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Abstract We study cavitation type equations, div(ai j (X)∇u) ∼ δ0(u), for bounded, measur-
able elliptic media ai j (X). De Giorgi–Nash–Moser theory assures that solutions are α-Hölder
continuous within its set of positivity, {u > 0}, for some exponent α strictly less than one.
Notwithstanding, the key, main result proven in this paper provides a sharp Lipschitz regular-
ity estimate for such solutions along their free boundaries, ∂{u > 0}. Such a sharp estimate
implies geometric-measure constrains for the free boundary. In particular, we show that the
non-coincidence {u > 0} set has uniform positive density and that the free boundary has
finite (n − ς)-Hausdorff measure, for a universal number 0 < ς ≤ 1.

Mathematics Subject Classification 35B65 · 35R35

1 Introduction

Given a Lipschitz bounded domain � ⊂ R
n , a bounded measurable elliptic matrix ai j (X),

i.e. a symmetric matrix with varying coefficients satisfying the (λ,�)-ellipticity condition

λId ≤ ai j (X) ≤ �Id, (1.1)

and a nonnegative boundary data ϕ ∈ L2(∂�), we are interested in studying local minimizers
u of the discontinuous functional
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F (u) =
∫

�

{
1

2
〈ai j (X)∇u,∇u〉 + χ{u>0}

}
dX → min, (1.2)

among all competing functions u ∈ H1
ϕ (�) := {u ∈ H1(�)

∣∣ Trace(u) = ϕ}.
The variational problem set in (1.2) appears in the mathematical formulation of a great

variety of models: jet flows, cavity problems, Bernoulli problems, free transmission problems,
optimal designs, just to cite few. Its mathematical treatment has been extensively developed
since the epic marking work of Alt and Caffarelli [1]. The program for studying minimization
problems for discontinuous functionals of the form (1.2) is nowadays well established in the
literature. Existence of minimizer follows by classical considerations. Any minimum is non-
negative provided the boundary data is nonnegative. Minimizers satisfy, in the distributional
sense, the Euler–Lagrange equation

div(ai j (X)∇u) = μ, (1.3)

where μ is a measure supported along the free boundary. In particular a minimum of the
functional F is a-harmonic within its positive set, i.e.,

div(ai j (X)∇u) = 0, in {u > 0} ∩ �.

By pure energy considerations, one proves that minimizers grow linearly away from their
free boundaries. Finally, if ai j are, say, Hölder continuous, then the free boundary ∂{u > 0}
is of class C1,α up to a possible negligible singular set. In such a scenario, the free boundary
condition

〈ai j (ξ)∇u(ξ),∇u(ξ)〉 = Const.

then holds in the classical sense along the regular part of the free boundary, in particular for
all ξ ∈ ∂red{u > 0} ∩ �.

A decisive, key step, though, required in the program for studying variational problems
of the form (1.2), concerns Lipschitz estimates of minimizers. However, if no further reg-
ularity assumptions upon the coefficients ai j (X) is imposed, even a-harmonic functions,
div(ai j (X)∇h) = 0, may fail to be Lipschitz continuous. That is, the universal Hölder con-
tinuity exponent granted by De Giorgi–Nash–Moser regularity theory may be strictly less
than 1, even for two-dimensional problems. Such a technical constrain makes the study of
local minima to (1.2) in discontinuous media rather difficult from a rigorous mathematical
viewpoint.

The above discussion brings us to the main goal of this present work. Even though it is
hopeless to obtain gradient bounds for minimizers of functional (1.2) in �, we shall prove
that, any minimum is universally Lipschitz continuous along its free boundary, ∂{u > 0}∩�,
see [22,23] for improved estimates that hold only along (non-physical) free boundaries, see
also [17]. Such an estimate is strong enough to carry on a geometric-measure analysis near the
free boundary, which in particular implies that the non-coincidence set has uniform positive
density and that the free boundary has finite (n − ς)-Hausdorff measure, for a universal
number 0 < ς ≤ 1. We shall establish the following result:

Theorem 1.1 Let u be a nonnegative local minimum of the functional (1.2) and Z0 ∈ ∂{u >

0} ∩ � be a generic interior free boundary point. Then

C−1r ≤ sup
Br (Z0)

u ≤ Cr,
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for a constant C > 0 depending only on dimension, ellipticity constants and ‖u‖L2(�). In
particular, for another universal constant θ > 0,

Ln({u > 0} ∩ Br (Z0)) ≥ θrn,

for all 0 < r  1. Furthermore there is a universal constant 0 < ς ≤ 1 such that

dimH(∂{u > 0}) ≤ n − ς,

where dimH(E) means the Hausdorff dimension to the set E.

