
!

Walrasian equilibrium as limit of 
a competitive equilibrium 

without divisible goods  
 
 

Autores: 
Michael Florig 

Jorge Rivera Cayupi 

!

Santiago,)Mayo)de)2015!

SDT$404$



Walrasian equilibrium as limit of a competitive

equilibrium without divisible goods

⇤

Michael Florig

†
Jorge Rivera

‡

June 10, 2015

Abstract

We study economies where all commodities are indivisible at the individual level, but per-

fectly divisible at the aggregate level of the economy. Under the survival assumption, we show

that a competitive outcome in the discrete economy, called rationing equilibrium, converges to

a Walras equilibrium of the limit economy when the level of indivisibility becomes small. If

the survival assumption does not hold at the limit economy, then the rationing equilibrium

converges to a hierarchic equilibrium.
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1 Introduction

In this paper we investigate the asymptotic behaviour of competitive equilibria existing in economies

when discrete consumption and production sets converge to convex sets, where all goods are per-

fectly divisible. Since a Walras equilibrium may fail to exist in the case of discrete consumption

sets, we base our analysis on the framework proposed in Florig and Rivera [9], using a continuum of

agents and discrete consumption and production sets, so that goods are indivisible at the individual

level, but perfectly divisible at the aggregate level of the entire economy.1 Using a parameter called

“fiat money” –whose solely role is to facilitate the exchange among individuals– and considering a
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�. 1000766-2000, and ICM Sistemas Complejos de
Ingenieŕıa.
We thank Yves Blalasko and Carlos Herves-Beloso for helpful comments.
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1See Bobzin [4] for a survey on indivisible goods.
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regularized notion of demand, existence of a competitive equilibrium notion, called rationing equi-

librium, can be established for these discrete economies. The set of rationing equilibria contains

the set of Walras equilibria.

The nature of the limit of the equilibrium sequence will depend on the assumptions imposed on

the limit economy. When the strong survival condition holds, then the limit of rationing equilibria

will be a Walras equilibrium,2 and therefore the indivisibility of goods becomes indeed irrelevant

when it is small. The situation might be quite di↵erent when the initial endowment of resources

of each consumer does not belong to the interior of the respective consumption set. In such case,

the indivisibility of goods might matter, independently of how small it is. It may occur that not

all consumers have access to all goods, i.e. a good may be so expensive that some consumers who

do not own the expensive goods cannot buy a single unit by selling their entire initial endowment.

When the goods become “more divisible”, i.e. if the minimal unit per good decreases, then the

equilibrium price may react such that the situation persists.

Following Gay [10], based on a generalized concept of price, several authors have proposed

generalizations of the Walras equilibrium existing in the convex case even when the Walras equi-

librium does not exist due to a failure of the strong survival assumption (Danilov and Sotskow

[5], Marakulin [13], Mertens [14], Florig [6]).3 Supported by several examples, Florig [6] proposes

an interpretation of those generalized prices in terms of small indivisibilities. In the case of linear

preferences, Florig [7] shows that a hierarchic equilibrium as proposed in [6] is the limit of stan-

dard competitive equilibria of economies with discrete consumption sets converging to the positive

orthant.4

We will show that rationing equilibria converge to a hierarchic equilibrium when the strong

survival does not hold in the limit economy. This result formalises the interpretation of hierarchic

equilibria in terms of small indivisibilities given in Florig [6]. In the absence of the strong survival

assumption we may thus be in a situation where indivisibilities matter, independently how small

the minimal tradable units of goods are. Note that a rationing equilibrium (with a positive price

of fiat money) is a Walras equilibrium, provided that the initial endowment in fiat money is dis-

persed (Florig and Rivera [9]). Therefore our result does not depend on the concept of rationing

equilibrium.

This work is organized as follows. In Section 2 we introduce some mathematical concepts

that we use throughout this paper. In Section 3 we describe the model of discrete economies

that approximate a standard economy, hence introducing a convergence concept for economies. In

Section 4 we present conditions ensuring that the limit of a sequence of rationing equilibria is a

Walras equilibrium (Proposition 4.1). In Section 5 we consider a more general framework, without

2If local non-satiation of preferences does not hold the price of fiat money may however be positive at the limit.
3When the consumption set is the positive orthant, the set of goods L is partitioned into several classes L1, . . . , Lk

according to their value, with any quantity of L
r

goods buying infinite amounts of less valuable L

r+1, . . . , Lk

goods,
buying other goods in L

r

at standard prices, and finally any quantity of L
r

goods cannot buy any positive quantity
of more valuable L1, . . . , Lr�1 goods.

4As local satiation cannot hold in the case of discrete consumption, dividend equilibria are employed.
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a strong survival condition on the limit economy. In that case the limit of a sequence of rationing

equilibrium is shown to be a hierarchic equilibrium.

2 Basic notation and preliminary concepts

In the following, 0
m

is the origin of Rm and x

t is the transpose of x 2 Rm, whose Euclidean norm

is kxk. The inner product between x, y 2 Rm is x · y = x

t

y, and the open ball with center x

and radius " > 0 is B(x, "). For a couple of sets K

1

, K

2

✓ Rm, ⇠ 2 R and p 2 Rm, we denote

⇠K

1

= {⇠x, x 2 K

1

}, p ·K
1

= {p ·x, x 2 K

1

} and K

1

±K

2

= {x
1

±x

2

, x

1

2 K

1

, x

2

2 K

2

}, while the
set-di↵erence between them is denoted K

1

\ K

2

. Additionally, clK
1

, intK
1

and convK
1

denote,

respectively, the closure, interior and the convex hull of K
1

.

