
J. Evol. Equ. 16 (2016), 209–232
© 2015 Springer Basel
1424-3199/16/010209-24, published onlineSeptember 12, 2015
DOI 10.1007/s00028-015-0299-x

Journal of Evolution
Equations

An inhomogeneous nonlocal diffusion problem with unbounded
steps

Carmen Cortá zar, Manuel Elgueta, Jorge García-Meliá n

and Salomé Martínez

Abstract. We consider the following nonlocal equation

∫
J

(
x − y

g(y)

)
u(y)

g(y)
dy − u(x) = 0 x ∈ R,

where J is an even, compactly supported, Hölder continuous kernel with unit integral and g is a continuous
positive function. Our main concern will be with unbounded functions g, contrary to previous works. More
precisely, we study the influence of the growth of g at infinity on the integrability of positive solutions of
this equation, therefore determining the asymptotic behavior as t → +∞ of the solutions to the associated
evolution problem in terms of the growth of g.

1. Introduction

In the present paper we will be concerned with the nonlocal evolution problem
⎧⎪⎨
⎪⎩
ut (x, t) =

∫
J

(
x − y

g(y)

)
u(y, t)

g(y)
dy − u(x, t), x ∈ R, t > 0

u(x, 0) = u0(x) x ∈ R,

(1.1)

where J is a Hölder continuous function which we assume nonnegative, even, sup-
ported in the unit interval [−1, 1] and with ∫

R
J (x)dx = 1. For simplicity we will also

assume throughout that J > 0 in (−1, 1). The function g is continuous and positive
in R, but no additional conditions at infinity will be assumed for the moment.

Problem (1.1) was introduced in [8] as a generalization of the well-studied case
g = 1. If u(x, t) is thought of as the density of a population, then the term

J

(
x − y

g(y)

)
u(y, t)

g(y)

represents the probability that an individual which lies in the position y reaches the
position x . Since J is supported in the interval (−1, 1), this means that position x
can only be reached from those y which verify |x − y| < g(y), so that g(y) can be
viewed as the “step” of the jump of individuals standing at position y and introduces
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a heterogeneity in the dispersal of the species (see also [14,16,17,25,28,29] for other
nonlocal models considering heterogeneities).
While a lot of previous works have considered problem (1.1) with g = 1 (cf.

for instance [1–7,13,18,19,21–23,27,30] and references therein), the problem with a
general g has not received as much attention as far as we know. We refer the reader
to [9,10,12,14,15,26], where typically g is a bounded function. Therefore our main
purpose here will be to analyze the asymptotic behavior of solutions of (1.1) when
g is unbounded. Closely related to the present paper is [11], where the asymptotic
behavior of solutions of (1.1) was studied for some special unbounded functions g.
It is easily seen by an application of semigroup theory that problem (1.1) admits a

unique solution u for every u0 ∈ L1(R), which in addition verifies ‖u(·, t)‖L1(R) =
‖u0‖L1(R) for every t > 0 (see [9,11]). Moreover, the asymptotic behavior of this
solution strongly depends on the positive solutions of the stationary counterpart, that
is ∫

J

(
x − y

g(y)

)
u(y)

g(y)
dy − u(x) = 0, x ∈ R, (1.2)

and more precisely on its positive supersolutionsw. It was proved in [9] (see also [11])
that:

(a) If w ∈ L1(R) is a positive supersolution, then w is actually a solution of (1.2),
and every positive solution of (1.1) verifies

u(·, t) → ‖u0‖L1(R)

‖w‖L1(R)

w in L1(R)

as t → +∞.
(b) If there exists a positive supersolution w �∈ L1(R), then every positive solution

of (1.1) verifies u(·, t) → 0 in L1
loc(R) as t → +∞. In particular, (1.2) does

not have solutions in L1(R).

Our objective in the present paper will be twofold: on the one hand, we will find
conditions on g which allow us to obtain positive solutions of (1.2), while on the other
hand we will discuss whether these solutions are actually in L1(R), thereby providing
a description of the asymptotic behavior of solutions of problem (1.1).

The main novelty in this work is that we will be mainly dealing with unbounded
functions g. To begin with, we will consider the simpler case where g satisfies:

lim sup
|s|→∞

g(s)

|s| < 1. (1.3)

The importance of this condition is due to the fact that the integral in (1.2) is performed
in a bounded set for every x ∈ R. It ensures the existence of solutions, although they do
not necessarily belong to L1(R). One of our first objectives will be then to determine
some additional conditions on g which would let us know whether positive solutions
lie in L1(R) or not.
When g verifies (1.3), a solution of (1.2) is a function u ∈ C(R) which verifies the

equation for every x ∈ R.
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THEOREM 1. Assume g ∈ C(R) is positive and satisfies (1.3). Then there exists a
positive solution p ∈ C(R) of (1.2). Moreover, assume there exists a nondecreasing,
continuous, positive function h verifying

lim sup
s→+∞

h(λs)

h(s)
< ∞ (1.4)

for some λ > 1 and such that

C1h(|s|) ≤ g(s) ≤ C2h(|s|) if |s| ≥ s0 (1.5)

for some C1,C2, s0 > 0. Then

(a) If
∫ 1

g2
< ∞, then p ∈ L1(R) ∩ L∞(R) and lim|x |→∞ p(x) = 0. In addition, if

q is any other positive solution of (1.2), there exists μ > 0 such that q = μp.
(b) If lim sup|s|→∞

g(s)
|s| < 1

2 , h is differentiable for large |s| and h′(s) is bounded,
then p �∈ L1(R), provided that

∫ 1
g2

= ∞. Besides, no positive solution of (1.2)

belongs to L1(R).

REMARKS 1. (a) An example for the function h is h(s) = sα for s > 0 and some
α > 0. Then part (a) will hold for α ∈ ( 12 , 1], while part (b) will be applicable if
α ≤ 1

2 .
(b) The existence of positive solutions in case (a) of Theorem 1 follows also when
condition (1.3) is relaxed to g(s) ≤ |s| for large |s|. See Remark 2 in Sect. 2.
(c) It is not hard to show that if h is nondecreasing and (1.4) is verified for some λ > 1,
then it is also verified for every λ > 0.

The natural question as to the necessity of condition (1.3) arises. We will see that,
under some conditions of a different type, problem (1.2) can also admit positive solu-
tions. However, the problembecomesmore delicatewithout (1.3), since the integration
in (1.2) can be made in an unbounded set, therefore causing additional complications
in our proofs. In particular, the concept of solution has to be modified, since now the
behavior of the solutions at infinity is relevant. Accordingly, we say that u is a solution
of (1.2) if u ∈ C(R), u

g ∈ L1(R) and the equation is verified for every x ∈ R.
Our next result is aimed at functions g not verifying (1.3). It turns out that the

finiteness of the integral
∫ 1

g is determinant regarding existence of positive solutions

in L1(R).

