MEJORA DE PROCESOS DE ABASTECIMIENTO Y COMERCIALIZACION DE FRUTA A TRAVES DE PRONOSTICOS EN LA OFERTA Y DEMANDA EN GEOFRUT

PROYECTO DE GRADO PARA OPTAR AL GRADO DE MAGISTER EN INGENIERIA DE NEGOCIOS CON TECNOLOGIAS DE INFORMACION

CRISTIAN EDUARDO FARIAS RAMIREZ

PROFESOR GUÍA:
PATRICIO WOLFF ROJAS

MIEMBROS DE LA COMISIÓN:
SEBASTIAN RIOS PEREZ
CRISTIAN JULIO AMDAN
CRISTÓBAL RODRÍGUEZ BONAMUSA

SANTIAGO DE CHILE
2016
La exportación de frutas es un negocio que se caracteriza por ciclos cortos de cosecha y venta en sus distintas especies de fruta. Al ser productos perecibles se dispone de un tiempo limitado para ser cosechados, procesados y puestos a la venta. Es más, los clientes dan mucho valor a fruta que sea lo más fresca posible, por lo que el retorno final obtenido depende de qué tan eficiente sea el ciclo de producción y venta. Por otra parte, y dado el dinamismo de los mercados, en cada temporada se requiere contar con la mayor precisión a la hora de planificar recursos y esfuerzos destinados a cada actividad, para no cometer errores que puedan poner en riesgo la calidad de los productos o el nivel de servicio brindado. Así mismo, anticiparse a los flujos de fruta permite a la empresa comprometer con tiempo la fruta hacia negocios más rentables y no verse en la necesidad de recurrir a ventas en libre consignación (para bajar los stocks de fruta que está por perecer) que generan un menor retorno.

Es por esto que el proyecto apunta a mejorar las actividades de planificación y coordinación, lo cual permita anticiparse a eventos futuros evitando así costos asociados. La estimación de oferta y demanda, en su conjunto, deberán dar las herramientas necesarias para tomar mejores decisiones en el ciclo de abastecimiento y distribución para las ventas spot, la que, a diferencia de la venta programada, dependen de las estimaciones para definir dónde será destinada la fruta y asegurar buenas oportunidades de venta, antes que la fruta esté en riesgo de perecer.

Desde el punto de vista de diseño de negocios, el proyecto propone un trabajo directo en la Cadena de Valor, abordando desde Venta y Comercialización de Fruta para obtener el plan de venta, y desde Gestión de Abastecimiento de Fruta para obtener el plan de cosecha, además de otros procesos que se verán impactadas al recibir nuevos flujos de información, como lo son Gestión de Packing y Distribución, a quien le será útil la información de ambos planes para la planificación de la producción, la programación de fletes y navieras así como la programación de despachos.

Desde el punto de vista financiero, la principal justificación nace a través del ingreso marginal generado a través de una mejor gestión de las ventas, que se consigue al enfocar las ventas en aquellos negocios más rentables y bajando el flujo de fruta enviado a importadores menos rentables, los que en la actualidad ayudan a bajar inventarios de fruta perecible que requieren ser rápidamente vendidos. En la evaluación, la empresa ha exigido que el proyecto considere una especie, por lo que los ingresos y costos relevantes son ajustados a los movimientos de cerezas en un periodo de evaluación de 5 años plazo, obteniendo como resultado un VAN de 67.960,86 dólares y una TIR de 30%, con una tasa de descuento calculada del 9.7%. Por lo anterior el proyecto si es viable de realizar, se ha licitado a una empresa desarrolladora de software y está incluido dentro de la cartera de proyecto a efectuar en 2016.
Tabla de Contenido

Capítulo 1: Introducción
- 1.1. Antecedentes .. 11
- 1.2. Información de contexto. ... 12
 - 1.2.1. Información General: La Exportadora ... 12
 - 1.2.2. Información General: La Agroindustria Frutícola en Chile. 14
- 1.3. Situación Actual .. 18
- 1.4. Objetivos del proyecto ... 22
 - 1.4.1. Objetivo General ... 22
 - 1.4.2. Objetivos Específicos ... 22