By denoting

N1 = {N ✓ N |N \N is finite} and N⇤
1 = {N ⇢ N |N is infinite},

we recall the outer limit of a sequence of subsets {K
n

}
n2N of Rm is the subset

lim sup
n!1

K

n

= {x 2 Rm | 9N 2 N⇤
1, 9x

n

2 K

n

, n 2 N, with x

n

!
N

x} , (1)

while the inner limit is the set

lim inf
n!1

K

n

= {x 2 Rm | 9N 2 N1, 9x
n

2 K

n

, n 2 N, with x

n

!
N

x} .

We say that the sequence converges in the sense of Kuratowski – Painlevé to K ✓ Rm if

lim sup
n!1

K

n

= lim inf
n!1

K

n

= K,

and we denote lim
n!1

K

n

= K.

Finally, given N 2 N⇤
1 and {z

n

}
n2N a sequence of elements in Rm, we denote by

acc {z
n

}
n2N = {z 2 Rm|9N0 ⇢ N, N0 2 N⇤

1, z

n

!
N

0
z}

the accumulation points of {z
n

}
n2N.

3 Economic model

By abuse of notation, we denote by L = {1, . . . , L}, I = {1, . . . , I} and J = {1, . . . , J} the finite

sets of types of consumption goods, consumers and firms, respectively. We assume that each type

of agent i 2 I and j 2 J corresponds to a continuum of identical individuals indexed by compacts

3



subsets T
i

⇢ R and T

j

✓ R, pairwise disjoint. The set of consumers and firms is denoted by

I =
[

i2I
T

i

and J =
[

j2J
T

j

,

respectively, and the type of producer t 2 J is j(t) 2 J , while the type of consumer t 2 I is i(t) 2 I.

In the following, each firm of type j 2 J is characterized by a production set Y
j

⇢ RL, and the

aggregate production set for firms of type j 2 J is the convex hull of �(T
j

)Y
j

, where �(·) is the

standard Lebesgue measure in R. A production plan for a firm t 2 J is denoted y(t) 2 Y

j(t)

, and

the set of admissible production plans is

Y =
�

y 2 L

1(J ,[
j2JYj) | y(t) 2 Y

j(t)

a.e. t 2 J
 

.

Each consumer of type i 2 I is characterized by a consumption set X
i

⇢ RL, an endowment of

resources e
i

2 RL and a strict preference correspondence P

i

: X
i

◆ X

i

. A consumption plan of an

individual t 2 I is denoted x(t) 2 X

i(t)

, and the set of admissible consumption plans is

X =
�

x 2 L

1(I,[
i2IXi

) |x(t) 2 X

i(t)

a.e. t 2 I
 

.

The total initial resources of the economy is e =
P

i2I �(Ti

)e
i

2 RL, and for (i, j) 2 I ⇥ J ,

✓

ij

2 [0, 1] is the share of type i consumer’s in type j firms. As usual, we assume for every j 2 J ,
P

i2I �(Ti

)✓
ij

= 1. In addition, each consumer t 2 I is initially endowed with an amount m(t) 2 R
+

of fiat money, with m 2 L

1(I,R
+

).

An economy E is a collection

E =
�

(X
i

, P

i

, e

i

)
i2I , (Yj)j2J , (✓ij)

(i,j)2I⇥J

,m, {T
i

}
i2I , {Tj

}
j2J

�

, (2)

and the feasible consumption-production plans of E are the elements of

A(E) =

⇢

(x, y) 2 X ⇥ Y |
Z

I
x(t)dt =

Z

J
y(t)dt+ e

�

.

We will now define supply, demand and the equilibrium concepts. Let p 2 RL, q 2 R and K is

a pointed cone5 of RL, whose family is denoted C
L

. Using them,

⇡

j

(p) = �(T
j

) sup
z2Y

j

p · z, S

j

(p) = argmax
z2Y

j

p · z,

and

�

j

(p,K) = {z 2 S

j

(p) | p 6= 0
L

) (Y
j

� {z}) \K = {0
L

}} ,
5We recall a cone K ✓ RL is said to be “pointed” when �K \K = {0

L

}.
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are, respectively, the profit, the Walras supply and the rationing supply of type j 2 J firms.6

The income of consumer t 2 I is denoted by

w

t

(p, q) = p · e
i(t)

+ qm(t) +
X

j2J
✓

i(t)j

⇡

j

(p),

and the budget set is

B

t

(p, q) =
�

⇠ 2 X

i(t)

| p · ⇠  w

t

(p, q)
 

,

and for which we also denote by

d

t

(p, q) =
�

⇠ 2 B

t

(p, q)|B
t

(p, q) \ P

i(t)

(⇠) = ;
 

, D

t

(p, q) = lim sup
(p

0
,q

0
)! (p,q)

d

t

(p0, q0),

and

�

t

(p, q,K) =
�

⇠ 2 D

t

(p, q)|
�

P

i(t)

