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In the broadcast version of the congested clique model,
n nodes communicate in synchronous rounds by writing
O(log n)-bit messages on a whiteboard, which is visi-
ble to all of them. The joint input to the nodes is an
undirected n-node graph G, with node i receiving the
list of its neighbors in G. Our goal is to design a pro-
tocol at the end of which the information contained in
the whiteboard is enough for reconstructing G. It has
already been shown that there is a one-round proto-
col for reconstructing graphs with bounded degeneracy.
The main drawback of that protocol is that the degener-
acy m of the input graph G must be known a priori by
the nodes. Moreover, the protocol fails when applied to
graphs with degeneracy larger than m. In this article, we
address this issue by looking for robust reconstruction
protocols, that is, protocols which always give the correct
answer and work efficiently when the input is restricted
to a certain class. We introduce a very simple, two-round
protocol that we call Robust-Reconstruction. We prove
that this protocol is robust for reconstructing the class
of Barabási-Albert trees with (expected) message size
O(log n). Moreover, we present computational evidence
suggesting that Robust-Reconstruction also generates
logarithmic size messages for arbitrary Barabási-Albert
networks. Finally, we stress the importance of the prefer-
ential attachment mechanism (used in the construction
of Barabási-Albert networks) by proving that Robust-
Reconstruction does not generate short messages for
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1. INTRODUCTION

The CONGEST model is a synchronous, message-
passing model of distributed computation in which each one
of n nodes can send O(log n) bits along each of its incident
communication links in each round [24]. In the particular
case, where the communication network is a complete graph
all the information distributed in the nodes becomes local.
Therefore, the only obstacle to perform any task is due to con-
gestion. The main theoretical purpose of this model, known
as congested clique [4, 9, 11, 14, 16, 19, 20, 23], is to serve
as a basic model for understanding the role played by conges-
tion in distributed computation. Besides, there are interesting
connections between the congested clique and popular mod-
els such as MapReduce [15]. Typically, the joint input to the n
nodes in the congested clique model is an undirected n-node
graph G, with node i receiving the list of its neighbors in G.
Each node can send, in each round, O(log n) bits along each
of its n − 1 communication links.

In the much more restricted, broadcast version of the con-
gested clique model, each node can only broadcast a single
O(log n)-bit message over all its links in each round [11].
This setting–which is the one we consider in this article–is
equivalent to the multiparty, number-in-hand computation
model, where communication takes place in a shared white-
board [1, 2, 5, 7, 11, 13, 17, 18]. Writing a message M on
the whiteboard is equivalent to broadcasting M.

We assume that the ID of each node is a unique number
between 1 and n and that the only information each node has,
besides n and its own ID, is the list of IDs of its neighbors in
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G. At the end of the protocol, the whiteboard must contain
enough information to answer some question which is usually
related to the topology of G. Typical goals are the following:
(i) determine whether G contains a particular subgraph H,
(ii) decide whether G is connected, (iii) reconstruct G.

There are two classical complexity measures:

1. Round complexity: number of rounds, where in each
round all nodes write simultaneously one message on
the whiteboard.

2. Message size complexity: number of bits of the longest
message written on the whiteboard during the process.

If there is no restriction on the message size then there
is a trivial one-round protocol that reconstructs any graph:
given an arbitrary graph G and given an arbitrary assignment
of IDs to each of the n nodes of G, every node writes on the
whiteboard the 0–1 vector x ∈ {0, 1}n corresponding to the
indicator function of its neighborhood. With this information
on the whiteboard, every node can easily reconstruct G.

On the other hand, if we restrict the message size then
reconstructing G becomes much more difficult. Despite this,
in [6] it was proved that if the degeneracy m of G is bounded
and known in advance, then it is possible to reconstruct G
with a one-round protocol of O(log n) message size. The
degeneracy m of the graph is defined as follows: G is m -
degenerate if one can remove from G a vertex r of degree at
most m, and then proceed recursively on the resulting graph
G′ = G − r, until obtaining an empty graph; the degeneracy
of G is the smallest m such that G is m-degenerate. Note
that many graph classes such as planar graphs and bounded
treewidth graphs have bounded degeneracy. For instance, the
degeneracy of trees is 1.

In the one-round protocol of [6], the information that each
node v writes in the whiteboard corresponds to the following
(m + 2)-tuple:

• its identifier ID(v).
• its degree dG(v) in G.
• for each integer p, 1 ≤ p ≤ m, the quantity

∑
w∈NG(v)(ID(w))p

(i.e., the sum of p’s powers of the identifiers of the neighbors).

We stress that this protocol always fails when applied to
graphs with degeneracy larger than m. In other words, the
drawback of previous protocol is that it is not robust. A pro-
tocol is said to be robust if it always gives the correct answer
and it works efficiently when the input is restricted to a certain
class.

The main purpose of this article is to address this robust-
ness issue in the broadcast congested clique model. We will
present a two-round protocol that always reconstructs the
input graph G and is guaranteed to be efficient if G is a
Barabási-Albert tree. This type of random tree is a particular
case of a Barabási-Albert network, which is a scale-free ran-
dom graph model of bounded degeneracy which represents
many real-world situations ranging from the genome to the
Internet [8]. We also report on simulations which strongly

suggest that our robust protocol not only reconstructs effi-
ciently Barabási-Albert trees, but also any Barabási-Albert
network.

