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Abstract. We consider the following nonlocal equation

/J(x_y)@dy—u(x)zo X eR,
g ) g

where J is an even, compactly supported, Holder continuous kernel with unit integral and g is a continuous
positive function. Our main concern will be with unbounded functions g, contrary to previous works. More
precisely, we study the influence of the growth of g at infinity on the integrability of positive solutions of
this equation, therefore determining the asymptotic behavior as t — +o00 of the solutions to the associated
evolution problem in terms of the growth of g.

1. Introduction

In the present paper we will be concerned with the nonlocal evolution problem

u;(x, 1) :/J (x _ y) u(y’t)dy —u(x,t), xeR, t>0
g /) sy (1.1)

u(x, 0) = uo(x) x €R,

where J is a Holder continuous function which we assume nonnegative, even, sup-
ported in the unit interval [—1, 1] and with [, J(x)dx = 1. For simplicity we will also
assume throughout that J > 0 in (—1, 1). The function g is continuous and positive
in R, but no additional conditions at infinity will be assumed for the moment.

Problem (1.1) was introduced in [8] as a generalization of the well-studied case
g = 1. If u(x, t) is thought of as the density of a population, then the term

(L)
g) /) &)

represents the probability that an individual which lies in the position y reaches the

position x. Since J is supported in the interval (—1, 1), this means that position x

can only be reached from those y which verify |[x — y| < g(¥), so that g(y) can be
viewed as the “step” of the jump of individuals standing at position y and introduces
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a heterogeneity in the dispersal of the species (see also [14,16,17,25,28,29] for other
nonlocal models considering heterogeneities).

While a lot of previous works have considered problem (1.1) with g = 1 (cf.
for instance [1-7,13,18,19,21-23,27,30] and references therein), the problem with a
general g has not received as much attention as far as we know. We refer the reader
to [9,10,12,14,15,26], where typically g is a bounded function. Therefore our main
purpose here will be to analyze the asymptotic behavior of solutions of (1.1) when
g is unbounded. Closely related to the present paper is [11], where the asymptotic
behavior of solutions of (1.1) was studied for some special unbounded functions g.

It is easily seen by an application of semigroup theory that problem (1.1) admits a
unique solution u for every ug € L' (R), which in addition verifies [|u(-, 1) LIR) =
luoll1 gy for every ¢ > 0 (see [9,11]). Moreover, the asymptotic behavior of this
solution strongly depends on the positive solutions of the stationary counterpart, that

1S
/J(x_y)@dy—u(x)zo, x eR, (1.2)
g ) gy

and more precisely on its positive supersolutions w. It was proved in [9] (see also [11])
that:
(@ IfweL'(R)isa positive supersolution, then w is actually a solution of (1.2),
and every positive solution of (1.1) verifies

u
uo ) — ollt® Ry

w1 w)
ast — +oo.
(b) If there exists a positive supersolution w ¢ L'(R), then every positive solution
of (1.1) verifies u(-,t) — 0in L}OC(R) as t — +oo. In particular, (1.2) does
not have solutions in L' (R).

Our objective in the present paper will be twofold: on the one hand, we will find
conditions on g which allow us to obtain positive solutions of (1.2), while on the other
hand we will discuss whether these solutions are actually in L' (R), thereby providing
a description of the asymptotic behavior of solutions of problem (1.1).

The main novelty in this work is that we will be mainly dealing with unbounded
functions g. To begin with, we will consider the simpler case where g satisfies:

limsup@ < 1. (1.3)

|s|>o00 IS |

The importance of this condition is due to the fact that the integral in (1.2) is performed
in abounded set forevery x € R. Itensures the existence of solutions, although they do
not necessarily belong to L' (R). One of our first objectives will be then to determine
some additional conditions on g which would let us know whether positive solutions
lie in L' (R) or not.

When g verifies (1.3), a solution of (1.2) is a function u € C(R) which verifies the
equation for every x € R.
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THEOREM 1. Assume g € C(R) is positive and satisfies (1.3). Then there exists a
positive solution p € C(R) of (1.2). Moreover, assume there exists a nondecreasing,
continuous, positive function h verifying

: (As)
lim sup < 0 (1.4)
s—+4oo N(s)
for some A\ > 1 and such that
Cih(ls) = g(s) = Coh(Is))  ifls| = so (1.5)

for some C1, Cp, 50 > 0. Then

(a) Iff glz < 00, then p € L'(R) N L®(R) and lim|y |00 p(x) = 0. In addition, if
q is any other positive solution of (1.2), there exists u > 0 such that g = up.
(b) Iflimsupyg_, o % < % h is differentiable for large |s| and h'(s) is bounded,

then p ¢ L' (R), provided that f glz = 00. Besides, no positive solution of (1.2)
belongs to L' (R).

REMARKS 1. (a) An example for the function  is h(s) = s* for s > 0 and some

o > 0. Then part (a) will hold for o € (%, 1], while part (b) will be applicable if
1

i.

(b) The existence of positive solutions in case (a) of Theorem 1 follows also when
condition (1.3) is relaxed to g(s) < |s| for large |s|. See Remark 2 in Sect. 2.

(c) Itis not hard to show that if / is nondecreasing and (1.4) is verified for some A > 1,

then it is also verified for every A > 0.

o=

The natural question as to the necessity of condition (1.3) arises. We will see that,
under some conditions of a different type, problem (1.2) can also admit positive solu-
tions. However, the problem becomes more delicate without (1.3), since the integration
in (1.2) can be made in an unbounded set, therefore causing additional complications
in our proofs. In particular, the concept of solution has to be modified, since now the
behavior of the solutions at infinity is relevant. Accordingly, we say that u is a solution
of (1.2)if u € C(R), ”E‘ € L'(R) and the equation is verified for every x € R.

