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Abstract Given a compact Riemann surface X with an action of a finite group G, the group
algebra Q[G] provides an isogenous decomposition of its Jacobian variety J X , known as the
group algebra decomposition of J X .We obtain amethod to concretely build a decomposition
of this kind. Our method allows us to study the geometry of the decomposition. For instance,
we build several decompositions in order to determine which one has kernel of smallest order.
We apply this method to families of trigonal curves up to genus 10.
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1 Introduction

The action of a finite group on a given compact Riemann surface X of genus g ≥ 2 induces
a homomorphism ρ : Q[G] → EndQ(J X) from the rational group algebra Q[G] into the
rational endomorphism algebra of J X in a natural way. The factorization of Q[G] into a
product of simple algebras yields a decomposition of J X into abelian subvarieties [14,17]
up to isogeny.

This decomposition, and in general Jacobians with group action, have been extensively
studied from different points of view [1,3,8,10,14,17,21,22,24,28].
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In [22] the decomposition of Jacobians of hyperelliptic curves in elliptic factors is studied.
The author developed a nice geometrical description for these Jacobians up to genus 10. Her
motivation came from [10] where they asked for completely decomposable Jacobians of any
dimension g (they gave examples up to g = 1297). In [28] an explicit formula to calculate
the dimension of the factors in the decomposition of J X is given and the polarizations of the
subvarieties in the decomposition of J X are studied in [15] and [16]. In general, the kernel
of the decomposition of J X has not been studied. The only references treating kernels we
know are: [26] for Jacobians with action of the symmetric group of order 3, [20] where the
author studies families of curves whose Jacobians are isomorphic to a product of elliptic
curves and [7] where the authors study dihedral actions on Jacobians, but the tools used to
compute kernels are different from the method developed here.

In this work, we present a method to concretely build an isogeny which is a group algebra
decomposition (Sect. 4). We do this deepening the method developed in [15]. This allows us
to describe the lattices of the factors in a group algebra decomposition. Moreover, we find a
method to determine the order of the kernel of this isogeny. We give a specific criterion to
choose the subvarieties in a group algebra decomposition having a kernel of smallest possible
order. In particular, we can decide when the isogeny is an isomorphism.

We apply our method to non-normal trigonal curves (see [31]) and normal trigonal curves
of genus g < 10 with reduced group A4, S4 and A5. In these cases, we determine the factors
of the decomposition such that the size of the kernel is the minimum possible (Sect. 5). The
description of the lattices of the factors in the decomposition of J X provides an alternative
explanation of the subspace of the loci of Jacobians of trigonal curves inside the moduli
space Ag of principally polarized abelian varieties by means of the Riemann matrix of the
decomposition (Remark 6).

2 Preliminaries

Let G be a finite group. The known results about the representations of G used in this section
may be founded in [29] and [9].

If V is an irreducible representation of G over C, we denote F as its field of definition
and K the field obtained by extending Q by the values of the character χV ; then K ⊆ F and
mV = [F : K ] is the Schur index of V .

If H is a subgroup of G, Ind1GH
will denote the representation of G induced by the trivial

representation of H and 〈U, V 〉 denotes the usual inner product of the characters. By the
Frobenius Reciprocity Theorem 〈Ind1GH , V 〉 = dimCV H , where V H is the subspace of V
fixed by H .

Any compact Riemann surface X of genus g has associated a principally polarized abelian
variety J X (i.e. a complex torus with a principal polarization). This variety is called the
Jacobian variety of X and has complex dimension g. Good accounts of abelian varieties and
Jacobians are given in [4] and [27].

Given a compact Riemann surface X with an action of a groupG, we consider the induced
homomorphism ρ : Q[G] → EndQ(J X). For any element α ∈ Q[G] we define an abelian
subvariety

Bα := Im(α) = ρ(lα)(J X) ⊂ J X, (1)

where l is some positive integer such that lα ∈ Z[G].
As Q[G] decomposes into a product Q0 × · · · × Qr of simple Q-algebras, the simple

algebras Qi are in bijective correspondencewith the rational irreducible representations ofG.



On the group algebra decomposition of a Jacobian variety 187

That is, for any rational irreducible representation Wi of G there is a uniquely determined
central idempotent ei . This idempotent defines an abelian subvariety, namely Bi = Bei .
These varieties, called isotypical components, are uniquely determined by the representation
Wi .

The addition map is an isogeny [17, Section 2].