Capítulo 2: Marco Teórico Conceptual y Metodológico .. 23
- 2.1. Metodología utilizada .. 24
- 2.2. Marco teórico .. 26
 - 2.2.1. Business Intelligence ... 26
 - 2.2.2. Metodología KDD .. 29
 - 2.2.3. Data Mining: Definición ... 32
 - 2.2.3.1. Elementos del Data Mining ... 33
 - 2.2.3.2. Clasificación de Modelos de Data Mining y tipos de tareas. 34
 - 2.2.3.3. Modelos de Data Mining Predictivo .. 35
 - 2.3. Series de tiempo .. 36
 - 2.3.3.1. Promedios móviles .. 38
 - 2.3.3.2. Suavización exponencial .. 38
 - 2.3.3.3. Métodos Autorregresivos ... 39
 - 2.3.4. Medición de la calidad predictiva .. 40
 - 2.3.5. Modelos para estimación de cosecha en árboles frutales 42
 - 2.3.5.1. Modelos estadísticos por muestreo .. 43
 - 2.3.5.2. Modelos estadísticos Ambientales ... 45
 - 2.3.5.2.1. Temperatura ... 46
 - 2.3.5.2.1.1. Horas de frío ... 46
 - 2.3.5.2.1.2. Suma Térmica ... 47
 - 2.3.5.2.1.3. Temperatura y Polinización ... 48
 - 2.3.5.2.1.4. Heladas ... 48
Capítulo 3: Planteamiento Estratégico y Modelo de Negocios