Our approach was inspired by the work of Raghavan and
Spinrad [25] in the nondistributive, centralized setting. The
authors in [25] motivated their work by saying that “it is
often not easy to determine whether the input is of the form
for which the algorithm is designed; the recognition problem
for the input class may be open or even NP-hard or worse.”
They illustrate this by studying the problem of finding the
maximum independent set of well covered graphs (these are
graphs for which every maximal independent set is also max-
imum). Obviously, there is a polynomial time algorithm for
finding a maximum independent set if the input is restricted
to well covered graphs. Nevertheless, in [25] Raghavan and
Spinrad prove that there is no polynomial time robust algo-
rithm for finding a maximum independent set for well covered
graphs unless P=NP.

2. PRELIMINARIES

Definition 1. Let G be a class of (possibly randomly gen-
erated) graphs. We say that a protocol P is robust and
reconstructs G with message size O(f (n)) if and only if

• P is deterministic and reconstructs every graph G.
• If G = (V , E) ∈ G (is generated by some random mechanism)

then, when P is applied to G, for every node i the (expected)
size of the longest message broadcasted by node i is bounded
above by O(f (|V |)).

The following simple proposition states that if we want
to design robust protocols with O(log n) message size, then
they need to have at least two rounds.

Proposition 1. Suppose that P is a one-round protocol that
reconstructs trees with message size O(f (n)). Then, if P is
robust, we have f (n) = �(n).

Proof. Suppose that P is a robust one-round protocol.
Since the class of all labeled graphs with n vertices has car-
dinality 2

n(n−1)

2 , there must be some n ∈ N and a graph Gn of
size n for which some messages have at least 1

n
n(n−1)

2 = n−1
2

bits. Now suppose that v is the node of Gn that writes the
longest message. It is always possible to design a tree Tn of
size n with a node v having the same neighborhood in both
Tn and Gn. ■

In this article, we define a very simple, two-round robust
protocol that generates short messages when applied to
Barabási-Albert networks, which are defined in Section 2.2.
The protocol, which we call Robust-Reconstruction, is
defined as follows. Let G = (V , E) be an arbitrary graph
and let V = {v0, v1, v2, . . . , vn−1}.

Robust-Reconstruction

• Round 1. Each node vi writes on the whiteboard its own ID
and its degree dG(vi).
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• Round 2. Each node vi writes the IDs of its neighbors having
degree greater than or equal to dG(vi).

After the second round, it is clear that there is enough
information on the whiteboard to reconstruct every graph,
regardless of its topology. Although the correctness of the
algorithm is apparent, proving that it is efficient for a given
family of graphs can be nontrivial.

Remark 1. The length of the message written by any node
in the first round is O(log n).

2.1. Local Popularity

Given a graph G and a vertex v of G, we write θ(v) to
denote the number of neighbors of v that have at least as many
connections as v. More precisely, θ(v) denotes the number of
neighbors u of v such that dG(v) ≤ dG(u).

Let Gn be a random graph of size n generated by some
random mechanism. We say that the class of graphs associ-
ated to such mechanism is locally popular if for every node
v ∈ Gn the expectation of θ(v) is bounded above by some
constant independent of n. If k is an upper bound then we say
that the class of graphs is k-locally popular. The following
proposition is obvious.

Proposition 2. If we apply Robust-Reconstruction to
a k-locally popular graph then, for every node v, the
expected length of both messages is logarithmic. Moreover,
the expected length of the second message written by v is
bounded above by k log n.

2.2. Barabási-Albert Networks

Barabási-Albert networks are scale-free graphs which rep-
resent many real-world situations ranging from the genome
to the Internet [8]. They are generated by a stochastic process
that uses a preferential attachment rule [3]. The well-known
Barabási-Albert stochastic process proceeds in discrete time
steps. The state of the process at each time step n ≥ 0 is a
connected graph Gn. At the beginning, G0 is a clique of m+1
nodes. At each time step n ≥ 1, the graph Gn−1 is augmented
with a new node vn that is connected to m already existing
nodes (i.e., nodes of Gn−1). It is easy to deduce from this rule
that the degeneracy of Gn is m. The m nodes are chosen in
Gn−1 following a preferential attachment rule, which means
that the new node vn is connected to node w ∈ V(Gn−1) with
a probability proportional to the degree of w in Gn−1.

2.3. Our Results

We conjecture that Robust-Reconstruction generates
short, logarithmic expected size messages when it is applied
to Barabási-Albert networks. In other words, we conjecture
that Barabási-Albert networks are locally-popular. In Section
3, we provide results from computational experiments which
strongly suggest this.

Contrasting the simulation-based approach, in Section 4
and Section 5, we provide an analytic result for the restricted
case of Barabási-Albert trees (m = 1). More precisely, we
prove that these trees are 31

20 -locally popular. Our proof does
not scale naturally to cases using m > 1, as the nice recursive
structure of Barabási-Albert trees is missing

In Section 6, we study random recursive trees [22]. These
are trees where nodes also arrive one by one (and therefore
older nodes have higher degree in expectation), but each arriv-
ing node is attached to a node which is chosen uniformly
among the existing ones. We prove that these trees are not
locally popular. More precisely, we prove that the local pop-
ularity of the root is�(

√
log n). This result stresses the impor-

tance, at least in the setting of the Robust-Reconstruction

protocol, of the preferential attachment mechanism, which is
the defining characteristic of the Barabási-Albert networks.