(⇠)� {⇠}
�

⇢ K

 

the Walras, weak and rationing demand, respectively.7

Definition 3.1. Given (x, y, p, q) 2 A(E)⇥ RL ⇥ R
+

and K 2 C
L

, we call

(a) (x, y, p, q) a Walras equilibrium with money of E if for a.e. t 2 I, x(t) 2 d

t

(p, q) and for a.e.

t 2 J , y(t) 2 S

j(t)

(p),

(c) (x, y, p, q) a weak equilibrium of E if for a.e. t 2 I, x(t) 2 D

t

(p, q) and for a.e. t 2 J ,

y(t) 2 S

j(t)

(p),

(c) (x, y, p, q,K) a rationing equilibrium of E if for a.e. t 2 I, x(t) 2 �

t

(p, q,K) and for a.e.

t 2 J , y(t) 2 �

t

(p,K).

In order to define a sequence of discrete economies that approximates some economy E , in the

sequel we will use given sequences ⌫
h

: N ! N, h = 1, . . . , L, such that lim
n!1 ⌫

h

(n) = 1, for all

h. The family of subsets {Mn}
n2N with

M

n =
�

⇠ = (⇠
1

, . . . , ⇠

L

) 2 RL | (⌫
1

(n)⇠
1

, . . . , ⌫

L

(n)⇠
L

) 2 ZL

 

, n 2 N, (3)

then converges in the sense of Kuratowski-Painlevé to RL.

Definition 3.2. We say that the sequence of economies {En}
n2N, with

En =
�

(Xn

i

, P

n

i

, e

i

)
i2I , (Y

n

j

)
j2J , (✓ij)

(i,j)2I⇥J

,m, {T
i

}
i2I , {Tj

}
j2J

�

, n 2 N, (4)

6The definition of the rationing supply we use here is less restrictive than in Florig and Rivera [8]. However, in
the proofs of [8] it is only the requirement as imposed here which is used.

7Using definition in (1), for t 2 I, we have D

t

(p, q) =
S

{(pn,qn)!(p,q)}
lim sup
n!1

d

t

(p
n

, q

n

). As we will ensure that

d

t

(·) is closed valued and locally bounded, by Theorem 5.19 in Rockafellar and Wets [15], D
t

(·) will be upper hemi-
continuous while d

t

(·) may fail to be upper hemi-continuous. See Florig and Rivera [9] for more details.
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approximates the economy E if for all n 2 N, i 2 I and j 2 J :

(i) Y

n

j

= Y

j

\M

n 6= ;,

(ii) X

n

i

= X

i

\M

n 6= ;,

(iii) P

n

i

is the restriction of P
i

to X

n

i

.

Remark 3.1. The supply, demand and equilibrium concepts above defined for economy E can be

readily adapted for economies En

, n 2 N. For that it is enough to replace Y
j

, X
i

and P

i

by Y

n

j

, Xn

i

and P

n

i

in the corresponding definitions.

The following assumptions will be used depending on the result to be established.

Assumption C. For all (i, j) 2 I ⇥ J , X
i

and Y

j

are convex and compact polyhedral

sets.8

Assumption P. For all i 2 I, P
i

is irreflexive and transitive, and has an open graph

in X

i

⇥X

i

.

Assumption M. m : I ! R
+

is bounded and for a.e. t 2 I, m(t) > 0.

Assumption S. For all i 2 I, e
i

2
⇣

convX
i

�
P

j2J ✓ij�(Tj

) convY
j

⌘

.

Assumption SA. For all i 2 I e

i

2 int
⇣

convX
i

�
P

j2J ✓ij�(Tj

) convY
j

⌘

.

Assumption A. For all n 2 N, i 2 I and all j 2 J , X
i

= convXn

i

and Y

j

= convY n

j

.

Assumption F. For all i 2 I and each face F of X
i

such that9

0

@{e
i

}+
X

j2J
✓

ij

�(T
j

)Y
j

1

A \X

i

✓ F,

the sequence {F \X

n

i

}
n2N converges in the sense of Kuratowski-Painlevé to F .

Assumption F requires that X

n

i

restricted to the a�ne subspace for which the interiority as-

sumption holds converges to X

i

restricted to that a�ne subspace. This will be important to ensure

that the budget set for a sequence of equilibria of the economies En converges to a budget set of

the economy E for some limit of the price sequence considered.

The following proposition is an immediate consequence of Florig and Rivera [9]. For the proof

it is enough to check that Assumption C on the economy E implies that the consumption and

production sets of any economy of sequence {En}
n2N that approximates E are finite (i.e., the

number of its elements is finite). The proposition ensures that the sequence of equilibria for which

we study convergence do actually exist.

8That is, the convex hull of a finite number of vectors.
9For a convex compact polyhedron P ⇢ Rm, a face is a set F ✓ P such that there exists  2 Rm with F =

argmax · P .
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Proposition 3.1. Suppose E satisfies Assumptions C, P, M and S, and let {En}
n2N be a se-

quence of economies approximating E. For each n 2 N, there exists a rationing equilibrium

(x
n

, y

n

, p

n

, q

n

,K

n

), with q

n

> 0.

