
Transp Porous Med (2016) 111:591–603
DOI 10.1007/s11242-015-0613-7

Helical Flow and Transient Solute Dilution in Porous
Media

Gabriele Chiogna1,2 · Olaf A. Cirpka1 ·
Paulo A. Herrera3,4

Received: 3 June 2015 / Accepted: 7 December 2015 / Published online: 12 December 2015
© Springer Science+Business Media Dordrecht 2015

Abstract Helical flow can occur in porous media if the hydraulic conductivity tensor is
anisotropic.We study the structure of steady-state flowfields in three-dimensional anisotropic
porous media formed by two homogeneous layers, one of which is anisotropic. We simulate
transient transport of a conservative scalar in such flowfields by a hybrid streamline/smoothed
particle hydrodynamics method and analyze dilution. We use stretching and folding metrics
to characterize the flow field and the dilution index of a conservative scalar divided by the
volume of the domain to quantify plume dilution. Based on the results of detailed numer-
ical simulations, we conclude that nonlinear deformation triggers dilution and that plume
dilution is controlled by two parameters: the contrast between the principal directions of
the anisotropic layer, and the orientation of the hydraulic conductivity tensor with respect
to the main flow direction. Furthermore, we show that in this kind of flow fields transverse
dispersion is responsible for an increase in plume dilution, while the effect of longitudinal
dispersion is negligible.
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1 Introduction

Mixing processes are important in fluid mechanics due to their relevance for many environ-
mental, engineering, and physical problems (Ottino 1989; Duplay and Sen 2004; Hidalgo
et al. 2012). Solute dilution in steady-state flows at lowReynolds number (Re << 10), which
are typical of many natural and engineered porous media, chemical reactors, and microchan-
nels, is in general poor and controlled by slow diffusive processes. It strongly depends on
the structure of the flow field (Rolle et al. 2012; Stroock et al. 2002; Higler et al. 1999; van
Baten et al. 2001) and on its capability of generating concentration gradients. Among other
approaches, some recent studies aimed at describingmixing andmixing-controlled processes
in two-dimensional porousmedia, investigated and characterized topological (de Barros et al.
2012) and kinematic (Le Borgne et al. 2013) features of the flow field, to understand and
quantify the dependence of dilution on the flow structure.

Three-dimensional flow fields can display additional mixing enhancement mechanisms
such as the occurrence of secondary helical motion (Holm and Kimura 1991; Moffatt 2014;
Stroock et al. 2002; Villermaux et al. 2008; Toussaint et al. 1995). While flow in station-
ary heterogeneous isotropic porous media is constrained on Lamb surfaces (Sposito 1994,
2001) and its impact on solute transport has been widely investigated in the past decades, the
impact of complex (e.g., helical) steady-state flow configurations that can occur in anisotropic
porous media has not been investigated in detail. In anisotropic porous media, streamlines
are not necessarily perpendicular to equipotential surfaces (Bear 1972), and the solution of
Darcy’s law may lead to the definition of three-dimensional steady-state flow fields, which
may exhibit nonzero helicity density, i.e., the scalar product between the velocity and its
vorticity (Moffatt and Tsinober 1992; Chiogna et al. 2014). Therefore, helical flow can occur
in this type of media (Ye et al. 2015). Notice that, contrary to Stokes flows, Darcy flows
are helical only if appropriate boundary conditions are applied and the anisotropy of the
porous medium is preserved during upscaling (Chiogna et al. 2014). Hence, the solution of
Darcy’s law admits the occurrence of scale-dependent helical flows in porous media, even if
they are composed by simple homogeneous anisotropic blocks (Chiogna et al. 2015; Bakker
and Hemker 2004; Hemker et al. 2004; Hemker and Bakker 2006; Stauffer 2007; Ginzburg
and dHumires 2007). Cirpka et al. (2015) have shown that under steady-state transport con-
ditions twisting streamlines are the main source of plume deformation controlling mixing
enhancement.