THEOREM 2. Assume g ∈ C(R) is positive. Then

(a) If
∫ 1

g = ∞ and lim inf |s|→∞ g(s)
|s| > 1, there exists a positive solution p ∈

C(R) ∩ L∞(R). Moreover, lim|x |→∞ p(x) = 0.
(b) If

∫ 1
g < ∞ and lim|s|→∞ g(s) = +∞ , then there exists a positive supersolution

w ∈ C(R) of (1.2). Moreover, w �∈ L1(R) and no solutions of (1.2) in L1(R)

exist.
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At the sight of Theorems 1 and 2, one could wonder what happens with the integra-
bility of the solutions when the function g grows linearly at infinity, but not verifying
the condition (1.3). In this regard, Theorem 2(a) provides with positive solutions, but
does not give any hint as to their integrability.

To analyze further this subject, we will consider next functions g verifying g(s) =
λ|s| for large |s| and some λ > 0. It turns out that the integrability of solutions strongly
depends on the value of λ and even on the kernel J . This subtle matter will be studied
in Sect. 3. As a hint of what is to be found there, we have the next result:

THEOREM 3. Assume g(s) = λ|s| for |s| ≥ s0 > 0 and some λ > 0. There exist
λ0, λ∞ > 0, depending only on the kernel J , such that

√
2 < λ0 ≤ λ∞ and with

the property that for λ < λ0 all positive solutions of (1.2) belong to L1(R), while no
positive solutions in L1(R) exist when λ > λ∞.

It is worthy of mention that λ0 = λ∞ is to be expected depending on the kernel
J , but it is possible to exhibit kernels for which λ0 < λ∞. In this case, for values
λ ∈ (λ0, λ∞), the solutions may or may not belong to L1(R) (see precise details
in Sect. 3). This result is somehow contrary to intuition, since one would expect in
principle that if the solutions do not belong to L1(R) for some λ̄, they should not
belong to L1(R) for λ ≥ λ̄.

It is also relevant to point out that solutions u of (1.2) verifying u
g ∈ L1(R) belong

to L∞(R), with lim|x |→+∞ u(x) = 0, Indeed

u(x) ≤ ‖J‖∞
∫
Dx

u(y)

g(y)
dy → 0 (1.6)

as x → +∞, where Dx = {y ∈ R : |x− y| < g(y)}. It also follows from (1.6) that, if
g is bounded from below and u ∈ L1(R), then u ∈ L∞(R)with lim|x |→+∞ u(x) = 0.
On the other hand, it can also be proved that solutions of (1.2) in L1(R) are always
one-signed (cf. the proof of Lemma 3 in [9]).

As a final comment, it is interesting to illustrate our results with a family of positive
functions g ∈ C(R) verifying g(s) = λ|s|q , for |s| ≥ s0 > 0 and some q > 0, λ > 0
(the definition of g in |s| < s0 is of no importance regarding existence and integrability
of solutions). We have:

• When 0 < q ≤ 1
2 , there exists a positive solution which is not in L1(R).

• For 1
2 < q < 1, there are positive solutions in L1(R).

• If q = 1, there exists a positive solution for every λ > 0.Morever, there are values
λ0, λ∞ with

√
2 < λ0 ≤ λ∞ and such that for 0 < λ < λ0 the solutions belong

to L1(R), while they do not when λ > λ∞. For some kernels we have λ0 < λ∞
and in the interval λ ∈ (λ0, λ∞) there are values for which solutions belong to
L1(R) and others where they do not.

• When q > 1, there are no solutions in L1(R) (actually there are no solutions at
all, see [11]).
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The rest of the paper is organized as follows: in Sect. 2 we prove Theorems 1 and 2
through a sequence of lemmas. Section 3 is devoted to the study of the case where
g(s) = λ|s| for large |s| and some λ > 0, and in particular to prove Theorem 3.

2. Proof of Theorems 1 and 2

Before coming to the actual proof of the theorems, we will consider some lemmas
which deal with estimates for a sequence of approximate solutions. Remember that
we are always assuming that g ∈ C(R) is positive. We first truncate g to be bounded
and bounded away from zero: let N > 1 and define:

gN (s) = max

{
min{g(s), N }, 1

N

}
,

so that 1
N ≤ gN (s) ≤ N .We can apply Theorem 4.3 in [8] to obtain a positive bounded

solution pN ∈ C(R) of problem (1.2) with g replaced by gN . We normalize pN so
that ∫ max gN

0

∫ x+w

x−w

pN (s)
∫ 1

w
gN (s)

J (z)dzdsdw = 1, x ∈ R. (2.1)

We remark that the quantity in the left-hand side of (2.1) is constant for positive
solutions of (1.2); therefore, this normalization is possible (see for instance Proposition
2.1 in [10]). Let us see that local bounds for pN can be obtained. We begin with L1

local bounds.

LEMMA 4. For every M > 0, there exist C, N0 > 0 such that, if N ≥ N0 then

∫ M

−M
pN (s)ds ≤ C.

Proof. Let M > 0 and choose η ∈ (0,min{1,max gN }) small enough. By (2.1):

1 ≥
∫ η

η
2

∫ x+w

x−w

pN (s)
∫ 1

w
gN (s)

J (z)dzdsdw

≥
∫ η

η
2

∫ x+ η
2

x− η
2

pN (s)
∫ 1

η
gN (s)

J (z)dzdsdw.

If |x | ≤ M , we have (x − η
2 , x + η

2 ) ⊂ (−M − η
2 , M + η

2 ) ⊂ (−M − 1, M + 1).
Since g is bounded from below in [−M − 1, M + 1], the same is true for gN if N is
large enough. Therefore gN (s) ≥ g0 in [−M − 1, M + 1] for some g0 > 0, so that

∫ 1

η
gN (s)

J (z)dz ≥
∫ 1

η
g0

J (z)dz =: C0 > 0,
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if η is diminished as to have η < g0. Hence

1 ≥ C0

∫ η

η
2

∫ x+ η
2

x− η
2

pN (s)dsdw = ηC0

2

∫ x+ η
2

x− η
2

pN (s)ds.

Since the interval [−M, M] can be covered with a finite number of intervals of length
η, this last inequality proves the lemma. �

The next bounds we are going to consider will be handy when proving the integra-
bility of solutions in Theorem 1, part (a). They are slightly more accurate than those
in Lemma 4.

LEMMA 5. Assume g(s) ≥ C1h(|s|), for |s| ≥ s0 > 0, where C1 > 0 and h
is positive and nondecreasing. Let x ≥ s0 and δ ∈ (0,min{1/2,C1/2}). Then there
exists C = C(δ) and N0 = N0(δ, x) such that

∫ x+δh(x)

x
pN (s)ds ≤ C

h(x)
(2.2)

for N ≥ N0.

