On the group algebra decomposition of a Jacobian variety

Leslie Jimenez ${ }^{1,2}$

Received: 25 February 2014 / Accepted: 14 May 2015 / Published online: 9 June 2015
© Springer-Verlag Italia 2015

Abstract

Given a compact Riemann surface X with an action of a finite group G, the group algebra $\mathbb{Q}[G]$ provides an isogenous decomposition of its Jacobian variety $J X$, known as the group algebra decomposition of $J X$. We obtain a method to concretely build a decomposition of this kind. Our method allows us to study the geometry of the decomposition. For instance, we build several decompositions in order to determine which one has kernel of smallest order. We apply this method to families of trigonal curves up to genus 10 .

Keywords Jacobians • Decomposable Jacobians • Riemann surfaces • Group algebra decomposition

Mathematics Subject Classification Primary 14H40; Secondary 14H30

1 Introduction

The action of a finite group on a given compact Riemann surface X of genus $g \geq 2$ induces a homomorphism $\rho: \mathbb{Q}[G] \rightarrow \operatorname{End}_{\mathbb{Q}}(J X)$ from the rational group algebra $\mathbb{Q}[G]$ into the rational endomorphism algebra of $J X$ in a natural way. The factorization of $\mathbb{Q}[G]$ into a product of simple algebras yields a decomposition of $J X$ into abelian subvarieties [14,17] up to isogeny.

This decomposition, and in general Jacobians with group action, have been extensively studied from different points of view $[1,3,8,10,14,17,21,22,24,28]$.

Partially supported by Fondecyt Grant 1100113 and Conicyt Fellowship for Ph.D. studies.

[^0]In [22] the decomposition of Jacobians of hyperelliptic curves in elliptic factors is studied. The author developed a nice geometrical description for these Jacobians up to genus 10. Her motivation came from [10] where they asked for completely decomposable Jacobians of any dimension g (they gave examples up to $g=1297$). In [28] an explicit formula to calculate the dimension of the factors in the decomposition of $J X$ is given and the polarizations of the subvarieties in the decomposition of $J X$ are studied in [15] and [16]. In general, the kernel of the decomposition of $J X$ has not been studied. The only references treating kernels we know are: [26] for Jacobians with action of the symmetric group of order 3, [20] where the author studies families of curves whose Jacobians are isomorphic to a product of elliptic curves and [7] where the authors study dihedral actions on Jacobians, but the tools used to compute kernels are different from the method developed here.

In this work, we present a method to concretely build an isogeny which is a group algebra decomposition (Sect. 4). We do this deepening the method developed in [15]. This allows us to describe the lattices of the factors in a group algebra decomposition. Moreover, we find a method to determine the order of the kernel of this isogeny. We give a specific criterion to choose the subvarieties in a group algebra decomposition having a kernel of smallest possible order. In particular, we can decide when the isogeny is an isomorphism.

We apply our method to non-normal trigonal curves (see [31]) and normal trigonal curves of genus $g<10$ with reduced group A_{4}, S_{4} and A_{5}. In these cases, we determine the factors of the decomposition such that the size of the kernel is the minimum possible (Sect. 5). The description of the lattices of the factors in the decomposition of $J X$ provides an alternative explanation of the subspace of the loci of Jacobians of trigonal curves inside the moduli space \mathcal{A}_{g} of principally polarized abelian varieties by means of the Riemann matrix of the decomposition (Remark 6).

2 Preliminaries

Let G be a finite group. The known results about the representations of G used in this section may be founded in [29] and [9].

If V is an irreducible representation of G over \mathbb{C}, we denote F as its field of definition and K the field obtained by extending \mathbb{Q} by the values of the character χ_{V}; then $K \subseteq F$ and $m_{V}=[F: K]$ is the Schur index of V.

If H is a subgroup of $G, \operatorname{Ind}_{1_{H}^{G}}$ will denote the representation of G induced by the trivial representation of H and $\langle U, V\rangle$ denotes the usual inner product of the characters. By the Frobenius Reciprocity Theorem $\left\langle\operatorname{Ind}_{1_{H}^{G}}, V\right\rangle=\operatorname{dim}_{\mathbb{C}} V^{H}$, where V^{H} is the subspace of V fixed by H.

Any compact Riemann surface X of genus g has associated a principally polarized abelian variety $J X$ (i.e. a complex torus with a principal polarization). This variety is called the Jacobian variety of X and has complex dimension g. Good accounts of abelian varieties and Jacobians are given in [4] and [27].

Given a compact Riemann surface X with an action of a group G, we consider the induced homomorphism $\rho: \mathbb{Q}[G] \rightarrow \operatorname{End}_{\mathbb{Q}}(J X)$. For any element $\alpha \in \mathbb{Q}[G]$ we define an abelian subvariety

$$
\begin{equation*}
B_{\alpha}:=\operatorname{Im}(\alpha)=\rho(l \alpha)(J X) \subset J X, \tag{1}
\end{equation*}
$$

where l is some positive integer such that $l \alpha \in \mathbb{Z}[G]$.
As $\mathbb{Q}[G]$ decomposes into a product $Q_{0} \times \cdots \times Q_{r}$ of simple \mathbb{Q}-algebras, the simple algebras Q_{i} are in bijective correspondence with the rational irreducible representations of G.

That is, for any rational irreducible representation \mathcal{W}_{i} of G there is a uniquely determined central idempotent e_{i}. This idempotent defines an abelian subvariety, namely $B_{i}=B_{e_{i}}$. These varieties, called isotypical components, are uniquely determined by the representation \mathcal{W}_{i}.

The addition map is an isogeny [17, Section 2].

$$
\begin{equation*}
\mu: B_{0} \times \cdots \times B_{r} \rightarrow J X \tag{2}
\end{equation*}
$$

which is called the isotypical decomposition of $J X$.
Moreover, the decomposition of every $Q_{i}=L_{1} \times \cdots \times L_{n_{i}}$ into a product of minimal left ideals (all isomorphic) gives a further decomposition of the Jacobian. There are idempotents $f_{i 1}, \ldots, f_{i n_{i}} \in Q_{i}$ such that $e_{i}=f_{i 1}+\cdots+f_{i n_{i}}$ where $n_{i}=\operatorname{dim} V_{i} / m_{V_{i}}$, with V_{i} the \mathbb{C}-irreducible representation associated to \mathcal{W}_{i}. These idempotents provide subvarieties $B_{i j}:=B_{f_{i j}}$ of $J X$.