Our next result is aimed at functions g not verifying (1.3). It turns out that the
finiteness of the integral [ é is determinant regarding existence of positive solutions

in L1(R).

THEOREM 2. Assume g € C(R) is positive. Then

(a) Iffé = 00 and liminf5_ % > 1, there exists a positive solution p €
C(R) N L*®°(R). Moreover, lim|y|—o0 p(x) = 0.

(b) Iff% < ooandlims|— o0 g(5) = +00, then there exists a positive supersolution

w € C(R) of (1.2). Moreover, w ¢ L'(R) and no solutions of (1.2) in L'(R)
exist.
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At the sight of Theorems 1 and 2, one could wonder what happens with the integra-
bility of the solutions when the function g grows linearly at infinity, but not verifying
the condition (1.3). In this regard, Theorem 2(a) provides with positive solutions, but
does not give any hint as to their integrability.

To analyze further this subject, we will consider next functions g verifying g(s) =
Als| forlarge |s| and some A > 0. It turns out that the integrability of solutions strongly
depends on the value of A and even on the kernel J. This subtle matter will be studied
in Sect. 3. As a hint of what is to be found there, we have the next result:

THEOREM 3. Assume g(s) = Als| for |s| > so > 0 and some A > 0. There exist
Ao, Aco > 0, depending only on the kernel J, such that V2 < Ao < Aso and with
the property that for N < Ay all positive solutions of (1.2) belong to L' (R), while no
positive solutions in LY(R) exist when A > Asc.

It is worthy of mention that Ag = Ay is to be expected depending on the kernel
J, but it is possible to exhibit kernels for which Ag < Ax. In this case, for values
A € (Mo, Ax), the solutions may or may not belong to L'(R) (see precise details
in Sect. 3). This result is somehow contrary to intuition, since one would expect in
principle that if the solutions do not belong to L' (R) for some A, they should not
belong to Ll(R) for A > A

It is also relevant to point out that solutions « of (1.2) verifying g € L' (R) belong
to L (R), with lim|y|— o0 u(x) = 0, Indeed

u(x) < ||J||OO/D %dy =0 (16)

asx — 4oo,where D, = {y e R: |[x—y| < g(y)}. Italso follows from (1.6) that, if
g is bounded from below and u € LY(R), then u € L (R) with limy | 400 u(x) = 0.
On the other hand, it can also be proved that solutions of (1.2) in LY(R) are always
one-signed (cf. the proof of Lemma 3 in [9]).

As a final comment, it is interesting to illustrate our results with a family of positive
functions g € C(R) verifying g(s) = A|s|?, for |s| > so > 0 and some ¢ > 0, A > 0
(the definition of g in |s| < sq is of no importance regarding existence and integrability
of solutions). We have:

e WhenO<gqg < %, there exists a positive solution which is not in L R).
For % < g < 1, there are positive solutions in L' (R).

e Ifg = 1, there exists a positive solution for every A > 0. Morever, there are values
Ao, Aso With V2 < Ao < Aso and such that for 0 < A < Ag the solutions belong
to L! (R), while they do not when A > A. For some kernels we have Ag < Ao
and in the interval A € (Ag, Axo) there are values for which solutions belong to
L'(R) and others where they do not.

e When g > 1, there are no solutions in L' (R) (actually there are no solutions at
all, see [11]).
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The rest of the paper is organized as follows: in Sect. 2 we prove Theorems 1 and 2
through a sequence of lemmas. Section 3 is devoted to the study of the case where
g(s) = Als| for large |s| and some A > 0, and in particular to prove Theorem 3.

2. Proof of Theorems 1 and 2

Before coming to the actual proof of the theorems, we will consider some lemmas
which deal with estimates for a sequence of approximate solutions. Remember that
we are always assuming that g € C(R) is positive. We first truncate g to be bounded
and bounded away from zero: let N > 1 and define:

1
gn(s) = max [min{g(s), N}, NI ,

so that % < gn(s) < N.Wecan apply Theorem 4.3 in [8] to obtain a positive bounded
solution py € C(R) of problem (1.2) with g replaced by gy. We normalize py so

that
max gy px—4w 1
/ / pN(s)/ J(z)dzdsdw =1, x e R. 2.1
0 xX—w L

gN ()

We remark that the quantity in the left-hand side of (2.1) is constant for positive
solutions of (1.2); therefore, this normalization is possible (see for instance Proposition
2.1 in [10]). Let us see that local bounds for py can be obtained. We begin with L
local bounds.

LEMMA 4. For every M > 0, there exist C, No > 0 such that, if N > Ny then

M
/ pn(s)ds < C.
M

Proof. Let M > 0 and choose 1 € (0, min{1l, max gy}) small enough. By (2.1):

n rx+w 1
1> / / PN (s) / J(2)dzdsduw
% x—w w
gN(s)

n px+3 1
2/ / pN(s)/ J(z)dzdsdw.
3 Jey e

gN (s)

If x| < M,wehave (x =2, x+3) C (=M — 3, M +3) C (=M — 1, M +1).
Since g is bounded from below in [-M — 1, M + 1], the same is true for gy if N is
large enough. Therefore gy (s) > goin [—M — 1, M + 1] for some go > 0, so that

1 1
, J(z)dz > /n J(2)dz =: Cy > 0,

8N () 80
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if n is diminished as to have n < go. Hence

n
nCo [**2

nopx+q

1> Co py(s)dsdw = — pn(s)ds.
1 Je_n 2 Jx-n
2 2 2

Since the interval [—M, M] can be covered with a finite number of intervals of length
n, this last inequality proves the lemma. 0

The next bounds we are going to consider will be handy when proving the integra-
bility of solutions in Theorem 1, part (a). They are slightly more accurate than those
in Lemma 4.