Proof. For large enough N (depending on x) we have 2δh(x) ≤ max gN . Then by
(2.1):

1 ≥
∫ 2δh(x)

δh(x)

∫ x+w

x−w

pN (s)
∫ 1

w
gN (s)

J (z)dzdsdw

≥
∫ 2δh(x)

δh(x)

∫ x+δh(x)

x
pN (s)

∫ 1

2δh(x)
gN (s)

J (z)dzdsdw.

Observe that g is bounded from below, therefore gN (s) = min{g(s), N } for large N .
Since h(x) ≤ N if N is large enough, it can be easily checked that 2δh(x)/gN (s) ≤
θ := max{2δ, 2δ/C1} < 1. Therefore

1 ≥
∫ 2δh(x)

δh(x)

∫ x+δh(x)

x
pN (s)

∫ 1

θ

J (z)dzdsdw

= Cδh(x)
∫ x+δh(x)

x
pN (s)ds,

for some C > 0 depending on δ, which shows (2.2). The proof of the lemma is
concluded. �

Our last lemma is of a different nature and deals with the solution of a certain initial
value problem associated with an auxiliary differential equation.

LEMMA 6. Assume h ∈ C(R) is positive, nondecreasing for s ≥ s0 > 0 and
verifies (1.4) and h(s) ≤ s for s ≥ s0. For A ∈ (0, 1), let v be the solution of the
equation {

v′ = Ah(v) t > 0
v(0) = v0,

(2.3)
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where v0 ≥ s0 and ′ = d/dt. Then for every δ > 0, we can choose A small enough
such that v is defined in [0,+∞), limt→+∞ v(t) = +∞ and

v(t + 1) − v(t)

h(v(t))
≤ δ for t > 0.

Proof. Notice that the quantity

S(A) = sup
t≥s0

h(eAt)

h(t)

is finite by (1.4) and Remark 1(c). We also have that S is nondecreasing as a function
of A. Thus we may choose A small so that AS(A) ≤ AS(1) ≤ δ.

Next observe that (2.3) can be explicitly solved to give

∫ v(t)

v0

ds

h(s)
= At, t > 0. (2.4)

Since h(s) ≤ s for s ≥ s0, we see that the integral on the left-hand side of (2.4)
diverges at infinity, so that v is defined in [0,+∞) and limt→+∞ v(t) = +∞. We
also obtain from (2.4) that

log

(
v(t + 1)

v(t)

)
=

∫ v(t+1)

v(t)

ds

s
≤

∫ v(t+1)

v(t)

ds

h(s)
= A,

therefore v(t + 1) ≤ eAv(t) so that h(v(t + 1)) ≤ h(eAv(t)). Hence

v(t + 1) − v(t) =
∫ t+1

t
Ah(v(s))ds ≤ Ah(v(t + 1))

≤ Ah(eAv(t)) ≤ AS(A)h(v(t))

≤ δh(v(t)),

as was to be proved. �

Finally, let us proceed to the proof of our main results.

Proof of Theorem 1. Observe first that the integration in (1.2) takes place in the set
Dx = {y ∈ R : |x − y| < g(y)}. If ε > 0 is chosen small enough, by condition (1.3),
we have g(s) ≤ (1 − ε)|s| if |s| ≥ s1, for some s1 > 0 which depends on ε. It is then
easily seen that gN (s) ≤ (1 − ε)|s| if |s| ≥ s1 for large N .
Now take x > 0 (the case x < 0 being analyzed similarly). If y ∈ Dx verifies

|y| ≥ s1, then y − (1 − ε)|y| < x < y + (1 − ε)|y|, so that y ≥ 0 follows, hence
εy < x < (2 − ε)y. We deduce

Dx ⊂ (−s1, s1) ∪
(

1

2 − ε
x,

1

ε
x

)
. (2.5)
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Thus for every K > 0, there exists M > 0, depending on K such that Dx ⊂ [−M, M]
for every x ∈ [0, K ]. Letting g0 = inf [−M,M] g, we obtain

pN (x) =
∫
Dx

J

(
x − y

gN (y)

)
pN (y)

gN (y)
dy ≤ ‖J‖∞

g0

∫ M

−M
pN (y)dy ≤ C

by Lemma 4 (from now on, we will use the letter C to denote different positive
constants). This inequality can be extended to x ∈ [−K , K ]. On the other hand, if
x, z ∈ [−K , K ]:

|pN (x) − pN (z)| ≤
∫
Dx∪Dz

∣∣∣∣J
(
x − y

gN (y)

)
− J

(
z − y

gN (y)

)∣∣∣∣ pN (y)

gN (y)
dy

≤ L|x − z|α
∫ M

−M

pN (y)

gN (y)1+α
dy

≤ L

g1+α
0

|x − z|α
∫ M

−M
pN (y)dy ≤ C |x − z|α,

where L > 0, α ∈ (0, 1) stand for the Hölder constant and exponent of J , respectively.
We deduce that {pN }N>0 is equicontinuous and uniformly bounded in [−K , K ], for
every K > 0. Thus by Arzelá-Ascoli’s theorem and a diagonal argument, we obtain
the existence of a sequence Nk → +∞ such that pNk → p uniformly on compact
sets of R (we will continue to denote pNk as pN for simplicity).

Since Dx is a bounded set for every x ∈ R by (2.5), we may pass to the limit
in the equation verified by pN to see that p is a nonnegative solution of (1.2). Our
next task will be to prove that p is nontrivial. For this purpose, we come again to the
normalization (2.1), setting x = 0, and rewrite it using Fubini’s theorem

1 =
∫ max gN

0

∫ max gN

s
pN (s)

∫ 1

w
gN (s)

J (z)dzdwds

+
∫ 0

−max gN

∫ max gN

−s
pN (s)

∫ 1

w
gN (s)

J (z)dzdwds. (2.6)

If we use again that gN (s) ≤ (1−ε)|s| if |s| ≥ s1, we obtainw/gN (s) ≥ 1/(1−ε) > 1
when 0 < s ≤ w ≤ max gN ; therefore, the integration with respect to w in the first
integral in (2.6) is reduced to the interval [0, s1]. Similarly, in the second integral the
integration reduces to [−s1, 0]. Noticing in addition that gN = g in [−s1, s1] if N is
large enough, we obtain from (2.6) that

1 =
∫ s1

−s1

(∫ max[−s1,s1] g

|s|

∫
w
g(s)

J (z)dzdw

)
pN (s)ds. (2.7)

Since pN → p uniformly on compact sets of R, we may pass to the limit in (2.7) to
obtain that p is nontrivial. According to the maximum principle, it follows that p > 0
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in R. We include a sketch of proof of this fact for completeness: assume x0 ∈ R is
such that p(x0) = 0. Then∫

J

(
x0 − y

g(y)

)
p(y)

g(y)
dy = 0.