It is known that the factor in the isotypical decomposition of $J X$ associated to the trivial representation of G is isogenous to $J_{G}=J(X / G)$. This factor will be denoted by B_{0}. Then the addition map is an isogeny

$$
\begin{equation*}
v: J_{G} \times \Pi_{1}^{n_{1}} B_{1 j} \times \cdots \times \Pi_{1}^{n_{r}} B_{r j} \rightarrow J X . \tag{3}
\end{equation*}
$$

This is called the group algebra decomposition of $J X[16]$. We use this name to refer to the isogeny ν as well. Note that since all the minimal left ideals decomposing Q_{i} are isomorphic, which implies that the sub-varieties defined by the idempotents $f_{i j}$ are isogenous, we may write the group algebra decomposition as

$$
\begin{equation*}
\tilde{v}: J_{G} \times B_{11}^{n_{1}} \times \cdots \times B_{r 1}^{n_{r}} \rightarrow J X \tag{4}
\end{equation*}
$$

which is the classical way of writing it. The problem with this is that one of our goals is to minimize the order of the kernel of v, and there are examples (for instance [11]) where we may even obtain isomorphisms by changing the components in the same isogeny class. Therefore, we will stay with the decomposition (3) because it will allow us to reduce the kernel of the isogeny.

If two complex tori B and B^{\prime} are isogenous, we write $B \sim B^{\prime}$.
For group actions on a Riemann surface we follow the notation and definitions given in [12]. We define the group of automorphisms $\operatorname{Aut}(X)$ of a Riemann surface X as the analytical automorphism group of X. We say that a finite group G acts on X if $G \leq \operatorname{Aut}(X)$. The quotient X / G (the space of the orbits of the action of G on X) is a compact Riemann surface with complex atlas given by the holomorphic branched covering $\pi_{G}: X \rightarrow X / G$. The degree of π_{G} is $|G|$ and the multiplicity of π_{G} at p is $\operatorname{mult}_{p}\left(\pi_{G}\right)=\left|G_{p}\right|$ for all $p \in X$, where G_{p} denotes the stabilizer of p in G. If $\left|G_{p}\right| \neq 1$ then p will be a branch point of π_{G}.

Let $\left\{p_{1}, \ldots, p_{r}\right\} \subset X$ be a maximal collection of non-equivalent branch points with respect to G. We will denote $\gamma=g(X / G)$. We define the the signature (or branching data) of G on X as the vector of numbers $\left(\gamma ; m_{1}, \ldots, m_{r}\right)$ where $m_{i}=\left|G_{p_{i}}\right|$. We have the Riemann-Hurwitz formula $g(X)=|G|(\gamma-1)+1+\frac{|G|}{2} \sum_{i=1}^{r}\left(1-\frac{1}{m_{i}}\right)$, where $g(X)$ denotes the genus of X.

A $2 \gamma+r$ tuple $\left(a_{1}, \ldots, a_{\gamma}, b_{1}, \ldots, b_{\gamma}, c_{1}, \ldots, c_{r}\right)$ of elements of G is called a generating vector of type ($\gamma ; m_{1}, \ldots, m_{r}$) if the following are satisfied:
(i) G is generated by the elements $\left(a_{1}, \ldots, a_{\gamma}, b_{1}, \ldots, b_{\gamma}, c_{1}, \ldots, c_{r}\right)$;
(ii) $\operatorname{order}\left(c_{i}\right)=m_{i}$; and
(iii) $\prod_{i=1}^{\gamma}\left[a_{i}, b_{i}\right] \prod_{j=1}^{r} c_{j}=1$, where $\left[a_{i}, b_{i}\right]$ is the commutator of $a_{i}, b_{i} \in G$.

The existence of a generating vector of given type ensures the existence of a Riemann surface with an action of a given finite group. The dimension of the subvarieties in the decomposition (3) are obtained using the generating vector of the action [28, Theorem 5.12].

Moreover, the induced action of G on $J X=\mathbb{C}^{n} / \mathrm{H}_{1}(X, \mathbb{Z})$ provides geometrical information about the components of the group algebra decomposition of $J X$ [8].

Definition 1 For any subgroup H of G, define $p_{H}=\frac{1}{|H|} \sum_{h \in H} h$ as the central idempotent in $\mathbb{Q}[H]$ corresponding to the trivial representation of H. Also, we define f_{H}^{i} as $p_{H} e_{i}$, an idempotent element in $\mathbb{Q}[G] e_{i}$.

Then the corresponding group algebra decomposition of $J_{H}=J(X / H)$ is given as follows [8, Proposition 5.2]:

$$
\begin{equation*}
J_{H} \sim J_{G} \times B_{11}^{\frac{\frac{\operatorname{dim} V_{1}^{H}}{m_{1}}}{m_{1}}} \times \cdots \times B_{r 1}^{\frac{\operatorname{dim} V_{r}^{H}}{m_{r}}} . \tag{5}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\operatorname{Im}\left(p_{H}\right)=\pi_{H}^{*}\left(J_{H}\right) \tag{6}
\end{equation*}
$$

where $\pi_{H}^{*}\left(J_{H}\right)$ is the pullback of J_{H} by π_{H} (see [4]). If $\operatorname{dim} V_{i}^{H} \neq 0$ then

$$
\begin{equation*}
\operatorname{Im}\left(f_{H}^{i}\right)=B_{i 1}^{\frac{\frac{\operatorname{dim} V_{i}^{H}}{m_{V_{i}}}}{m_{i}}} . \tag{7}
\end{equation*}
$$

3 Describing the factors via a symplectic representation

We are interested in describing the factors of the group algebra decomposition of a Jacobian variety with group action given in the previous section.

The method we follow is to describe the lattice of such factors. We apply [15, Section 2], but extended to any symmetric idempotent $\alpha=\sum_{g \in G} a_{g} g$.

Let $\Lambda=H_{1}(X, \mathbb{Z})$ denote the lattice of $J X$ and $\Lambda_{\mathbb{Q}}=\Lambda \otimes_{\mathbb{Z}} \mathbb{Q}$. Let $\rho_{s}: \mathbb{Q}[G] \rightarrow$ $\operatorname{End}\left(\Lambda_{\mathbb{Q}}\right)$ denote the morphism induced by the (symplectic) rational representation of G in $\Lambda, \rho: \mathbb{Q}[G] \rightarrow \operatorname{End}_{\mathbb{Q}} J X$ is the homomorphism given by the action of the group G on X and ρ_{r} is the rational representation of $\operatorname{End}_{\mathbb{Q}}(J X)$ which completes the diagram below.

$$
\operatorname{End}_{\mathbb{Q}}(J X)
$$

Thus ρ_{r} induces a rational representation of $\operatorname{Hom}_{\mathbb{Q}}\left(\Pi_{i j} B_{i j}, J X\right)$ given by $v \rightarrow \nu_{\Lambda}$: $\oplus_{i j} \Lambda_{i j} \rightarrow \Lambda$, where ν_{Λ} is the restriction of v to the lattice $\oplus_{i j} \Lambda_{i j}$ of the product of the $B_{i j}$ in ν.