4 Convergence under the Survival Assumption

In the next proposition, the survival assumption SA plays an important role in establishing the

convergence to a Walras equilibrium. While this hypothesis is widely used, it is unrealistic, because

it states that every consumer is initially endowed with a strictly positive quantity of every existing

commodity. Typically, most consumers have a single commodity to sell (usually, their labor). In

fact, it implies that all agents have the same level of income at equilibrium in the sense that they

have all access to the same commodities.

Proposition 4.1. Suppose E satisfies Assumptions C, P, M and SA, and let {En}
n2N be a se-

quence of economies approximating E satisfying Assumption A. For each n 2 N, let (x
n

, y

n

, p

n

, q

n

)

be a weak equilibrium of En, with q

n

> 0 and k (p
n

, q

n

) k= 1. Then, there exists N 2 N⇤
1, such that

the following hold:

(a) (p
n

, q

n

) !
N

(p⇤, q⇤),

(b) there is (x⇤, y⇤) 2 A(E), such that for a.e. t 2 I, x⇤(t) 2 acc{x
n

(t)}
n2N, and for a.e. t

0 2 J ,

y

⇤(t0) 2 acc{y
n

(t0)}
n2N, with (x⇤, y⇤, p⇤, q⇤) a Walras equilibrium with fiat money for E.

Moreover, if for a.e. t 2 I, x⇤(t) 2 clP
i(t)

(x⇤(t)), then (x⇤, y⇤, p⇤) is a Walras equilibrium for E

Proof. First note that {En}
n2N approximating E implies that for all i 2 I, Xn

i

converges to X

i

. By

Assumption SA, the smallest face of X
i

containing

0

@{e
i

}+
X

j2J
✓

ij

�(T
j

)Y
j

1

A \X

i

is X

i

, which implies that Assumption F is satisfied. Therefore, all the assumptions of Theorem

5.1 below are satisfied. Assumption SA implies that for a hierarchic equilibrium (x, y,P,Q) with

P = [p
1

, . . . , p
k

]t 2 Rk⇥L and Q = (q
1

, . . . , q
k

)t 2 Rk

+

(see definition in next section), such that

(x⇤, y⇤, p
1

, q
1

) is a Walras equilibrium with fiat money (cf Florig [6]). Moreover, if for a.e. t 2 I,
x

⇤(t) 2 clP
i(t)

(x⇤(t)), then standard arguments imply that q
1

= 0.

5 The general case

We now replace assumption SA by a more realistic one, i.e. we will assume that every consumer

could decide not to exchange anything. We will not assume however that he could survive for very
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long without exchanging anything. In such a case the limit of a sequence of rationing equilibria will

not necessarily be a Walras equilibrium, it will be a hierarchic equilibrium, which is a competitive

equilibrium with a segmentation of individuals according to their level of wealth. When this

segmentation consists of just one group, the hierarchic equilibrium reduces to a Walras equilibrium.

In the following, vectors of RL are supposed to be columns, and for k 2 N, the matrix whose

columns are p

1

, . . . , p

k

2 RL is denoted [p
1

, . . . , p

k

] 2 RL⇥k. Given that, a hierarchic price for

consumption goods is P = [p
1

, . . . , p

k

]t 2 Rk⇥L, and the hierarchic value of ⇠ 2 RL is

P⇠ = (p
1

· ⇠, . . . , p
k

· ⇠)t 2 Rk

.

Denoting by sup
lex

the supremum with respect to 
lex

, the lexicographic order10 on RL, the

hierarchic supply and the hierarchic profit of a firm of type j 2 J at P are

S

j

(P) = {z 2 Y

j

| 8z0 2 Y

j

, Pz

0 
lex

Pz} and ⇡

j

(P) = �(T
j

) sup
lex

{Pz | z 2 Y

j

},

respectively, and given Q 2 Rk

+

, the hierarchic budget set of consumer t 2 I is the set

B

t

(P,Q) = cl

8

<

:

⇠ 2 X

i(t)

| P⇠ 
lex

Pe

i(t)

+m(t)Q+
X

j2J
✓

i(t)j

⇡

j

(P)

9

=

;

.

Definition 5.1. A collection (x, y,P,Q) 2 A(E)⇥Rk⇥L ⇥Rk

+

is a “hierarchic equilibrium” of the

economy E if:

(a) for a.e. t 2 J , y(t) 2 S

j(t)

(P),

(b) for a.e. t 2 I, x(t) 2 B

t

(P,Q) and P

i(t)

(x(t)) \B

t

(P,Q) = ;.

The number k in above expressions will be determined at the equilibrium. When k = 1 then

the hierarchic equilibrium becomes a Walras equilibrium with money. The next theorem, a gener-

alization of Proposition 4.1, is the main result of this paper. The proof is given in the Appendix.

Theorem 5.1. Suppose E satisfies Assumptions C, P, M and S, and let {En}
n2N be a sequence

of economies that approximates E and satisfying Assumptions A and F. For each n 2 N, let

(x
n

, y

n

, p

n

, q

n

) be a weak equilibrium of En, with q

n

> 0 and k (p
n

, q

n

) k= 1. Then, there exists

a hierarchic equilibrium (x⇤, y⇤,P,Q) for economy E, with P = [p
1

, . . . , p
k

]t, Q = (q
1

, . . . , q
k

)t,

k 2 {1, . . . , L}, such that for some N 2 N⇤
1 the following hold:

(i) for each n 2 N, p
n

=
P

k

r=1

"

r

(n) p
r

, with "
r+1

(n)/"
r

(n) !
N

0,

(ii) for a.e. t 2 I, x⇤(t) 2 acc{x
n

(t)}
n2N, and for a.e. t

0 2 J , y⇤(t0) 2 acc{y
n

(t0)}
n2N.