Since g is positive inR, this implies that p ≡ 0 in a neighborhood of x0. Now a rather
standard connectedness argument shows that p ≡ 0 in R. Since p is nontrivial, this is
not possible, so that p > 0 in R.
Our next step is to prove part (a). Fix δ ∈ (0,min{1/2,C1/2}). We may pass to the

limit as N → +∞ in (2.2) in the statement of Lemma 5 to obtain that
∫ y+δh(y)

y
p(s)ds ≤ C

h(y)
(2.8)

for every y ≥ s0, where C = C(δ) is independent of y. Now fix x ≥ s0 and define
recursively the sequence x0 = x , xn+1 = xn + δh(xn). We claim that xn ≥ v(n),
where v is the function given in Lemma 6 with v(0) = s0 and A sufficiently small.
This is proved by induction. Clearly x0 ≥ v(0); assume xn ≥ v(n) for some n. Then

xn+1 = xn + δh(xn) ≥ v(n) + δh(v(n)) ≥ v(n + 1)

by Lemma 6. Thus xn ≥ v(n) for every n ∈ N, and in particular xn → +∞ as
n → +∞. Using (2.8) we have

∫ xn+1

x
p(s)ds =

n∑
k=0

∫ xk+1

xk
p(s)ds ≤ C

n∑
k=0

1

h(xk)
≤ C

n∑
k=0

1

h(v(k))
.

Finally, observe that h(v(k)) is nondecreasing, and∫ ∞ ds

h(v(s))
= 1

A

∫ ∞ dt

h(t)2
< +∞,

so that the series
∑∞

k=0
1

h(v(k)) converges and∫ xn+1

x
p(s)ds ≤ C,

where C does not depend on n. Letting n → +∞ we have p ∈ L1(0,+∞). Arguing
similarly for negative x we obtain p ∈ L1(R).
To conclude the proof of this part, assume there exists another solution q of (1.2).

Choose μ > 0 such that q(0) = μp(0). It is not difficult to check that the function
w = min{q, μp} is a supersolution of (1.2), which is in L1(R). Therefore w is a
solution of (1.2) (cf. Remark 1 in [11]). Now consider the set � := {x ∈ R : q(x) =
μp(x)}, which is clearly a closed set. It is also open, for if x0 ∈ �, then

w(x0) = q(x0) =
∫

J

(
x0 − y

g(y)

)
q(y)

g(y)
dy

≥
∫

J

(
x0 − y

g(y)

)
w(y)

g(y)
dy = w(x0),
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so that q ≡ w in a neighborhood of x0, and similarly μp ≡ w in a neighborhood of
x0. Hence � is open. Since 0 ∈ �, it follows that � = R and so q = μp in R.
To prove part (b), we take a large positive x and denote by f (x) the largest solution

of the equation w = g(x + w) [which exists thanks to condition (1.3)]. It is to be
noted that the condition lim sups→+∞

g(s)
|s| < 1

2 implies

lim sup
x→+∞

f (x)

x
< 1. (2.9)

Then, from (2.1),

1 =
∫ f (x)

0

∫ x+w

x−w

pN (s)
∫ 1

w
gN (s)

J (z)dzdsdw,

and passing to the limit as N → +∞:

1 =
∫ f (x)

0

∫ x+w

x−w

p(s)
∫ 1

w
g(s)

J (z)dzdsdw

≤
∫ f (x)

0

∫ x+w

x−w

p(s)dsdw ≤ f (x)
∫ x+ f (x)

x− f (x)
p(s)ds.

Thus, if x is large enough:
∫ x+ f (x)

x− f (x)

p(s)

g(s)
ds ≥ 1

C2h(x + f (x))

∫ x+ f (x)

x− f (x)
p(s)ds

≥ C1

C2 f (x)g(x + f (x))
= C1

C2 f (x)2
, (2.10)

since f (x) = g(x + f (x)). On the other hand, choose δ ∈ (0, 1) and denote D̃x =
{y ∈ R : |x − y| ≤ C1δh(y)}. Then we have

p(x) =
∫

J

(
x − y

g(y)

)
p(y)

g(y)
dy ≥ cδ

∫
D̃x

p(y)

g(y)
dy,

where cδ = inf |z|≤δ J (z) > 0. Observe that, when δ is small enough, and using the
hypothesis that h′ is bounded, the set D̃x can be expressed as D̃x = [h1(x), h2(x)],
where h1(x), h2(x) are, respectively, the unique solutions of the equations y + δC1

h(y) = x , and y − δC1h(y) = x (we remark for its immediate use that both functions
h1, h2 are increasing). Therefore:

p(x) ≥ cδ

∫ h2(x)

h1(x)

p(y)

g(y)
dy. (2.11)

Next define the sequence {xk} by x1 = x and xk+1 = h−1
1 (h2(xk)), for k = 1, . . . , �,

where � is a positive integer to be chosen. It follows from (2.11) that

�−1∑
k=0

p(Hk(x)) ≥ cδ

∫ h2(x�)

h1(x)

p(y)

g(y)
dy, (2.12)
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where we have set H = h−1
1 ◦ h2. Also observe that

h2(xk) − h1(xk) = δC1h(h1(xk)) + h(h2(xk))

≥ 2C1δh(h1(xk)) ≥ 2C1δh(h1(x))

so that we obtain the estimate h2(x�) − h1(x) ≥ 2C1δ�h(h1(x)) for the length of the
interval of integration in (2.12). Taking into account that h(x) = O(x) for large x , we
further deduce

x = h1(x) + δC1h(h1(x)) ≤ (1 + δCC1)h1(x).

for some C > 0. Hence

h2(x�) − h1(x) ≥ 2C1δ�h

(
1

1 + δCC1
x

)
. (2.13)

On the other hand, condition (2.9) allows to choose z = z(x) so that z− f (z) = h1(x)
if x is large enough. Moreover, there exists η > 0 such that

η ≤ 1 − f (z)

z
= h1(x)

z
= x − C1δh(h1(x))

z
≤ x

z
.

This in turn implies

f (z) = g(z + f (z)) ≤ C2h(z + f (z)) ≤ C2h(2z) ≤ C2h

(
2

η
x

)
(2.14)

for large x . Combining (2.13), (2.14) and hypothesis (1.4) [and also Remark 1(c)], we
deduce that for a suitably large �, independent of x , the inequality

h2(x�) − h1(x) ≥ 2 f (z)

holds. Then, since z − f (z) = h1(x), we arrive from (2.12), taking into account that
[z − f (z), z + f (z)] ⊂ [h1(x), h2(x�)] and using again (2.14), at

�−1∑
k=0

p(Hk(x)) ≥ cδ

∫ z+ f (z)

z− f (z)

p(y)

g(y)
dy ≥ C1cδ

C2 f (z)2
≥ C1cδ

C2
2h( 2

η
x)2

.