Then $\rho_{s}(\alpha) \in \operatorname{End} \Lambda_{\mathbb{Q}}$ is given by $\rho_{s}(\alpha)=\sum_{g \in G} a_{g} \rho_{s}(g)$.
Therefore we have the following facts, analogous to [15, Section 2].
Proposition 1 Let $\alpha \in \mathbb{Q}[G]$. The sublattice of Λ defining $B_{\alpha}=V_{\alpha} / \Lambda_{\alpha}$ is given by

$$
\Lambda_{\alpha}:=\rho_{s}(\alpha)\left(\Lambda_{\mathbb{Q}}\right) \cap \Lambda,
$$

where the intersection is taken in $\Lambda_{\mathbb{Q}}$ and $\rho_{s}(\alpha)$ is the image of α by ρ_{s}. In this case, the $\mathbb{C}-$ vector space V_{α} is generated by $\rho_{s}(\alpha)\left(\Lambda_{\mathbb{Q}}\right)$.

The previous construction is clearer in its matrix form, once bases are chosen. From here to the end of this work, we use this form for determining the lattice of the factors in v.

Remark 1 Suppose we have $\Gamma=\left\{\alpha_{1}, \ldots, \alpha_{2 g}\right\}$ a (symplectic) basis of the lattice Λ of the Jacobian $J X$ (assumed to be of dimension g). Consider ρ_{s} in its matrix form (with respect to this basis).

For any $g \in G$, we have that $\rho_{s}(g)$ is a square matrix of size $2 g$. Hence, for any $\alpha \in \mathbb{Q}[G]$, we have associated to it a rational $2 g \times 2 g$-matrix

$$
M=\left(m_{i j}\right) .
$$

The j-th column of M corresponds to the element $\rho_{s}(g)\left(\alpha_{j}\right)=\sum_{i=1}^{2 g} m_{i j} \alpha_{i}$ and the lattice Λ_{α} of B_{α} corresponds to

$$
\Lambda_{\alpha}:=\left(\langle M\rangle_{\mathbb{Z}} \otimes \mathbb{Q}\right) \cap \Lambda,
$$

where $\langle M\rangle_{\mathbb{Z}}$ denotes the lattice over \mathbb{Z} generated by the columns of M.
In other words, the lattice Λ_{α} is obtained by considering the \mathbb{R}-linearly independent columns of M and intersecting it with Λ. Our next step is to look for a basis of Λ_{α}, which will be in terms of the elements of Γ. By computing its coordinates in the basis Γ, we get a $2 g \times 2 \operatorname{dim} B_{\alpha}$ coordinate matrix of the lattice Λ_{α}. Moreover, V_{α} is the complex vector space generated by the column vectors of M.

4 Method: a group algebra decomposition v_{x}

In this section we develop the core of this work. We present a method to concretely build an isogeny v as in (3).

Given a compact Riemann surface X with the action of a group G, the general theory gives us the existence of a group algebra decomposition for the corresponding Jacobian variety $J X$. The results in [28] allow us to compute the dimensions of the factors. Nevertheless to describe further geometrical properties such as induced polarization, period matrix, etc., we need an explicit description of the factors. Section 3 gives us a tool to solve some of these questions, under certain hypotheses for G.

We present here a method to find a set of primitive idempotents $f_{i 1}, \ldots, f_{i n_{i}}$ to describe the factors in this decomposition, in order to extract properties of the decomposition. This concrete construction will allow us to easily compute the order of the kernel of the isogeny ν. Hence we may choose an optimal set of those idempotents in the sense of getting the smallest possible kernel.

We consider the quotient of X for the action of G of genus 0 for simplicity, because it is known that the factor in v corresponding to the trivial representation is the image of p_{G}, hence it is isogenous to J_{G}.

4.1 Data

Let X be a Riemann surface of genus $g \geq 2$ with the action of a group G with total quotient of genus 0 . Assume that the symplectic representation ρ_{s} for this action is known.

STEP ONE: Identification of factors using Jacobians of intermediate coverings.
The following lemma gives us conditions under which a factor in the group algebra decomposition can be described as the image of a concrete idempotent, in particular when it corresponds to a Jacobian of an intermediate quotient.

Lemma 1 Let X be a Riemann surface with an action of a finite group G such that the genus of X_{G} is equal to zero. Consider v, the group algebra decomposition of $J X$ as in (3).
(i) If $H \leq G$ is such that $\operatorname{dim}_{\mathbb{C}} V_{i}^{H}=m_{i}$, where m_{i} is the Schur index of the representation V_{i}, then for some $j \in\left\{1, \ldots, n_{i}\right\}$ we have that

$$
\operatorname{Im}\left(f_{H}^{i}\right)=B_{i j} .
$$

In addition,
(ii) if $\operatorname{dim}_{\mathbb{C}} V_{l}^{H}=0$ for all $l, l \neq i$, such that $\operatorname{dim}_{\mathbb{C}} B_{l} \neq 0$ in the isotypical decomposition of $J X$ in Eq. (2), then

$$
J_{H} \sim \operatorname{Im}\left(p_{H}\right)=B_{i j} .
$$

Proof From Proposition 1 and the fact that $\operatorname{dim}_{\mathbb{C}} V_{i}^{H} \neq 0$, we get $\operatorname{Im}\left(f_{H}^{i}\right)=\Pi_{i}^{k_{i}} B_{i j}$. Since $\operatorname{dim}_{\mathbb{C}} V_{i}^{H}=m_{i}$ (by hypothesis), we obtain that $k_{i}=1$. Hence $\operatorname{Im}\left(f_{H}^{i}\right):=B_{i j}$ for some $j \in\left\{1, \ldots, n_{i}\right\}$.

If, in addition, $\operatorname{dim}_{\mathbb{C}} V_{l}^{H}=0$ (equivalently $\operatorname{dim}_{\mathbb{Q}} \mathcal{W}_{l}^{H}=0$) for all $l \neq i$ such that $\operatorname{dim}_{\mathbb{C}} B_{l} \neq 0$, then $f_{H}^{l}=0$ for all of them. Due to the fact that $p_{H}=\sum_{l \in\{1, \ldots, r\}} f_{H}^{l}$ we obtain that $p_{H}=f_{H}^{i}$. Moreover, by Eq. (5) we have $J_{H} \sim \operatorname{Im}\left(p_{H}\right)=B_{i j}$.
Remark 2 Observe that if H satisfies Lemma 1 for some $i \in\{1, \ldots, r\}$, then all its conjugates satisfy it for the same i. To see this, consider $H^{\prime}=H^{g}=g \mathrm{Hg}^{-1}$. It is clear that for all $s \in G$, we have