μ : B0 × · · · × Br → J X, (2)

which is called the isotypical decomposition of J X .
Moreover, the decomposition of every Qi = L1 ×· · ·× Lni into a product of minimal left

ideals (all isomorphic) gives a further decomposition of the Jacobian. There are idempotents
fi1, . . . , fini ∈ Qi such that ei = fi1 + · · · + fini where ni = dimVi/mVi , with Vi
the C−irreducible representation associated to Wi . These idempotents provide subvarieties
Bi j := B fi j of J X .

It is known that the factor in the isotypical decomposition of J X associated to the trivial
representation of G is isogenous to JG = J (X/G). This factor will be denoted by B0. Then
the addition map is an isogeny

ν : JG × �
n1
1 B1 j × · · · × �

nr
1 Br j → J X. (3)

This is called the group algebra decomposition of J X [16].We use this name to refer to the
isogeny ν as well. Note that since all the minimal left ideals decomposing Qi are isomorphic,
which implies that the sub-varieties defined by the idempotents fi j are isogenous, we may
write the group algebra decomposition as

ν̃ : JG × Bn1
11 × · · · × Bnr

r1 → J X, (4)

which is the classical way of writing it. The problem with this is that one of our goals is
to minimize the order of the kernel of ν, and there are examples (for instance [11]) where
we may even obtain isomorphisms by changing the components in the same isogeny class.
Therefore, we will stay with the decomposition (3) because it will allow us to reduce the
kernel of the isogeny.

If two complex tori B and B ′ are isogenous, we write B ∼ B ′.
For group actions on a Riemann surface we follow the notation and definitions given in

[12].We define the group of automorphisms Aut(X) of a Riemann surface X as the analytical
automorphismgroup of X .We say that a finite groupG acts on X ifG ≤ Aut(X). The quotient
X/G (the space of the orbits of the action of G on X ) is a compact Riemann surface with
complex atlas given by the holomorphic branched covering πG : X → X/G. The degree of
πG is |G| and the multiplicity of πG at p is multp(πG) = |Gp| for all p ∈ X , where Gp

denotes the stabilizer of p in G. If |Gp| �= 1 then p will be a branch point of πG .
Let {p1, . . . , pr } ⊂ X be a maximal collection of non-equivalent branch points with

respect to G. We will denote γ = g(X/G). We define the the signature (or branching
data) of G on X as the vector of numbers (γ ;m1, . . . ,mr ) where mi = |Gpi |. We have the
Riemann-Hurwitz formula g(X) = |G|(γ −1)+1+ |G|

2

∑r
i=1

(
1− 1

mi

)
, where g(X) denotes

the genus of X .
A 2γ +r tuple (a1, . . . , aγ , b1, . . . , bγ , c1, . . . , cr ) of elements ofG is called a generating

vector of type (γ ;m1, . . . ,mr ) if the following are satisfied:

(i) G is generated by the elements (a1, . . . , aγ , b1, . . . , bγ , c1, . . . , cr );
(ii) order(ci ) = mi ; and
(iii)

∏γ

i=1[ai , bi ]
∏r

j=1 c j = 1, where [ai , bi ] is the commutator of ai , bi ∈ G.
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The existence of a generating vector of given type ensures the existence of a Riemann surface
with an action of a given finite group. The dimension of the subvarieties in the decomposition
(3) are obtained using the generating vector of the action [28, Theorem 5.12].

Moreover, the induced action of G on J X = Cn/H1(X, Z) provides geometrical infor-
mation about the components of the group algebra decomposition of J X [8].

Definition 1 For any subgroup H of G, define pH = 1
|H |

∑
h∈H h as the central idempotent

in Q[H ] corresponding to the trivial representation of H . Also, we define f iH as pHei , an
idempotent element in Q[G]ei .

Then the corresponding group algebra decomposition of JH = J (X/H) is given as
follows [8, Proposition 5.2]:

JH ∼ JG × B
dimV H

1
m1

11 × · · · × B
dimV H

r
mr

r1 . (5)

Moreover,
Im(pH ) = π∗

H (JH ) (6)

where π∗
H (JH ) is the pullback of JH by πH (see [4]). If dimV H

i �= 0 then

Im
(
f iH

)
= B

dimV H
i

mVi
i1 . (7)

3 Describing the factors via a symplectic representation

We are interested in describing the factors of the group algebra decomposition of a Jacobian
variety with group action given in the previous section.