3.1. Misión y Visión

3.1.1. Misión

3.1.2. Visión

3.2. Mapa Estratégico de la Empresa

3.3. Modelo de Negocio de la Empresa

3.3.1. Esquema del Modelo de negocios

3.3.2. Propuesta de valor al cliente

3.3.2.1. Definición del Cliente

3.3.2.2. Trabajo a realizar

3.3.3. Beneficios Económicos

3.3.4. Recursos Claves
3.3.5. Procesos claves

3.4. Posicionamiento y estratégica competitiva

3.4.1. Estrategia según modelo Delta

3.4.2. Estrategias Competitiva según M. Porter

3.4.3. Conclusiones sobre el posicionamiento competitivo

Capítulo 4: Arquitectura de Procesos

4.1. Macroprocesos

4.2. Macroproceso Cadena de Valor

4.3. Principales procesos de la cadena de valor

4.3.1. Venta y comercialización de fruta

4.3.2. Gestión de Abastecimiento de fruta

Capítulo 5: Rediseño de Procesos

5.1. Definición del rediseño de procesos

5.1.1. Alcance del rediseño de procesos

5.1.2. Fuera de alcance de rediseño de procesos

5.2. Dirección del cambio del rediseño

5.2.1. Estructura de empresa y mercado

5.2.2. Anticipación

5.2.3. Coordinación

5.2.4. Prácticas de Trabajo

5.2.5. Integración de Procesos conexos

5.2.6. Mantención Consolidada de estado

5.2.7. Apoyo Computacional y Tecnologías Habilitantes

5.3. Detalle del diseño de Procesos

5.3.1. Venta y Comercialización de Fruta

5.3.2. Abastecimiento de Fruta

5.3.3. Rediseño en la cadena de valor

5.4. Detalle del diseño

5.4.1. Lógicas de negocio

5.4.1.1. Lógica de negocio estimación de cosecha

5.4.1.1.1. Estimación de cosecha en kilos, método por muestreo

5.4.1.1.2. Estimación del rendimiento exportable por productor

5.4.1.1.3. Selección del Modelo de Rendimiento Exportable
5.4.1.4. Validación del Modelo de Rendimiento Exportable ...106
5.4.1.5. Estimación de Cosecha en Cajas...109
5.4.1.5. Informes relevantes para la estimación de cosecha..110
5.4.1.2. Lógica de negocio para Estimación de Demanda...112
5.4.1.2.1. Estimación de la demanda, distribución por mercado....................................112
5.4.1.2.2. Ajuste en la estimación de la demanda...118
5.4.1.2.3. Adecuación de la demanda según la oferta disponible.................................119
5.4.2. Procedimiento de Ejecución del sistema...120
5.4.3. Información requerida...120
5.4.3.1. Datos de entrada...120
5.4.3.1.1. Datos de conteo...120
5.4.3.1.2. Rendimiento exportable ...121
5.4.3.1.3. Datos para estimación de demanda...121
5.4.3.2. Datos de salida...121
5.4.4. Comparación estimaciones versus datos reales...122
5.4.4.1. Comparación estimación de cosecha versus real ...122
5.4.4.2. Comparación estimación de demanda versus real...122
5.5. Alineamiento del proyecto con la estrategia de la empresa.................................122
5.5.1. Perspectiva de innovación y Desarrollo...123
5.5.2. Perspectiva de Procesos Internos...125
5.5.3. Perspectiva cliente...125
5.5.4. Perspectiva Financiera...125

Capítulo 6: Requerimientos de Sistema para la Aplicación de Apoyo.........................127
6.1. Fase de Inicio..128
6.1.1. Alcance del proyecto..128
6.1.1.1. Detalle del alcance..128
6.1.1.2. Integración con sistema de producción...129
6.1.2. Casos de uso ..130
6.1.2.1. Casos de Uso Actualizar datos de Conteo...131
6.1.2.2. Casos de Uso Ejecutar Modelo de Cosecha...132
6.1.2.3. Casos de Uso Revisar Estimación de Oferta...133
6.1.2.4. Casos de Uso Preparar Datos de Demanda...133
6.1.2.5. Casos de Uso Ejecutar Modelo de Demanda...134
6.1.2.6. Adecuar oferta y demanda
6.1.2.7. Casos de Uso Revisar Estimación de Demanda

6.1.3. Especificación de requerimientos de sistema
6.1.3.1. Módulo Administración del sistema
6.1.3.1.1. Parámetros Sincronización Maestros
6.1.3.1.2. Sincronización de transacciones
6.1.3.1.3. Parámetros de conexión
6.1.3.1.4. Usuarios
6.1.3.1.5. Roles
6.1.3.2. Módulo Gestión de Cosecha
6.1.3.2.1. Conteo de fruta
6.1.3.2.2. Estimación de Cosecha
6.1.3.2.2.1. Data Marts de Cosecha
6.1.3.2.2.2. Determinación del Rendimiento exportable
6.1.3.2.2.3. Modelo para la Estimación de Cosecha
6.1.3.2.3. Ajuste en los modelos de Estimación de Cosecha
6.1.3.2.4. Reportes de Cosecha
6.1.3.3. Módulo Gestión de Ventas
6.1.3.3.1. Estimación de ventas
6.1.3.3.1.1. Data Marts de Ventas
6.1.3.3.1.2. Modelo de estimación de ventas
6.1.3.3.2. Ajuste de la distribución por mercado
6.1.3.3.3. Plan de Ventas
6.1.3.3.4. Ajuste de modelos de Estimación de Ventas
6.1.3.4. Página Principal
6.1.3.4.1. Sincronización de transacciones de cajas procesadas reales
6.1.3.4.2. Sincronización de transacciones de ventas por mercado reales
6.1.3.5. Productor
6.1.4. Licitación del Proyecto
6.1.5. Plan del Proyecto
6.1.6. Identificación inicial de los riesgos
6.1.7. Gestión del cambio
6.1.7.1. Liderazgo en la gestión del cambio
6.1.7.2. Estrategia y sentido del proceso de cambio ... 183
6.1.7.3. Cambio y conservación .. 183
6.1.7.4. Gestión del poder .. 185
6.1.7.5. Manejo estados de ánimo .. 186
6.1.7.6. Estrategia comunicacional .. 188
6.1.7.7. Evaluación y cierre de la fase .. 188