$$
\begin{aligned}
\operatorname{dim}_{\mathbb{C}} V_{i}^{H} & =\left\langle\operatorname{Ind}_{1_{H}^{G}}, V_{i}\right\rangle=\frac{1}{|G|} \sum_{t \in G} \chi_{\operatorname{Ind}_{1_{H}}}(t) \chi_{V_{i}}\left(t^{-1}\right) \\
& =\frac{1}{|G|} \sum_{t \in G}\left(\sum_{s^{-1} t s \in H} \chi_{1_{H}}\left(s^{-1} t s\right)\right) \chi_{V_{i}}\left(t^{-1}\right) \\
& =\frac{1}{|G|} \sum_{t \in G}|H| \chi_{V_{i}}\left(t^{-1}\right)=\frac{1}{|G|} \sum_{t \in G}\left|H^{\prime}\right| \chi_{V_{i}}\left(t^{-1}\right) \\
& =\frac{1}{|G|} \sum_{t \in G}\left(\sum_{s^{-1} t s \in H^{\prime}} \chi_{1_{H^{\prime}}}\left(s^{-1} t s\right)\right) \chi_{V_{i}}\left(t^{-1}\right) \\
& =\operatorname{dim}_{\mathbb{C}} V_{i}^{H^{\prime}} .
\end{aligned}
$$

Our purpose is to use this result conversely to actually produce an isogeny v.

STEP TWO: Definition of certain subvarieties of $J X$.
Definition 2 Let H be a subgroup of G satisfying condition (i) of Lemma 1 for some $i \in$ $\{1, \ldots, r\}$, then define B_{H} as the image of $f_{H}=p_{H} e_{i}$.

Note that depending on the geometry of the action, B_{H} can be trivial.
From Proposition 1, we get that its lattice corresponds to

$$
\begin{equation*}
\Lambda_{H}:=\left(\left\langle\rho_{s}\left(f_{H}\right)\right\rangle_{\mathbb{Z}} \otimes \mathbb{Q}\right) \cap H_{1}(X, \mathbb{Z}) . \tag{8}
\end{equation*}
$$

Using the procedure described in Remark 1, we obtain the coordinate matrix corresponding to a basis of the lattice of B_{H}. We sometimes use the same symbol Λ_{H} to denote this matrix.

Corollary 1 Let H be a subgroup of G satisfying both conditions of Lemma 1. Then $f_{H}=$ $p_{H} e_{i}=p_{H}$, and B_{H} is isogenous to the Jacobian of X / H.

Proof By Lemma 1, if H satisfies both conditions then the Jacobian of X / H is isogenous to one of the factors in a group algebra decomposition for $J X$. This is equivalent to the equality of their corresponding idempotents.

STEP THREE: Construction of a product subvariety B_{\times}of $J X$.
If we have enough subgroups from STEP TWO, we may construct the product of all the subvarieties defined by those subgroups. This will be a subvariety of $J X$, its lattice is described in the following definition.

Definition 3 Let $r+1$ be the number of rational irreducible representations of G. Suppose for all $i \in\{1, \ldots, r\}$ and all $j=\left\{1, \ldots, n_{i}\right\}$ there is a subgroup $H_{i j}$ satisfying condition (i) of Lemma 1. For each i, j take one $H_{i j}$, and let

$$
S=\left\{H_{i j}: i \in\{1, \ldots, r\}, j \in\left\{1, \ldots, n_{i}\right\}\right\}
$$

be the set of these subgroups, where we do not consider subgroups $H_{i j}$ such that $\operatorname{Im}\left(f_{H_{i j}}\right)=0$. We define $L_{S} \in M_{2 g}(\mathbb{Z})$ to be the coordinate matrix given by the vertical join of the coordinate matrices of the lattices $\Lambda_{H_{i j}}$ [see Eq. 8] for $H_{i j} \in S$.

We recall here that $i=0$ corresponds to the trivial representation whose factor is not considered here, $n_{i}=\operatorname{dim} V_{i} / m_{i}$, where m_{i} is the Schur index of a complex irreducible representation V_{i} associated to the rational irreducible representation corresponding to the factor $B_{i j}^{n_{i}}[$ from (3)].

The lattice Λ_{\times}defined by the matrix L_{S}, corresponds to the sublattice $\oplus_{i j} \Lambda_{H_{i j}}$ of $\Lambda=$ $\mathrm{H}_{1}(X, \mathbb{Z})$. It is the lattice of the following subvariety of $J X$

$$
B_{\times}:=\Pi_{i, j} B_{H_{i j}},
$$

where $B_{H_{i j}}$ is as in Definition 2.
Definition 4 With the above notation define a sum map $v_{\times}: B_{\times} \rightarrow J X$

$$
v_{\times}\left(b_{11}, \ldots, b_{r n_{r}}\right)=\sum_{i, j} b_{i j} \in J X
$$

STEP FOUR: Condition for v_{\times}to be an isogeny.
Definition 5 Let $S=\left\{H_{i j}: i=1 . . r, j=1 \ldots n_{i}\right\}$ be a set of subgroups of G as in Definition 3. We say that S is an effective set for G if the determinant of the corresponding matrix L_{S} is different from 0 .

Theorem 1 Let X be a Riemann surface of genus $g \geq 2$ with an action of a group G with total quotient of genus 0 . Let $S=\left\{H_{i j}\right\}_{i j}$ be an effective set for G, then the map v_{\times}Definition 4 is an isogeny with kernel of order $\left|\operatorname{det}\left(L_{S}\right)\right|$.

Proof As before, denote by Λ the lattice of $J X$. The map ν_{\times}induces a homomorphism of \mathbb{Z}-modules $v_{\Lambda}: \Lambda_{\times} \rightarrow \Lambda$. If the rank of Λ_{\times}is $2 g$, then ν_{Λ} is a monomorphism of lattices in \mathbb{C}^{g}. Moreover, all the sublattices $\Lambda_{H_{i j}}$ decomposing Λ_{\times}correspond to subvarieties $B_{H_{i j}}$. Therefore the dimension of B_{\times}is g.

It remains to show either v_{\times}is surjective or its kernel is of finite order. For any isogeny $f: A_{1} \rightarrow A_{2}$ between two abelian varieties, it is known [4, Section 1.2] that

$$
\begin{equation*}
|\operatorname{Ker}(f)|=\operatorname{det} \rho_{r}(f), \tag{9}
\end{equation*}
$$

where $\rho_{r}(f)$ is the rational representation of the isogeny f. It is known that if the kernel is finite, then its cardinality equals the index $\left[\Lambda: \Lambda_{\times}\right.$]. As the matrix L_{S} is non singular, we have that Λ_{\times}is a lattice in \mathbb{C}^{g}, hence this index is finite. After columns operations, the matrix L_{S} is the matrix of the rational representation ν_{\times}, therefore its kernel has order the absolute value of its determinant.