The method we follow is to describe the lattice of such factors. We apply [15, Section 2],
but extended to any symmetric idempotent α = ∑

g∈G agg.
Let 	 = H1(X, Z) denote the lattice of J X and 	Q = 	 ⊗Z Q. Let ρs : Q[G] →

End(	Q) denote the morphism induced by the (symplectic) rational representation of G in
	, ρ : Q[G] → EndQ J X is the homomorphism given by the action of the group G on X
and ρr is the rational representation of EndQ(J X) which completes the diagram below.

Thus ρr induces a rational representation of HomQ(�i j Bi j , J X) given by ν → ν	 :
⊕i j	i j → 	, where ν	 is the restriction of ν to the lattice ⊕i j	i j of the product of the Bi j
in ν.
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Then ρs(α) ∈ End	Q is given by ρs(α) = ∑
g∈G agρs(g).

Therefore we have the following facts, analogous to [15, Section 2].

Proposition 1 Let α ∈ Q[G]. The sublattice of 	 defining Bα = Vα/	α is given by

	α := ρs(α)(	Q) ∩ 	,

where the intersection is taken in 	Q and ρs(α) is the image of α by ρs . In this case, the
C−vector space Vα is generated by ρs(α)(	Q).

The previous construction is clearer in its matrix form, once bases are chosen. From here
to the end of this work, we use this form for determining the lattice of the factors in ν.

Remark 1 Suppose we have 
 = {α1, . . . , α2g} a (symplectic) basis of the lattice 	 of the
Jacobian J X (assumed to be of dimension g). Consider ρs in its matrix form (with respect
to this basis).

For any g ∈ G, we have that ρs(g) is a square matrix of size 2g. Hence, for any α ∈ Q[G],
we have associated to it a rational 2g × 2g-matrix

M = (mi j ).

The j-th column of M corresponds to the element ρs(g)(α j ) = ∑2g
i=1 mi jαi and the lattice

	α of Bα corresponds to

	α := (〈M〉Z ⊗ Q) ∩ 	,

where 〈M〉Z denotes the lattice over Z generated by the columns of M .
In other words, the lattice 	α is obtained by considering the R-linearly independent

columns of M and intersecting it with 	. Our next step is to look for a basis of 	α , which
will be in terms of the elements of 
. By computing its coordinates in the basis 
, we get a
2g×2 dim Bα coordinate matrix of the lattice	α . Moreover, Vα is the complex vector space
generated by the column vectors of M .

4 Method: a group algebra decomposition ν×

In this section we develop the core of this work. We present a method to concretely build an
isogeny ν as in (3).

Given a compact Riemann surface X with the action of a groupG, the general theory gives
us the existence of a group algebra decomposition for the corresponding Jacobian variety
J X . The results in [28] allow us to compute the dimensions of the factors. Nevertheless to
describe further geometrical properties such as induced polarization, period matrix, etc., we
need an explicit description of the factors. Section 3 gives us a tool to solve some of these
questions, under certain hypotheses for G.

We present here a method to find a set of primitive idempotents fi1, . . . , fini to describe
the factors in this decomposition, in order to extract properties of the decomposition. This
concrete construction will allow us to easily compute the order of the kernel of the isogeny ν.
Hence wemay choose an optimal set of those idempotents in the sense of getting the smallest
possible kernel.
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We consider the quotient of X for the action of G of genus 0 for simplicity, because it
is known that the factor in ν corresponding to the trivial representation is the image of pG ,
hence it is isogenous to JG .

4.1 Data

Let X be a Riemann surface of genus g ≥ 2 with the action of a group G with total quotient
of genus 0. Assume that the symplectic representation ρs for this action is known.

STEP ONE: Identification of factors using Jacobians of intermediate coverings.
The following lemma gives us conditions under which a factor in the group algebra

decomposition can be described as the image of a concrete idempotent, in particular when it
corresponds to a Jacobian of an intermediate quotient.

Lemma 1 Let X be a Riemann surface with an action of a finite group G such that the genus
of XG is equal to zero. Consider ν, the group algebra decomposition of J X as in (3).

(i) If H ≤ G is such that dimC V H
i = mi , where mi is the Schur index of the representation

Vi , then for some j ∈ {1, . . . , ni } we have that
Im

(
f iH

)
= Bi j .

In addition,
(ii) if dimC V H

l = 0 for all l, l �= i , such that dimC Bl �= 0 in the isotypical decomposition
of J X in Eq. (2), then

JH ∼ Im(pH ) = Bi j .