In this paper we shall develop a more general analysis as to contemplate singular approxi-
mations of the minimization problem (1.2). Let β ∈ L∞(R) be a bounded function supported
in the unit interval [0, 1]. For each ε > 0, we define the integral preserving, ε-perturbed
potential:

βε(t) := 1

ε
β

(
t

ε

)
, (1.4)

which is now supported in [0, ε]. Such a sequence of potentials converges in the distributional
sense to

∫
β times the Dirac measure δ0. Consider further

Bε(ξ) =
∫ ξ

0
βε(t)dt →

(∫
β(s)ds

)
· χ{ξ>0}, (1.5)

in the distributional sense. We now look at local minimizers uε to the variational problem

Fε(u) =
∫
B1

{
1

2
〈ai j (X)∇u,∇u〉 + Bε(u)

}
dX → min, (1.6)

among all competing functions u ∈ H1
ϕ (�) := {u ∈ H1(�)

∣∣ Trace(u) = ϕ}. There is a large
literature on such a class of singularly perturbed equations, see for instance [3,7–9,15,16,19].
It is well established that the functional F defined in (1.2) can be recovered by letting ε go
to zero in (1.6). For each ε fixed though, minimizers of the functional Fε is related to a
number of other physical problems, such as high energy activations and the theory of flame
propagation. Hence, from the applied point of view, it is more appealing to indeed study
the whole family of functionals (Fε)0≤ε≤1. We also mention that the study of minimization
problem (1.6) with no continuity assumption on the coefficients is also motivated by several
branch of applications, for instance in homogenization theory, composite materials, etc.

We should also mention the connections this present work has with the theory of free
phase transmission problems. This class of problems appears, for instance, in the system
of equations modeling an ice that melts submerged in a heated inhomogeneous medium.
For problems modeled within an organized medium (say Hölder continuous coefficients),
monotonicity formula [5] yields Lipschitz estimates for solutions. However, by physical
interpretations of the model, it is natural to consider the problem within discontinuous media.
Under such an adversity (monotonicity formula is no longer available), Lipschitz estimate
along the free boundary has been an important open problem within that theory, see [2]
for discussion. However, if we further assume in the model that the temperature of the ice
remains constant, which is reasonable in very low temperatures, then free phase transmission
problems fit into the mathematical formulation of this present article; and a Lipschitz estimate
becomes available by our main result.

We conclude this Introduction by mentioning that the improved, sharp regularity estimate
we establish in this work holds true in much more generality. Our approach to obtain Lipschitz

123



10 Page 4 of 15 D. dos Prazeres, E. V. Teixeira

estimate along the free boundary extends directly to degenerate discontinuous functionals of
the form ∫

F(X, u,∇u)dX → min.,

where

F(X, u, ξ) ∼ |ξ |p−2A(X)ξ · ξ + f (X)
(
u+)m + Q(X) · χ{u>0},

with A(X) bounded, measurable elliptic matrix, f ∈ Lq(�), q > n, 1 ≤ m < p and Q
is bounded away from zero and infinity, see [10,13]. Indeed, the proof designed herein is
purely nonlinear and uses solely the Euler–Lagrange equation associated to the minimization
problem (1.6). Hence, nonvariational cavitation problems, as well as parabolic versions of
such models can also be tackled by our methods.

2 Preliminaries

In this section we gather some results and tools available for the analysis of minimizers to
the functional (1.6) [and also to the functional (1.2)]. The results stated herein follow by
methods and approaches available in the literature. We shall briefly comment on the proofs,
for the readers’ convenience.

Theorem 2.1 (Existence of minimizers) For each ε > 0 fixed, there exists at least one
minimizer uε ∈ H1

ϕ (�) to the function (1.6). Furthermore uε satisfies

div(ai j (X)∇uε) = βε(uε), in �, (2.1)

in the distributional sense. Each uε is a nonnegative function, provided the boundary data ϕ

is nonnegative.

Proof Existence of minimizer as well as the Euler–Lagrange equation associated to the
functional follow by classical methods in the Calculus of Variations. Non-negativity of a
minimum is obtained as follows. Suppose, for the sake of contradiction, the set {uε < 0}
were not empty. Since ϕ ≥ 0 on ∂�, one sees that ∂{uε < 0} ⊂ {uε = 0} ∩ �. Since
βε is supported in [0, ε], from the equation we conclude that uε satisfies the homogeneous
equation div(ai j (X)∇uε) = 0 in {uε < 0}. By the maximum principle we conclude uε ≡ 0
in such a set, which gives a contradiction. ��

Regarding higher regularity for minimizers, it is possible to show uniform-in-ε L∞ bounds
and also a uniform-in-ε C0,α estimate, for a universal exponent 0 < α < 1.

Theorem 2.2 (Uniform Hölder regularity of minimizers) Fixed a subdomain �′ � �, there
exists a constant C > 0, depending on dimension, ellipticity constants, ‖ϕ‖L2 and �′, but
independent of ε, such that

‖uε‖L∞(�′) + [uε]Cα(�′) < C,

where 0 < α < 1 is a universal number.