10For (s, t) 2 Rm ⇥ Rm, we recall s 
lex

t, if s
r

> t

r

, r 2 {1, . . . ,m} implies that 9⇢ 2 {1, . . . , r � 1} such that
s

⇢

< t

⇢

. We write s <

lex

t if s 
lex

t, but not t 
lex

s.
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Remark 5.1. As a rationing equilibrium is a weak equilibrium (see Definition 3.1), Theorem 5.1

remains valid when using a sequence of rationing equilibria instead of a sequence of weak equilibria

as stated.

6 Appendix

For the proof of Theorem 5.1 we need some additional definitions and technical lemmata. The

following lemma is proven in Florig and Rivera [9].

Lemma 6.1. For every sequence  : N ! Rm \ {0
m

} there are an integer k 2 {1, . . . ,m}, N 2
N⇤
1, a set of two-by-two orthonormal vectors { 

1

, . . . , 

k

} ✓ Rm and sequences "
r

: N ! R
++

,

r 2 {1, . . . , k}, such that the following hold:

(a) for all r 2 {1, . . . , k � 1}, "
r+1

(n)/"
r

(n) !
N

0,

(b) for all n 2 N,  (n) =
P

k

r=1

"

r

(n) 
r

.

In the following, we say the collection {{ 
r

, "

r

}
r=1,...,k

,N} is a lexicographic decomposition of

{ (n)}
n2N , and for r 2 {0, . . . , k} we denote

 (r) =

8

<

:

[ 
1

, . . . , 

r

]t if r > 0,

0t
m

if r = 0.
(5)

Furthermore, for z 2 Rm and r > 0, we also denote  (r)z = ( 
1

· z, . . . , 
k

· z)t 2 Rr, and for

Z ✓ Rm we set  (r)Z = { (r)z | z 2 Z}.
The following lemmata refer to a sequence and lexicographic decomposition as in above lemma.

Parts (i) and (ii) of Lemma 6.2 were proven in Florig and Rivera [9], while part (iii) is a direct

corollary of part (ii) coupled with the observation that for any  2 Rm and finite set of points

Z ⇢ Rm, conv argmax · Z = argmax · convZ.

Lemma 6.2.

(i) For all z 2 Rm there exists n̄ 2 N such that for all n > n̄ with n 2 N:

 (k) z 
lex

0
k

()  (n) · z  0.

(ii) If Z ✓ Rm is a finite set, then there exists n̄ 2 N such that for all n > n̄ with n 2 N:

argmax
lex

 (k)Z = argmax  (n) · Z.

(iii) If Z ✓ Rm is a convex and compact polyhedron, then there exists n̄ 2 N such that for all

n > n̄ with n 2 N:

argmax
lex

 (k)Z = argmax  (n) · Z.

9



Both parts (ii) and (iii) in Lemma 6.2 remain valid when replacing argmax
lex

by argmin
lex

.

Lemma 6.3. Let Z ⇢ Rm be a convex and compact polyhedron, for which we define

⇢ = max
�

r 2 {0, . . . , k}|min
lex

 (r)Z = 0
max{1,r}

 

and F = argmin
lex

 (⇢)Z.

The following hold true.

(i) lim sup
n!1

{z 2 Z | (n) · z  0} ✓ cl {z 2 Z | (k)z 
lex

0
k

} .

(ii) Suppose that min
lex

 (k)Z <

lex

0
k

, and let {Z
n

}
n2N ⇢ Rm such that

lim
n!1

Z

n

= Z and lim
n!1

(Z
n

\ F) = Z \ F .

Then

cl{z 2 Z | (k)z 
lex

0
k

} ✓ lim inf
n!1

{z 2 Z

n

\ F | (n) · z < 0}.

Proof. In the following, for any N 2 N⇤
1 and n

0 2 N, we will use the notation N
n

0 = {n 2 N |n > n

0}.

Part (i). Let z̄ 2 argmin
lex

 (k)Z and assume that lim sup
n!1

{z 2 Z| (n)·z  0} 6= ;, since otherwise

the result is trivial. Hence, for z

⇤ in that subset, there is N 2 N⇤
1 and {z

n

}
n2N ⇢ Z such that

z

n

!
N

z

⇤ and for all n 2 N,  (n) · z
n

 0. By Lemma 6.2, part (iii), there exists n
1

2 N such that

for all n 2 N
n1 , we have

argmin
lex

 (k)Z = argmin (n) · Z.

As for all n 2 N
n1 ,

 (n) · z̄ = min (n) · Z   (n) · z
n

 0,

we have by part (i) of Lemma 6.2 that  (k) z̄ 
lex

0
k

.