Proof From Proposition 1 and the fact that dimC V H
i �= 0, we get Im( f iH ) = �

ki
i Bi j . Since

dimC V H
i = mi (by hypothesis), we obtain that ki = 1. Hence Im( f iH ) := Bi j for some

j ∈ {1, . . . , ni }.
If, in addition, dimC V H

l = 0 (equivalently dimQ WH
l = 0) for all l �= i such that

dimC Bl �= 0, then f lH = 0 for all of them. Due to the fact that pH = ∑
l∈{1,...,r} f lH we

obtain that pH = f iH . Moreover, by Eq. (5) we have JH ∼ Im(pH ) = Bi j . ��
Remark 2 Observe that if H satisfies Lemma1 for some i ∈ {1, . . . , r}, then all its conjugates
satisfy it for the same i . To see this, consider H ′ = Hg = gHg−1. It is clear that for all
s ∈ G, we have

dimC V H
i =

〈
Ind1GH

, Vi
〉
= 1

|G|
∑

t∈G
χInd

1GH
(t)χVi (t

−1)

= 1

|G|
∑

t∈G

⎛

⎝
∑

s−1ts∈H
χ1H (s−1ts)

⎞

⎠ χVi (t
−1)

= 1

|G|
∑

t∈G
|H |χVi (t

−1) = 1

|G|
∑

t∈G
|H ′|χVi (t

−1)

= 1

|G|
∑

t∈G

⎛

⎝
∑

s−1ts∈H ′
χ1H ′ (s

−1ts)

⎞

⎠ χVi (t
−1)

= dimC V H ′
i .

Our purpose is to use this result conversely to actually produce an isogeny ν.
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STEP TWO: Definition of certain subvarieties of J X .

Definition 2 Let H be a subgroup of G satisfying condition (i) of Lemma 1 for some i ∈
{1, . . . , r}, then define BH as the image of fH = pHei .

Note that depending on the geometry of the action, BH can be trivial.
From Proposition 1, we get that its lattice corresponds to

	H := (〈ρs( fH )〉Z ⊗ Q) ∩ H1(X, Z). (8)

Using the procedure described in Remark 1, we obtain the coordinate matrix corresponding
to a basis of the lattice of BH . We sometimes use the same symbol 	H to denote this matrix.

Corollary 1 Let H be a subgroup of G satisfying both conditions of Lemma 1. Then fH =
pHei = pH , and BH is isogenous to the Jacobian of X/H.

Proof By Lemma 1, if H satisfies both conditions then the Jacobian of X/H is isogenous to
one of the factors in a group algebra decomposition for J X . This is equivalent to the equality
of their corresponding idempotents. ��

STEP THREE: Construction of a product subvariety B× of J X .
If we have enough subgroups from STEP TWO, we may construct the product of all

the subvarieties defined by those subgroups. This will be a subvariety of J X , its lattice is
described in the following definition.

Definition 3 Let r + 1 be the number of rational irreducible representations of G. Suppose
for all i ∈ {1, . . . , r} and all j = {1, . . . , ni } there is a subgroup Hi j satisfying condition (i)
of Lemma 1. For each i, j take one Hi j , and let

S = {Hi j : i ∈ {1, . . . , r}, j ∈ {1, . . . , ni }}
be the set of these subgroups,wherewedonot consider subgroups Hi j such that Im( fHi j ) = 0.
Wedefine LS ∈ M2g(Z) to be the coordinatematrix given by the vertical join of the coordinate
matrices of the lattices 	Hi j [see Eq. 8] for Hi j ∈ S.

We recall here that i = 0 corresponds to the trivial representation whose factor is not
considered here, ni = dim Vi/mi , where mi is the Schur index of a complex irreducible
representation Vi associated to the rational irreducible representation corresponding to the
factor Bni

i j [from (3)].

The lattice 	× defined by the matrix LS , corresponds to the sublattice ⊕i j	Hi j of 	 =
H1(X, Z). It is the lattice of the following subvariety of J X

B× := �i, j BHi j ,

where BHi j is as in Definition 2.

Definition 4 With the above notation define a sum map ν× : B× → J X

ν×(b11, . . . , brnr ) =
∑

i, j

bi j ∈ J X.

STEP FOUR: Condition for ν× to be an isogeny.

Definition 5 Let S = {Hi j : i = 1..r, j = 1 . . . ni } be a set of subgroups of G as in
Definition 3. We say that S is an effective set for G if the determinant of the corresponding
matrix LS is different from 0.