Corollary 2 Under the hypothesis in Theorem 1 , the isogeny ν_{\times}is an isomorphism if and only if $\operatorname{det}\left(L_{\left\{H_{i j}\right\}}\right)= \pm 1$.

Remark 3 1. The isogeny from Theorem 1 corresponds to a group algebra decomposition isogeny v as in (3).
2. We point out that the isogeny v_{\times}depends on the choice of the subgroups $H_{i j}$ for the set S. Therefore, its kernel may change if we change these subgroups. Our purpose is to move along different effective sets in order to achieve the smallest possible.

In the spirit of moving along different effective sets to minimize the order of the kernel, we have the following proposition (see [13] for a proof and more details).

Proposition 2 If $H_{2}=g H_{1} g^{-1}$ for some element $g \in G$, then
(i) $p_{H_{2}}=g p_{H_{1}} g^{-1}$,
(ii) $\operatorname{Im}\left(p_{H_{2}}\right)$ is isomorphic to $\operatorname{Im}\left(p_{H_{1}}\right)$.

Theorem 2 Let X be a Riemann surface of genus g with an action of a finite group G such that the genus of X / G is zero. If $S=\left\{H_{i 1}, \ldots, H_{i_{i}}\right\}$ is an effective set for v, then the induced polarization $E_{i j}$ of the factor $B_{i j}$ in v is given by

$$
\begin{equation*}
E_{i j}=\Lambda_{H_{i j}} E_{J X} \Lambda_{H_{i j}}^{t} \tag{10}
\end{equation*}
$$

Moreover, the type of the polarization $E_{i j}$ is given by the elementary divisors of the matrix product (10).

Remark 4 Finally we point out that the principle idea of our method is to move along isomorphic varieties B_{H}, choosing different subgroups H (even in the same conjugacy class) to construct the effective set S and the corresponding isogenies ν_{\times}, which may have kernels of different orders. This shows that the geometry of the varieties B_{H} as subvarieties of $J X$ makes a difference. In fact the examples suggest that this reflects the way the subvarieties intersect each other.

5 Application to trigonal curves

In this section we use the method explained in Sect. 3, the computational program MAGMA [6] and the algorithm introduced in [3]. To obtain the size of the kernel we use the full automorphism group of the curves. We study the Jacobians of families of trigonal curves up to genus $g<10$. We divide our examples according to the genus (or the dimension) g.

5.1 Known facts about 3-gonal curves and their automorphisms

A compact Riemann Surface X admitting a cyclic prime group of automorphisms C_{3} of order 3 such that X / C_{3} has genus 0 is called a cyclic 3-gonal surface or a trigonal curve. The group C_{3} is called a 3 -gonal group for X. If C_{3} is normal in the full automorphism group $\operatorname{Aut}(X)$ of X, we call X a normal cyclic 3-gonal surface or a normal trigonal curve. In this case, there exist only one 3 -gonal group for X. The quotient group $N_{\text {Aut }(x)}\left(C_{3}\right) / C_{3}$ between the normalizer $N_{\operatorname{Aut}(x)}\left(C_{3}\right)$ of $C_{3} \leq \operatorname{Aut}(X)$ and C_{3} is called the reduced group of X. It is well known [12, Section IV.9.3], [30, Table 1] that the reduced group of X can be the cyclic group C_{n} of order n, the dihedral group D_{n} of order $2 n$, the symmetric group S_{4}, the alternating groups A_{4} or A_{5}.

A consequence of [1, Lemma 2.1] is the following result:
Lemma 2 If X is a trigonal surface of genus $g \geq 5$, then X is a normal trigonal curve.
The previous result allows us to find a list of automorphism groups of trigonal curves (see also [2]). This list is obtained by an easy combination of [31, Table 7], [5, Table 1] and [18], plus the computation of the reduced groups which are not in the original tables. We group the results in Tables 1 and 2. Table 1, corresponds to non-normal trigonal curves. CD denotes the central diagonal subgroup of $S L(2,3)$ of order 2 . Table 2, corresponds to normal trigonal curves with reduced group A_{4}, S_{4} or A_{5} [5]. We restrict to these reduced groups in the normal case mainly because the results in [22] suggest that these families may have completely decomposable Jacobians (at least for some dimensions of $J X$). From Table 2 we obtain the result that any trigonal curve with reduced group S_{4}, A_{4} or A_{5} has even genus, and that there do not exist trigonal curves of genus 8 with reduced group A_{4}, S_{4} or A_{5}.

Note that in both tables we use the MAGMA notation ID to label the automorphism groups. This is denoted by a ordered pair which in the first entry is the size of the group and in the second entry is which group in MAGMA database it is.

Genus 2

Let X_{2} be the 3-gonal curve of genus two admitting the action of $G L(2,3)=\left\langle a, b: a^{8}=\right.$ $\left.b^{3}=(a b)^{2}=b a^{-3} b a^{-3}=1\right\rangle$ (see the first row in the Table 1). This curve is known as the Bolza curve with equation $y^{2}=x\left(x^{4}-1\right)$. The generating vector of the action is $(a, b,(a b))$ of type $(0 ; 8,3,2)$.

Table 1 Full automorphism group for non-normal trigonal curves

Red. group	Automorphism group	ID	Genus	Signature
D_{2}	$G L(2,3)$	$(48,29)$	2	$(0 ; 2,3,8)$
C_{4}	$S L(2,3) / C D$	$(48,33)$	3	$(0 ; 2,3,12)$
D_{3}	$D_{3} \times D_{3}$	$(36,10)$	4	$(0 ; 2,2,2,3)$
D_{6}	$\left(C_{3} \times C_{3}\right) \rtimes D_{4}$	$(72,40)$	4	$(0 ; 2,4,6)$