Proof The arguments to show Theorem 2.2 follow closely the ones from [2, Theorem 3.4],
upon observing that for any ball Br (Y ) ⊂ �, there too holds∫

Br (Y )

Bε(uε)dX ≤ Crn,
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for a constant C independent of ε. See also [20, Theorem 4.4] for a result of the same
flavor. ��
As a consequence of Theorem 2.2, up to a subsequence, uε converges locally uniformly
in � to a nonnegative function u0. By linear interpolation techniques, see for instance [19,
Theorem 5.4], one verifies that u0 is a minimizer of the functional (1.2).

The final result we state in this section gives the sharp lower bound for the grow of uε

away from ε-level surfaces.

Theorem 2.3 (Linear growth) Let �′ � � be a given subdomain and X0 ∈ �′ ∩ {uε ≥ ε}
then

uε(X0) ≥ c · dist(X0, ∂{uε ≥ ε}), (2.2)

where c is a constant that depends on dimension and ellipticity constants, but it is independent
of ε.

Proof The classical proof for linear growth is based on pure energy considerations, combined
with a “cutting hole” argument, see for instance [19, Theorem 4.6]. Hence, the same reasoning
applied here yields estimate (2.2), with minor modifications. ��

3 Lipschitz regularity along the free boundary

The heart of this work lies in this section, where we prove that uniform limits of solutions to
(2.1) are locally Lipschitz continuous along their free boundaries. We highlight once more
that our approach is purely based on the singular partial differential equation satisfied by
local minimizers; therefore it can be imported to a number of other contexts, both variational
and non-variational.

Theorem 3.1 (Lipschitz regularity) Let u0 be a uniform limit point of solutions to

div(ai j (X)∇uε) = βε(uε) in �

and assume that u0(ξ) = 0. Then there exists a universal constant C > 0, depending only
on dimension, ellipticity constants, dist(ξ, ∂�) and L∞ bounds of the family such that

|u0(X)| ≤ C |X − ξ |,
for all point X ∈ �.

Our strategy is based on a flatness improvement argument, within whom the next Lemma
plays a decisive role.

Lemma 3.2 Fixed a ball Br (Y ) � � and given θ > 0, there exists a δ > 0, depending only
on Br (Y ), dimension, ellipticity constants and L∞ bounds for uε , such that if

div(ai j (X)∇uε) = δ · βε(uε)

and

max

{
ε, inf

Br (Y )
uε

}
≤ δ.
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Then

sup
B r

2
(Y )

uε ≤ θ.

Proof Let us suppose, for the sake of contradiction, that the Lemma fails to hold. There
would then exist a sequence of functions uεk satisfying

div(aki j (X)∇uεk ) = δkβεk (uεk )

with aki j (λ,�)-elliptic, δk = o(1), and

max

{
εk, inf

Br (Y )
uεk

}
=: ηk = o(1),

but

sup
Br /2(Y )

uεk ≥ θ0 > 0, (3.1)

for some θ0 > 0 fixed. Let Xk be the point where uεk attains its minimum in Br (Y ) and
denote σ := dist(Br (Y ), ∂�) > 0. Define the scaled function vk : B

σε−1
k

→ R, by

vk(X) := uεk (Xk + εk X)

ηk

One simply verifies that vk ≥ 0 and it solves, in the distributional sense,

div(aki j (X)∇vk) = δk ×
(

εk
ηk

β1(
ηk
εk

vk)
)

= o(1),
(3.2)

as k → ∞, in the L∞-topology. Also, one easily checks that vk(0) ≤ 1. Hence, by Harnack
inequality, the sequence vk is uniform-in-k locally bounded in B

σε−1
k

(0). From De Giorgi,

Nash, Moser regularity theory, up to a subsequence, vk converges locally uniformly to an
entire v∞. In addition, by standard Caccioppoli energy estimates, the sequence vk is locally
bounded in H1, uniform in k. Also by classical truncation arguments, up to a subsequence,
∇vk(X) → ∇v∞(X) a.e. (see [20] and [21] for similar arguments). By ellipticity, passing to
another subsequence, if necessary, ai j converges weakly in L2

loc to a (λ,�)-elliptic matrix
bi j . Summarizing we have the following convergences:

vk → v∞ locally uniformly in R
n; (3.3)

vk ⇀ v∞ weakly in H1
loc(R

n); (3.4)

∇vk(X) → ∇v∞(X) almost everywhere in R
n; (3.5)

aki j (X) ⇀ bi j weakly in L2
loc(R

n). (3.6)

Our next step is to the pass the limits above aiming to conclude that

div(bi j (X)∇v∞) = 0, in R
n . (3.7)

This is a fairly routine procedure, but we will carry it out for the sake of the readers. Given
a test function φ ∈ C1

0 (Rn), let k0 ∈ N be such that B
σε−1

k
⊃ Supp φ := K . For k > k0, we

define the integrals
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I 1
k :=

∫
K
〈aki j (X)∇vk, ∇φ〉dX;

I 2
k :=

∫
K
〈aki j (X) × (∇v∞ − ∇vk), ∇φ〉dX;

I 3
k :=

∫
K
〈(bi j − aki j )(X) × ∇v∞, ∇φ〉dX;

and write ∫
Rn

〈bi j (X)∇v∞,∇φ〉dX = I 1
k + I 2

k + I 3
k . (3.8)

The purpose is to show that

lim
k→∞I 1

k + I 2
k + I 3

k = 0.