2.4. Open Problems

It should be pointed out that if we fix the degeneracy m ∈ N

of the graph, then there is a trivial two-round robust protocol
for which the message size is bounded above by O(log n)

when G is m-degenerate. To see this, consider the following
protocol: in the first round apply the protocol (appeared in [6])
that we have already described, which reconstructs G with
message size upper bounded by O(log n) if G is m-degenerate
and answers “no, G is not m-degenerate” otherwise; if the
answer is negative then, in the second round, use the protocol
that reconstructs G using the indicator functions, which are
long messages of size n. The problem with this protocol is
that, in contrast to Robust-Reconstruction, the parameter
m must be known a priori by the nodes.

Since Robust-Reconstruction produces short messages
for a subclass of degenerate graphs (the Barabási-Albert
ones), a natural open question arises: Is there a two-round
protocol that reconstructs every network G such that the mes-
sage size is upper bounded by O(κdeg(G) log n), where κdeg(G)

denotes a parameter that depends exclusively on deg(G), the
degeneracy of G?

In this work, we prove that, for Barabási-Albert trees,
maxkE(θ(vk)) ≤ 31

20 . In the future, besides finding a formal
proof for general Barabasi-Albert networks, it seems natu-
ral to study the value E(maxkθ(vk)), which is a much harder
problem. Based on numerical simulations and by analogy
with the case of the maximum of n exponentially distributed
random variables, we speculate that E(maxk(θ(vk))) should
be roughly proportional to log n. This is still interesting if we
consider the length of the messages in bits. It would mean
that the “worst case” message, in the expected sense, is about
mlog2n bits long, which is still short.

2.5. Related Work

2.5.1. Broadcast Congested Clique Drucker, Kuhn and
Oshman [11] gave an upper bound to the round complexity
of the subgraph detection problem. They made the following
remark: the degeneracy of H-free graphs can be bounded
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above in terms of the Turán number ex(n, H), which is the
maximal number of edges of an n-node graph which does not
contain a subgraph isomorphic to H. Plugging this into the
reconstruction protocol introduced by Becker et al. [6], they
designed a randomized protocol that solves the H detection
problem in O(ex(n, H)log2n/(nb) + log3n/b) rounds with
high probability (where b is the number of bits each node can
broadcast in each round).

Kari et al. [18] tackled the problem of detecting induced
subgraphs. They provided a one-round, randomized logarith-
mic message size protocol for detecting an induced P4 (a path
of length 4) in the input graph G. Ahn, Guha, and McGregor
[1, 2, 13] introduced a powerful technique that allows one to
decide in one round whether G is connected using messages
of size O(log3n), with high probability.

Some negative results have also been obtained. For
instance, deciding deterministically in one round whether a
graph has a triangle requires messages of size �(n) [6]. On
the other hand, if instead of bounding the number of rounds
we bound the message size b, then the best known result is
the following: detecting deterministically a triangle requires

�(n/(eO(
√

log n)b) rounds [11].
In [7], the authors consider three variants of the broadcast

congested clique model: randomized protocols with public
coins, randomized protocols with private coins and deter-
ministic protocols. They showed that this choice affects the
message size complexity of some problems. More precisely,
they introduced a problem called Translated-Twins. They
proved that if only one round is allowed then the message size
complexity is �(n) in the deterministic case and O(log n) in
the randomized, public coin case. For the private coins setting
the message size complexity is bounded below by �(

√
n) and

bounded above by O(
√

n log n).

2.5.2. Congested Clique No lower bounds are known for
the general model, where nodes may send different mes-
sages to each of its neighbors. Drucker, Kuhn, and Oshman
[11] gave a possible explanation for such difficulty. In fact,
they proved that in this case it is possible to simulate pow-
erful classes of bounded-depth circuits (and therefore lower
bounds in the congested clique would yield lower bounds in
circuit complexity).

The intrinsic power of the model has allowed some authors
to provide extremely fast protocols for solving some natu-
ral problems: O(1)-round protocols for routing and sorting
[19, 23], a O(n(d−2)/d/ log n)-round protocol for finding a
particular d-vertex subgraph [10], a O(log log log n)-round
protocol for finding a 3-ruling set [16], O(n0.158)-round pro-
tocols for counting triangles, for counting 4-cycles and for
computing the girth [9], a O(1)-round protocol for detect-
ing a 4-cycle [9], and a O(log log log n)-round protocol for
constructing a minimum spanning tree [14]. Dolev, Lenzen,
and Peled [10] describe a protocol for reconstructing deter-
ministically any graph in O(|E|/n) rounds. This result is
interesting for sparse graphs. In particular, this means that
graphs with bounded degeneracy m can be reconstructed in

FIG. 1. Top: values of θ for N = 1000 and m = 1. Bottom: detail of the
first 100 nodes.

O(m) rounds. This protocol relies heavily on the possibil-
ity given by the general model to perform a load balancing
procedure efficiently.