Let � = max
�

r 2 {0, . . . , k}| (r)z⇤ = 0
max{1,r}

 

. If  (k)z⇤ 
lex

0
k

, then the conclusion is

trivial. Therefore, we assume  (k)z⇤ >
lex

0
k

, which implies that � < k and  
�+1

· z⇤ = � > 0.

Case 1. ⇢ < �.

As ⇢ < �, we have ⇢ < k,  (⇢ + 1) z̄ <

lex

0
⇢+1

and  (⇢ + 1) z⇤ = 0
⇢+1

. Therefore, for all

µ 2 [0, 1[,

 (⇢+ 1) (µz̄ + (1� µ)z⇤) <
lex

0
⇢+1

.

Hence  (k) (µz̄ + (1� µ)z⇤) <
lex

0
k

, implying that z⇤ 2 cl {z 2 Z | (k)z 
lex

0
k

}.

Case 2. ⇢ � �.

As ⇢ � �, for all r 2 {1, . . . ,�},  
r

· z̄ =  

r

· z⇤ = 0. Then {z̄, z⇤} ✓ argmin
lex

 (�)Z. For

n 2 N we set

 

⇤(n) =
�

X

r=1

"

r

(n) 
r

,

10



with  

⇤(n) = 0 when � = 0. By part (ii) in Lemma 6.2 there exists n

2

> n

1

such that for all

n 2 N
n2 ,

0 =  

⇤(n) · z̄ =  

⇤(n) · z⇤   

⇤(n) · z
n

.

For n 2 N, we set

a

n

=
�+1

X

r=1

"

r

(n) 
r

· z
n

and b

n

=
"

�+2

(n)

"

�+1

(n)

k

X

r=�+2

"

r

(n)

"

�+2

(n)
 

r

· z
n

,

with b

n

= 0 if � + 1 = k. By the fact that {z
n

}
n2N remains in a compact set, there exists n

3

> n

2

such that for all n 2 N
n3 , on the one hand

a

n

� "

�+1

(n) 
�+1

· z
n

> "

�+1

(n)
�

2
,

and, on the other hand, since b

n

converges to zero,

b

n

2 1

4
[��, �].

Therefore, for all n 2 N
n3 ,

0 �  (n) · z
n

= a

n

+ "

�+1

(n)b
n

� "

�+1

(n)
�

4
,

contradicting � > 0, hence concluding the proof of part (i).

Part (ii). Let z̄ 2 argmin
lex

 (k)Z. By the fact that min
lex

 (k)Z <

lex

0
k

, we have ⇢ < k and

 

⇢+1

· z̄ < 0. Let ⇣ 2 cl{z 2 Z | (k)z 
lex

0
k

}. Then, for " 2]0, 1] there exists ⇣
"

2 B(⇣, "/2) \ Z

such that  (k)⇣
"


lex

0
k

. By the convexity of Z, for µ 2]0, "/2[ it follows that

z

"

= (1� µ)⇣
"

+ µz̄ 2 Z \ B(⇣, "),

and then

 (k)z̄ 
lex

 (k)z
"


lex

 (k)⇣
"


lex

0
k

.

The definition of ⇢ implies  (⇢)z̄ = 0
max{1,⇢} and therefore we have also

 (⇢)z
"

=  (⇢)⇣
"

= 0
max{1,⇢}.

This coupled with the fact that ⇢ < k implies

 

⇢+1

· z̄   

⇢+1

· z
"

  

⇢+1

· ⇣
"

 0

and  
⇢+1

· z̄ < 0. Since  
⇢+1

·⇣
"

 0, we also have � =  

⇢+1

·z
"

< 0. Therefore  (⇢+1)z
"

<

lex

0
⇢+1

.

Now, we have established that  (k)z
"

<

lex

0, z
"

2 F and z

"

2 B(⇣, ").
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Let us now consider {z
n

}
n2N ✓ F \ Z

n

with z

n

!N z

"

. We observe that

 (n) · z
n

=
k

X

r=1

"

r

(n) 
r

· z
n

= "

⇢+1

(n) (↵
n

+ �

n

),

where

↵

n

=
1

"

⇢+1

(n)

⇢+1

X

r=1

"

r

(n) 
r

· z
n

and �

n

=
1

"

⇢+1

k

X

r=⇢+2

"

r

(n) 
r

· z
n

,

with �
n

= 0 if ⇢ + 1 = k. Given that, for all n 2 N,  (⇢)z
n

= 0
max{1,⇢}, and as �

n

converges to

0 and � < 0, there exists n̄ such that for all n 2 N with n > n̄, ↵
n

< �/2 and �

n

< ��/4 and

therefore ↵
n

+ �

n

< �/4 < 0. All of this implies that for all n 2 N with n > n̄,

 (n) · z
n

= "

⇢+1

(n) (↵
n

+ �

n

) < "

⇢+1

(n) �/4 < 0.

Therefore, for ⇣ 2 cl{z 2 Z | (k)z 
lex

0
k

} and " 2]0, 1], we have that

z

"

2 B(⇣, ") \ lim inf
n!1

{z 2 Z

n

\ F | (n) · z < 0},

and then, since the lim inf above is a closed set,11 ⇣ 2 lim inf
n!1

{z 2 Z

n

\ F | (n) · z < 0}.