Capítulo 7: Evaluación Económica del proyecto ... 189
7.1. Horizonte de evaluación del proyecto .. 190
7.2. Costos del Proyecto .. 190
 7.2.1. Costos variables .. 190
 7.2.2. Costos de inversión inicial: .. 191
7.3. Ingresos del proyecto .. 193
7.4. Cálculo de indicadores ... 196
 7.4.1. Tasa de descuento ... 196
 7.4.2. Valor Actual Neto (VAN) del proyecto .. 198
 7.4.3. Tasa interna de retorno (TIR) del proyecto .. 199
 7.4.4. Sensibilización de variables ... 200

Capítulo 8: Generalización .. 201
8.1. Framework de Generalización .. 202
 8.1.1. Dominio del framework ... 202
 8.1.2. Lógica de negocios generalizada .. 202
 8.1.2.1. Lógica de negocios generalizada en la estimación de la oferta 203
 8.1.2.2. Lógica de negocios genérica para la estimación de ventas 206
8.2. Especialización para una empresa Porcina .. 209
 8.2.1. Estimación de Oferta ... 209
 8.2.1.1. Conteo estadístico ... 209
 8.2.1.2. Rendimiento exportable .. 210
 8.2.2. Estimación de demanda ... 210

Capítulo 9: Conclusiones .. 211
9.1. Lecciones aprendidas .. 212
 9.1.1. De la metodología utilizada y su relación con la estrategia 212
 9.1.2. De los procesos, rediseño y la lógicas de negocios utilizadas 212
 9.1.3. De la empresa y gestión de exportación de frutas 213
9.1.4. Sobre los resultados del proyecto...215
9.2. Trabajos futuros ...217
 9.2.1. De los Procesos Relacionados..217
 9.2.1.1. Programación de turnos y maquinaria...218
 9.2.1.2. Programación de fletes de ingreso de bins ...218
 9.2.1.3. Programación de despachos ...218
 9.2.2. De los proyectos TI y área de analítica...219
 9.2.3. De los modelos Ambientales..219

Capítulo 10: Bibliografía..220
Capítulo 1: Introducción.

En este capítulo, se detalla un contexto general de la empresa y la problemática a dar solución a través del proyecto, lo cual permita al lector comprender cómo funciona el negocio, cuáles son sus procesos claves a ser rediseñados y qué objetivos se desean lograr para que el proyecto tenga éxito.

Para ello se presenta en primera instancia los antecedentes más relevantes de la empresa, para luego introducir de forma más precisa una descripción de la empresa y de la agroindustria en Chile. Finalmente se detalla la situación actual de la empresa, definiendo problemáticas y objetivos del proyecto.
1.1. Antecedentes

Geofrut es una empresa nacional dedicada a la exportación de frutas frescas, la cual destina sus productos a distintos mercados alrededor del mundo. Una particularidad de esta empresa es que la fruta es proveída principalmente por productores externos, quienes entregan en consignación la fruta para que la exportadora gestione la venta. La empresa obtiene una comisión por su gestión, siendo el productor quien recibe el precio de venta final resultante, al cual se le descuentan: la comisión y los costos directos e indirectos incurridos en cada producto terminado.

Teniendo en consideración que la industria cuenta con más de 500 exportadoras, resulta relevante ser competitivos y eficientes en toda la cadena de suministro para ofrecer buenos retornos en la fruta y mantener la fidelidad de los productores. Al hacer un análisis interno de la empresa, revisando Fortalezas y Debilidades, se concluyó que no existen los suficientes esfuerzos de planificación para anticiparse a eventos futuros que permitan lograr reducir los costos asociados a la coordinación o mala planificación, ya que muchas actividades relacionadas a planificación no son formales ni estructuradas.

Actualmente la empresa realiza una estimación de cosecha (oferta) la cual se es muy utilizada al interior de la empresa, sin embargo sigue siendo una actividad informal que se traspasa solo en planillas Excel y que no se mantiene en línea para alertar eficazmente cambios que puedan afectar la toma de decisiones en todas las áreas que se nutren con dicha información.