For that, let γ > 0 be a given number small, positive number. It follows straight from (3.2)
that I 1

k = o(1) as k → ∞. From (3.6), we also have straightly that I 3
k = o(1) as k → ∞.

Hence, for k1 ≥ k0, we have

|I 1
k | + |I 3

k | ≤ γ

2
.

Let us now analyze the convergence of I 2
k . It follows from (3.5) and Ergorov’s theorem, that

there exists a compact set K̃ ⊂ K , such that∫
K\K̃

|∇φ|dX ≤ γ

5� sup
k

‖∇vk‖2

and k2 ≥ k1 such that

|∇vk(X) − ∇v∞(X)| ≤ 3γ

5�‖∇φ‖2L n(K )
,

in K̃ , for all k ≥ k2. Hence, for k ≥ k2, we estimate, breaking it into two integrals on K̃ and
on K\K̃ , and using Hölder inequality, finally obtain

|I 2
k | ≤ γ

2
.

We have henceforth proven the aimed convergence which gives (3.7). Applying Liouville
theorem to v∞, we conclude that

v∞ ≡ Const. < +∞,

for a bounded constant, in the whole space. The corresponding limiting function u∞ obtained
from uεk must therefore be identically zero. We now reach a contradiction with (3.1) for
k � 1. The Lemma is proven. ��

Before continuing, we remark that if uε is a solution to the original equation (2.1) and a
positive number δ̄ > 0 is given, then the zoomed-in function

ũε(X) = uε(
√

δ̄X)

satisfies in the distributional sense the equation

div(ãi j (X)∇ũε) = δ̄βε(ũε),

where ãi j (X) = ai j (
√

δ̄X) is another (λ,�)−elliptic matrix.
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We are in position to start delivering the proof of Theorem 3.1. Let uε be a bounded
sequence of distributional solutions to (2.1) and u0 a limit point in the uniform convergence
topology. We assume, with no loss, that ξ = 0, that is u0(0) = 0. Within the statement of
Lemma 3.2, select

θ = 1

2
.

Since uε(0) → 0 as ε → 0, Lemma 3.2 together with the above remark, gives the existence
of a positive, universal number δ� > 0, such that if 0 < ε ≤ ε0  1, for ũε(X) := uε(

√
δ�X)

we have

sup
B1/2

ũε(X) ≤ 1

2
.

Passing to the limit as ε → 0, we obtain

sup
B√

δ�
2

u0(X) ≤ 1

2
.

Define, in the sequel, the rescaled function

v1(X) := 2uε(

√
δ�

2
X).

It is simple to verify that v1 satisfies

div(a1
i j (X)∇v1(X)) = δ�β2ε(v

1),

in the distributional sense, where a1
i j (X) = ai j (

√
δ�X/2) is another (λ,�)-elliptic matrix.

Once more, v1(0) → 0 as ε → 0, hence, for ε ≤ ε1 < ε0  1, we can apply Lemma 3.2 to
v1 and deduce, after scaling the inequality back,

sup
B√

δ�
4

u0(X) ≤ 1

4
.

Continuing this process inductively, we conclude that for any k ≥ 1, that holds

sup
B√

δ�

2k

u0(X) ≤ 1

2k
. (3.9)

Finally, given X ∈ B1/2 let k ∈ N be such that
√

δ�

2k+1 < |X | ≤
√

δ�

2k
.

We estimate from (3.9)

u0(X) ≤ sup
B√

δ�

2k

u0(X)

≤ 1

2k

≤ 2√
δ�

|X |,

and the proof of Theorem 3.1 is concluded.
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Obviously, the (improved) regularity estimate granted by Theorem 3.1 holds solely along
the free boundary. For any point Z ∈ {u > 0}, the best estimate available drops back to C0,α ,
for some unknown 0 < α, strictly less than one. The question we would like to answer now is
what is the minimum organization required on the medium so that solutions to the cavitation
problem is locally Lipschitz continuous, up to the free boundary.

Definition 3.3 Given a large constant K > 0, we say that a uniform elliptic matrix ai j (X)

satisfies (K -Lip) property if for any 0 < d < 1 and any h ∈ H1(Bd) solving

div
(
ai j (X)∇h

) = 0 in Bd

in the distributional sense, there holds

‖∇h‖L∞(Bd/2) ≤ K

d
× ‖h‖L∞(Bd ).