3. LOCAL POPULARITY OF BARABÁSI-ALBERT
NETWORKS

Our experiment is as follows: fix values of N (the total
number of nodes) and m. Generate 2000 random graphs using
these parameters. For each k ≤ N we compute θ(vk), where
vk is the vertex attached at time k. We estimate E(θ(vk))

as the mean of the 2000 experiments. Call these estimators
θ k . To approximate maxkE(θ(vk)), it could in principle be
inaccurate to simply use maxkθ k . This biased estimator would
overestimate the real result as the statistical noise tends to
drive the value up because of the max function. Therefore,
we use a localized linear polynomial smoothing technique to
reduce the noise first, and then we compute the max.

There are qualitative similarities in all the results, regard-
less of the choice of N and m. Consider for example Figure
1 (top and bottom). They represent the values of θ k com-
puted from the 2000 graphs generated with N = 1000 and
m = 1. The first two nodes (the ones in the complete graph
that seeds the process) have relatively low values of θ . There
is a sharp increase of θ when k is slightly bigger than two.
Then the graph peaks, and then decreases “smoothly” (ignor-
ing the local noise) until the value of θ reaches 1. This decay
is monotonic and θ(k) looks convex, if we ignore the first few
points.

In Figure 2 (top), we consider the simulations of graphs
generated using m = 64 and N = 1000. If we increase N ,
while keeping m fixed, the change in the behavior is small.
For instance, in Figure 2 (bottom), we used m = 64 but now
N = 10000 (ten times larger than before). If we neglect the
first 100 nodes or so, and adjust the horizontal scales, the plots
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FIG. 2. Values of θ . Top: N = 1000 and m = 64. Bottom: N = 10000 and
m = 64.

TABLE 1. maxkθ k , for different values of N and m

m

1 4 16 64 128

N 1,000 1.23 4.42 16.54 64.56 128.57
10,000 1.31 4.53 16.68 64.76 128.79
100,000 1.36 4.58 16.74 64.88 128.93

are essentially the same. We see the same features, except that
the decay after the peak is almost linear.

Finally, Table 1 shows how the numerical estimations
(using smoothing) of maxkE(θ(vk)) change with m and N .
Because of the scaling property, the heights of the peaks do
not change much if one only modifies N , and therefore we see
little change within each column. These heights do change
with m, but in a predictable way. We note that our estimation
for maxkE(θ(vk)) is never larger than m + 1 and this bound
seems to get tighter as m and N increase.

We summarize our conjectures:

(i) Given a family of Barabási-Albert graphs generated
using parameters N and m, for all k ≤ N , E(θ(vk)) ≤ m+
1 − o(1). Furthermore, the bound is tight if N , m → ∞
and m 	 N .

(ii) E(θ(vk)) is scale independent. Informally, E(θ(vk)) is
mostly determined by k/N . This is suggested by com-
paring experiments that use the same m but different N ,
such as those described in Figure 2.

4. LOCAL POPULARITY OF BARABÁSI-ALBERT
TREES

Contrasting the simulation-based approach, we provide
an analytic result for the restricted case of Barabási-Albert

trees, which are simply Barabási-Albert graphs generated
choosing m = 1. Recall that in particular this means that we
start with a clique of size 2, so at the beginning we have the
tree T0 = (V0, E0) where V0 = {

v0, v′
0

}
and E0 = {

v0v′
0

}
.

Note that the degree of v0 (and v′
0) at the beginning is 1.

Let dT (v) denote the degree of the vertex v in the tree T .
The process evolves in discrete time steps n = 1, 2, . . . as
follows:

1. We choose a unique wn ∈ Vn−1 according to the
following probability distribution:

∀v ∈ Vn−1, P(wn = v|Tn−1) = dTn−1(v)∑
u∈Vn−1

dTn−1(u)

2. Vn = Vn−1 ∪ {vn} and En = En−1 ∪ {wnvn}.

We state now the main result of the article:

Proposition 3. The class of Barabási-Albert trees is 31
20 -

locally popular.

As will become clear in the proof, this result can be
slightly sharpened to say that the class of Barabási-Albert
trees is “asymptotically” 3

2 -locally popular, in the sense that
a Barabási-Albert tree of size n is ( 3

2 + o(1))-locally pop-
ular. As a direct consequence of Propositions 2 and 3 we
obtain a bound on the maximal expected length among all
messages written when applying Robust-Reconstruction

to Barabási-Albert trees.

Corollary 1. If we apply Robust-Reconstruction to
Barabási-Albert trees then the expected length of the mes-
sages written by every node is bounded above by 31

20 log n.

Before turning to the proof of Proposition 3 let us provide
the intuition behind it. We first study how the degree of the
root v0 compares to the degree of its children as the tree grows
(by symmetry the same will apply to v′

0). Informally, we want
to bound E(θ(v0)). This is done by studying a process similar
to the conventional Barabási-Albert tree construction algo-
rithm but considering only attachments involving the root or
its children. To bound E(θ(v0)) we study the “contest for
higher degree” that occurs between the root and each child
individually. This competition process is described using
a Pólya-Eggenberger urn model. After we obtain a bound
for E(θ(v0)), the recursive structure of Barabási-Albert trees
allows us to extend the result to all the remaining nodes.