Por otra parte, en la actualidad no existen planes de venta o estimaciones de demanda, solo se efectúan análisis específicos por parte de cada vendedor, quienes al recibir una orden de venta solicitan su producción y despacho basados en el stock y el historial de ventas del cliente. Es por esto que cada área planifica sus esfuerzos de forma independiente, basados en su experiencia para decidir cómo planificar sus esfuerzos cada temporada.

Dado lo anterior, el área comercial de la empresa plantea la necesidad de efectuar un rediseño de procesos el cual incorpore de manera formal la creación de planes de venta en la empresa, lo cual permita a toda la organización disponer de esta información para coordinar sus esfuerzos.

Considerando que la fruta es un alimento perecible, con una vida útil muy corta, resulta relevante para la empresa realizar los pronósticos de oferta y demanda en un muy breve plazo (vista por semana), ya que el dinamismo de la industria requiere reaccionar a los cambios del mercado de manera rápida y oportuna para no ver afectada la calidad por el deterioro de productos.
Dado lo anterior, es que el proyecto pretende explorar la utilidad de diversos métodos matemáticos, como herramientas del business Intelligence o de estadística, para formalizar un sistema de pronósticos de oferta y demanda que permita planificar mejor la distribución de las ventas Spot (67% de las ventas) hacia negocios más rentables, pero sin descuidar los compromisos de ventas por programa.

Para analizar la viabilidad técnica y financiera del rediseño propuesto se utilizará solo la especie cereza, que representa el 6% del volumen total de cajas exportadas y el 20% de los ingresos totales, siendo una de las especies que presenta mayores diferencias en precio en sus distintas modalidades de venta y se trabaja con un 66% bajo la modalidad de venta Spot.

1.2. Información de contexto.

En esta sección se encuentra una definición más detallada del proyecto, en donde se incluyen los objetivos y el ámbito en cual se desarrollará. Por otro lado, se presenta el modelo de negocios desde el punto de vista de la situación actual.

1.2.1. Información General: La Exportadora

Exportadora Geofrut Ltda. fue fundada en julio de 1991 cuando sus 3 socios fundadores: Pedro Schuller, Andrés Noguera y Cristian Echeverría, deciden ingresar al sector agroindustrial, el que -en esa década- se presentaba como un mercado en crecimiento y con muchos productores que necesitaban mayor oferta en servicios de exportación.

Desde entonces, la empresa dedica su giro a la exportación de fruta fresca, entre las cuales se incluyen uvas, duraznos, damascos, nectarines, cerezas, kiwis, manzanas, peras, ciruelas, plumcot y cítricos.

A través de sus filiales GEOAGRO, GEOSERVICE y GEOMARKET ha logrado ampliar su participación en la agroindustria nacional, ya que cuenta con producción propia (Geoagro), brinda servicios de Packing (Geoservice) y cuenta con áreas de comercialización para el consumo local (Geomarket).

En cuanto a la cobertura geográfica de la empresa cabe destacar que ésta es bastante amplia y abarca principalmente países de Asia, Europa, Latinoamérica y Estados Unidos. El volumen de cajas de la empresa supera los cuatro millones de cajas
por temporada\(^1\), un tercio de la capacidad del Exportador más grande del País –la transnacional Dole Chile- quien supera los doce millones por temporada. Geofrut se encuentra dentro de las 20 empresas más grandes del país (de un universo que supera las 600 exportadoras frutícolas)\(^2\).

El principal mercado es Estados Unidos a quien se envía cada temporada más del 50% de la producción. Asia por su parte ha presentado un crecimiento sostenido los últimos años dado los atractivos precios que se han desarrollado en tal continente y los atractivos retornos obtenidos. El mercado europeo en tanto, pasó de ser uno de los principales mercados hasta llegar a niveles muy similares a los de Asia en los últimos años, esto debido al impacto que tuvo la crisis europea y el fuerte crecimiento impulsado en Asia que quitó participación principalmente a Europa.