It is classical that Dini continuity of the medium is enough to assure that ai j satisfies
(K -Lip) property, for some K > 0 that depends only upon dimension, ellipticity constants
and the Dini-modulus of continuity of ai j . Indeed under Dini continuity assumption on ai j ,
distributional solutions are of class C1.

Our next Corollary says that uniform limits of singularly perturbed Eq. (2.1) is Lipschitz
continuous, up to the free boundary provided ai j satisfies (K -Lip) property for some K > 0.
The (by no means obvious) message being that when it comes to Lipschitz estimates, the
homogeneous equation and the free boundary problem div(ai j (X)∇u) ∼ δ0(u) require the
same amount of organization of the medium.

Corollary 3.4 Under the assumptions of Theorem 3.1, assume further that ai j (X) satisfies
(K -Lip) property for some K . Then, given a subdomain �′ � �,

|∇u0(X)| ≤ C,

for a constant that depends only on dimension, ellipticity constants, dist(∂�′, ∂�), L∞
bounds of the family and K .

Proof It follows from Theorem 3.1 and property K that u0 is pointwise Lipschitz continuous,
i.e.,

|∇u0(ξ)| ≤ C(ξ).

We have to show that C(ξ) remains bounded as ξ goes to the free boundary. For that, let ξ

be a point near the free boundary ∂{u0 > 0} and denote by Y ∈ ∂{u0 > 0} a point such that

|Y − ξ | =: d = dist(ξ, ∂{u0 > 0}).
From Theorem 3.1, we can estimate

sup
Bd/2(ξ)

u0(ξ) ≤ sup
B2d (Y )

u0(ξ) ≤ C · 2d.

Applying (K -Lip) property to the ball Bd/2(ξ), we obtain

|∇u0(ξ)| ≤ 2K

d
· 2Cd = 4C · K ,

and the proof is concluded. ��
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4 Lipschitz estimates for the minimization problem

Limiting functions u0 obtained as ε goes to zero from a sequence uε of minimizers of
functional (1.6) are minima of the discontinuous functional (1.2). Hence, limiting minima
are Lipschitz continuous along their free boundaries. Nonetheless, as previously advertised
in Theorem 1.1, the sharp Lipschitz regularity estimate holds indeed for any minima of the
functional (1.2), not necessarily for limiting functions.

In this intermediate section we shall comment on how one can deliver this estimate directly
from the analysis employed in the proof of Theorem 3.1. In fact, the proof of Lipschitz estimate
for minima of the functional (1.2) is simpler than the proof delivered in previous section,
which has been based solely on the singular equation satisfied. When a minimality property
is available, the arguments can be rather simplified. For instance, strong minimum principle
holds for local minima but is no longer available for a generic critical point. This is part of
the reason why the arguments from previous section had be based on blow-ups and Liouville
theorem.

Theorem 4.1 Let u0 ≥ 0 be a minimum to

F (u) =
∫

�

{
1

2
〈ai j (X)∇u,∇u〉 + χ{u>0}

}
dX

and assume that u0(ξ) = 0. Then there exists a universal constant C > 0, depending only
on dimension, ellipticity constants, dist(ξ, ∂�) and its L∞ norm such that

u0(X) ≤ C |X − ξ |,
for all point X ∈ �.

The proof follows the lines designed in Sect. 3. We obtain the corresponding flatness
Lemma as follows:

Lemma 4.2 Fixed a ball Br (Y ) � � and given θ > 0, there exists a δ > 0, depending only
on Br (Y ), dimension, ellipticity constants and L∞ norm of u0, such that if u0 is a nonnegative
minimum of

F δ(u) =
∫

�

{
1

2
〈ai j (X)∇u,∇u〉 + δ · χ{u>0}

}
dX,

and u0(Y ) = 0, then

sup
B r

2
(Y )

u0 ≤ θ.

Proof The proof follows by a similar tangential analysis of the proof of Lemma 3.2, but in
fact in a simpler fashion. The tangential functional, obtained as δ → 0, satisfies minimum
principle, hence the limiting function, from the contradiction argument, must be identically
zero.

Here are some details: suppose, for the sake of contradiction, that the Lemma fails to hold.
It means, for a sequence (λ,�)-elliptic matrices, aki j , and a sequence of minimizers uk of

F k(u) =
∫

�

{
1

2
〈aki j (X)∇u,∇u〉 + δk · χ{u>0}

}
dX,
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with δk = o(1), and, say ‖uk‖∞ ≤ 1,

sup
Br /2(Y )

uk ≥ θ0 > 0, (4.1)

for some θ0 > 0 fixed. As in Lemma 3.2, by compactness, up to a subsequence, uk → u0.
Passing the limits we conclude u0 is a local minimum of

F∞(u) =
∫

1

2
〈bi j (X)∇u0,∇u0〉dX.