Take now b > a � 1. Integrating the last inequality in (a, b):

�−1∑
k=0

∫ b

a
p(Hk(x))dx ≥ C1cδ

C2
2

∫ b

a

1

h( 2
η
x)2

dx = C1cδη

2C2
2

∫ 2b
η

2a
η

1

h(y)2
dy. (2.15)

To conclude the proof, we first notice that H ′ ≥ 1 for large values of x . Indeed,
x = h1(x) + δC1h(h1(x)) implies that h−1

1 (x) = x + δC1h(x), so that H(x) =
h−1
1 (h2(x)) = h2(x) + δC1h(h2(x)) = 2h2(x) − x and H ′ = 2h′

2 − 1 follows. In
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addition, h2(x) = x + δC1h(h2(x)), so that h′
2(x) = 1 + δC1h′(h2(x))h′

2(x) ≥ 1,
thus H ′ ≥ 1. Now:

∫ b

a
p(H(x))dx =

∫ H(b)

H(a)

p(y)

H ′(H−1(y))
dy ≤

∫ H(b)

H(a)

p(y)dy,

and similarly

∫ b

a
p(Hk(x))dx ≤

∫ Hk (b)

Hk (a)

p(y)dy.

From (2.15) we finally obtain

∫ H�−1(b)

H(a)

p(y)dy ≥ C
∫ 2b

η

2a
η

1

h(y)2
dy

for some C > 0. Letting b → +∞, since 1/h2 �∈ L1 we deduce that p �∈ L1(R)

either.
Finally, if there were another solution in L1(R), then a similar argument as in the

proof of part (a) would imply that p ∈ L1(R). Thus problem (1.2) does not admit
positive solutions in L1(R) in this case. This concludes the proof. �

REMARK 2. It is not hard to see that the proof that the solutions pN converge
locally uniformly to a nonnegative, nontrivial function also works if (1.3) is replaced
by g(s) ≤ |s| for large |s|. Arguing as in the final part of the proof of Theorem 2
below, it can also be seen that p is a positive solution of (1.2).

Proof of Theorem 2. We begin with part (a). The existence of a positive solution of
(1.2) follows by a completely different method than the one used before. Choose and
fix a function φ ∈ C(R) with φ > 0 and

∫
φ(y)

g(y)
dy < +∞.

For K > 0, consider the problem

u(x) −
∫ K

−K
J

(
x − y

g(y)

)
u(y)

g(y)
dy =

∫
|y|≥K

J

(
x − y

g(y)

)
φ(y)

g(y)
dy (2.16)

for x ∈ [−K , K ]. It is not hard to show that the operator

TKu(x) =
∫ K

−K
J

(
x − y

g(y)

)
u(y)

g(y)
dy, x ∈ [−K , K ],

is compact in C([−K , K ]), since g is positive and bounded in [−K , K ]. Moreover,
its spectral radius is less than one. Indeed, if r = spr(TK ) ≥ 1, by Krein–Rutman’s
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theorem (cf. [24]) we would obtain a function u ∈ C([−K , K ]), u > 0 such that
TKu = ru. Integrating in [−K , K ] and using Fubini’s theorem we would have:

∫ K

−K
u(y)

(
r − 1

g(y)

∫ K

−K
J

(
x − y

g(y)

)
dx

)
dy = 0,

which is impossible, since the integrand is a nonnegative function which is not iden-
tically zero.
Therefore there exists a positive solution uK ∈ C[−K , K ] of (2.16). Define

pK (x) :=

⎧⎪⎪⎨
⎪⎪⎩

uK (x)

uK (0)
, |x | ≤ K

φ(x)

uK (0)
, |x | > K .

We deduce that pK > 0 in [−K , K ], pK (0) = 1 and

pK (x) =
∫

J

(
x − y

g(y)

)
pK (y)

g(y)
dy, |x | ≤ K .

Our immediate task will be to obtain bounds for the functions pK . If ε > 0 is suffi-
ciently small, by our hypotheses on g, there exists M > 0 such that g(s) ≥ (1+ ε)|s|
if |s| ≥ M . Then

1 = pK (0) =
∫

J

(
y

g(y)

)
pK (y)

g(y)
dy ≥

∫
|y|≥M

J

(
y

g(y)

)
pK (y)

g(y)
dy

≥ inf
|z|≤ 1

1+ε

J (z)
∫

|y|≥M

pK (y)

g(y)
dy,

so that ∫
|y|≥M

pK (y)

g(y)
dy ≤ C,

for some positive constant C which does not depend on K . Let g0 = infR g. In
particular:

∫ M+ 1
4 g0

M

pK (y)

g(y)
dy ≤ C.

Denoting g1 = max[−M− 1
4 g0,M+ 1

4 g0] g, it easily follows that

∫ M+ 1
4 g0

M
pK (y)dy ≤ Cg1.

Whence it exists x0 ∈ [M, M + 1
4g0] such that pK (x0) ≤ 4Cg1

g0
. Thus

∫
J

(
x0 − y

g(y)

)
pK (y)

g(y)
dy ≤ 4Cg1

g0
.
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Observe that in the set Q := {y ∈ R : |x0 − y| ≤ 1
2g0} the inequality |x0 − y| ≤ g(y)

holds, so that Q is contained in the region of integration. Moreover, J
(
x0−y
g(y)

)
≥

inf |z|≤ 1
2
J (z) > 0 in Q. Therefore:

∫ x0+ 1
2 g0

x0− 1
2 g0

pK (y)

g(y)
dy ≤ 4Cg1

g0 inf |z|≤ 1
2
J (z)

.

Now, the interval [x0 − 1
2g0, x0 + 1

2g0] contains [M − 1
4g0, M], so that

∫ M

M− 1
4 g0

pK (y)

g(y)
dy ≤ 4Cg1

g0 inf |z|≤ 1
2
J

.

We can repeat this process finitely many times to arrive at
∫

pK (y)

g(y)
dy ≤ C, (2.17)

for some positive constant C not depending on K . Arguing as in the proof of Theorem
1, we obtain that for some sequence Kn → +∞, pKn → p uniformly on compact
sets ofR, where p ≥ 0, p(0) = 1. To pass to the limit in the equation verified by pKn ,
we fix x ∈ R, take R > |x | and notice that for sufficiently large n:

∫ R

−R
J

(
x − y

g(y)

)
pKn (y)

g(y)
dy ≤ pKn (x).

Hence letting first n → +∞ and then R → +∞:
∫

J

(
x − y

g(y)

)
p(y)

g(y)
dy ≤ p(x).

Thus p is a supersolution of (1.2). In particular, p > 0 in R. We claim that, since∫ 1
g = +∞, p is a solution of (1.2). For this aim, we remark that by (2.17) and with

a similar procedure to the one just used, we achieve p
g ∈ L1(R). Fix x, z ∈ R. Then

for large enough M, K > 0:

pK (x) − pK (z) =
∫ M

−M

(
J

(
x − y

g(y)

)
− J

(
z − y

g(y)

))
pK (y)

g(y)
dy + γK ,M

where

γK ,M =
∫

|y|≥M

(
J

(
x − y

g(y)

)
− J

(
z − y

g(y)

))
pK (y)

g(y)
dy.