LEMMA 5. Assume g(s) > Cih(|s]), for |s| = so > 0, where C1 > 0 and h
is positive and nondecreasing. Let x > so and § € (0, min{l1/2, C1/2}). Then there
exists C = C(8) and Ny = Ny (8, x) such that

x+38h(x) C
/)C PN (s)ds < % 2.2)

for N > Nj.
Proof. For large enough N (depending on x) we have 26h(x) < max gy. Then by

@2.1):
28h(x) x4w 1
1 Z/ / pN(S)/ J(z)dzdsdw
Sh(x) xX—w v

gN(s)
28h(x)  px+8h(x) 1
> / / PN (s) /zan( : J(z)dzdsdw.
Sh(x) X XN(::)

Observe that g is bounded from below, therefore gy (s) = min{g(s), N} for large N.
Since h(x) < N if N is large enough, it can be easily checked that 26 (x)/gn (s) <
0 := max{24,25/C1} < 1. Therefore

28h(x)  px+8h(x) 1
12/ / pN(s)/ J(z)dzdsdw
Sh(x) X %

x+8h(x)
= C5h(x)/ pn(s)ds,
X

for some C > 0 depending on §, which shows (2.2). The proof of the lemma is
concluded. 0

Our last lemma is of a different nature and deals with the solution of a certain initial
value problem associated with an auxiliary differential equation.

LEMMA 6. Assume h € C(R) is positive, nondecreasing for s > so > 0 and
verifies (1.4) and h(s) < s for s > so. For A € (0, 1), let v be the solution of the
equation

r—
[ vV =Ah(v) t>0 23)

v(0) = vo,
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where vy > sg and’' = d/dt. Then for every § > 0, we can choose A small enough
such that v is defined in [0, 400), lim;_, ;o V() = +00 and

v(t+ 1) —v(t)

<34 ort > 0.
o) g
Proof. Notice that the quantity
S(4) h(et)
=su
tzspo h(t)

is finite by (1.4) and Remark 1(c). We also have that § is nondecreasing as a function
of A. Thus we may choose A small so that AS(A) < AS(1) <.
Next observe that (2.3) can be explicitly solved to give

v(t) ds
— — A1, t>0. (2.4)
v h(s)

0

Since h(s) < s for s > sg, we see that the integral on the left-hand side of (2.4)
diverges at infinity, so that v is defined in [0, +00) and lim;_, 4, V() = +00. We
also obtain from (2.4) that

v(t+1) v(t+1)
log(v(t+1))=/ d—sf/ _ds = A,
v(t) w(t) s vy h(s)

therefore v(z + 1) < e?v(z) so that A(v(t + 1)) < h(e4v(t)). Hence

t+1
v+ 1) —v() = / Ah(v(s))ds < Ah(v(t + 1))
t

< Ah(e*v(1) < AS(A)h(v(1))
< 8h(v(1)),
as was to be proved. O
Finally, let us proceed to the proof of our main results.

Proof of Theorem 1. Observe first that the integration in (1.2) takes place in the set
D, ={yeR: [x—y| < g} Ife > 0is chosen small enough, by condition (1.3),
we have g(s) < (1 —¢)|s| if |s| > s1, for some s; > 0 which depends on ¢. It is then
easily seen that gy (s) < (1 — &)|s] if |s| > s for large N.

Now take x > 0O (the case x < O being analyzed similarly). If y € D, verifies
ly| > s1,theny — (1 —&)|y| < x < y+ (1 —¢)|y|, so that y > 0 follows, hence
ey <x < (2—¢)y. We deduce

1 1
D, C (—s1,851) U ( X, —x) . 2.5)
2—¢ ¢
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Thus for every K > 0, there exists M > 0, depending on K such that D, C [-M, M]
for every x € [0, K]. Letting go = inf[_y, p] g, we obtain

x—yY\ pn(y) 17l /M
= J d dy<cC
2 / (gN(y)) en(y) y= g J-m POy =

by Lemma 4 (from now on, we will use the letter C to denote different positive
constants). This inequality can be extended to x € [—K, K]. On the other hand, if

x,z€[-K,K]
J(x—y)_J(z—y)‘pN(y)dy
en(y) en() /| gn(y)

< Llx— Z|/ PN ()

M gN(y)””‘

() — pa ()| 5/
D,UD,

L By
< Tl — pN(y)dySCIx z|%,
8o -M

where L > 0,« € (0, 1) stand for the Holder constant and exponent of J, respectively.
We deduce that {py}n=0 is equicontinuous and uniformly bounded in [- K, K], for
every K > 0. Thus by Arzeld-Ascoli’s theorem and a diagonal argument, we obtain
the existence of a sequence Ny — +o0 such that py, — p uniformly on compact
sets of R (we will continue to denote py, as py for simplicity).

Since D, is a bounded set for every x € R by (2.5), we may pass to the limit
in the equation verified by py to see that p is a nonnegative solution of (1.2). Our
next task will be to prove that p is nontrivial. For this purpose, we come again to the
normalization (2.1), setting x = 0, and rewrite it using Fubini’s theorem

max gy [,maxgy
1 _/ / pN(s)/ J(z)dzdwds

gN(A)

max gy
/ / PN(S)/ J(z)dzdwds. (2.6)
max gy

gN ()

If weuse againthat gy (s) < (1—¢)|s|if|s| > s;, weobtainw/gn(s) > 1/(1—e) > 1
when 0 < s < w < max gy; therefore, the integration with respect to w in the first
integral in (2.6) is reduced to the interval [0, s1]. Similarly, in the second integral the
integration reduces to [—sj, 0]. Noticing in addition that gy = g in [—s, s1] if N is
large enough, we obtain from (2.6) that

S1 max(—s; s;] &
1=/ (/ / J(z)dzdw)PN(S)dS~ @7
s Is| w_

8(s)

Since py — p uniformly on compact sets of R, we may pass to the limit in (2.7) to
obtain that p is nontrivial. According to the maximum principle, it follows that p > 0
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in R. We include a sketch of proof of this fact for completeness: assume xp € R is
such that p(xg) = 0. Then

/J(xo_y)&dyzo

gy /] gy

Since g is positive in R, this implies that p = 0 in a neighborhood of x¢. Now a rather
standard connectedness argument shows that p = 0 in R. Since p is nontrivial, this is
not possible, so that p > 0 in R.

