eigenvector centrality). In our view, the insights
into the interplay between the various features of a social network are the most interesting
aspect of importance analysis.

Challenges Ahead
A criminal network can be studied using different analytical techniques. Current pedagogical
practice, however, tends to give preference to conventional rather than alternative approaches.
This is reflected in introductory textbooks on quantitative criminology, which present LR as
one of the first techniques of choice in binary classification problems [110–112]. The present
study provides evidence that at least one alternative method has the ability to generate predic-
tive models which are highly competitive with those produced by LR in criminal responsibility
identification. The results we obtained are consistent with a small group of studies that have
also reported better performance for RF than for LR or NB [54, 113]. Further research is
required to compare the performance of different classifiers in the data domain.

The number of social network measures with predictive potential that can be used to charac-
terize a criminal network is constantly growing. The data domain of the social networks is based
on two primitive types of data: (a) who a network member related with; and (b) howmany
times the relationship was activated. With these data types a virtually infinite number of social
network indicators can be constructed. In the last three decades in particular, a number of new
social network measures have been developed [44, 74, 114–120], including variations on the
classic centrality measures [121–128]. In addition, weighted social networks measures have been
created that enable human interaction to be explored in new ways (see [129] and [130]). How-
ever, the inclusion of weighted social network measures in prediction problems has the undesir-
able effect of increasing the dimensionality of the data. New machine learning approaches must
therefore be developed or adapted for using this new type of measure. Other types of social net-
work measures appear regularly in specialized journals such as Social Networks or Connections.
New techniques for selecting and managing the growing dimensionality generated by this
increasing variety of available measures will have to be developed in future research.

Difficulties may also arise with the use of classifiers for verdict classification if the database
for the analysis has class imbalances [131], that is, if the dependent variable has a class with sig-
nificantly more innocent than guilty parties or vice versa. In this study we used the SMOTE
technique to balance the classes in both cases, but other strategies exist in the literature [88,
132–134]. Another potential complication has to do with the size of some criminal networks
[109, 135]. The natural size of a human social network is� 150 [136], or in more specific terms,
“[m]aximum network size averaged 153.5 individuals, with a mean network size of 124.9 for
those individuals explicitly contacted” ([137] [p. 53]). In criminal networks, however, with the
exception of certain cases such as the Italian Mafia [108] or corrupt companies such as ENRON
[138], the number of members may be relatively limited [139]. This means that future investiga-
tions will require techniques that can learn quickly from a small number of observations.
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Finally, there is the question of which structural aspects of criminal networks influence the
way social network measures differ in their importance in determining verdicts. In our results
for theWC and CN cases, the order of importance of the social network measures is not the
same. In qualitative terms, the variables which predicted verdict outcome were different.
Whereas effective network size was eighth in importance inWC, it was first in CN. Centrality
betweenness, meanwhile, was one of the least important in CN but the most important inWC.
This is indirect evidence that the configuration of the two networks and their relationships with
verdict outcome also varied. Further research such as that reported in [140] is needed to com-
pare the structures of networks in terms of their topological characteristics in order to under-
stand how structural aspects contribute to explaining criminal network verdict outcomes.

Limitations of this experimental study
This experimental study has three main limitations. The first one has to do with the interpreta-
tion of the RF models. Despite their good classification performance, RF is a black box type of
algorithm and the models are difficult for humans to interpret in the sense that the results do
not indicate the individual effects of each attribute on the output variable. Future research
should include an investigation of visualization techniques based on sensitivity analyses as sug-
gested by [141].

The second limitation relates to the possible bias stemming from the treatment of unbal-
anced classes. Although SMOTE was used in the present study to address the class imbalance
problem, the small number of available instances for training the algorithms may have pro-
duced an unknown level of bias in the synthetic classes generated. However, the results show
that the models generated by RF exhibit low error levels in the classification results, a sign that
SMOTE combined with RF helped to increase the predictive ability of the models in both clas-
ses. As noted early, several studies have applied SMOTE in classification problems using social
network data. For example, it was used to create a model that predicts social security fraud
detection in Belgium [86]. In another case the technique was utilized to reduce some of the
effects of class imbalance among Trust and Distrust classes in social network online services
[84]. Finally, it was employed to rebalance the classes for a trust prediction problem using
social network data [85]. Additional research (for example, simulation studies using artificial
generated data) to improve our understanding of the effect of SMOTE on class distribution
would nevertheless be useful.

The third limitation of this study, a problem inherent in verdict classification, is that our
models assumed the judicial system reached the correct verdict in each case. Yet it is well
known that in the WC case, although Richard Nixon was one of the main perpetrators, the sys-
tem treated him differently than the others. As for the CN case, some of the criminal agents
were not convicted in exchange for informing on the others. Given the many complications in
any criminal justice process, and more specifically, the complex rules governing criminal trials,
the vagaries in the performance of the prosecution and defence teams and the quality of the
evidence, both this and previous studies have had little choice but to proceed on the assump-
tion that the criminal justice systems’ verdicts are correct. In other words, what is really being
studied is not who was actually guilty but how the justice systems classify guilt. Thus, for deter-
mining guilt or innocence the methods we have discussed have real limitations, but for model-
ling the behaviour of the judicial process they have much to offer.

Final words
This study has attempted to respond to a number of questions and define new tasks for model-
ling criminal trial verdicts using social networks measures. The ultimate goal is to provide

Modeling Verdict Outcomes Using Social Network Measures

PLOS ONE | DOI:10.1371/journal.pone.0147248 January 29, 2016 17 / 24



criminologists with valuable feedback for the efficient allocation of resources and effort to
issues of public interest. The application of machine learning in criminal networks requires fur-
ther study, particularly as regards ethical and legal questions that arise in real–world cases.
Greater application of social network analysis and machine learning in quantitative criminol-
ogy could provide valuable information about the organization of criminal networks and their
networked behaviour.
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