Since g(y) ≥ |y| for large |y| it also follows that g(y) ≥ M if |y| ≥ M , so that

|γK ,M | ≤ L|x − z|α
∫

|y|≥M

pK (y)

g(y)1+α
dy ≤ L|x − z|α

Mα

∫
pK (y)

g(y)
dy ≤ C

Mα
.
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Setting K = Kn , and passing to a subsequence if necessary we have γKn ,M → γ M ,
which verifies |γ M | ≤ C

Mα . Moreover:

p(x) − p(z) =
∫ M

−M

(
J

(
x − y

g(y)

)
− J

(
z − y

g(y)

))
p(y)

g(y)
dy + γ M ,

and letting M → +∞ we deduce, since x, z ∈ R were arbitrary that there exists a
constant A ∈ R such that

p(x) =
∫

J

(
x − y

g(y)

)
p(y)

g(y)
dy + A, for x ∈ R.

We have already seen that p is a supersolution of (1.2), so that A ≥ 0. Also, p(x) ≥ A
in R. Hence, since p/g ∈ L1(R):

+∞ >

∫
p(y)

g(y)
dy ≥ A

∫
1

g(y)
dy,

and A = 0 is implied by the condition 1
g �∈ L1(R). Then p is a positive solution of

(1.2).
Finally, notice that lim|x |→+∞ p(x) = 0 by (1.6) in the Introduction, therefore

p ∈ L∞(R). This concludes the proof of part (a).
For part (b) we will follow closely the proof of Theorem 1.2 in [11]. Notice that

under the hypothesis that 1
g ∈ L1(R), the operator T : L2(R) → L2(R) given by

Th(x) =
∫

J

(
x − y

g(y)

)
h(y)

g(y)
dy, x ∈ R, (2.18)

is a Hilbert–Schmidt operator. Indeed, by Fubini’s theorem:
∫ ∫

J

(
x − y

g(y)

)2 1

g(y)2
dydx =

∫
1

g(y)2

∫
J

(
x − y

g(y)

)2

dxdy

=
∫

J (z)2dz
∫

1

g(y)
dy < +∞.

Therefore T is compact in L2(R). We claim that the spectral radius r of T is less than
one. Assume for a contradiction that r ≥ 1. Then Krein–Rutman’s theorem implies
the existence of a nontrivial q ∈ L2(R), q ≥ 0, such that T ∗q = rq, that is,∫

J

(
x − y

g(x)

)
q(y)

g(x)
dy = rq(x), x ∈ R. (2.19)

We claim that q ∈ C(R) and lim|x |→∞ q(x) = 0. Indeed,

r |g(x)q(x) − g(z)q(z)| ≤
∫
D

∣∣∣∣J
(
x − y

g(x)

)
− J

(
z − y

g(z)

)∣∣∣∣ q(y)dy

≤ L
∫
D

∣∣∣∣ x − y

g(x)
− z − y

g(z)

∣∣∣∣
α

q(y)dy

≤ L

(∫
D

∣∣∣∣ x − y

g(x)
− z − y

g(z)

∣∣∣∣
2α

dy

) 1
2

‖q‖L2 ,
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where D = B(x, g(x)) ∪ B(z, g(z)). If x , z are taken in a compact set, then D ⊂
[−M, M] for some M > 0, so that

∣∣∣∣ x − y

g(x)
− z − y

g(z)

∣∣∣∣ ≤ M |g(z) − g(x)| + |xg(z) − zg(x)|
g(x)g(z)

.

Whence:

r |g(x)q(x) − g(z)q(z)| ≤ (2M)
1
2 L‖q‖L2

(M |g(z) − g(x)| + |xg(z) − zg(x)|)α
g(x)αg(z)α

.

It follows that if z → x then g(z)q(z) → g(x)q(x), that is, gq is continuous in R,
hence so is q. On the other hand, using Jensen’s inequality in (2.19):

r2q(x)2 ≤ 1

g(x)

∫
J

(
x − y

g(x)

)
q(y)2dy ≤ ‖J‖∞‖q‖2

L2

g(x)
→ 0,

since lim|s|→+∞ g(s) = +∞. Therefore q ∈ L∞(R), and it attains its maximum at
some point x0 ∈ R. Then

r‖q‖∞ =
∫

J

(
x0 − y

g(x0)

)
q(y)

g(x0)
dy ≤ ‖q‖∞.

We deduce r = 1 and q ≡ ‖q‖∞ in B(x0, g(x0)). A connectedness argument gives
that necessarily q ≡ ‖q‖∞ in R, which is impossible.
Thus r < 1. Now choose an arbitrary nonnegative, nontrivial ξ ∈ L2(R)∩ L1(R)∩

C(R). There exists a unique solution of the equation w − Tw = ξ , given by the von
Neumann series w = ∑∞

n=0 T
nξ ≥ 0. In addition, since ξ ∈ C(R) we obtain easily

that w = ξ + Tw ∈ C(R) as well. Thus w ≥ Tw, that is, w is a supersolution of
(1.2) and by the strong maximum principle w > 0 in R. Using that

∫
T v = ∫

v for
every v ∈ L1(R), we also deduce that w �∈ L1(R).

Finally, assume there exists a solution p ∈ L1(R) of (1.2). Since g(x) ≥ g0 > 0 in
R, we obtain

p(x) ≤ ‖J‖∞
g0

‖p‖L1

so that p ∈ L∞(R), and in particular p ∈ L2(R), which is not possible since the
spectral radius of T is strictly less than one in L2(R). The proof is concluded. �

REMARK 3. It is worthy of mention that the operator T defined in (2.18) is well
defined and compact in Lq(R) for every q > 1 under the condition 1

g ∈ L1(R).
Indeed, the inequality

|Th(x)| ≤ ‖J‖∞‖h‖∞
∫

1

g(y)
dy

shows that T : L∞(R) → L∞(R), so that by interpolation T is defined in Lq(R) for
every q ≥ 1. Moreover, T is compact in L2(R), hence Theorem 4.2.14 in [20] implies
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the compactness of T in Lq(R) for every q ≥ 2. Thus T ∗ is compact in Lq for every
q ∈ (1, 2), and the same theorem gives that T ∗ is compact in Lq for every q > 1, so
that T is also compact in Lq(R) for every q > 1.
However, T is not compact in L1(R). Observe that ‖Tu‖L1 = ‖u‖L1 for every

nonnegative u ∈ L1(R). Thus ‖T ‖ = 1, and it follows similarly that ‖T k‖ = 1 for
every k ∈ N. Thus the spectral radius of T is one. If T were compact, by Krein–
Rutman’s theorem we would have a positive solution of (1.2), which is not possible
by Theorem 2, part (b).