We can partition the Barabási-Albert tree Tn into two
subtrees:

• Tv0
n , the v0-subtree rooted at v0

• T
v′

0
n , the v′

0-subtree rooted at v′
0

These two subtrees are joined by the edge v0v′
0. More

precisely: V(Tn) = V(Tv0
n ) ∪ V(T

v′
0

n ) and, in terms of edges,

E(Tn) = E(Tv0
n ) ∪ {

v0v′
0

} ∪ E(T
v′

0
n ).
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In order to estimate E(θ(v0)) we study the subtree Tv0
n

rooted at v0. For that purpose, we only need to focus on what
happens in the first 3 layers of Tv0

n . More precisely, we will
study how the degree of the root v0 changes compared to the
degrees of its children. The process in this case is exactly the
same as the general one except that, when adding a new node,
we only consider as possible neighbors those nodes that are
at distance at most 1 from v0 (including v0 itself, which is at
distance 0).

We start the process with n = 0 and we stop it with
n = N . Note that the generated tree, that we denote by
TN , will have 3 layers. This is equivalent to considering the
process in the complete v0-subtree up to the time when the
number of nodes at distance at most 2 from the root v0 first
equals N .

Definition 2. Let us consider the situation after the n-th
node is added to the 3-layer tree Tn. More precisely, let us
define the following random variables.

• d0
n = the degree of node v0 in step n. Recall that d0

0 = 1 and
therefore d0

1 = 2.
• dk

n = the degree of the k-th neighbor of v0 (v is the k-th neigh-
bor of v0 if k − 1 neighbors of v0 arrived before v; when v0

has less than k neighbors we impose dk
n = 0).

• Sk
n =

{
1 if dk

n ≥ d0
n ,

0 otherwise.

• Mn = ∑n
k=1 Sk

n . In other words, Mn is the number of neighbors
of v0 having degree greater than or equal to the one of v0.

Since E(Mn) = ∑n
k=1 E(Sk

n), we will bound E(Sk
n) for

every fixed k. In other words, we only need to worry about
the dynamic competition between two nodes: v0 and its k-th
neighbor vk . This dynamic competition corresponds exactly
to the Pólya-Eggenberger urn model [12]. In this model, the
urn starts with r red balls and b black balls; one ball is
drawn randomly from the urn and its color observed; it is
then replaced in the urn, and an additional ball of the same
color is added. The process is repeated.

In our case, the competition between v0 and vk starts as
soon as the degree of v0 becomes equal to k+1 and the degree
of vk becomes 1 (i.e., as soon as vk is connected to v0). This
is equivalent to starting the urn process with k + 1 red balls
and 1 black ball. Define Jk

n as the fraction of black balls in
step n.

Remark 2. It is known that Jk
n

n→∞→
a.s.

Jk∞, where Jk∞ ∼
β(1, k + 1) and β(1, k + 1) denotes the Beta distribution
with parameters 1 and k + 1 (for a comprehensive treatment
of the subject see for instance [21]).

The corresponding density function is given as follows:

fβ(1,k+1) = �(k + 2)

�(k + 1)�(1)
(1 − x)k = (k + 1)(1 − x)k .

Proposition 4. Let k ∈ N, k ≥ 2. Then, for all n ∈ N,

P

(
Jk

n ≥ 1

2

)
≤ P

(
Jk∞ ≥ 1

2

)
.

On the other hand, for the case k = 1 we have

P

(
J1

n ≥ 1

2

)
= 1

4
+ o(1) and P

(
J1

n ≥ 1

2

)
≤ 3

10
.

Proof. See next section. ■

As a consequence we obtain the following result.

Corollary 2. E(Mn) ≤ 1
2 + o(1) and, for all n ∈ N, we

have E(Mn) ≤ 11
20 .

Proof. For k ≥ 2.

P

(
Jk∞ ≥ 1

2

)
=

∫ 1

1
2

fβ(1,k+1) dx = (k + 1)

∫ 1

1
2

(1 − x)k dx

= 1

2k+1
.

It follows that

E(Mn) =
n∑

k=1

E(Sk
n) =

n∑
k=1

P

(
Jk

n ≥ 1

2

)

≤ P

(
J1

n ≥ 1

2

)
+

n∑
k=2

P

(
Jk∞ ≥ 1

2

)

≤ 3

10
+

n∑
k=2

1

2k+1
= 3

10
+ 1

4
= 11

20
. ■

Proof of Proposition 3. Consider now the general
Barabási-Albert tree. Since Ti, the subtree rooted at any node
vi, is also a Barabási-Albert tree, it follows that at any time
of the process, the expected number of children of vi hav-
ing degree greater than or equal to dT i(vi) is bounded by 11

20 .
Nevertheless, the parent of vi could eventually have more
neighbors than vi. Therefore, 11

20 + 1 = 31
20 is an upper bound

for E(θ(vi)) and Proposition 3 follows. ■

Remark 3. Proposition 3 gives a bound for the local popu-
larity of every node in the tree. For the two particular sibling
nodes v0 and v′

0 from which the Barabási-Albert process
starts, this bound can be improved. In fact, the expected num-
ber of children of v0 (resp. v′

0) having degree larger than
or equal to the degree of v0 (resp. v′

0) is bounded above by
1
2 +o(1) thanks to Proposition 4. On the other hand, by sym-
metry, the probability that the degree of v0 is larger or equal
to than the degree of v′

0 is also 1
2 + o(1) (this is because

the probability that both have the same degree goes to 0 as
n → ∞). Therefore, the local popularity of these two nodes is
bounded above by 1

2 + 1
2 +o(1) = 1+o(1). This particularity

can be seen in the first two points of Figure 1 (bottom).
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5. PROOF OF PROPOSITION 4

Definition 3. Let B̃k
n be the number of black ball draws in

the Pólya-Eggenberger urn after n draws, starting the process
with 1 black ball and k + 1 red balls.