6.1 Proof of Theorem 5.1

In the following, we use a sequence (x
n

, y

n

, p

n

, q

n

)
n2N of weak equilibria with q

n

> 0 of the economy

En (which exists by Proposition 3.1, considering that a rationing equilibrium is a weak equilibrium).

For economy En, the supply correspondence of type j 2 J firms is denoted S

n

j

(·), while B

n

t

(·) and
D

n

t

(·) denote the budget and weak demand correspondences for consumer t 2 I.12 We can assume

without loss of generality that for all t 2 I, x
n

(t) 2 D

n

t

(p
n

, q

n

) and all t 2 J , y
n

(t) 2 S

n

j

(p
n

).13

The following proposition has been proven in Florig and Rivera [9].

Proposition 6.1. Let n 2 N, (p, q) 2 RL ⇥ R
++

and assume m(t) > 0, then

D

n

t

(p, q) =
n

⇠ 2 B

n

t

(p, q) | inf
n

p · Pn

i(t)

(⇠)
o

� w

n

t

(p, q), ⇠ 62 convPn

i(t)

(⇠)
o

.

In the remaining of this paper we split the proof of theorem into six steps.

11See, for example, Proposition 4.4 in Rockafellar and Wets [15].
12That is, for n 2 N, Sn

j

(p) = argmax
z2Y

n
j

p · z, and denoting w

n

t

(p, q) = p · e
i(t) + qm(t) +

P
j2J

✓

i(t)j max p · Y n

j

and B

n

t

(p, q) =
�
⇠ 2 X

n

i(t)| p · ⇠  w

n

t

(p, q)
 
, then d

n

t

(p, q) =
�
⇠ 2 B

n

t

(p, q)|Bn

t

(p, q) \ P

n

i(t)(⇠) = ;
 

and therefore
D

n

t

(p, q) = lim sup
(p0,q0)! (p,q)

d

n

t

(p0, q0).

13Since a countable union of negligible sets is negligible, we could restrict the sequel to an appropriate subset of
full Lebesgue measure. Here, as the consumption and production sets are finite for each n 2 N, we could also adjust
the sequence (x

n

, y

n

) such that for all t 2 I, x
n

(t) 2 D

n

t

(p
n

, q

n

) and all t 2 J , y
n

(t) 2 S

n

j

(p
n

) while maintaining
(x

n

, y

n

) 2 A(En).
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Step 1 . Hierarchic price.

Since k(p
n

, q

n

)k = 1, n 2 N, from Lemma 6.1 there exist

{{(p
r

, q
r

), "
r

}
r=1,...,k

,N}

a lexicographic decomposition of the sequence { (n) = (p
n

, q

n

)}
n2N. In the sequel, without loss of

generality, we identify that subset N with N, and we denote

P = [p
1

, . . . , p
k

]t and Q = (q
1

, . . . , q
k

)t,

and for r 2 {1, . . . , k}, we set P(r) = [p
1

, . . . , p
r

]t and Q(r) = (q
1

, . . . , q
r

)t.

Step 2. Supply: For all t 2 J , lim sup
n!1

S

n

j(t)

(p
n

) ✓ S

j(t)

(P).

As for all j 2 J , by Lemma 6.2 there exists n
j

2 N such that for all n > n

j

,

S

j

(p
n

) = S

j

(P) = argmax
lex

PY

j

.

For all n 2 N and all j 2 J , convY n

j

= Y

j

, Sn

j

(p
n

) ✓ S

j

(p
n

) = convSn

j

(p
n

). This implies that

for all n > n

J

= max{n
j

, j = 1, . . . , J}, and all t 2 J ,

S

n

j(t)

(p
n

) ✓ S

j(t)

(P) = convSn

j(t)

(p
n

),

hence concluding the proof of this Step.

Step 3. Income.

For the sequel, for all j 2 J , let ⇣
j

2 argmax
lex

PY

j

, and for all i 2 I, we set

z

i

= e

i

+
X

j2J
✓

ij

�(T
j

)⇣
j

.

By Step 2, for all t 2 I and all n > n

J

, w
t

(p
n

, q

n

) = p

n

· z
i(t)

+ q

n

m(t).

Step 4. Budget: For all t 2 I,

lim sup
n!1

B

t

(p
n

, q

n

) ✓ B

t

(P,Q).

Furthermore, if m(t) > 0 then

B

t

(P,Q) ✓ lim inf
n!1

n

x 2 X

n

i(t)

| p
n

· x < w

t

(p
n

, q

n

)
o

.

Using z

i

from Step 3, the first inclusion is a straightforward consequence of part (i) of Lemma

6.3 applied to Z =
�

X

i(t)

� z

i

�

⇥ {�m(t)}. Indeed, note that for all n 2 N, n > n

J

, and all

x

0
n

(t) 2 B

t

(p
n

, q

n

) we have  
n

· z
n

 0 with z

n

= (x0
n

(t)� z

i(t)

,�m(t)) and  (n) = (p
n

, q

n

).
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For the second inclusion, for t 2 I and n 2 N, we set

⇢ = max{r 2 {0, . . . , k} |min
lex

P(r)X
i(t)

= 0
max{1,r}} and F = min

lex

P(⇢)X
i(t)

.