Since, u0 ≥ 0 and u0(Y ) = 0, by the strong minimum principle, see for instance [11,
Theorem 7.12], u0 ≡ 0. We now reach a contradiction with (4.1) for k � 1. The Lemma is
proven. ��

Once we have obtained Lemma 4.2, the proof of Theorem 4.1 follows exactly as the final
steps in the proof of Theorem 3.1.

5 Gradient control in two-phase problems

In this section we show that Theorem 3.1 as well as Theorem 4.1 hold for two-phase problems,
provided a one-side control is a priori known. It is interesting to compare this with the program
developed in [4–6], where monotonicity formula yields similar conclusion.

Let us briefly comment on such generalization, in the (simpler) minimization problem.
The singular perturbed one can be treated similarly. We start by placing the negative values
of u within a universally controlled slab, i.e.:

inf
�

u ≥ −δ�, (5.1)

for a universal value δ� > 0. Such a condition is realistic for models involving very low
temperatures, i.e., for physical problem near the absolute zero for thermodynamic temperature
(zero Kelvin). A scaling of the problem places any solution into this setting. Within the proof
of Lemma 4.2, one includes condition (5.1) in the compactness argument. Here is the two-
phase version of Lemma 4.2:

Lemma 5.1 Fixed a ball Br (Y ) � � and given θ > 0, there exists a δ > 0, depending only
on Br (Y ), dimension, ellipticity constants and L∞ norm of u, such that if u is a changing
sign minimum of

F δ̃ (u) =
∫

�

{
1

2
〈ai j (X)∇u,∇u〉 + δ̃ · χ{u>0}

}
dX,

for δ̃ ≤ δ, with

u0(Y ) = 0 and inf
�

u ≥ −δ,

then

sup
B r

2
(Y )

|u| ≤ θ.

The proof of Lemma 5.1 follows the lines of Lemma 4.2, noticing that, by letting δ = o(1)

in the compactness approach, the tangential configuration is too a nonnegative minima of a
functional which satisfies minimum principle.

123



10 Page 12 of 15 D. dos Prazeres, E. V. Teixeira

Theorem 5.2 Let u0 be a sign changing minimum of the functional

F (u) =
∫

�

{
1

2
〈ai j (X)∇u,∇u〉 + χ{u>0}

}
dX,

with u0(ξ) = 0, −1 ≤ u0 ≤ 1. Assume u− is Lipschitz continuous at 0. Then u+ (and
therefore u) is too Lipschitz at 0 and

|∇u(0)| ≤ C |∇u−(0)|.
Proof We can assume, with no loss, � = B2 and ξ = 0. By universal continuity estimate,
Theorem 2.2, we can choose a universal number 0 < τ0  1, such that the function v : B1 →
R, given by

v(X) := u(τ0X),

satisfies the hypothesis of Lemma 5.1, for θ = 1
2 . Selecting 0 < τ0  |∇u−(0)|−1, even

smaller if necessary, we can assure

|∇v−(0)| ≤ δ1/2,

where δ1/2 is the number from Lemma 5.1 when we take θ = 1
2 . Define in the sequel

v2 : B1 → R by

v2(X) := 2v

(
1

2
X

)
.

Clearly v2 is a minimum of a functional F δ̃ for δ̃ ≤ δ1/2, v2(0) = 0, and by Lemma 5.1, it
also verifies −1 ≤ v2 ≤ 1. We estimate

inf
B1

v2 ≥ −|∇v−(0)| ≥ −δ1/2.

Hence, v2 is also within the hypothesis of Lemma 5.1. Carrying the induction process shows
that

sup
B

τ02−k

|u| ≤ 2−k .

Now, given 0 < r  1, we choose k ∈ N such that τ02−(k+1) ≤ r ≤ τ02−k and compute

sup
Br

|u| ≤ sup
B

τ02−k

|u| ≤ 2−k ≤ 2

τ0
r.

The Theorem is proven. ��
Similarly, one can use these set of ideas when a density control of the negative phase is

given. For instance if

L n({u < 0} ∩ Br ) ≤ δ�r
n, (5.2)

where δ�  1 is universally small, then Lipschitz regularity along the free boundary holds.
Indeed, as before, one could add the constrain (5.2) within the compactness approach, letting
δ� = o(1), and the limiting configuration is too a nonnegative function. Now, within the
induction procedure, condition (5.2) scales properly, in the sense that at each scale, condition
(5.2) holds with the same initial constant δ�. Compare for instance with [14].
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6 Geometric estimates of the free boundary

In this section we show how the improved estimate given by Theorem 3.1 (or else Theorem
4.1) implies some geometric estimates on the free boundary. Hereafter in this section, u0 ≥ 0
will always denote a limit point obtained from a sequence of minimizers of the functional
(1.6). We will denote by �0 the non coincidence set, �0 := {u0 > 0} ∩ �. Unless otherwise
stated, no continuity assumption is imposed upon the medium ai j .