Our next step is to prove part (a). Fix § € (0, min{1/2, C1/2}). We may pass to the
limit as N — 400 in (2.2) in the statement of Lemma 5 to obtain that

y+8h(y) q C ) g
< _ .
/v pls)ds = - o) 28)

for every y > s9, where C = C(§) is independent of y. Now fix x > so and define
recursively the sequence xo = x, x,41 = x, + 6h(x,). We claim that x, > v(n),
where v is the function given in Lemma 6 with v(0) = so and A sufficiently small.
This is proved by induction. Clearly xo > v(0); assume x, > v(n) for some n. Then

Xpg1 = Xy + 8h(xy) = v(n) +Sh(v(n)) = v(n + 1)

by Lemma 6. Thus x,, > v(n) for every n € N, and in particular x,, — 400 as
n — +o00. Using (2.8) we have

n

Xn+1 n Xk+1 ! 1 1
ds = ds<C C :
/X p(s)ds g/m{ p(s)ds < ]Z(;h(xk) = Zh(v(k))

k=0

Finally, observe that (v (k)) is nondecreasing, and

/°° ds _1/00 a
hwos) A R ST

so that the series g m converges and

Xn+1
/ p(s)ds < C,
x

where C does not depend on 7. Letting n — 400 we have p € L!(0, +-00). Arguing
similarly for negative x we obtain p € L'(R).

To conclude the proof of this part, assume there exists another solution g of (1.2).
Choose i > 0 such that g(0) = up(0). It is not difficult to check that the function
w = min{g, up} is a supersolution of (1.2), which is in L'(R). Therefore w is a
solution of (1.2) (cf. Remark 1 in [11]). Now consider the set Q := {x e R: g(x) =
up(x)}, which is clearly a closed set. It is also open, for if xo € €2, then

x0—y\4q()
— gy = [ 7 (Y)Y
wixo) = ¢(x0) / (g(y) )g(y) y

xo—y\ w(y)
J —dy = ,
Z/ ( gy ) g(y) y = wixo)
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so that ¢ = w in a neighborhood of x¢, and similarly up = w in a neighborhood of
xo. Hence €2 is open. Since 0 € €2, it follows that 2 = R and so ¢ = up in R.

To prove part (b), we take a large positive x and denote by f (x) the largest solution
of the equation w = g(x + w) [which exists thanks to condition (1.3)]. It is to be

noted that the condition lim sup,_, , ., g‘(fl) < 1mpl1es
lim sup fx) < 1. 2.9)
xX—> 400
Then, from (2.1),
fx)
1 _/ / pN(s)/ J(z)dzdsdw,
g}v(s)

and passing to the limit as N — +o0:

fx)
1 —/ / p(s) J(z)dzdsdw

f) X+ f(x)
5/ / p(s)dsdw < f(x) p(s)ds.
0 xX—w x—f(x)

Thus, if x is large enough:

x+f(x) 1 x+f(x)
/ Q) ds > p(s)ds
—fe) 8(s) Coh(x + f(X)) Jx—r@o
_ C e
T Cf(xgx+ fx)  Caf(0)?*
since f(x) = g(x + f(x)). On the other hand, choose § € (0, 1) and denote D, =
{yeR: |x —y| <Ci5h(y)}. Then we have

X p(y) / p(y)
=7 —=dy ——dy,
i) / (g(y) ) gy =6 b, 8(y)

where ¢s = inf|;|<5 J(z) > 0. Observe that, when § is small enough, and using the
hypothesis that " is bounded, the set ﬁx can be expressed as l~)x = [h1(x), hao(x)],
where i (x), ha(x) are, respectively, the unique solutions of the equations y + §Cy
h(y) = x,and y —5C1h(y) = x (we remark for its immediate use that both functions
hi, hy are increasing). Therefore:

ho(x)
p(x) ZCa/ R4S @.11)
e 8()

(2.10)

Next define the sequence {x;} by x; = x and x4+ = hl_l(hz(xk)), fork=1,...,¢,
where ¢ is a positive integer to be chosen. It follows from (2.11) that

-1

ho(x¢)
> p(H"(x))zCa/ TPy 2.12)
—o me 80
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where we have set H = hl_1 o hy. Also observe that
ha(xg) — hy(xx) = 8Crh(hy(xx)) + h(ha(xk))
> 2C18h(h1(xx)) = 2C18h(h1(x))

so that we obtain the estimate h2(x¢) — h1(x) > 2C18€h(h1(x)) for the length of the
interval of integration in (2.12). Taking into account that #(x) = O(x) for large x, we
further deduce

x =hi(x) +3Cih(h1(x)) = (1 +8CCHA1(x).

for some C > 0. Hence

1
h —h >2C166h | —— . 2.13
2(xp) 1(x) > 2Cy (1+5CC1X) (2.13)

On the other hand, condition (2.9) allows to choose z = z(x) sothatz — f(z) = h1(x)
if x is large enough. Moreover, there exists n > 0 such that

yo1 o J@ @ x=Cihtne) _x
z z Z Z
This in turn implies
2
f@) =g+ f(2) = Coh(z+ f(2)) < C2h(22) < Coh (;x) (2.14)

for large x. Combining (2.13), (2.14) and hypothesis (1.4) [and also Remark 1(c)], we
deduce that for a suitably large ¢, independent of x, the inequality

ha(xe) —hi(x) = 2f(2)

holds. Then, since z — f(z) = hi(x), we arrive from (2.12), taking into account that
[z— ), 2+ f(2)] C [h1(x), ha(xe)] and using again (2.14), at

Gl +f(2)
Zp(Hk(x)) > Cﬁ/ P()’)dy > C]Cg . > ZCIZ‘S .
k=0 —f@ 8() C2f(2* ~ C3h(Gx)?