192 L. Jimenez

Theorem 1 Let X be aRiemann surface of genus g ≥ 2with an action of a groupG with total
quotient of genus 0. Let S = {Hi j }i j be an effective set for G, then the map ν× Definition 4
is an isogeny with kernel of order | det(LS)|.

Proof As before, denote by 	 the lattice of J X . The map ν× induces a homomorphism of
Z−modules ν	 : 	× → 	. If the rank of 	× is 2g, then ν	 is a monomorphism of lattices
in Cg . Moreover, all the sublattices 	Hi j decomposing 	× correspond to subvarieties BHi j .
Therefore the dimension of B× is g.

It remains to show either ν× is surjective or its kernel is of finite order. For any isogeny
f : A1 → A2 between two abelian varieties, it is known [4, Section 1.2] that

|Ker( f )| = det ρr ( f ), (9)

where ρr ( f ) is the rational representation of the isogeny f . It is known that if the kernel is
finite, then its cardinality equals the index [	 : 	×]. As the matrix LS is non singular, we
have that	× is a lattice inCg , hence this index is finite. After columns operations, the matrix
LS is the matrix of the rational representation ν×, therefore its kernel has order the absolute
value of its determinant. ��

Corollary 2 Under the hypothesis in Theorem 1, the isogeny ν× is an isomorphism if and
only if det(L{Hi j }) = ±1.

Remark 3 1. The isogeny from Theorem 1 corresponds to a group algebra decomposition
isogeny ν as in (3).

2. We point out that the isogeny ν× depends on the choice of the subgroups Hi j for the
set S. Therefore, its kernel may change if we change these subgroups. Our purpose is to
move along different effective sets in order to achieve the smallest possible.

In the spirit of moving along different effective sets to minimize the order of the kernel,
we have the following proposition (see [13] for a proof and more details).

Proposition 2 If H2 = gH1g−1 for some element g ∈ G, then

(i) pH2 = gpH1g
−1,

(ii) Im(pH2) is isomorphic to Im(pH1).

Theorem 2 Let X be a Riemann surface of genus g with an action of a finite group G such
that the genus of X/G is zero. If S = {Hi1, . . . , Hini } is an effective set for ν, then the
induced polarization Ei j of the factor Bi j in ν is given by

Ei j = 	Hi j EJ X	t
Hi j

. (10)

Moreover, the type of the polarization Ei j is given by the elementary divisors of the matrix
product (10).

Remark 4 Finally we point out that the principle idea of our method is to move along iso-
morphic varieties BH , choosing different subgroups H (even in the same conjugacy class)
to construct the effective set S and the corresponding isogenies ν×, which may have kernels
of different orders. This shows that the geometry of the varieties BH as subvarieties of J X
makes a difference. In fact the examples suggest that this reflects the way the subvarieties
intersect each other.



On the group algebra decomposition of a Jacobian variety 193

5 Application to trigonal curves

In this section we use the method explained in Sect. 3, the computational programMAGMA
[6] and the algorithm introduced in [3]. To obtain the size of the kernel we use the full
automorphism group of the curves. We study the Jacobians of families of trigonal curves up
to genus g < 10. We divide our examples according to the genus (or the dimension) g.

5.1 Known facts about 3−gonal curves and their automorphisms

A compact Riemann Surface X admitting a cyclic prime group of automorphisms C3 of
order 3 such that X/C3 has genus 0 is called a cyclic 3−gonal surface or a trigonal curve.
The group C3 is called a 3−gonal group for X . If C3 is normal in the full automorphism
group Aut(X) of X , we call X a normal cyclic 3−gonal surface or a normal trigonal curve.
In this case, there exist only one 3−gonal group for X . The quotient group NAut(x)(C3)/C3

between the normalizer NAut(x)(C3) of C3 ≤ Aut(X) and C3 is called the reduced group of
X. It is well known [12, Section IV.9.3], [30, Table 1] that the reduced group of X can be the
cyclic group Cn of order n, the dihedral group Dn of order 2n, the symmetric group S4, the
alternating groups A4 or A5.

A consequence of [1, Lemma 2.1] is the following result:

Lemma 2 If X is a trigonal surface of genus g ≥ 5, then X is a normal trigonal curve.