Table 2 Full automorphism group for normal trigonal curves

Red. group	Automorphism group	ID	Genus	Signature
A_{4}	$C_{3} \times A_{4}$	$(36,11)$	$12 \mathrm{~s}-2, s>0$	$\left(0 ; 2,3,3,3^{s}\right)$
A_{4}	$C_{3} \times A_{4}$		$12 \mathrm{~s}+4$	$\left(0 ; 6,3,3,3^{s}\right)$
A_{4}	$\left(C_{2} \times C_{2}\right) \rtimes C_{9}$	$(36,3)$	$12 \mathrm{~s}+6$	$\left(0 ; 2,9,9,3^{s}\right)$
A_{4}	$\left(C_{2} \times C_{2}\right) \rtimes C_{9}$		$12 \mathrm{~s}+12$	$\left(0 ; 6,9,9,3^{s}\right)$
S_{4}	$C_{3} \times S_{4}$	$(72,42)$	$24 \mathrm{~s}-2, s>0$	$\left(0 ; 2,3,4,3^{s}\right)$
S_{4}	$C_{3} \times S_{4}$		$24 \mathrm{~s}+4$	$\left(0 ; 2,3,12,3^{s}\right)$
S_{4}	$C_{3} \times S_{4}$		$24 \mathrm{~s}+16$	$\left(0 ; 6,3,12,3^{s}\right)$
S_{4}	$C_{3} \times S_{4}$		$24 \mathrm{~s}+10$	$\left(0 ; 6,3,4,3^{s}\right)$
S_{4}	$C_{3} \rtimes S_{4}$	$(72,43)$	$24 \mathrm{~s}-2, s>0$	$\left(0: 2,3,4,3^{s}\right)$
S_{4}	$\left(\left(C_{2} \times C_{2}\right) \rtimes C_{9}\right) \rtimes C_{2}$	$(72,15)$	$24 \mathrm{~s}+6$	$\left(0 ; 2,9,4,3^{s}\right)$
A_{5}	$C_{3} \times A_{5}$	$(180,19)$	$60 \mathrm{~s}-2, s>0$	$\left(0 ; 2,3,5,3^{s}\right)$
A_{5}	$C_{3} \times A_{5}$		$60 \mathrm{~s}+10$	$\left(0 ; 2,3,15,3^{s}\right)$
A_{5}	$C_{3} \times A_{5}$		$60 \mathrm{~s}+40$	$\left(0 ; 6,3,15,3^{s}\right)$
A_{5}	$C_{3} \times A_{5}$		$60 \mathrm{~s}+28$	$\left(0 ; 6,3,5,3^{s}\right)$

Genus 3

The genus 3 surface in Table 1, corresponds to the curve with plane model $y^{4}=x^{3}-1$ (see [18, Table 2]) with action of $S L(2,3) / C D$. We consider the presentation $\operatorname{SL}(2,3) / C D=$ $\left\langle a, b: a^{12}=b^{3}=(a b)^{2}=a^{11} b^{-1} a b a^{-1} b a^{-7}=1\right\rangle$. The generating vector of the action is $(a, b, a b)$ of type $(0 ; 12,3,2)$.

Genus 4

The genus 4 surfaces in Table 1, correspond to the case studied in [1] and [19]. The surfaces admit four actions of C_{3}; two conjugate with quotients of genus 0 and two non conjugate with quotients of genus 2 . Moreover, the one dimensional locus, corresponding to surfaces of genus 4 with automorphism group $D_{3} \times D_{3}$ consists of the curves with equation $a x^{3} y^{3}-$ $\left(x^{3}+y^{3}\right)+a=0$, where $a \notin\{0, \pm 1, \infty\}$. This family contains the surface with action of $\left(C_{3} \times C_{3}\right) \rtimes D_{4}$ (see [18, Table 4]). Then, we use the action of $D_{3} \times D_{3}$. We consider the presentation $D_{3} \times D_{3}=\langle a, b, c| a^{3}=b^{2}=c^{2}=(a b c)^{2}=a^{2} c a^{-1} b c a^{-1} b^{-1} a^{-2}=$ $\left.a^{2} c a^{-1} b a b^{-1} a c^{-1} a^{-1}=1\right\rangle$. The generating vector of the action is ($a, b, c, a b c$) of type (0; 3, 2, 2, 2).

On the other hand, with respect to the groups in Table 2, we have that $C_{3} \times A_{4}$ and $C_{3} \times S_{4}$ act on genus 4 . The group $C_{3} \times A_{4}$ is contained in $C_{3} \times S_{4}$ and we study the possible actions of both groups on this genus. Using [6] and [3], we note that they act over the same surface given by the planar model $y^{3}=x\left(x^{4}-1\right)$ ([23]). This result completes the one remaining case left open in [1] which was studied later in [18] and [19]. Our result coincide with they obtained. The action of $A_{4} \times C_{3}$ (see Table 2) extends to the action of the group $S_{4} \times C_{3}=\left\langle a, b \mid a^{12}=b^{3}=(a b)^{2}=a^{11} b a^{-1} b a b^{-1} a b^{-1} a^{-6}=1\right\rangle$ with generating vector $(a, b, a b)$ of type ($0 ; 12,3,2$) (see [19]).

Genus 6

The groups $\left(\left(C_{2} \times C_{2}\right) \rtimes C_{9}\right) \rtimes C_{2}$ and $\left(C_{2} \times C_{2}\right) \rtimes C_{9}$ act on curves of genus 6 . The group $\left(C_{2} \times C_{2}\right) \rtimes C_{9}$ is contained in $\left(\left(C_{2} \times C_{2}\right) \rtimes C_{9}\right) \rtimes C_{2}$ and we study their possible actions on this genus using [6] and [3]. Both groups act on the same trigonal curve [18] with
planar model $y^{3}=x^{8}+14 x^{4}+1$ [25]. The group $\left(\left(C_{2} \times C_{2}\right) \rtimes C_{9}\right) \rtimes C_{2}=\langle a, b| a^{2}=$ $\left.b^{9}=(a b)^{4}=a b^{3} a b^{3}=1\right\rangle$ acts on the curve with generating vector $\left(a, b,(a b)^{-1}\right)$ of type (0; 2, 9, 4).

Remark 5 From Table 2, we know that there do not exist trigonal curves of genus 8 with reduced group A_{4}, S_{4} and A_{5}.

5.2 Application of the method to trigonal curves

In this section we apply our method to trigonal curves. Let E_{j} denotes an elliptic curve and \mid Kernel| denotes the smallest possible order for the kernel of v_{\times}, the isogeny defined in 4.

Theorem 3 Let JX be the Jacobian variety of a trigonal curve X, of one of the types detailed below. Then JX is completely decomposable, and a geometrical description of the decomposition is in the following tables.

- If JX is the Jacobian variety of a non-normal trigonal curve, then we have the following results:

Red. group	Automorphism group	Genus of $J X$	Decomposition of v_{\times}	\midKernel \mid	Induced polarization
D_{2}	$G L(2,3)$	2	$E_{1} \times E_{2}$	1	(2)
C_{4}	$S L(2,3) / C D$	3	$E_{1} \times E_{2} \times E_{3}$	4	(2)
D_{3}	$D_{3} \times D_{3}$	4	$E_{1} \times \cdots \times E_{4}$	9	$(2),(6),(2),(6)$
D_{6}	$\left(C_{3} \times C_{3}\right) \rtimes D_{4}$	4	$E_{1} \times \cdots \times E_{4}$	9	(2)

- If $J X$ is the Jacobian variety of a trigonal curve with reduced group A_{4}, S_{4} or A_{5}, then we have the following results:

Red. group	Automorphism group	Genus of $J X$	Decomposition of ν_{\times}	\midKernel \mid	Induced polarization
A_{4}	$C_{3} \times A_{4}$	4	$E_{1} \times E_{2} \times E_{3} \times E_{4}$	64	$(4),(3),(3),(3)$
S_{4}	$C_{3} \times S_{4}$	4	$E_{1} \times E_{2} \times E_{3} \times E_{4}$	16	(4)
S_{4}	$\left(\left(C_{2} \times C_{2}\right) \rtimes C_{9}\right) \rtimes C_{2}$	6	$E_{1} \times \cdots \times E_{6}$	64	(4)

Proof We will show here the techniques applied to the group $G L(2,3)$ in order to limit the size of the matrices. The rest of the cases are proved following the same procedure. The reader is referred to [13] for explicit calculations.