The main purpose of this manuscript is to investigate how helical flows in anisotropic
porousmedia affect transient solute transport at the continuum scale and howmixing depends
on the anisotropy of the hydraulic conductivity tensor. This is particularly relevant for the
construction of engineeredmixing devices, for natural locally anisotropic porousmedia (Koza
et al. 2009; Matyca et al. 2013; Hsieh et al. 1985; Gao et al. 2012), and also for flows at
scales typical of geological structures (i.e., tens of meters).

2 Mathematical Formulation

2.1 Flow in Porous Media

The distinctive aspect of investigating flow and transport in porous media is the complex
interplay between processes occurring at multiple spatial scales (Rolle et al. 2013; Hyman
and Winter 2013). It has recently been shown that Stokes flow, which describes flow within
individual pores, can cause chaotic advection if the pore geometry is sufficiently complex.
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This can greatly enhance mixing on that scale (Lester et al. 2013). Yet, for applications in the
fields of hydrogeology and chemical engineering, pore-scale processes are upscaled, and the
porous medium is considered a continuum. In this work, we will consider flow and transport
on the continuum scale (involving at least several hundred pores). At this scale, and for
Re << 10, flow of an incompressible fluid is well described by Darcy’s law:

v = −kρg

nμ
∇

(
z + p

ρg

)
(1)

where v is the average pore flow velocity, n is the effective porosity, k is the intrinsic per-
meability, μ is the viscosity, ρ is the density of the fluid, p is the fluid pressure, and z is
the spatial coordinate parallel to gravity. For the case of water flow, the average pore water
velocity is usually expressed in terms of the hydraulic conductivityK and the hydraulic head
φ, v = −K

n ∇φ, with φ = p
ρg + z.

Spatially variable velocity fields at the continuum scale are typical for natural and engi-
neered porous media, mainly due to the heterogeneity of the hydraulic conductivity tensorK.
They induce deformation of a solute plume, enhancing concentration gradients that counteract
the smoothing effect of diffusion (Le Borgne et al. 2010, 2015), which has been extensively
studied in the literature.

At the continuum or Darcy scale, the hydraulic conductivity is a full tensor as result of
local anisotropy in the pore network (e.g., Kim et al. 1987; Pilotti 1998) and depends on the
tortuosity of the pore-scale flow paths (Bear 1972; Guo 2012). At scales typical of field scale
investigations, the structure of the geological heterogeneity remains widely unknown. Full
hydraulic conductivity tensors may be required to parametrize the anisotropic heterogeneity
of natural porous media (e.g., Hsieh et al. 1985; Indelman and Dagan 1993). This is a typical
situation encountered in hydrogeology (e.g., Neuman et al. 1984; Hsieh et al. 1985).

2.2 The Bakker and Hemker’s Flow Field

In this study, we will consider the multilayered semi-analytical solution of the flow velocity
components by Bakker and Hemker (2004). This solution has been validated by detailed
numerical simulations (Bakker and Hemker 2004). We investigate this particular set up,
because it is probably the simplest in which helical flow may arise in porous media. The
solution assumes no-flow boundary conditions at boundaries orthogonal to the y and z axes,
i.e., top, bottom, left, and right sides, of a three-dimensional domain of width 2d and height
2H as shown in Fig. 1. The flow in the x direction is driven by a constant hydraulic gradient
σ . The medium is composed by an upper homogeneous anisotropic layer (layer 1) with
hydraulic conductivityK1 and a lower homogeneous isotropic layer (layer 2) with hydraulic
conductivity K2 of the same thickness H and porosity n. While the homogeneous isotropic
hydraulic conductivity tensor of the lower layer is invariant upon rotation, the principal
directions Kx̃x̃,1, Kỹỹ,1, and Kz̃z̃,1 of the anisotropic tensor in the upper layer may have an
orientation differing from the mean velocity field. We will consider the tensor rotated only in
the x–y plane, such that it forms an angle β with the positive y axis. The following relations
hold:

Kxx,1 =Kx̃x̃,1 sin
2 β + Kỹỹ,1 cos

2 β (2)

Kyy,1 =Kỹỹ,1 sin
2 β + Kx̃x̃,1 cos

2 β (3)

Kxy,1 = (
Kx̃x̃,1 − Kỹỹ,1

)
sin2 β cos2 β (4)