The previous result allows us to find a list of automorphism groups of trigonal curves
(see also [2]). This list is obtained by an easy combination of [31, Table 7], [5, Table 1] and
[18], plus the computation of the reduced groups which are not in the original tables. We
group the results in Tables 1 and 2. Table 1, corresponds to non-normal trigonal curves. CD
denotes the central diagonal subgroup of SL(2, 3) of order 2. Table 2, corresponds to normal
trigonal curves with reduced group A4, S4 or A5 [5]. We restrict to these reduced groups
in the normal case mainly because the results in [22] suggest that these families may have
completely decomposable Jacobians (at least for some dimensions of J X ). From Table 2 we
obtain the result that any trigonal curve with reduced group S4, A4 or A5 has even genus,
and that there do not exist trigonal curves of genus 8 with reduced group A4, S4 or A5.

Note that in both tables we use the MAGMA notation ID to label the automorphism
groups. This is denoted by a ordered pair which in the first entry is the size of the group and
in the second entry is which group in MAGMA database it is.

Genus 2
Let X2 be the 3-gonal curve of genus two admitting the action of GL(2, 3) = 〈a, b : a8 =
b3 = (ab)2 = ba−3ba−3 = 1〉 (see the first row in the Table 1). This curve is known as the
Bolza curve with equation y2 = x(x4−1). The generating vector of the action is (a, b, (ab))
of type (0; 8, 3, 2).

Table 1 Full automorphism group for non-normal trigonal curves

Red. group Automorphism group ID Genus Signature

D2 GL(2, 3) (48, 29) 2 (0;2,3,8)

C4 SL(2, 3)/CD (48, 33) 3 (0;2,3,12)

D3 D3 × D3 (36, 10) 4 (0;2,2,2,3)

D6 (C3 × C3) � D4 (72, 40) 4 (0;2,4,6)
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Table 2 Full automorphism group for normal trigonal curves

Red. group Automorphism group ID Genus Signature

A4 C3 × A4 (36, 11) 12s−2, s > 0 (0;2,3,3,3s )

A4 C3 × A4 12s+4 (0;6,3,3,3s )

A4 (C2 × C2) �C9 (36, 3) 12s+6 (0;2,9,9,3s )

A4 (C2 × C2) �C9 12s+12 (0;6,9,9,3s )

S4 C3 × S4 (72, 42) 24s−2, s > 0 (0;2,3,4,3s )

S4 C3 × S4 24s+4 (0;2,3,12,3s )

S4 C3 × S4 24s+16 (0;6,3,12,3s )

S4 C3 × S4 24s+10 (0;6,3,4,3s )

S4 C3 � S4 (72, 43) 24s−2, s > 0 (0:2,3,4,3s )

S4 ((C2 × C2) �C9) �C2 (72, 15) 24s+6 (0;2,9,4,3s )

A5 C3 × A5 (180, 19) 60s−2, s > 0 (0;2,3,5,3s )

A5 C3 × A5 60s+10 (0;2,3,15,3s )

A5 C3 × A5 60s+40 (0;6,3,15,3s )

A5 C3 × A5 60s+28 (0;6,3,5,3s )

Genus 3
The genus 3 surface in Table 1, corresponds to the curve with plane model y4 = x3 − 1 (see
[18, Table 2]) with action of SL(2, 3)/CD. We consider the presentation SL(2, 3)/CD =
〈a, b : a12 = b3 = (ab)2 = a11b−1aba−1ba−7 = 1〉. The generating vector of the action is
(a, b, ab) of type (0; 12, 3, 2).
Genus 4
The genus 4 surfaces in Table 1, correspond to the case studied in [1] and [19]. The surfaces
admit four actions of C3; two conjugate with quotients of genus 0 and two non conjugate
with quotients of genus 2. Moreover, the one dimensional locus, corresponding to surfaces
of genus 4 with automorphism group D3 × D3 consists of the curves with equation ax3y3 −
(x3 + y3) + a = 0, where a /∈ {0,±1,∞}. This family contains the surface with action
of (C3 × C3) � D4 (see [18, Table 4]). Then, we use the action of D3 × D3. We consider
the presentation D3 × D3 = 〈a, b, c|a3 = b2 = c2 = (abc)2 = a2ca−1bca−1b−1a−2 =
a2ca−1bab−1ac−1a−1 = 1〉. The generating vector of the action is (a, b, c, abc) of type
(0; 3, 2, 2, 2).