Take now b > a > 1. Integrating the last inequality in (a, b):

=1 p b 2b
Z/ p(H*(x))dx > Cl?/ 1 = Clc‘;”/” Ly @i15)
k=04 C2 a h(ﬁx)z 2C2 27" h(y)

To conclude the proof, we first notice that H' > 1 for large values of x. Indeed,
x = hi(x) + §C1h(hi(x)) implies that hfl(x) = x 4+ 8C1h(x), so that H(x) =
hl_l(hz(x)) = hy(x) + 8C1h(hy(x)) = 2ha(x) —x and H' = 2h’2 — 1 follows. In
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addition, h(x) = x + 8C1h(ha(x)). so that h)y(x) = 1+ 8C1A (hy(x))(x) = 1,
thus H' > 1. Now:

/b b )d /H(b) p(y) q /H(h) )d
— _— <
a pH DA Ha@ H'H7(y) Y= H(a) P,

and similarly

b HE (b)
| patenar= [ poay,

Hk(a)

From (2.15) we finally obtain

ply)dy = 54y
H(a) z h(y)?

for some C > 0. Letting b — +o0, since 1/h*> ¢ L' we deduce that p ¢ L'(R)
either.

Finally, if there were another solution in LY(R), then a similar argument as in the
proof of part (a) would imply that p € L!(R). Thus problem (1.2) does not admit
positive solutions in LY(R) in this case. This concludes the proof. ]

REMARK 2. 1t is not hard to see that the proof that the solutions py converge
locally uniformly to a nonnegative, nontrivial function also works if (1.3) is replaced
by g(s) < |s| for large |s|. Arguing as in the final part of the proof of Theorem 2
below, it can also be seen that p is a positive solution of (1.2).

Proof of Theorem 2. 'We begin with part (a). The existence of a positive solution of
(1.2) follows by a completely different method than the one used before. Choose and
fix a function ¢ € C(R) with ¢ > 0 and

20)y

gy <o

For K > 0, consider the problem

K x—y\ u(y) / (X - y) d(y)
— J ——dy = J —2d 2.16
ut) /—K ( gy ) gy Y Iy|=K gy /) g Y (10)

for x € [ K, K]. It is not hard to show that the operator

K _
Tru(x) =/ J (x y) ”(y)dy, x e [-K, K],
K gy) /) gy

is compact in C([—K, K1), since g is positive and bounded in [—K, K]. Moreover,
its spectral radius is less than one. Indeed, if r = spr(7Tx) > 1, by Krein—Rutman’s
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theorem (cf. [24]) we would obtain a function u € C([—K, K]), u > 0 such that
Txu = ru. Integrating in [— K, K] and using Fubini’s theorem we would have:

K 1 K xX—y
- J dx )dy =0,
/_K”(y) (’ e )k (g(y)) x) Y

which is impossible, since the integrand is a nonnegative function which is not iden-
tically zero.
Therefore there exists a positive solution ux € C[—K, K] of (2.16). Define

MK()C)’ | < K

ug (0)

Pk (x) = 500)
, x| > K.

ug (0)

We deduce that px > 0in [—K, K], px(0) = 1 and

m<(x>=/f(x_y) PED) 4y xl < k.
gy) ) gy

Our immediate task will be to obtain bounds for the functions pg. If ¢ > 0 is suffi-
ciently small, by our hypotheses on g, there exists M > 0 such that g(s) > (1 + ¢)|s|
if [s| > M. Then

y \ px(y) / ( y )pK(y)
l=px)= [ J|{—=—)2==22d J—= ) =2d
rx(©) / (g(y)) g = b= \&OM/) g Y

> inf J(2) PEO) 4
lzl< =M &)

T+e

’

so that
/ PK(y)dy <c
=M &)

for some positive constant C which does not depend on K. Let go = infr g. In
particular:

M+1gg
/ 3 PK(y)dy ~c
M g(y)

Denoting g1 = max;_,, it easily follows that

—%go,M+£g0] 8

M+1tgo
/ pk(y)dy < Cgy.
M
Cgi

Whence it exists xo € [M, M + }1 go] such that px (xp) < 4g—0. Thus

/J (XO —y) PK(y)dy - 4Cg1.
gy gy 80
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Observe thatintheset Q :={y e R: |xg—y| < %go} the inequality |xo — y| < g(y)

holds, so that Q is contained in the region of integration. Moreover, J ();0(;)}) >
1 J(z) > 0in Q. Therefore:

1nf|Z‘57

1
/’“’ﬂg" PED) o 4Ca
xo—%go gy 80 inf|z|5% J(2)

Now, the interval [x¢ — % 80, X0 + % go] contains [M — }1 g0, M1, so that

M
4C
/ pK(y)dyS 4Ca
M—%go g(y) golnfmS%J

‘We can repeat this process finitely many times to arrive at
/pK—(y)dy <c, 2.17)
gy)

for some positive constant C not depending on K. Arguing as in the proof of Theorem
1, we obtain that for some sequence K,, — +00, pg, — p uniformly on compact
sets of R, where p > 0, p(0) = 1. To pass to the limit in the equation verified by pk, ,
we fix x € R, take R > |x| and notice that for sufficiently large n:

R —
[ (x y) Py < pr, o).
-k N8/ g
Hence letting first n — +00 and then R — +00:
/J(x_y) POV 4y < po),
g/ gy

Thus p is a supersolution of (1.2). In particular, p > 0 in R. We claim that, since
f é = 400, p is a solution of (1.2). For this aim, we remark that by (2.17) and with

a similar procedure to the one just used, we achieve f S LI(R). Fix x, z € R. Then
for large enough M, K > 0:

M _ _
pK(x)—pK(z)z/ (J (x y)—J(Z y)) PEO) 4yt vk
M g(y) g(y) gy

where
x—y z2=y\\ Pk(y)
e /y|>M ( ( 2 ) (g<y> )) g

Since g(y) > |y| for large |y| it also follows that g(y) > M if |y| > M, so that

Pk (y) dy < LIX—ZI“/pK(Y)d c

<

g T M

lvk,ml Sle—Zla/ y =<
yj=m &)1 M
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Setting K = K, and passing to a subsequence if necessary we have ygx, m — V7,
which verifies [y ,| < % Moreover:

M x—y z=yY\) P _
- = Jl=—= ) -7 (—)) ==d ,
P = p) /—M ( ( gy ) ( gy )) gy Y+Yu

and letting M — +o00 we deduce, since x, z € R were arbitrary that there exists a
constant A € R such that

p(x):/J(x )p(y)d + A, for x € R.
g/ g(y)

We have already seen that p is a supersolution of (1.2), sothat A > 0. Also, p(x) > A
in R. Hence, since p/g € L' (R):

p(y) /
dy > A | ——dy,
oo g(y)yZ g()y

and A = 0 is implied by the condition é ¢ L'(R). Then p is a positive solution of
(1.2).

Finally, notice that lim|y|_, 100 p(x) = 0 by (1.6) in the Introduction, therefore
p € L°°(R). This concludes the proof of part (a).

For part (b) we will follow closely the proof of Theorem 1.2 in [11]. Notice that
under the hypothesis that é e L'(R), the operator T : L2(R) — LZ(R) given by

Th(x) =/J( ) Mgy xer, (2.18)
g /) gy

is a Hilbert—Schmidt operator. Indeed, by Fubini’s theorem:

[ [0 () soe= [ o [0 (552 o
o ) 502 = ) o 2() Y
=/1(Z)2dz/Ldy < +o00.

g(y)

Therefore T is compact in L?(R). We claim that the spectral radius r of T is less than
one. Assume for a contradiction that » > 1. Then Krein—Rutman’s theorem implies
the existence of a nontrivial g € Lz(R), g > 0, such that T*g = rq, that is,

/J (x — y) )4y — rg), x €R. (2.19)
gx) ) glx)

We claim that g € C(R) and lim|y|— o g(x) = 0. Indeed,
rlgg ) - g < [

X =Yy =Yy
J —J d
» (g(x)) (g(z))‘q(y) Y

o
X =y y
< L/D - q(y)dy

g(x) g2
20 %
§L(/ dy) gl e
D

x—y_z—y
g(x) g(2)




224 C. CORTAZAR ET AL. J. Evol. Equ.

where D = B(x, g(x)) U B(z, g(2)). If x, z are taken in a compact set, then D C
[—M, M] for some M > 0, so that

Xy 2=y _ Mg — g+ |xg(z) — z8(x)|
gkx) g |~ g(x)g(2) '

Whence:
(Mg(z) — g(x)| + |xg(z) — zg(x)N*
g(x)%g(2)® '

It follows that if z — x then g(2)q(z) — g(x)g(x), that is, gg is continuous in R,
hence so is g. On the other hand, using Jensen’s inequality in (2.19):

rlg()g () — g(q@)| < @M)2 L]l 2

s I/J(x—y) > 1l llg117 0
rq(x)ig(x) 200 q(y) ys—g(x) — 0,

since lim|s|— 400 g(s) = +00. Therefore ¢ € L°°(IR), and it attains its maximum at
some point xg € R. Then

x0—yY\ q9(y)
oo — J d = 00 -
rlel / (g(xo) ) g(x0) y = lql

We deduce r = 1 and ¢ = ||¢llo in B(x0, g(x0)). A connectedness argument gives
that necessarily ¢ = ||¢ /oo in R, which is impossible.

Thus r < 1. Now choose an arbitrary nonnegative, nontrivial £ € LEZR)NLY(R)N
C(R). There exists a unique solution of the equation w — Tw = &, given by the von
Neumann series w = Z,C;O:O T"& > 0. In addition, since £ € C(R) we obtain easily
that w = £ + Tw € C(R) as well. Thus w > Tw, that is, w is a supersolution of
(1.2) and by the strong maximum principle w > 0 in R. Using that [ Tv = [ v for
every v € L' (R), we also deduce that w ¢ L1 (R).

Finally, assume there exists a solution p € L'(R) of (1.2). Since g(x) > go > Oin
R, we obtain

[RAIES

px) = Pl
so that p € L®(R), and in particular p € L?(R), which is not possible since the

spectral radius of 7 is strictly less than one in L?(R). The proof is concluded. U
REMARK 3. Tt is worthy of mention that the operator T defined in (2.18) is well
defined and compact in L9(R) for every ¢ > 1 under the condition % e L'(R).

Indeed, the inequality
1
ITh(x)| = I lleolltlloo [ ——dy
gy)

shows that 7 : L*°(R) — L°°(R), so that by interpolation 7 is defined in L4 (R) for
every g > 1. Moreover, T is compact in LZ(R), hence Theorem 4.2.14 in [20] implies



Vol. 16 (2016) An inhomogeneous nonlocal problem 225

the compactness of T in L9 (R) for every ¢ > 2. Thus T* is compact in L7 for every
q € (1,2), and the same theorem gives that 7* is compact in L9 for every ¢ > 1, so
that T is also compact in L?(R) for every g > 1.

However, T is not compact in L' (R). Observe that ITull;r = |lull;r for every
nonnegative u € L'(R). Thus ||T|| = 1, and it follows similarly that 175 = 1 for
every k € N. Thus the spectral radius of T is one. If 7" were compact, by Krein—
Rutman’s theorem we would have a positive solution of (1.2), which is not possible
by Theorem 2, part (b).