Kzz,1 =Kz̃z̃,1 (5)
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Fig. 1 Schematic representation of the two-layer domain considered in the numerical simulations

The components of the velocity field in the x- and y-direction for layer 1 read as:

vx,1 = −
(

Kxy,1

Kyy,1 + Kyy,2

[
Kxy,1 + Kxy,2

+Kyy,2

(
Kxy,1

Kyy,1
− Kxy,2

Kyy,2

)
cosh(y/λ)

cosh(d/λ)

]
+ Kxx,1

)
σ

n

(6)

vy,1 = Kxy,1Kyy,2 − Kxy,2Kyy,1

Kyy,1 + Kyy,2

(
1 − cosh (y/λ)

cosh (d/λ)

)
σ

n
(7)

and for layer 2 as:

vx,2 = −
(

Kxy,2

Kyy,1 + Kyy,2

[
Kxy,1 + Kxy,2

−Kyy,1

(
Kxy,1

Kyy,1
− Kxy,2

Kyy,2

)
cosh(y/λ)

cosh(d/λ)

]
+ Kxx,2

)
σ

n
(8)

vy,2 = −Kxy,1Kyy,2 − Kxy,2Kyy,1

Kyy,1 + Kyy,2

(
1 − cosh (y/λ)

cosh (d/λ)

)
σ

n
(9)

while the flow velocity at the interface between the two layers is given by

vz = −σλ

ĉn
(
Kyy,1 + Kyy,2

) sinh (x/λ)

cosh (d/λ)

(
Kxy,1

Kyy,1
− Kxy,2

Kyy,2

) (
Kyy,1 − Kyy,2

)
(10)

where

λ =
√

ĉKyy,2Kyy,1

Kyy,2 + Kyy,1
(11)

and

ĉ = H

2

Kzz,1 + Kzz,2

Kzz,1Kzz,2
(12)

Differently from other studies focusing on mixing processes in porous media, the spatial
variability of the flow field under investigation is not controlled by shearing driven by a
spatially random hydraulic conductivity, but by the angle β of the anisotropy orientation and
the anisotropy ratio R = Kx̃x̃,1/Kỹỹ,1. Figure 2 shows that the flow field varies along the
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Fig. 2 Streamlines and position of advected particles at four different time steps. Colorbar refers to the
module of the flow velocity

Table 1 Parameters characterizing the flow fields: 〈vx 〉 is the mean flow velocity in the x direction and β,
R, Kxx,1, Kyy,1, Kzz,1, Kxy,1, Kxx,2, Kyy,2, Kzz,2, and Kxy,2 refer to the properties of the hydraulic
conductivity tensors of layers 1 and 2

〈vx 〉 β R Kxx,1 Kyy,1 Kzz,1 Kxy,1 Kxx,2 Kyy,2 Kzz,2 Kxy,2

0.1470 15◦ 5 9.5 2.5 6 2 6 6 6 0

0.1219 30◦ 5 8 4 6 3.5 6 6 6 0

0.1188 45◦ 1.4 6 6 6 1 6 6 6 0

0.1155 45◦ 2 6 6 6 2 6 6 6 0

0.1098 45◦ 3 6 6 6 3 6 6 6 0

0.1019 45◦ 5 6 6 6 4 6 6 6 0

Mean flow velocity and hydraulic conductivity are expressed in m day−1

y- and z-directions, while it does not depend upon the x-direction. Advected particles are
affected by shearing in the x-direction, and secondary motion twists the streamlines in the
y − z plane. Therefore, the plane formed by a set of particles starting at a given cross section
x0 is deformed by the flow field in all three spatial dimensions, as shown in Fig. 2. In this
study, we consider six different flow configurations defined by the parameters summarized
in Table 1 with identical values of the hydraulic gradient σ = 0.0017 and porosity n = 0.1.