Lemma 1. Let n, k, i ∈ N, i + 1 ≤ n. The following holds:

P(B̃k
n = i) = P(B̃k

n = i + 1) · k + n − i

n − i
.

Proof. The probability that the first i draws correspond
to black balls and that the next n − i draws to red balls is
given by

1 · 2 · · · i · (k + 1) · (k + 2) · · · (k + n − i)

(k + 2) · (k + 3) · · · (k + n + 1)
.

Any other order in which exactly i black balls are drawn
corresponds to a permutation of the terms in the numerator of
previous expression (with the same denominator). Therefore,
the probability of drawing exactly i black balls is

1 · 2 · · · i · (k + 1) · (k + 2) · · · (k + n − i)

(k + 2) · (k + 3) · · · (k + n + 1)

(
n
i

)
. (1)

Using this we get

P(B̃k
n = i)

= i!(k + 1)(k + 2) · · · (k + n − i)

(k + 2)(k + 3) · · · (k + n + 1)

(
n
i

)

= (k + 1)(k + 2) · · · (k + n − i − 1)

(k + 2)(k + 3) · · · (k + n + 1)

n!
(n − i − 1)!

k + n − i

n − i

= P(B̃k
n = i + 1)

k + n − i

n − i
. ■

Definition 4. Let Rk
n and Bk

n be the number of red and black
balls, respectively, in the Pólya-Eggenberger urn, after n
draws, starting the process with 1 black ball and k + 1 red
balls. (Note that Bk

n = B̃k
n + 1).

Remark 4. Note that P(Jk
n ≥ 1

2 ) = P(Bk
n ≥ Rk

n). Hence, by
Remark 2, it follows that (P(Bk

n ≥ Rk
n))n∈N

converges. There-
fore, in order to prove Proposition 4 (for k ≥ 2), it would be
enough to show that sequence (P(Bk

n ≥ Rk
n))n∈N

grows mono-
tonically. Nevertheless, as we will see below, this is not true.
Instead, we will use the fact that this monotonicity holds if
we focus separately on the two subsequences for n even and
n odd (which is enough for our purposes). To this end, we
need to distinguish the cases k even and k odd.

5.1. The Case k Even

Proposition 5. Let k, n ∈ N with k ≥ 2 even. It follows that

P(Bk
2n+2 ≥ Rk

2n+2) ≥ P(Bk
2n+1 ≥ Rk

2n+1).

Proof. After 2n + 1 draws, we will have a total of (k +
2n + 3) balls in the urn (an odd number). Then,

P(Bk
2n+2 ≥ Rk

2n+2)

= P

(
Bk

2n+2 ≥ Rk
2n+2|Bk

2n+1 = k + 2n + 2

2

)

· P

(
Bk

2n+1 = k + 2n + 2

2

)

+ 1 · P

(
Bk

2n+1 ≥ k + 2n + 2

2
+ 1

)

+ 0 · P

(
Bk

2n+1 ≤ k + 2n + 2

2
− 1

)

≥ P

(
Bk

2n+1 ≥ k + 2n + 2

2
+ 1

)

= P(Bk
2n+1 ≥ Rk

2n+1). ■

In view of this result, which tells us that P(Jk
2n+1 ≤ 1

2 ) ≤
P(Jk

2n+2 ≤ 1
2 ) for each n, it is enough to verify that the

sequence (P(Bk
2n ≥ Rk

2n))n∈N
is increasing.

Proposition 6. Let k, n ∈ N with 2n ≥ k ≥ 2, k even. It
follows that

P(Bk
2n+2 ≥ Rk

2n+2) ≥ P(Bk
2n ≥ Rk

2n).

Proof. Proceeding similarly to the previous proof,

P(Bk
2n+2 ≥ Rk

2n+2)

= P

(
Bk

2n+2 ≥ Rk
2n+2|Bk

2n = k + 2n + 2

2

)

· P

(
Bk

2n = k + 2n + 2

2

)

+ P

(
Bk

2n+2 ≥ Rk
2n+2|Bk

2n = k + 2n + 2

2
− 1

)

· P

(
Bk

2n = k + 2n + 2

2
− 1

)

+ 1 · P

(
Bk

2n ≥ k + 2n + 2

2
+ 1

)
.