3. An insight into the critical case

This final section is devoted to analyze what could be termed as a “critical case” in
the subject of existence of positive solutions in L!(R) of the problem:

/J(x_y)”@%w—u@)za xeR. (1.2)
gy ) gy

More precisely, we will assume throughout that g(s) = Als| for some A > 0 and all
sufficiently large |s|, and we will study the influence of the parameter A in the question
of integrability of solutions. Observe that, by Theorems 1 and 2 [cf. also Remark 1(b)],
there are always positive solutions of (1.2) for these functions g whenever A > 0.

As we have seen in the previous sections, it turns out that the value A = 1 should
play a special role. This is easily seen by considering the domain of integration D, :=
{y: |x —y| < g(y)}. For all sufficiently large positive x, we have

1 1 .
DX = (H—)\x, mx) ifA <1

1
D, = (1 +)\x, +oo) forA =1 3.1

1 1
Dy={|—-00,——x | U x,+0o0) whenA > 1.
A—1 A1

Thus we see that D, is a finite interval for A < 1 and becomes infinite when A crosses

the value 1 (of course, a similar analysis can be done when x is negative). This explains
why in some of our reasonings below the cases A < 1 and A > 1 have to be treated
separately.

In order to understand problem (1.2) when g(s) = Al|s| for large |s|, it is convenient
first to consider the case where g(s) = Als| for s € R, that is,

_ x—y\u®)
mm_/J(Mﬂ)Awﬂy x € R\{0}. (3.2)

Observe that this equation has to be considered in R\ {0}, the reason being that there is
a singularity introduced by the fact that the function A|s| vanishes at s = 0. However,
it can be checked that the problem is meaningful.
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We look for a solution of (3.2) of the form u(x) = |x|~%, x € R\{0}, for some
a > 0. In what follows we are only dealing in detail with the case A > 1, since the
case 0 < A < 1 is slightly simpler. For x > 0 we have

x—=y\ Iy 1/°° (x—y) o
J dy = — J y T dy
/ (7\|y| ) Alyl AJ oy Ay

A+1

1
1 A-TY X =y oy a—1
+X/_oo J ( —r )( y) " dy. (3.3)

In the first integral of the right-hand side of (3.3), we make the substitution t = X)\;yy,

to obtain:
© (P2 ety = e [ T +A)elds
1 A Y y=m~M 1 ’
X y -3

A+1

and with the same change of variable

1

1
A—1*¥ — A
/ 1 J(" y)(—y)“ldy=7\xa/ J()As + 1177 ds,
—00 =Ay -1

where we have used the symmetry of J. Thus we see that u = |x|~* will be a solution
of the equation in (3.2) in x > 0 if and only if

1
/ J(O1 + Ae|*Ndr = 1.
-1

A similar argument works for x < 0. Thus it makes sense to consider the function Fi
defined by

1
F)\(oz)z/ JOI+M*dr—1, a>0 (3.4)
—1

and to look for the zeros of this function, which will provide with special solutions of
(3.2). They will turn out to be determinant for the problem (1.2).

It will be proved in Lemma 8 below that F, has precisely two zeros, counting
multiplicities. One of them is « = 1 and the other one will be denoted by «(A) (when
a = 1 is a double zero we simply set «(A) = 1).

Then we have:

THEOREM 7. Assume g € C(R), g > 0 verifies g(s) = Als| for |s| > so > 0,
where A > 0. Then:
(a) If a(\) > 1, then all positive solutions p of (1.2) lie in L' (R) and there exist

Cy, Cy > 0 such that

C1 Cl
W < px) < W for large |x|. 3.5)

(b) When a(N) < 1, the positive solutions of (1.2) do not belong to L'(R).
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The most important property with regard to F3 is:

LEMMA 8. The function F» is strictly convex and belongs to C*°(0, +00). More-
over, liMy—s 100 FA () = +00, and either Fy has exactly two positive zeros, o = 1
and a = a(A) # 1 or Fy vanishes only at « = 1 with F}’\(l) =0. When A < 1, we
have a(A\) = 2.

REMARK 4. As we have already quoted, when F vanishes only at « = 1, we will
seta(A) = 1.

Proof of Lemma 8. The assertion about the smoothness of F is more or less imme-
diate (in spite of the fact that F has a singularity at t = —% when A > land @ < 1,
the singularity is integrable since o > 0). Moreover,

1
Fy () =/] J(OI1 4+ At |*T(log |1 4+ Ar])?dr > 0,

so that Fj is a strictly convex function. As a consequence, F has at most two zeros.
The fact that one of these zeros is precisely @ = 1 follows because J has unit integral.
Also, choosing § € (0, %) small enough:

28
Fx(a) z/ J(t)(1+)\t)“_1dtz(| ilnfzaj(z))8(1+7\8)"‘_l —1— 400
) zZ|=

as @ — +o00, and when A > 1:

0 0
F;\(oc)z/ 1 JOA+A)*"1dr — 1> inf J(2) l(1+7\t)“_1dt—1
- DN

1
x lzl=x

inf 1 J(2)
=—"2 154 asa — 0+.

Ao
Thus we deduce that, for A > 1, either Fj vanishes exactly twice, or it vanishes only
at @ = 1, which is a global minimum for F. On the other hand, if A < 1, we have
fort € (—1,0), 1 +Ar > 1+t > 0, and of course the same inequality is true when
t € (0, 1). Therefore

1
Fy(a) = / J(O 4+ A" 1dr — 1.
-1

Since J is symmetric, it follows that F (2) = 0. Hence by the strict convexity of Fj,
we deduce that it only vanishes at @« = 1, 2. Whence «(A) = 2 in this case, the proof
is concluded. O

REMARK 5. The presence of the solution u(x) = \Tl|’ which is not in L! (R) is
somehow surprising, but it is only due to the fact that the weight A|s| vanishes at zero.
As Theorem 7 shows, the only important point in order to decide whether the positive
solutions of (1.2) are in L!(R) or not is the relation between the values a(\) and 1.
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Proof of Theorem 7. (a) Assume a(A) > 1 and let up = |x|~*™), x # 0. Choose
N > so and take A > 0 such that p < Aujy in |x| < N. Define

v = min{p, Auy}.