Figura 1-1: Cajas Exportadas por Mercado. Comportamiento por Temporada Frutícola.

Elaboración propia.

Para Geofrut existen dos grandes categorías de proveedores. Por una parte están los proveedores que suministran materiales y servicios, y por otra parte están los Productores de fruta quienes tienen la característica de entregar –según la modalidad de compra- la fruta en consignación a la exportadora para que ésta realice la gestión comercial y luego lo liquide por los resultados obtenidos de la venta (descontando gastos y comisiones por la gestión de exportación). Es por esto que, el objetivo de la exportadora es conseguir siempre el mayor retorno en la fruta consignada por sus productores, buscando las mejores oportunidades de negocio del mercado y siendo eficientes en toda la cadena de suministro y distribución.

\(^1\) La temporada frutícola para Geofrut abarca los meses de Octubre a Septiembre de cada año.

\(^2\) Fuente: Invest Chile Corfo, “La Agroindustria Frutícola en Chile”. www.investchile.cl
Dependiendo de la calidad de la fruta, se realizan ventas nacionales o internacionales, las que se resumen en el siguiente cuadro:

<table>
<thead>
<tr>
<th>Ventas Nacionales</th>
<th>Ventas a Supermercados</th>
<th>Consiste en tomar la mejor fruta no apta para mercados extranjeros, embalarla y distribuirla en supermercados nacionales.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Venta comercial</td>
<td></td>
<td>Fruta que no calificó para exportación ni supermercados, la cual es destinada a ferias libres, empresas de jugos, entre otros. Acá es el menor retorno obtenido por la fruta.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ventas Internacionales</th>
<th>Importadores</th>
<th>Fruta destinada a importadores quienes se encargan de distribuir en el mercado la fruta. Venta a supermercados, es más rentable al eliminar intermediarios, sin embargo es más exigente y presenta más rechazos de fruta.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Venta directa</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 1-2: Tipos de venta

1.2.2. Información General: La Agroindustria Frutícola en Chile³.

Desde la década de los 80’, la agroindustria ha presentado un importante desarrollo, impulsado por la apertura comercial del país y la firma de diversos tratados comerciales y de doble tributación, que ha posibilitado a los exportadores contar con un ambiente comercial más competitivo.

Chile, al estar ubicado en el extremo sur de América, cuenta con una producción de frutas que se genera en contra estación respecto a los principales centros de consumos del hemisferio norte. A su vez, el clima mediterráneo de Chile hace que sea uno de los pocos países que cuenta con dicho clima al sur del mundo, el cual ofrece muy buenas condiciones para la producción frutícola.

El clima mediterráneo, que en Chile abarca gran parte de la zona central, se caracteriza por la existencia de una estación lluviosa en el invierno (junio-agosto) y de un periodo seco, relativamente más prolongado entre septiembre a mayo. De acuerdo a estas características presentes en el clima mediterráneo, se puede analizar también el periodo de cosecha de las principales frutas frescas del país, las que se caracterizan por requerir de periodos secos para la maduración y cosecha de la fruta.

<table>
<thead>
<tr>
<th>ESPECIE</th>
<th>ENE</th>
<th>FEB</th>
<th>MAR</th>
<th>ABR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AGO</th>
<th>OCT</th>
<th>NOV</th>
<th>DIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arándanos</td>
<td></td>
</tr>
<tr>
<td>Cerezas</td>
<td></td>
</tr>
<tr>
<td>Ciruelas</td>
<td></td>
</tr>
<tr>
<td>Damascos</td>
<td></td>
</tr>
<tr>
<td>Duraznos</td>
<td></td>
</tr>
<tr>
<td>Kiwis</td>
<td></td>
</tr>
<tr>
<td>Manzanas</td>
<td></td>
</tr>
<tr>
<td>Peras</td>
<td></td>
</tr>
<tr>
<td>Uvas</td>
<td></td>
</tr>
</tbody>
</table>

Así mismo, la concentración de las principales zonas agrícolas se desarrolla en la zona central del país, desde la IV a la VII región (principales regiones con clima mediterráneo). La región con mayor desarrollo agrícola, tanto en hectáreas productivas como en formación, es la VI región con alrededor de 78.000 hectáreas.