The following identity holds because the only favorable sce-
nario for the event inside is to draw black balls in the last 2
draws:

P

(
Bk

2n+2 ≥ Rk
2n+2

∣∣∣∣ Bk
2n = k + 2n + 2

2
− 1

)

=
k+2n+2

2 − 1

k + 2n + 2
·

k+2n+2
2

k + 2n + 3

= 1

4
· k + 2n

k + 2n + 3
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Similarly, we have

P

(
Bk

2n+2 ≥ Rk
2n+2

∣∣∣∣ Bk
2n = k + 2n + 2

2

)

= 1 −
k+2n+2

2

k + 2n + 2
·

k+2n+2
2 + 1

k + 2n + 3

= 1 − 1

4
· k + 2n + 4

k + 2n + 3
,

since now the only unfavorable scenario is to draw red balls
in the last 2 draws. From Lemma 1 (taking i = k+2n+2

2 − 2)
we get

P

(
Bk

2n = k + 2n + 2

2
− 1

)

= P

(
B̃k

2n = k + 2n + 2

2
− 2

)

= P

(
B̃k

2n = k + 2n + 2

2
− 1

)
·
(

k + 2n + 2

2n − k + 2

)

= P

(
Bk

2n = k + 2n + 2

2

)
·
(

k + 2n + 2

2n − k + 2

)
.

Putting all this together we deduce that

P(Bk
2n+2 ≥ Rk

2n+2)

= P

(
Bk

2n ≥ k + 2n + 2

2
+ 1

)

+
(

1 − 1

4
· k + 2n + 4

k + 2n + 3

)
P

(
Bk

2n = k + 2n + 2

2

)

+
(

1

4

k + 2n

k + 2n + 3

) (
k + 2n + 2

2n − k + 2

)

· P

(
Bk

2n = k + 2n + 2

2

)
.

Now

1 − 1

4
· k + 2n + 4

k + 2n + 3
+ 1

4
· k + 2n

k + 2n + 3
· k + 2n + 2

2n − k + 2
≥ 1

(2)

because the inequality reduces to 1
4 · k+2n

k+2n+3 · k+2n+2
2n−k+2 ≥

1
4

k+2n+4
k+2n+3 , which is equivalent to k+2n+2

2n−k+2 ≥ k+2n+4
k+2n and holds

whenever 2n ≥ k and k ≥ 2. Therefore,

P(Bk
2n+2 ≥ Rk

2n+2)

≥ P

(
Bk

2n ≥ k + 2n + 2

2
+ 1

)
+ P

(
Bk

2n = k + 2n + 2

2

)

= P

(
Bk

2n ≥ k + 2n + 2

2

)

= P(Bk
2n ≥ Rk

2n). ■

5.2. The Case k Odd

The following two propositions are analogous to Propo-
sitions 5 and 6. The proof of the first one is analogous to the
one for the case k even, so we omit it. The second one is also
proved similarly, but we need to deal with the case k = 1
separately.

Proposition 7. Let k, n ∈ N with k odd. Then

P(Bk
2n+1 ≥ Rk

2n+1) ≥ P(Bk
2n ≥ Rk

2n).

Proposition 8. Let k, n ∈ N with 2n + 1 > k and k ≥ 3
odd. Then

P(Bk
2n+3 ≥ Rk

2n+3) ≥ P(Bk
2n+1 ≥ Rk

2n+1).

On the other hand, for the case k = 1 we have

P(B1
2n+3 ≥ R1

2n+3) ≤ P(B1
2n+1 ≥ R1

2n+1).

Proof. Proceeding analogously to the case k even leads
to the identity

P(Bk
2n+3 ≥ Rk

2n+3)

= P

(
Bk

2n+1 ≥ k + 2n + 3

2
+ 1

)

+
(

1 − 1

4
· k + 2n + 5

k + 2n + 4

)
P

(
Bk

2n+1 = k + 2n + 3

2

)

+
(

1

4

k + 2n + 1

k + 2n + 4

) (
k + 2n + 3

2n − k + 3

)

· P

(
Bk

2n+1 = k + 2n + 3

2

)

(we omit the details). The statement for the case k ≥ 3 now
follows from the inequality

1 − 1

4
· k + 2n + 5

k + 2n + 4
+ 1

4
· k + 2n + 1

k + 2n + 4
· k + 2n + 3

2n − k + 3
≥ 1,

which is analogous to (2) and holds for k ≥ 3. However, for
k = 1 the opposite inequality holds, which implies that the
sequence (P(B1

2n+1 ≥ R1
2n+1))n≥1

is decreasing as claimed.
■

Proof of Proposition 4. The case k ≥ 2 follows from
Propositions 5, 6, 7 and 8 (together with Remark 4). To see
this, consider the case k even. By Proposition 6, we have that
the sequence (P(Jk

2n ≥ 1
2 ))n∈N

is nondecreasing, and thus

P

(
Jk

2n ≥ 1

2

)
≤ P

(
Jk∞ ≥ 1

2

)
(3)

for all n ∈ N. By Proposition 5, we have

P

(
Jk

2n+1 ≥ 1

2

)
≤ P

(
Jk

2n+2 ≥ 1

2

)
,
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which means that the bound (3) also holds along odd times.
The case k odd, k ≥ 3 is analogous.

For k = 1, Proposition 8 gives

P

(
J1

2n+1 ≥ 1

2

)
≤ P

(
J1

3 ≥ 1

2

)
= 3

10

for all n ≥ 1, where the equality follows from (1) by a simple
calculation. Since P(J1

2n ≥ 1
2 ) ≤ P(J1

2n+1 ≥ 1
2 ) we deduce

that P(J1
n ≥ 1

2 ) is bounded by 3
10 for all n ≥ 2.