3. An insight into the critical case

This final section is devoted to analyze what could be termed as a “critical case” in
the subject of existence of positive solutions in L1(R) of the problem:

∫
J

(
x − y

g(y)

)
u(y)

g(y)
dy − u(x) = 0, x ∈ R. (1.2)

More precisely, we will assume throughout that g(s) = λ|s| for some λ > 0 and all
sufficiently large |s|, and we will study the influence of the parameter λ in the question
of integrability of solutions. Observe that, by Theorems 1 and 2 [cf. also Remark 1(b)],
there are always positive solutions of (1.2) for these functions g whenever λ > 0.

As we have seen in the previous sections, it turns out that the value λ = 1 should
play a special role. This is easily seen by considering the domain of integration Dx :=
{y : |x − y| < g(y)}. For all sufficiently large positive x , we have

Dx =
(

1

1 + λ
x,

1

1 − λ
x

)
if λ < 1

Dx =
(

1

1 + λ
x,+∞

)
for λ = 1

Dx =
(

−∞,− 1

λ − 1
x

)
∪

(
1

λ + 1
x,+∞

)
when λ > 1.

(3.1)

Thus we see that Dx is a finite interval for λ < 1 and becomes infinite when λ crosses
the value 1 (of course, a similar analysis can be done when x is negative). This explains
why in some of our reasonings below the cases λ < 1 and λ > 1 have to be treated
separately.
In order to understand problem (1.2) when g(s) = λ|s| for large |s|, it is convenient

first to consider the case where g(s) = λ|s| for s ∈ R, that is,

u(x) =
∫

J

(
x − y

λ|y|
)
u(y)

λ|y| dy, x ∈ R\{0}. (3.2)

Observe that this equation has to be considered inR\{0}, the reason being that there is
a singularity introduced by the fact that the function λ|s| vanishes at s = 0. However,
it can be checked that the problem is meaningful.
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We look for a solution of (3.2) of the form u(x) = |x |−α , x ∈ R\{0}, for some
α > 0. In what follows we are only dealing in detail with the case λ > 1, since the
case 0 < λ ≤ 1 is slightly simpler. For x > 0 we have

∫
J

(
x − y

λ|y|
) |y|−α

λ|y| dy = 1

λ

∫ ∞
1

λ+1 x
J

(
x − y

λy

)
y−α−1dy

+1

λ

∫ 1
λ−1 x

−∞
J

(
x − y

−λy

)
(−y)−α−1dy. (3.3)

In the first integral of the right-hand side of (3.3), we make the substitution t = x−y
λy ,

to obtain:
∫ ∞

1
λ+1 x

J

(
x − y

λy

)
y−α−1dy = λx−α

∫ 1

− 1
λ

J (t)(1 + λt)α−1dt,

and with the same change of variable

∫ 1
λ−1 x

−∞
J

(
x − y

−λy

)
(−y)−α−1dy = λx−α

∫ − 1
λ

−1
J (s)|λs + 1|α−1ds,

where we have used the symmetry of J . Thus we see that u = |x |−α will be a solution
of the equation in (3.2) in x > 0 if and only if

∫ 1

−1
J (t)|1 + λt |α−1dt = 1.

A similar argument works for x < 0. Thus it makes sense to consider the function Fλ

defined by

Fλ(α) =
∫ 1

−1
J (t)|1 + λt |α−1dt − 1, α > 0 (3.4)

and to look for the zeros of this function, which will provide with special solutions of
(3.2). They will turn out to be determinant for the problem (1.2).
It will be proved in Lemma 8 below that Fλ has precisely two zeros, counting

multiplicities. One of them is α = 1 and the other one will be denoted by α(λ) (when
α = 1 is a double zero we simply set α(λ) = 1).
Then we have:

THEOREM 7. Assume g ∈ C(R), g > 0 verifies g(s) = λ|s| for |s| ≥ s0 > 0,
where λ > 0. Then:

(a) If α(λ) > 1, then all positive solutions p of (1.2) lie in L1(R) and there exist
C1,C2 > 0 such that

C1

|x |α(λ)
≤ p(x) ≤ C1

|x |α(λ)
for large |x |. (3.5)

(b) When α(λ) < 1, the positive solutions of (1.2) do not belong to L1(R).
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The most important property with regard to Fλ is:

LEMMA 8. The function Fλ is strictly convex and belongs to C∞(0,+∞). More-
over, limα→+∞ Fλ(α) = +∞, and either Fλ has exactly two positive zeros, α = 1
and α = α(λ) �= 1 or Fλ vanishes only at α = 1 with F ′

λ(1) = 0. When λ ≤ 1, we
have α(λ) = 2.

REMARK 4. As we have already quoted, when Fλ vanishes only at α = 1, we will
set α(λ) = 1.

Proof of Lemma 8. The assertion about the smoothness of Fλ is more or less imme-
diate (in spite of the fact that Fλ has a singularity at t = − 1

λ when λ ≥ 1 and α < 1,
the singularity is integrable since α > 0). Moreover,

F ′′
λ(α) =

∫ 1

−1
J (t)|1 + λt |α−1(log |1 + λt |)2dt > 0,

so that Fλ is a strictly convex function. As a consequence, Fλ has at most two zeros.
The fact that one of these zeros is precisely α = 1 follows because J has unit integral.
Also, choosing δ ∈ (0, 1

2 ) small enough:

Fλ(α) ≥
∫ 2δ

δ

J (t)(1 + λt)α−1dt ≥ ( inf|z|≤2δ
J (z))δ(1 + λδ)α−1 − 1 → +∞

as α → +∞, and when λ > 1:

Fλ(α) ≥
∫ 0

− 1
λ

J (t)(1 + λt)α−1dt − 1 ≥ inf
|z|≤ 1

λ

J (z)
∫ 0

− 1
λ

(1 + λt)α−1dt − 1

=
inf |z|≤ 1

λ
J (z)

λα
− 1 → +∞ as α → 0 +.

Thus we deduce that, for λ > 1, either Fλ vanishes exactly twice, or it vanishes only
at α = 1, which is a global minimum for Fλ. On the other hand, if λ ≤ 1, we have
for t ∈ (−1, 0), 1 + λt ≥ 1 + t ≥ 0, and of course the same inequality is true when
t ∈ (0, 1). Therefore

Fλ(α) =
∫ 1

−1
J (t)(1 + λt)α−1dt − 1.