We use our method, presented in Sect. 4. All the computations were made in the software package MAGMA [6]. The subgroups we use to obtain the effective set giving the decomposition satisfy both conditions of Lemma 1 . Hence, the factors that will define B_{\times}in the isogeny ν_{\times}will correspond to Jacobian varieties of intermediate coverings.

Let $X_{2}: y^{2}=x\left(x^{4}-1\right)$ be the Bolza curve described in the case of genus 2 viewed before. A generating vector for this action is $(a, b,(a b))$ of type $(0 ; 8,3,2)$. Using Eq. (3) we obtain that the Jacobian variety $J X$ associated to X is completely decomposable i.e.

Table 3 Character Table of $G L(2,3)$

Order of the elements	1	2	2	3	4	6	8	8
V_{1}	1	1	1	1	1	1	1	1
V_{2}	1	1	-1	1	1	1	-1	-1
V_{3}	2	2	0	-1	2	-1	0	0
V_{4}	2	-2	0	-1	0	1	$i \sqrt{2}$	$-i \sqrt{2}$
V_{5}	2	-2	0	-1	0	1	$-i \sqrt{2}$	$i \sqrt{2}$
V_{6}	3	3	1	0	-1	0	-1	-1
V_{7}	3	3	-1	0	-1	0	1	1
V_{8}	4	-4	0	1	0	-1	0	0

isogenous to a product of elliptic curves. In fact, the group algebra decomposition isogeny is $v: B_{41} \times B_{42} \sim J X$, where the product $B_{41} \times B_{42}$ is invariant by the irreducible rational representation V_{4} of degree 2 (see Table 3).

To apply our method to find an explicit decomposition v_{\times}, we first look for two subgroups H_{1} and H_{2} of $G L(2,3)$ satisfying conditions of Lemma 1. To find these subgroups, we use the symplectic representation of the action obtained from the method given in [3]. This allows us to write every element of $G L(2,3)$ as a square symplectic matrix of size 4 .

We determine next the complex irreducible representation decomposition of the induced representation $\operatorname{Ind}_{H}^{G} 1_{H}$ in $G L(2,3)$ by the trivial representation in H for each $H \leq G$ (see Table 4). We know that this decomposition of $\operatorname{Ind}_{H}^{G} 1_{H}$ into \mathbb{C}-irreducible representations is invariant under conjugation (see Remark 2). Table 4 shows the multiplicity of each complex irreducible representation in the induced representation $\operatorname{Ind}_{H}^{G} 1_{H}$, for all $H \leq G$ up to conjugacy.

We observe that the only conjugacy class of subgroups of $G L(2,3)$ whose elements satisfy the conditions in Lemma 1 consists of the class of $H=\langle a b\rangle$. For each subgroup H in this class

$$
\left\langle\operatorname{Ind}_{H}^{G} 1_{H}, V_{4}\right\rangle=1 .
$$

By Lemma 1, each factor in the decomposition of $J X$ is defined by $B_{4 j}=\operatorname{Im}\left(p_{H_{j}}\right)=$ $V_{H_{j}} / \Lambda_{H_{j}}$, where H_{j} is some subgroup in the class and $j \in\{1,2\}$. We obtain $\nu_{\times}: B_{41} \times$ $B_{42} \rightarrow J X$, and its kernel depends on the choice of H_{j} in this class.

To give an explicit description of the subgroups of $\operatorname{GL}(2,3)$ giving the smallest order for the kernel of v_{\times}, we consider the above presentation of $G L(2,3)$ and the same generating vector $(a, b, a b)$. Set $H=\langle a b\rangle$, and consider the following subgroups of order 2 in $G L(2,3)$

$$
\begin{aligned}
& H_{1}=H^{b}=\left\langle b a^{7} b\right\rangle, \\
& H_{2}=H=\langle a b\rangle,
\end{aligned}
$$

and write $B_{41}=\operatorname{Im}\left(p_{H_{1}}\right)$ and $B_{42}=\operatorname{Im}\left(p_{H_{2}}\right)$. Since

$$
\rho_{s}\left(p_{H_{1}}\right)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
1 / 2 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 / 2 \\
0 & 0 & 0 & 1
\end{array}\right), \rho_{s}\left(p_{H_{2}}\right)=\left(\begin{array}{cccc}
1 / 2 & 1 / 2 & 0 & 0 \\
1 / 2 & 1 / 2 & 0 & 0 \\
0 & 0 & 1 / 2 & 1 / 2 \\
0 & 0 & 1 / 2 & 1 / 2
\end{array}\right),
$$

Table 4 Decomposition of the induced representation by the trivial one on each class of conjugation of subgroups of $G L(2,3)$

Classes of subgroups	V_{1}	V_{2}	V_{3}	V_{4}	V_{5}	V_{6}	V_{7}	V_{8}
Identity element	1	1	2	2	2	3	3	4
Order 2, length 1	1	1	2	0	0	3	3	0
Order 2, length 12	1	0	1	1	1	2	1	2
Order 3, length 4	1	1	0	0	0	1	1	2
Order 4, length 3	1	1	2	0	0	1	1	0
Order 4, length 6	1	0	1	0	0	2	1	0
Order 6, length 4	1	1	0	0	0	1	1	0
Order 6, length 4	1	0	0	0	0	1	0	1
Order 6, length 4	1	0	0	0	0	1	0	1
Order 8, length 1	1	1	2	0	0	0	0	0
Order 8, length 3	1	0	1	0	0	0	1	0
Order 8, length 3	1	0	1	0	0	1	0	0
Order 12, length 4	1	0	0	0	0	1	0	0
Order 16, length 3	1	0	1	0	0	0	0	0
Order 24, length 1	1	1	0	0	0	0	0	0
Order 48, length 1	1	0	0	0	0	0	0	0

and the coordinate matrices of their lattices are

$$
\Lambda_{H_{1}}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 2
\end{array}\right), \Lambda_{H_{2}}=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right),
$$

we find that the matrix coordinate of the lattice of the product $B_{41} \times B_{42}$ is given by

$$
L_{\left\{H_{1}, H_{2}\right\}}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 2 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right) .
$$

In this case, choosing H_{1} and H_{2} as before $v_{\times}: B_{41} \times B_{42} \rightarrow J X$ is an isomorphism. Hence $|\operatorname{Ker}(\nu)|=1$. Note that we do not claim that the subgroups yielding an isomorphism are unique. In fact, there exist other subgroups in the same class such that the $\left|\operatorname{Ker}\left(v_{\times}\right)\right|=1$.