We are left showing that P(J1
n ≥ 1

2 ) = 1
4 + o(1). For this,

take n ≥ 3 and write

P

(
J1

n ≥ 1

2

)
= 2

3
P

(
J2

n ≥ 1

2

)
+ 1

3
P

(
J̃2,2

n−1 ≥ 1

2

)
,

where J̃2,2
n denotes the same quantity as Jk

n but with the urn
starting with two balls of each color. The first probability is
bounded by 1

8 by the case k even, so

P

(
J1

n ≥ 1

2

)
≤ 1

12
+ 1

3
P

(
J̃2,2

n−1 >
1

2

)
+ 1

3
P

(
J̃2,2

n−1 = 1

2

)
.

By symmetry, P(J̃2,2
n−1 > 1

2 ) = P(J̃2,2
n−1 < 1

2 ), so they are both

bounded by 1
2 . Since = P(J̃2,2

n−1 = 1
2 ) → 0 as n → ∞, this

means that

P

(
J1

n ≥ 1

2

)
≤ 1

12
+ 1

6
+ o(1) = 1

4
+ o(1). ■

6. LOCAL POPULARITY OF RANDOM
RECURSIVE TREES

Random recursive trees were first studied in [22]. As in
the Barabási-Albert case, nodes also arrive one by one; nev-
ertheless, each arriving node is attached to a node which is
chosen uniformly among the existing ones. Let θn denote the
local popularity of the root at time n − 1, that is, when the
tree has n nodes.

Proposition 9. E(θn) = �(
√

log n).

Proof. Let f : N → N be given by f (n) =
⌊√

log n
⌋

.

Let df (n) denote the degree of the root at time f (n) and define
the event

An = {
df (n) ≥ log f (n)

}
.

Let ξk be 1 if the vertex added at time k is connected to the
root and zero otherwise. Since the ξk’s are independent, with
P(ξk = 1) = 1

k , we have

E(df (n)) = H1(f (n)) :=
f (n)∑
k=1

1

k
,

and

Var(df (n)) = H2(f (n)) :=
f (n)∑
k=1

k − 1

k2
.

Thus, by the Lindeberg Central Limit Theorem and the
fact that |H1(m) − log m| is bounded in m,

P(An) = P

(
dfn − H1(f (n))√

H2(f (n))
≥ log f (n) − H1(f (n))√

H2(f (n))

)

−→
n→∞ P(Z ≥ 0),

where Z is a standard normal random variable. We deduce
that there exists a constant p1 > 0 such that P(An) ≥ p1 for
large enough n. Since E(θn) ≥ E(θn|An)P(An), we deduce
that it is enough to show that

E(θn|An) = �(f (n)). (4)

Define the event

Bn = {at time n the degree of the log f (n) − th child

of the root is ≥ the degree of the root} .

Then we have

E(θn|An) ≥
log f (n)∑

i=1

P(in step n the degree of the i − th

child is ≥ the degree of the root|An)

≥ log f (n)P(Bn|An). (5)

Now let 	m be the difference between the degree of the root
and the degree of the log f (n)-th child of the root at time
m (if the log f (n)-th child has not appeared by time m let
	m = ∞), so that Bn = {	n ≤ 0}. Let Kn be the number of
nodes which are attached to either the root or the log f (n)-th
child during the steps f (n) + 1, f (n) + 2, . . . , n. Conditional
on Kn and the event An, 	n has the distribution of a simple
random walk started at 	f (n) after taking Kn steps, and so if
Xn is a binomial random variable with parameters (Kn, 1/2)

then we have

P(Bn|An, Kn) = P(Xn ≥ 1

2
(Kn + 	f (n))|An, Kn)

≥ P(Xn ≥ 1

2
(Kn + f (n))|Kn),

and where the inequality follows from the facts that df (n) ≤
f (n) and that, for the event An, the log f (n)-th child of the
root has already arrived by time f (n).

Reasoning as above, we deduce from the definition of 	n

and the Lindeberg CLT that P(Kn ≥ log n−log f (n)|An) ≥ p2

for some p2 > 0 and large enough n. On the other hand it
is not hard to see that there is a constant p3 > 0 so that if
Kn ≥ Mn for some constant Mn and Yn is a binomial random
variable with parameters (Mn, 1/2), then

P(Xn ≥ 1

2
(Kn + f (n)))) ≥ p3 P(Yn ≥ 1

2
(Mn + f (n)))).
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Therefore, letting Mn = log n − log f (n) we deduce that

P(Bn|An)

≥ P(Bn|An ∩ {Kn ≥ Mn})P({Kn ≥ Mn} |An)

≥ p2p3 P(Yn ≥ 1

2
(log n − log f (n) + 1

2
f (n))

= p2p3 P

(
Yn − log n−log f (n)

2

2
√

log n − log f (n)
≥ f (n)

4
√

log n − log f (n)

)
.

By the Central Limit Theorem it follows that, for large
enough values of n, the last probability is approximately
P(Z ≥ f (n)/(4

√
log n − log f (n))) with Z a standard normal

random variable.
Since f (n)/

√
log n − log f (n) → 1 as n → ∞, there is a

p4 > 0 such that

P(Z ≥ f (n)/(4
√

log n − log f (n))) ≥ p4 for all n

Using this above gives (4) and thus the result. ■
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