On the other hand, with respect to the groups in Table 2, we have that C3 × A4 and
C3× S4 act on genus 4. The groupC3× A4 is contained inC3× S4 and we study the possible
actions of both groups on this genus. Using [6] and [3], we note that they act over the same
surface given by the planar model y3 = x(x4 − 1) ([23]). This result completes the one
remaining case left open in [1] which was studied later in [18] and [19]. Our result coincide
with they obtained. The action of A4 × C3 (see Table 2) extends to the action of the group
S4 × C3 = 〈a, b|a12 = b3 = (ab)2 = a11ba−1bab−1ab−1a−6 = 1〉 with generating vector
(a, b, ab) of type (0; 12, 3, 2) (see [19]).
Genus 6
The groups ((C2 × C2) � C9) � C2 and (C2 × C2) � C9 act on curves of genus 6. The
group (C2 × C2) � C9 is contained in ((C2 × C2) � C9) � C2 and we study their possible
actions on this genus using [6] and [3]. Both groups act on the same trigonal curve [18] with
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planar model y3 = x8 + 14x4 + 1 [25]. The group ((C2 × C2) � C9) � C2 = 〈a, b|a2 =
b9 = (ab)4 = ab3ab3 = 1〉 acts on the curve with generating vector (a, b, (ab)−1) of type
(0; 2, 9, 4).
Remark 5 From Table 2, we know that there do not exist trigonal curves of genus 8 with
reduced group A4, S4 and A5.

5.2 Application of the method to trigonal curves

In this section we apply our method to trigonal curves. Let E j denotes an elliptic curve and
|Kernel| denotes the smallest possible order for the kernel of ν×, the isogeny defined in 4.

Theorem 3 Let J X be the Jacobian variety of a trigonal curve X, of one of the types
detailed below. Then J X is completely decomposable, and a geometrical description of the
decomposition is in the following tables.

– If J X is the Jacobian variety of a non-normal trigonal curve, then we have the following
results:

Red. Automorphism Genus Decomposition |Kernel| Induced
group group of J X of ν× polarization

D2 GL(2, 3) 2 E1 × E2 1 (2)
C4 SL(2, 3)/CD 3 E1 × E2 × E3 4 (2)
D3 D3 × D3 4 E1 × · · · × E4 9 (2), (6), (2), (6)
D6 (C3 × C3) � D4 4 E1 × · · · × E4 9 (2)

– If J X is the Jacobian variety of a trigonal curve with reduced group A4, S4 or A5, then
we have the following results:

Red. Automorphism Genus Decomposition |Kernel| Induced
group group of J X of ν× polarization

A4 C3 × A4 4 E1 × E2 × E3 × E4 64 (4), (3), (3), (3)
S4 C3 × S4 4 E1 × E2 × E3 × E4 16 (4)
S4 ((C2 × C2) �C9) �C2 6 E1 × · · · × E6 64 (4)

Proof We will show here the techniques applied to the group GL(2, 3) in order to limit the
size of the matrices. The rest of the cases are proved following the same procedure. The
reader is referred to [13] for explicit calculations.

We use our method, presented in Sect. 4. All the computations were made in the software
package MAGMA [6]. The subgroups we use to obtain the effective set giving the decom-
position satisfy both conditions of Lemma 1. Hence, the factors that will define B× in the
isogeny ν× will correspond to Jacobian varieties of intermediate coverings.

Let X2 : y2 = x(x4 − 1) be the Bolza curve described in the case of genus 2 viewed
before. A generating vector for this action is (a, b, (ab)) of type (0; 8, 3, 2). Using Eq. (3)
we obtain that the Jacobian variety J X associated to X is completely decomposable i.e.
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Table 3 Character Table of GL(2, 3)

Order of the elements 1 2 2 3 4 6 8 8

V1 1 1 1 1 1 1 1 1

V2 1 1 −1 1 1 1 −1 −1

V3 2 2 0 −1 2 −1 0 0

V4 2 −2 0 −1 0 1 i
√
2 −i

√
2

V5 2 −2 0 −1 0 1 −i
√
2 i

√
2

V6 3 3 1 0 −1 0 −1 −1

V7 3 3 −1 0 −1 0 1 1

V8 4 −4 0 1 0 −1 0 0

isogenous to a product of elliptic curves. In fact, the group algebra decomposition isogeny
is ν : B41 × B42 ∼ J X, where the product B41 × B42 is invariant by the irreducible rational
representation V4 of degree 2 (see Table 3).