2.3 Numerical Solution of Solute Transport in Porous Media

Solute transport at the Darcy’s scale is described by the conservative advection–dispersion
equation:

∂c

∂t
= v · ∇c − ∇ · (D∇c) (13)

where D is defined for simplicity as the sum of a pore diffusion term Dp independent on
the flow velocity, and a mechanical dispersion term, which depends linearly on the flow
velocity and on the dispersivity tensor α (Scheidegger 1961). The components of D can be
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computed as Di j = αT|v|+(αL−αT)viv j/|v| (Bear 1972). The effects of pore-scale velocity
fluctuations and mixing on continuum-scale solute transport are typically parametrized by
this latter term. In this study, we set Dp = 1.16 × 10−9 m2 s−1, the dispersivity in the
longitudinal direction αL = 1×10−2 m, and the dispersivity in the two transverse directions
αT = 1 × 10−3 m.

Equation 13 has been solved numerically using a hybrid streamline smoothed particle
hydrodynamics (SPH) method (Herrera et al. 2010). This numerical method has been tested
and validated in previous studies against both analytical and other numerical solutions (Her-
rera et al. 2009, 2010). Solute transport due to advection and longitudinal dispersion is
simulated along streamlines, while the effect of transverse dispersion is approximated with
a SPH expression for diffusive terms (Cleary and Monaghan 1999), which has been pre-
viously used to simulate pore-scale and continuum-scale dispersion in porous media (e.g.,
Zhu and Fox 2002; Tartakovsky et al. 2008; Herrera et al. 2009). The main advantage of
this numerical method is that it completely removes transverse numerical dispersion and
that the numerical grid automatically adapts to the flow field. Hence, it is particularly well-
suited to investigate the effect of transverse dispersion on transient mixing and dilution in
helical flow fields. In this numerical formulation, the accuracy of the solution depends on
the discretization along streamlines, which impacts the numerical solution of advection and
longitudinal dispersion, and the spacing between streamlines (Herrera et al. 2009), which
is important to obtain a good resolution to simulate transverse dispersion. To obtain the
results presented below, we first computed a velocity field on a 12-million-cell grid, traced
3200 streamlines, and finally discretized the streamlines with 1.2 million nodes. The total
simulated time was 180 days, which was discretized in constant time steps in order to sat-
isfy the stability criteria of the numerical solver. This fine discretization was needed to
reproduce the complexity of the flow field and to obtain a high resolution in the transport
simulations.

3 Metrics to Characterize Flow Kinematic and Plume Dilution

3.1 Stretching and Folding

To characterize the kinematic properties of the flow field, we compute stretching and fold-
ing of solute spheres at different time intervals following the approach of Falk and Langer
(1998) and Kelley and Ouellette (2011). This approach allows to separate linear (stretching)
from nonlinear (folding) deformation of spherical particle clusters covering the domain of
interest. This approach was first introduced to capture the dynamics of viscoplastic defor-
mation in amorphous solids (Falk and Langer 1998) and then applied to characterized
two-dimensional turbulent flows (Kelley and Ouellette 2011). In this work, we extend the
typical two-dimensional formulation, to a three-dimensional one, since we are interested in
quantify the deformation occurring in the complex flow field described by Eqs. 6–10.

Stretching is defined as the squared L2-norm of the affine deformation of a set of 629
spheres to cover the entire area of the injection plane of the domain. Each sphere has radius
r0 = 0.05 and is formed by N particles (where N = 101 was selected by trial and error in a
convergence study):

A2 (x,	t) = 1

r20 N

N∑
n=1

∥∥Adn (t)
∥∥2
2 (14)
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Similarly, folding is defined as the squared L2-norm of the non-affine (nonlinear) part of the
overall deformation:

D2 (x,	t) = 1

r20 N

N∑
n=1

∥∥dn (t + 	t) − (A + I) dn (t)
∥∥2
2 (15)

where A is the affine deformation matrix computed by least square fitting (Falk and Langer
1998), I is the identity matrix and d is the vector of the distances between each particle to
the central particle, i.e., the distance for particle i is:

di (t) = x0 (t) − xi (t) (16)

where xi (t) are the spatial coordinates of particle n at time t .
In this framework, folding represents the inability to describe the temporal deformation

of the initial sphere with a purely linear model. While stretching represents the increase in
the surface of a volume, folding describes how this interface is bent in order to fill a finite
volume of space (Kelley and Ouellette 2011).