It is to be noted that v is well-defined since v = p in |x| < N, while both functions
make sense if [x| > N and are solutions of (1.2) if N is adequately large. With this
in mind, it is easily seen that v is a supersolution of (1.2). Since v € LY(R), because
a(A) > 1, it follows that v is in fact a solution. Arguing as in the proof of Theorem
1(a) (a little bit of extra care is needed because of the singularity at zero), we obtain
that p has to be a multiple of v. Therefore p = v € L' (R) and

A
px) < W for large |x|,

which shows the upper bound in (3.5). The lower bound is obtained in a similar way:
choose B > 0 such that p > Buj in 1 < |x| < N. The function

w(x) = max{p(x), Bux(x)x|x>1}

is a subsolution in L' (R), therefore a solution of (1.2) (here X|x|>1 denotes the char-
acteristic function of the set {x € R : |x| > 1}). Thus w = p, so that

B
p(x) > W for |x| > 1.

(b) Finally assume «(A) < 1, and for the sake of contradiction suppose p € L'(R).
Take N as before and define

[ Dua), K| < N
= | min{p(x), Dur(0)), Ix| > N,

where D is such that Dup(x) < p(x) on |x| = N. It can be checked that z is a
supersolution of (3.2). Since z € L! (R) [because a(A) < 1] it also follows that z is
actually a solution of (3.2). However, any two solutions of (3.2) in L!(R) are linearly
dependent, so we deduce z = Du. In particular, Duy (x) < p(x) if |[x| > N, which
is a contradiction since we assume p € L' (R) while uy ¢ L'(R). Thus p ¢ L'(R),
as we wanted to show. This finishes the proof. O

To conclude this section, we return to the question on whether «(A) > lora(A) < 1
for a given value of A. In order to study this matter, we analyze the function

1

G(?\):F)’\(l)z/ J(t)log |1 + At| dt.
1

It is clear that G(A) < O implies «(A) > 1, while G(A) > 0 and G(A) = 0 mean
a(A) < 1 and a(A) = 1, respectively. Thus the important point is to precisely deter-
mine the zeros of the function G and the regions where it is positive or negative. This
turns out to be a very subtle question, which depends even on the kernel J.

We can prove the following:
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LEMMA 9. There exist \g, Ao > 0 such that V2 < Ao < Aco and with the property
that G < 0in (0, Ag) and G > 0 in (Aso, +00).

1

Therefore G (M) —log A converges to a finite value as A — +o00. Thus limy_, 1o, G(A)
= +-o00. Since G is continuous, the proof will be concluded if we show that G(A) < 0
for A € (0, +/2]. Write:

Proof. Observe first that

1

1
G\ = / J(t) log J (1) log
—1 1

1
dt:log7\+/ t+x‘dt

A A
G(A):/ J(t)log|1+7\t|dt—|—/l J(t)log |1 + At|dt
—1

X

1
+/1 J@®)log |l +At|dt =: I + I + 1.

A

For the first of these integrals we have

1
I =[ J (1) log(A\t — 1)dt

A

so that

1
L+ 5 =[ J (1) log(\*t? — 1)dr < 0,

A
since A2t2 — 1 < A2 —1 < 1, and the logarithm becomes negative. The remaining
integral can be dealt with in a similar fashion:

1 1

L = /Al J () log(1 + At)dt = /A J (1) log(1 — Nt*)dt < 0.
_ 0

>

Therefore GAA) < 0if 0 < A < V2. The proof is concluded. ]

Proof of Theorem 3. It is a straightforward consequence of Theorem 7 and Lemma 9.
O

REMARK 6. Numerical evidence shows that for many kernels J the equality Ay =
Ao holds (actually, the function G looks like that in Fig. 1).

However, this is not always the case, and it would be interesting to find sufficient
conditions which imply this equality.

We will construct next a kernel with Ay < Aso. Let H be a C1, even, compactly
supported, nonnegative, even function with unit integral. For small ¢ > 0 define

b= () () () ()
6e £ & £ £
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Figure 1. Graph of the function G for an approximately constant kernel

where x| = 4—1‘, Xy = %. Then J, is also a C', compactly supported, nonnegative, even
function with unit integral. Consider the function

1
G(?\,e)z/ Je(t) log |1 + Ar|dt, A>0,e>0,¢6~0.
-1

Performing the change of variables s = 1 + At, it is not difficult to see that G is
continuous with respect to both variables A, € when ¢ is small enough, and continuously
differentiable with respect to A for A # %, 16. Moreover,

GO0 = 1 s 12)‘2 |
,0)=—1lo - - =~ —1).
6 2\ \ 16 16

By using standard calculus, it is possible to show that G (A, 0) vanishes exactly three
times, at some values w1, (2, 3 verifying 19—6 < u1 < u2 < 16 < u3. Moreover,
these are simple zeros of G(A, 0). Therefore, we may apply the implicit function
theorem to obtain that the equation G (A, ¢) = 0 can be solved in a neighborhood of

wi, 1 = 1,2,3 for small £. Hence there exist three functions A;(e), i = 1,2, 3 such
that G(A;(e),¢) = 0and A1 (e) < A2(e) < Az(¢) for small enough ¢. This entails that
for the kernels J, we always have Ay < Ay for small enough ¢. Let us mention in
passing that the kernel J; can be constructed strictly positive in (—1 + ¢, 1 — ¢), by
simply adding a suitable function H, of order ¢¥ for some y > 1 and small ¢.
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