Remark 6 Finally, combining Theorem 3 and the classification of [18], we may describe part of the loci of Jacobians of trigonal curves for dimension $g \leq 6$.

g	Dimension of the family	Locus description
2	0	One curve with action of GL(2,3)
3	0	One curve with action of $\operatorname{SL}(2,3) / \mathrm{CD}$
4	1	1-dimensional with action of $D_{3} \times D_{3}$
6	0	And one curve with action of $C_{3} \times S_{4}$
	One curve with action of $\left(\left(C_{2} \times C_{2}\right) \rtimes C_{9}\right) \rtimes C_{2}$	

Acknowledgments This article is part of my Ph.D. thesis written under the direction of Professor Anita Rojas at the Universidad de Chile. I am very grateful to Professor Rojas for sharing, patiently and kindly, her knowledge, experiences and advice. I would like to thank Professors A. Carocca, R. Rodríguez for helpful advice and questions, and M. Izquierdo, who helped me to present this work. I also express my acknowledgments to Linkoping University, where the final version of this paper was written.

References

1. Accola, R.D.M.: On cyclic trigonal Riemann surfaces I. Trans. Am. Math. Soc. 283(2), 423-449 (1984)
2. Bartolini, G., Costa, A., Izquierdo, M.: On automorphisms groups of cyclic p-gonal Riemann surfaces. J. Symb. Comput. 57, 61-69 (2013)
3. Behn, A., Rodríguez, R.E., Rojas, A.M.: Adapted hyperbolic poligons and symplectic representations for group actions on Riemann surfaces. J. Pure Appl. Algebra 217, 409-426 (2013)
4. Birkenhake, Ch., Lange, H.: Complex Abelian Varieties, 2nd edn., Grundl. Math. Wiss., 302, Springer (2004)
5. Bujalance, E., Cirre, F.J., Gromadzki, G.: Groups of automorphism of cyclic trigonal Riemann surfaces. J. Algebra 322, 1086-1103 (2009)
6. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24(3-4):235-265 (1997). http://magma.maths.usyd.edu.au
7. Carocca, A., Recillas, S., Rodríguez, R.E.: Dihedral groups acting on Jacobians. Contemp. Math. 311, 41-77 (2002)
8. Carocca, A., Rodríguez, R.E.: Jacobians with group actions and rational idempotents. J. Algebra 306(2), 322-343 (2006)
9. Curtis, C.W., Rainer, I.: Representation Theory of Finite Groups and Associative Algebras. Wiley, New York (1998)
10. Ekedhal, T., Serre, J.-P.: Examples des corbes algébriques à jacobienne complètement décomposable. C.R. Acad. Paris Sér. I Math. 317, 509-513 (1993)
11. González-Aguilera, V., Rodríguez, R.E.: Fermat's quartic curve, Klein's curve and the tetrahedron. Contemp. Math. 201, 43-62 (1995)
12. Farkas, H., Kra, I.: Riemann Surfaces. Graduate Texts in Mathematics, 72, Springer-Verlag (1996)
13. Jiménez, L.: On the kernel of the group algebra decomposition of a Jacobian variety. PhD thesis, Universidad de Chile (2014)
14. Kani, E., Rosen, M.: Idempotent relations and factors of Jacobians. Math. Ann. 284, 307-327 (1989)
15. Lange, H., Rojas, A.M.: Polarizations of isotypical components of Jacobians with group action. Arch. der Math. 98, 513-526 (2012)
16. Lange, H., Rodríguez, R.E., Rojas, A.M.: Polarizations on abelian subvarieties of principally polarized abelian varieties with dihedral group action. Math. Z. 276(1-2), 397-420 (2014)
17. Lange, H., Recillas, S.: Abelian varieties with group actions. Journ. Reine Angew. Mathematik 575, 135-155 (2004)
18. Magaard, K., Shaska, T., Shpectorov, S., Völklein, H.: The locus of curves with prescribed automorphism group. Comm. Arithm. Fund. Groups, Surikaisekikenkyusho Kokyuroku 1267, 112-141 (2002)
19. Costa, A., Izquierdo, M., Ying, D.: On Riemann surfaces with non-unique cyclic trigonal morphism. Manuscr. Math. 118, 443-453 (2005)
20. Nakayima, R.: On splitting of certain Jacobian varieties. J. Math. Kyoto Univ. 47, 391-415 (2007)
21. Paulhus, J.: Decomposing Jacobians of curves with extra automorphisms. Acta Arith. 132, 231-244 (2013)
22. Paulhus, J.: Elliptic factors in Jacobians of hyperelliptic curves with certain automorphism groups. In: Proceedings of the 10th algorithmic number theory symposium, pp. 487-505 (2013)
23. Pinto, J.: Ecuaciones para superficies de Riemann correspondientes a cubrimientos cíclicos. Master Thesis, Universidad de Chile (2011)
24. Recillas, S.: Jacobians of curves with g_{4}^{1} 's are the Prym's of trigonal curves. Bol. Soc. Mat. Mexicana (2) 19(1), 9-13 (1974)
25. Sanjeewa, R., Shaska, T.: Determining equations of families of cyclic curves. Albanian J. Math. 2(3), 199-213 (2008)
26. Recillas, S., Rodríguez, R.: Jacobians and representations of S_{3}. In: Workshop on Abelian Varieties and Theta Functions (Spanish) (Morelia, 1996), 117-140. Aportaciones Mat. Investig. 13, Soc. Mat. Mexicana (1998)
27. Rodríguez, R.: Abelian varieties and group actions. Contemp. Math. Am. Math. Soc. 629, 299-314 (2014)
28. Rojas, A.M.: Group actions on Jacobian varieties. Rev. Mat. Iber. 23, 397-420 (2007)
29. Serre, J.-P.: Linear Representations of Finite Groups. Grad. Texts in Math. 42, Springer-Verlag (1996)
30. Wootton, A.: Defining equations for cyclic prime covers of the Riemann sphere. Israel J. Math. 157, 103-122 (2007)
31. Wootton, A.: The full automorphism group of a cyclic p-gonal surface. J. Algebra 312, 377-396 (2007)

[^0]: Leslie Jimenez
 leslie.jimenez@liu.se
 1 Departamento de Matemáticas, Facultad de Ciancias, Universidad de Chile, Las palmeras, 3425 Santiago, Ñuñoa, Chile
 2 Present Address: Linköpings universitet, 58183 Linköping, Sweden