3.2 Dilution Index

We compute the reactor ratioM [−] to quantify the degree of solute dilution (Kitanidis 1994):

M(t) = E(t)

V
, (17)

where V is the volume of the computational domain and E(t) [L3] is the dilution index,
defined as the exponential of the Shannon entropy of the scalar concentration:

E(t) = exp

(
−

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
p(x, y, z, t) ln (p(x, y, z, t)) dxdydz

)
, (18)

in which p(x, y, z, t) [L−3] is the density of solute mass in the domain at time t calculated
as:

p(x, y, z, t) = c(x, y, z, t)(∫ +∞
−∞

∫ +∞
−∞

∫ +∞
−∞ c(x ′, y′, z′, t)dx ′dy′dz′

) (19)

Thus, E(t) represents the effective volume over which the mass is distributed, which is
normalized by its maximum value equal to the total domain volume to obtain M(t).

4 Results and Discussion

4.1 Kinematic Properties of the Flow Fields

Figure 3 represents the complex dynamics of stretching and folding for the flow field com-
puted by Eqs. 6–10. Figure 3a–f shows, for the six cases considered, the logarithm of the
ratio between stretching and folding calculated for each sphere at time t/τ = 0.65, with
τ = L/〈vx 〉 and L = 50 m is the length of the computational domain, projected onto
the plane x = 0 according to the initial position of the center particle. The deformation is
nonlinear for spheres placed close to the discontinuity of the flow field at z = 1, due to
the sharp change in the magnitude of vx between the two layers. For all cases, there is a
similar distribution of folding dominated spheres that form two spiral arms. The number of
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Fig. 3 Evolution of the logarithm of stretching and folding ratios (colorbar) projected onto the initial starting
plane of the spheres for t/τ = 0.65

Fig. 4 Fraction of spheres for which folding is greater than stretching as function of time for the six cases
considered

nonlinearly deformed spheres increases with time, as shown in Fig. 4. At early times, the
number of spheres where folding dominates is similar for all cases, because initially the
deformation is controlled by processes occurring at the interface between the two layers. At
later times, the nonlinear deformation propagates faster in the y–z plane for higher values of
the non-diagonal term Kxy,1, because in these cases the rotational velocity is higher.

4.2 Mixing Enhancement

Figure 5 presents the time evolution of the reactor ratio for two spheres of radius r = 0.2,
centered at coordinates (1.0, 0.0, 1.0) and (1.0, 0.0, 1.3), respectively, at time t = 0. Figure
5a, b shows results considering a full dispersion tensor, and Fig. 5c, d shows results obtained
considering only longitudinal dispersion for four different anisotropy ratios and an angle
β = 45◦. Both spheres dilute faster (expressed by a quicker increasing reactor ratio) for

123



Helical Flow and Transient Solute Dilution in Porous Media 599

Fig. 5 Reactor ratio for two spheres centered at (1.0, 0.0, 1.0) (a) and (1.0, 0.0, 1.3) (b) at time t = 0
considering four different anisotropy ratios and αt = 1 × 10−3. The same spheres are considered in c, d,
respectively, considering only longitudinal dispersion (i.e., Dt = 0)

larger anisotropy ratio and, hence, larger helicity (Chiogna et al. 2014). Moreover, the initial
position of the spheres influences both the rate of increase of M and its magnitude in a
complex way. Where the deformation is mainly driven by folding, i.e., sphere 1, the values of
the reactor ratio for the different anisotropy ratios do not differ that much among, in particular
at late times. However, after a rapid increase in plume deformation which leads to the creation
of thinner spiral arms of the plume with a smaller relative distance, diffusion homogenizes
the concentration gradients. Then, the effective area where diffusive processes effectively
occur decreases more rapidly for sphere 1 than for sphere 2, such that the reactor ratio at late
times can become higher for sphere 2 than for sphere 1, e.g., for Kxy,1 = 4. A comparison
between Fig. 5a–d, shows that, in the presence of transverse dispersion, dilution is enhanced
by the helical shape of the streamlines, while it is not significantly different when dispersion
acts only in the longitudinal direction.