Assumption S coupled with the observation m(t)Q >

lex

0
k

implies

min
lex

P(
�

X

i(t)

� z

i(t)

�

�m(t)Q <

lex

0
k

and m(t)Q(⇢) = 0
max{1,⇢}.

Therefore, producers profit maximization and assumption S implies

0

@{e
i(t)

}+
X

j2J
✓

i(t)j

�(T
j

)Y
j

1

A \X

i(t)

✓ F .

By part (iii) of Lemma 6.2 we observe that F is a face of X
i(t)

, and then, by Assumption F it

follows that

lim
n!1

X

n

i(t)

\ F = X

i(t)

\ F .

By part (ii) of Lemma 6.3

B

t

(P,Q) ✓ lim inf
n!1

n

x 2 X

n

i(t)

\ F | p
n

· (x� z

i(t)

) < q

n

m(t)
o

,

and since

lim inf
n!1

n

x 2 X

n

i(t)

\ F | p
n

· (x� z

i(t)

) < q

n

m(t)
o

✓ lim inf
n!1

n

x 2 X

n

i(t)

| p
n

· x < w

t

(p
n

, q

n

)
o

the second inclusion holds true.

Step 5. Demand: For all t 2 I with m(t) > 0 and all x⇤(t) 2 acc{x
n

(t)}
n2N we have

P

i(t)

(x⇤(t)) \B

t

(P,Q) = ;.

Let t 2 I such that m(t) > 0 and choose N(t) 2 N⇤
1 such that x

n

(t) !
N(t)

x

⇤(t) and for all

n 2 N(t), n > n

J

. By contraposition, assume that there is ⇠ 2 P

i(t)

(x⇤(t)) \B

t

(P,Q).

By Step 5, there exists n̄
1

> n

J

and ⇠
n

!N ⇠ such that for all n > n̄

1

with n 2 N,

p

n

· (⇠
n

� z

i(t)

)� q

n

m(t) < 0 and ⇠

n

2 X

n

i(t)

.

As the graph of P
i(t)

is open, there exists n̄
2

> n̄

1

such that for all n > n̄

2

with n 2 N,

p

n

· (⇠
n

� z

i(t)

)� q

n

m(t) < 0 and ⇠

n

2 X

n

i(t)

\ P

i(t)

(x⇤(t)),

and again as the graph of P
i(t)

is open, we can choose n̄

3

> n̄

2

such that for all n > n̄

3

with

14



n 2 N(t),

p

n

· (⇠
n

� z

i(t)

)� q

n

m(t) < 0 and ⇠

n

2 P

n

i(t)

(x
n

(t)).

As q

n

m(t) > 0, the last fact contradicts x

n

(t) 2 D

n

t

(p
n

, q

n

) for all n > n̄

3

with n 2 N(t) (see

Proposition 6.1).

Step 6. Equilibrium allocation.

Using Fatou’s lemma in Artstein [2], there exists (x⇤, y⇤) 2 A(E) such that for a.e. t 2 I and

a.e. t

0 2 J , x⇤(t) 2 acc{x
n

(t)}
n2N and y

⇤(t0) 2 acc{y
n

(t0)}
n2N. By Step 2, for a.e. t 2 J , y⇤(t) 2

S

j(t)

(P), and by Steps 4 and 5, for a.e. t 2 I, x⇤(t) 2 B

t

(P,Q) and P

i(t)

(x⇤(t)) \B

t

(P,Q) = ;.
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[4] Bobzin, H. (1998): Indivisibilities: Microecomic Theory with Respect to Indivisible Goods and

Factors, Physica Verlag, Heidelberg.

[5] Danilov, V.I. and A.I. Sotskov, 1990, “A Generalized Economic Equilibrium”, Journal of

Mathematical Economics, 19, 341-356

[6] Florig, M. (2001): “Hierarchic Competitive Equilibria,” Journal of Mathematical Economics,

35(4), 515-546.

[7] Florig, M. (2003): “Arbitrary Small Indivisibilities”, Economic Theory, 22, 831-843.

[8] Florig, M. and J. Rivera (2010):“Core equivalence and welfare properties without divisible

goods”. Journal of Mathematical Economics, 46, 467-474.

[9] Florig, M. and J. Rivera (2015):“Existence of a competitive equilibrium when all goods are

indivisible”. Serie de documentos de trabajo, SDT403, Departamento de Economı́a, Univer-

sidad de Chile.

[10] Gay, A. 1978, “The Exchange Rate Approach to General Economic Equilibrium”, Economie

Appliquée, Archives de l’ I.S.M.E.A. XXXI, nos. 1,2, 159-174

[11] Kajii, A. (1996): “How to Discard Non-Satiation and Free-Disposal with Paper Money,”

Journal of Mathematical Economics, 25, 75-84.

15



[12] Konovalov, A. (2005): “The core of an economy with satiation”, Economic Theory, 25, 711-

719.

[13] Marakulin, V. (1990): “Equilibrium with Nonstandard Prices in Exchange Economies,” in

Optimal decisions in market and planned economies, edited by R. Quandt and D. Triska,

Westview Press, London, 268-282.

[14] Mertens, J.F. 2003, “The limit-price mechanism”, Journal of Mathematical Economics, 39,

433-528

[15] Rockafellar, R. and Wets, R. (1998): Variational Analysis. Springer.

16