To apply our method to find an explicit decomposition ν×, we first look for two subgroups
H1 and H2 of GL(2, 3) satisfying conditions of Lemma 1. To find these subgroups, we use
the symplectic representation of the action obtained from themethod given in [3]. This allows
us to write every element of GL(2, 3) as a square symplectic matrix of size 4.

We determine next the complex irreducible representation decomposition of the induced
representation IndGH1H in GL(2, 3) by the trivial representation in H for each H ≤ G (see
Table 4). We know that this decomposition of IndGH1H into C−irreducible representations
is invariant under conjugation (see Remark 2). Table 4 shows the multiplicity of each com-
plex irreducible representation in the induced representation IndGH1H , for all H ≤ G up to
conjugacy.

We observe that the only conjugacy class of subgroups ofGL(2, 3)whose elements satisfy
the conditions in Lemma 1 consists of the class of H = 〈ab〉. For each subgroup H in this
class

〈IndGH1H , V4〉 = 1.

By Lemma 1, each factor in the decomposition of J X is defined by B4 j = Im(pHj ) =
VHj /	Hj , where Hj is some subgroup in the class and j ∈ {1, 2}. We obtain ν× : B41 ×
B42 → J X , and its kernel depends on the choice of Hj in this class.

To give an explicit description of the subgroups of GL(2, 3) giving the smallest order for
the kernel of ν×, we consider the above presentation of GL(2, 3) and the same generating
vector (a, b, ab). Set H = 〈ab〉, and consider the following subgroups of order 2 inGL(2, 3)

H1 = Hb = 〈
ba7b

〉
,

H2 = H = 〈ab〉,
and write B41 = Im(pH1) and B42 = Im(pH2). Since

ρs(pH1) =

⎛

⎜
⎜
⎝

0 0 0 0
1/2 1 0 0
0 0 0 1/2
0 0 0 1

⎞

⎟
⎟
⎠, ρs(pH2) =

⎛

⎜
⎜
⎝

1/2 1/2 0 0
1/2 1/2 0 0
0 0 1/2 1/2
0 0 1/2 1/2

⎞

⎟
⎟
⎠,
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Table 4 Decomposition of the induced representation by the trivial one on each class of conjugation of
subgroups of GL(2, 3)

Classes of subgroups V1 V2 V3 V4 V5 V6 V7 V8

Identity element 1 1 2 2 2 3 3 4

Order 2, length 1 1 1 2 0 0 3 3 0

Order 2, length 12 1 0 1 1 1 2 1 2

Order 3, length 4 1 1 0 0 0 1 1 2

Order 4, length 3 1 1 2 0 0 1 1 0

Order 4, length 6 1 0 1 0 0 2 1 0

Order 6, length 4 1 1 0 0 0 1 1 0

Order 6, length 4 1 0 0 0 0 1 0 1

Order 6, length 4 1 0 0 0 0 1 0 1

Order 8, length 1 1 1 2 0 0 0 0 0

Order 8, length 3 1 0 1 0 0 0 1 0

Order 8, length 3 1 0 1 0 0 1 0 0

Order 12, length 4 1 0 0 0 0 1 0 0

Order 16, length 3 1 0 1 0 0 0 0 0

Order 24, length 1 1 1 0 0 0 0 0 0

Order 48, length 1 1 0 0 0 0 0 0 0

and the coordinate matrices of their lattices are

	H1 =
(
0 1 0 0
0 0 1 2

)

, 	H2 =
(
1 1 0 0
0 0 1 1

)

,

we find that the matrix coordinate of the lattice of the product B41 × B42 is given by

L{H1,H2} =

⎛

⎜
⎜
⎝

0 1 0 0
0 0 1 2
1 1 0 0
0 0 1 1

⎞

⎟
⎟
⎠.

In this case, choosing H1 and H2 as before ν× : B41 × B42 → J X is an isomorphism. Hence
|Ker(ν)| = 1. Note that we do not claim that the subgroups yielding an isomorphism are
unique. In fact, there exist other subgroups in the same class such that the |Ker(ν×)| = 1.

��
Remark 6 Finally, combining Theorem 3 and the classification of [18], we may describe part
of the loci of Jacobians of trigonal curves for dimension g ≤ 6.

g Dimension of the family Locus description

2 0 One curve with action of GL(2, 3)
3 0 One curve with action of SL(2, 3)/CD
4 1 1-dimensional with action of D3 × D3

And one curve with action of C3 × S4
6 0 One curve with action of ((C2 × C2) �C9) �C2
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