Figure 6 shows how the reactor ratio depends on the angle β of the anisotropy orientation.
We can observe that, in general, the reactor ratio increaseswith the angle. However, for sphere
1 the reactor ratio rapidly converges to the same value. In these three cases, the spheres rapidly
move in the y–z plane, passing through regions where nonlinear deformations are more or
less pronounced. Shearing caused by the difference between the velocity in the x-direction
in the two layers is the main deformation process for sphere 1, and this process is common
to all three angles considered. This explains the similarity in the dilution index computed for
these three cases. In the case of sphere 2, whose deformation is less influenced by shearing in
the x-direction since the distance between the starting point of the spheres and the boundary
of the two layers is larger, the dilution index decreases according to the orientation angle of
the conductivity tensor.

The results obtained for the reactor ratio are in agreementwith the analysis of stretching and
folding. Dilution is enhancedmainly by folding processes, and the flow field characterized by
the fastest helical motion displays both the fastest increase in folding and the fastest increase
in the reactor ratio. However, since stretching and folding are global measures of the velocity
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Fig. 6 Reactor ratio for two spheres centered at (1.0, 0.0, 1.0) (a) and (1.0, 0.0, 1.3) (b) at time t = 0
considering three different angles β and αt = 1×10−3. The same spheres are considered in c, d, respectively,
considering only longitudinal dispersion (i.e., Dt = 0)

field, they can only provide general information about the efficiency of mixing processes,
which can be expected in a given flow field. In addition, they can also be applied to identify
the areas wheremore efficient mixing can occur. On the contrary, the dilution index is specific
for each scenario investigated, and it is informative of how well an individual solute plume
is diluted. However, its computation requires the evaluation of the spatial distribution of
concentration.

The correlation between helical flow and dilution found by Cirpka et al. (2015) for steady-
state transport is confirmed by this study also under transient transport conditions. In addition,
the results shown in Figs. 5 and 6 show that in this kind of helical flow fields, despite
the heterogeneity of the velocity field, longitudinal mixing is not significantly enhanced in
comparison with transverse mixing.

The structure of the porous medium investigated in this study is representative for engi-
neered fixed-bed chemical reactors and geologic formation in which an effective hydraulic
conductivity tensor is defined. In more complex porous formations, such as natural aquifers,
also the intrinsic heterogeneity of the mediumwill play a significant role for the enhancement
of dilution. Yet, this will be an additional effect to the one presented in this work, as shown for
steady-state flow and transport conditions by Cirpka et al. (2015) and Chiogna et al. (2015)

5 Conclusions

This work has shown that helical flow occurring in anisotropic porous media at the con-
tinuum scale significantly influences dilution of a conservative scalar quantity. The mixing
enhancement observed at this scale is complementary to that achieved at the microscopic
level (Stroock et al. 2002; Lester et al. 2013), which is parametrized with the aid of the
dispersion tensor.

In our study, dilution is controlled by themagnitude of the local dispersion coefficients and
two additional parameters: The anisotropy ratio R and the relative angle β between the flow
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field and the principal direction of the anisotropic hydraulic conductivity tensor. The larger
these parameters are, the more dilution is observed in the corresponding flow field. Both
parameters could be imposed in the construction of engineered anisotropic porous media,
allowing therefore the use of anisotropic fixed-bed chemical reactors to control mixing.
This study is also relevant for transient mixing occurring in large-scale anisotropic geologic
formations, where similar flow fields may be encountered.

Finally, since transverse dispersion plays a key role to enhance dilution in helical flow
fields, a more sophisticated and detailed description of the transverse dispersion coefficient
(Chiogna et al. 2010; Scheven 2013) may be needed for practical purposes. Indeed, the
characteristic timescale of diffusive processes is, in general, large in comparison with the
advective timescale, such that mixing is typically incomplete in pore channels (Rolle et al.
2012; Tartakovsky et al. 2009; deAnna et al. 2014) and Scheidegger’s (1961) dispersivity
cannot be applied in the dispersion tensor. This may have important implications for reactive
solute transport simulations (Chiogna et al. 2012; Ding et al. 2013; Tartakovsky et al. 2009;
Chiogna and Bellin 2013) .
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