Theorem 6.1 (Nondegeneracy) Let �′ � � be a given subdomain and Y ∈ �′ ∩ {u0 > 0}
then

sup
Br (Y )

u0 ≥ c · r.

for r < dist(�′, ∂�).

Proof Letting ε → 0 in Theorem 2.3 we conclude u0 grow linearly away from the free
boundary. Owning Lipchitz regularity along ∂{u0 > 0} ∩ �′, Theorem 3.1, we can then
perform a polygonal type of argument a la Caffarelli, see for instance [18, Lemma 4.2.7], to
establish such a strong non-degeneracy estimate. ��
Theorem 6.2 Given a subdomain �′ � �, there exists a constant θ > 0, such that if
X0 ∈ ∂�0 is a free boundary point then

Ln(�0 ∩ Br (X0)) ≥ θrn,

for all 0 < r < dist(∂�′, ∂�). Furthermore there is a universal constant 0 < ς ≤ 1 such
that

dimH(∂�0) ≤ n − ς,

where dimH(E) means the Hausdorff dimension to the set E. ��
Proof It follows readily from non-degeneracy property, Theorem 6.1, there exists a point
ξr ∈ ∂Br (X0) such that

u0(ξr ) ≥ cr,

for a constant c > 0 depending only on the data of the problem. Now, for 0 < μ  1, small
enough, there holds

Bμr (ξr ) ⊂ �0. (6.1)

Indeed, one simply verifies that if

Bμr (ξr ) ∩ ∂{u0 > 0} �= ∅,

then from Theorem 3.1 we can estimate

cr ≤ u0(ξr ) ≤ sup
Bμr (Z0)

u0 ≤ Cμr

which is a lower bound for μ. Hence, if μ < c ·C−1, (6.1) must hold. Now, with such μ > 0
fixed, we estimate

L n (Br (X0) ∩ �0) ≥ L n (
Br (X0) ∩ Bμr (ξr )

) ≥ θrn

and the uniform positive density is proven.
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Let us turn our attention to the Hausdorff dimension estimate. Given σ = X0 in ∂{u > 0},
we choose

σ ′ = tξr + (1 − t)X0,

with t close enough to 1 as to

B 1
2 μ·r (σ ′) ⊂ Bμ(ξr ) ∩ Br (σ ) ⊂ Br (σ )\∂{u > 0}.

We have verified ∂{u > 0}∩B1/2 is (μ/2)-porous, hence by a classical result, see for instance
[12, Theorem 2.1], its Hausdorff dimension is at most n − Cμn , for a dimensional constant
C > 0. ��

For problems modeled in a merely measurable medium, one should not expect an improved
Hausdorff estimate for the free boundary. When diffusion is governed by the Laplace operator,
then Alt-Caffarelli theory gives that ς = 1. A natural question is what is the minimum
organization of the medium as to obtain perimeter estimates of the free boundary. Next
Theorem gives an answer to that issue.

Theorem 6.3 Assume ai j satisfy (K -Lip) property for some K > 0. Then the free boundary
has local finite perimeter. In particular dimH(∂�0) = n − 1.

Proof Fixed a free boundary point X0 ∈ ∂�0 and given a small, positive number μ one
checks that ∫

{0<u0<μ}∩Br (X0)

|∇u0|2 ≤ Cμrn−1. (6.2)

This is obtained by integration by parts and Lipschitz estimate on Br . In the sequel, we
compare the left hand side of (6.2) with |{0 < u0 < μ} ∩ Br (X0)|. This is done by considering
a finite overlapping converging,

{
Bj

}
, of ∂�0 by balls of radius proportional to μ and centered

on ∂�0 ∩ Br (X0). In each ball Bj , we can find subballs B1
j , B2

j with the radii ∼ μ, such
that

u0 ≥ 3

4
μ in B1

j and u0 ≤ 2

3
μ in B2

j .

Existence of such balls is obtained by nondegeneracy property followed by Poincaré inequal-
ity. Now, for μ  r , we have

Br (X0) ∩ {0 < u0 < μ} ⊂
⋃

2Bj ⊂ B4r (X0).

Finally, if we call A := {0 < u0 < μ}, the above gives
∫

B4r (X0)∩A

|∇u0|2dX ≥
∫

(
∪2Bj

)
∩A

|∇u0|2dX

≥ 1

m

∑ ∫

2Bj∩A

|∇u0|2dX

≥ c
∑

L n(Bj )

≥ cL n(Br (X0) ∩ A),
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wherem is the total number of balls, which can be taken universal, by Heine–Borel’s Theorem.
Combining the above estimate with (6.2), gives

L n({0 < u0 < μ} ∩ Br (X0)) ≤ Cμrn−1,

which implies the desired Hausdorff estimate by classical considerations. For further details,
see for instance [18, Chapter 4]. ��

References

1. Alt, H.W., Caffarelli, L.A.: Existence and regularity for a minimum problem with free boundary. J. Reine
Angew. Math. 325, 105–144 (1981)

2. Amaral, M.D., Teixeira, E.V.: Free transmission problem. Commun. Math. Phys. 337(3), 1465–1489
(2015)

3. Berestycki, H., Caffarelli, L.A., Nirenberg L.: Uniform estimates for regularization of free boundary
problems. Analysis and partial differential equations, 567–619, Lecture Notes in Pure and Appl. Math.,
122, Dekker, New York (1990)

4. Caffarelli, L.A.: A Harnack inequality approach to the regularity of free boundaries. I. Lipschitz free
boundaries are C1,α . Rev. Mat. Iberoam. 3(2), 139–162 (1987)

5. Caffarelli, L.A.: A Harnack inequality approach to the regularity of free boundaries. II. Flat free boundaries
are Lipschitz. Commun. Pure Appl. Math. 42(1), 55–78 (1989)

6. Caffarelli, L.A.: A Harnack inequality approach to the regularity of free boundaries. III. Existence theory,
compactness, and dependence on X . Ann. Scuola Norm. Sup. Pisa Cl. Sci. 15(4), 583–602 (1988–1989)

7. Caffarelli, L.A., Lederman, C., Wolanski, N.: Uniform estimates and limits for a two phase parabolic
singular perturbation problem. Indiana Univ. Math. J. 46(2), 453–489 (1997)

8. Caffarelli, L.A., Lederman, C., Wolanski, N.: Pointwise and viscosity solutions for the limit of a two
phase parabolic singular perturbation problem. Indiana Univ. Math. J. 46(3), 719–740 (1997)

9. Caffarelli, L.A., Vazques, J.L.: A free boundary problem for the heat equation arising in flame propagation.
Trans. Am. Math. Soc. 347, 411–441 (1995)

10. Danielli, D., Petrosyan, A.: A minimum problem with free boundary for a degenerate quasilinear operator.
Calc. Var. Partial Differ. Equ. 23(1), 97–124 (2005)

11. Giusti, E.: Direct methods in the calculus of variations. World Scientific Publishing Co., Inc, River Edge,
NJ, 2003. viii+403 pp. ISBN: 981-238-043-4

12. Koskela, P., Rohde, S.: Hausdorff dimension and mean porosity. Math. Ann. 309(4), 593–609 (1997)
13. Leitão, R., Teixeira, E.V.: Regularity and geometric estimates for minima of discontinuous functionals.

Rev. Mat. Iberoam. 31(1), 69–108 (2015)
14. Lee, K.-A., Shahgholian, H.: Regularity of a free boundary for viscosity solutions of nonlinear elliptic

equations. Comm. Pure Appl. Math. 54(1), 43–56 (2001)
15. Moreira, D.: A singular perturbation free boundary problem for elliptic equations in divergence form.

Calc. Var. Partial Differ. Equ. 29(2), 161–190 (2007)
16. Ricarte, G.: Fully nonlinear singularly perturbed equations and asymptotic free boundaries. J. Funct.

Anal. 261(6), 1624–1673 (2011)
17. Rossi, J., Teixeira, E.V., Urbano, J.M.: Optimal regularity at the free boundary for the infinity obstacle

problem. Interfaces Free Bound. 7, 381–398 (2015)
18. Teixeira, E.V.: Elliptic regularity and free boundary problems: an introduction, Publicações Matemáticas

do IMPA. 26o Colóquio Brasileiro de Matemática. Instituto Nacional de Matemática Pura e Aplicada
(IMPA), Rio de Janeiro, pp. ii+205, (2007). ISBN: 978-85-244-0252-4

19. Teixeira, E.V.: A variational treatment for elliptic equations of the flame propagation type: regularity of
the free boundary. Ann. Inst. H. Poincaré Anal. Non Linéaire 25, 633–658 (2008)

20. Teixeira, E.V.: Optimal design problems in rough inhomogeneous media. Exist. Theor. Am. J. Math.
132(6), 1445–1492 (2010)

21. Teixeira, E.V.: Sharp regularity for general poisson equations with borderline sources. J. Math. Pure Appl.
99(2), 150–164 (2013)

22. Teixeira, E.V.: Regularity for quasilinear equations on degenerate singular sets. Math. Ann. 358(1), 241–
256 (2014)

23. Teixeira, E.V.: Regularity for the fully nonlinear dead-core problem. Math. Ann. doi:10.1007/
s00208-015-1247-3

123

http://dx.doi.org/10.1007/s00208-015-1247-3
http://dx.doi.org/10.1007/s00208-015-1247-3

	Cavity problems in discontinuous media
	Abstract
	1 Introduction
	2 Preliminaries
	3 Lipschitz regularity along the free boundary
	4 Lipschitz estimates for the minimization problem
	5 Gradient control in two-phase problems
	6 Geometric estimates of the free boundary
	References