Since J is symmetric, it follows that Fλ(2) = 0. Hence by the strict convexity of Fλ,
we deduce that it only vanishes at α = 1, 2. Whence α(λ) = 2 in this case, the proof
is concluded. �

REMARK 5. The presence of the solution u(x) = 1
|x | , which is not in L1(R) is

somehow surprising, but it is only due to the fact that the weight λ|s| vanishes at zero.
As Theorem 7 shows, the only important point in order to decide whether the positive
solutions of (1.2) are in L1(R) or not is the relation between the values α(λ) and 1.
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Proof of Theorem 7. (a) Assume α(λ) > 1 and let uλ = |x |−α(λ), x �= 0. Choose
N � s0 and take A > 0 such that p < Auλ in |x | ≤ N . Define

v = min{p, Auλ}.
It is to be noted that v is well-defined since v = p in |x | ≤ N , while both functions
make sense if |x | > N and are solutions of (1.2) if N is adequately large. With this
in mind, it is easily seen that v is a supersolution of (1.2). Since v ∈ L1(R), because
α(λ) > 1, it follows that v is in fact a solution. Arguing as in the proof of Theorem
1(a) (a little bit of extra care is needed because of the singularity at zero), we obtain
that p has to be a multiple of v. Therefore p = v ∈ L1(R) and

p(x) ≤ A

|x |α(λ)
for large |x |,

which shows the upper bound in (3.5). The lower bound is obtained in a similar way:
choose B > 0 such that p ≥ Buλ in 1 ≤ |x | ≤ N . The function

w(x) = max{p(x), Buλ(x)χ|x |≥1}
is a subsolution in L1(R), therefore a solution of (1.2) (here χ|x |≥1 denotes the char-
acteristic function of the set {x ∈ R : |x | ≥ 1}). Thus w = p, so that

p(x) ≥ B

|x |α(λ)
for |x | ≥ 1.

(b) Finally assume α(λ) < 1, and for the sake of contradiction suppose p ∈ L1(R).
Take N as before and define

z =
{
Duλ(x), |x | ≤ N
min{p(x), Duλ(x)}, |x | > N ,

where D is such that Duλ(x) < p(x) on |x | = N . It can be checked that z is a
supersolution of (3.2). Since z ∈ L1(R) [because α(λ) < 1] it also follows that z is
actually a solution of (3.2). However, any two solutions of (3.2) in L1(R) are linearly
dependent, so we deduce z = Duλ. In particular, Duλ(x) ≤ p(x) if |x | > N , which
is a contradiction since we assume p ∈ L1(R) while uλ �∈ L1(R). Thus p �∈ L1(R),
as we wanted to show. This finishes the proof. �

To conclude this section, we return to the question onwhetherα(λ) > 1 or α(λ) < 1
for a given value of λ. In order to study this matter, we analyze the function

G(λ) = F ′
λ(1) =

∫ 1

−1
J (t) log |1 + λt | dt.

It is clear that G(λ) < 0 implies α(λ) > 1, while G(λ) > 0 and G(λ) = 0 mean
α(λ) < 1 and α(λ) = 1, respectively. Thus the important point is to precisely deter-
mine the zeros of the function G and the regions where it is positive or negative. This
turns out to be a very subtle question, which depends even on the kernel J .
We can prove the following:
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LEMMA9. There existλ0, λ∞ > 0 such that
√
2 < λ0 ≤ λ∞ andwith the property

that G < 0 in (0, λ0) and G > 0 in (λ∞,+∞).

Proof. Observe first that

G(λ) =
∫ 1

−1
J (t) log

∣∣∣∣λ
(
t + 1

λ

)∣∣∣∣ dt = log λ +
∫ 1

−1
J (t) log

∣∣∣∣t + 1

λ

∣∣∣∣ dt
ThereforeG(λ)− log λ converges to a finite value as λ → +∞. Thus limλ→+∞ G(λ)

= +∞. Since G is continuous, the proof will be concluded if we show that G(λ) < 0
for λ ∈ (0,

√
2]. Write:

G(λ) =
∫ − 1

λ

−1
J (t) log |1 + λt |dt +

∫ 1
λ

− 1
λ

J (t) log |1 + λt |dt

+
∫ 1

1
λ

J (t) log |1 + λt |dt =: I1 + I2 + I3.

For the first of these integrals we have

I1 =
∫ 1

1
λ

J (t) log(λt − 1)dt

so that

I1 + I3 =
∫ 1

1
λ

J (t) log(λ2t2 − 1)dt < 0,

since λ2t2 − 1 ≤ λ2 − 1 ≤ 1, and the logarithm becomes negative. The remaining
integral can be dealt with in a similar fashion:

I2 =
∫ 1

λ

− 1
λ

J (t) log(1 + λt)dt =
∫ 1

λ

0
J (t) log(1 − λ2t2)dt < 0.

Therefore G(λ) < 0 if 0 < λ ≤ √
2. The proof is concluded. �

Proof of Theorem 3. It is a straightforward consequence of Theorem 7 and Lemma 9.
�

REMARK 6. Numerical evidence shows that for many kernels J the equality λ0 =
λ∞ holds (actually, the function G looks like that in Fig. 1).
However, this is not always the case, and it would be interesting to find sufficient

conditions which imply this equality.
We will construct next a kernel with λ0 < λ∞. Let H be a C1, even, compactly

supported, nonnegative, even function with unit integral. For small ε > 0 define

Jε(x) = 1

6ε

(
2H

(
x + x2

ε

)
+ H

(
x + x1

ε

)
+ H

(
x − x1

ε

)
+ 2H

(
x − x2

ε

))
,



230 C. Cortá zar et al. J. Evol. Equ.

Figure 1. Graph of the function G for an approximately constant kernel

where x1 = 1
4 , x2 = 3

4 . Then Jε is also a C1, compactly supported, nonnegative, even
function with unit integral. Consider the function

G(λ, ε) =
∫ 1

−1
Jε(t) log |1 + λt |dt, λ > 0, ε > 0, ε ∼ 0.

Performing the change of variables s = 1 + λt , it is not difficult to see that G is
continuouswith respect to both variablesλ, εwhen ε is small enough, and continuously
differentiable with respect to λ for λ �= 16

4 , 16. Moreover,

G(λ, 0) = 1

6
log

((
9λ2

16
− 1

)2 ∣∣∣∣λ
2

16
− 1

∣∣∣∣
)

.

By using standard calculus, it is possible to show that G(λ, 0) vanishes exactly three
times, at some values μ1, μ2, μ3 verifying 16

9 < μ1 < μ2 < 16 < μ3. Moreover,
these are simple zeros of G(λ, 0). Therefore, we may apply the implicit function
theorem to obtain that the equation G(λ, ε) = 0 can be solved in a neighborhood of
μi , i = 1, 2, 3 for small ε. Hence there exist three functions λi (ε), i = 1, 2, 3 such
that G(λi (ε), ε) = 0 and λ1(ε) < λ2(ε) < λ3(ε) for small enough ε. This entails that
for the kernels Jε we always have λ0 < λ∞ for small enough ε. Let us mention in
passing that the kernel Jε can be constructed strictly positive in (−1 + ε, 1 − ε), by
simply adding a suitable function Hε of order εγ for some γ > 1 and small ε.
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