Además de las bondades climáticas, la agroindustria presenta servicios conexos al proceso productivo altamente eficientes. Tanto la banca mundial, como compañías navieras, de courier, líneas aéreas y empresas de servicios, actúan como un mercado competitivo y eficiente logrando que el país esté perfectamente conectado con el resto del mundo.

En cuanto al sector exportador, éste está conformado por más de 630 empresas de variados tamaños, donde las 20 principales superan los 2,5 millones de cajas anuales exportadas. El principal exportador del país es la trasnacional Dole, con exportaciones de más de 12,5 millones de cajas durante la temporada 2008-2009.

<table>
<thead>
<tr>
<th>RANKING*</th>
<th>EXPORTADORES</th>
<th>TOTAL**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dole Chile S.A.</td>
<td>12,541</td>
</tr>
<tr>
<td>2</td>
<td>Unifrutti Traders Ltda</td>
<td>10,087</td>
</tr>
<tr>
<td>3</td>
<td>Rio Blanco Ltda., Export</td>
<td>9,192</td>
</tr>
<tr>
<td>4</td>
<td>Del Monte Fresh Produce</td>
<td>9,022</td>
</tr>
<tr>
<td>5</td>
<td>David del Curto S.A.</td>
<td>8,945</td>
</tr>
<tr>
<td>6</td>
<td>Subsole S.A., Export</td>
<td>7,489</td>
</tr>
<tr>
<td>7</td>
<td>Copefrut S.A.</td>
<td>7,336</td>
</tr>
<tr>
<td>8</td>
<td>Frusan, Frutera San Fernando</td>
<td>6,933</td>
</tr>
<tr>
<td>9</td>
<td>Aconex Ltda., Exportador</td>
<td>6,029</td>
</tr>
<tr>
<td>10</td>
<td>Agricom Ltda.</td>
<td>4,998</td>
</tr>
<tr>
<td>11</td>
<td>Greenvic S.A., Comercial</td>
<td>4,868</td>
</tr>
<tr>
<td>12</td>
<td>Scramble Ltda.</td>
<td>4,711</td>
</tr>
<tr>
<td>13</td>
<td>Rucaray S.A. Exportador</td>
<td>4,341</td>
</tr>
<tr>
<td>14</td>
<td>Exser Ltda.</td>
<td>4,248</td>
</tr>
<tr>
<td>15</td>
<td>Verfrut Ltda., Soc. Agro</td>
<td>4,245</td>
</tr>
<tr>
<td>16</td>
<td>Gesex S.A., Gestión de E.</td>
<td>4,200</td>
</tr>
<tr>
<td>17</td>
<td>Quillota S.A., Agrocomer</td>
<td>3,831</td>
</tr>
<tr>
<td>18</td>
<td>Geofrut S.A.</td>
<td>3,611</td>
</tr>
<tr>
<td>19</td>
<td>Agua Santa S.A. Exportad</td>
<td>2,520</td>
</tr>
<tr>
<td>20</td>
<td>C y D Internacional S.A.</td>
<td>2,517</td>
</tr>
</tbody>
</table>

*Ranking temporada 2008-2009
**Miles de Cajas
Fuente: Eximfruit 2009
1.3. Situación Actual

La empresa actualmente dispone de un equipo de 8 agrónomos más un gerente técnico (quien los supervisa), los cuales están distribuidos por zona (norte y central) y por programas según especie.

Figura 1-6: Jefes de programas frutícolas por zona geográfica. Elaboración propia.

Cada agrónomo está a cargo de un programa específico de fruta según zona, por lo que existe especialización de cada jefe de programa para brindar un mejor servicio y asesoramiento a productores. Además, según el tamaño del programa (volumen de productores o fruta de cada programa) los jefes de programa disponen de 1 o más ayudantes técnicos, quienes le brindan apoyo para controlar en terreno los campos.

El departamento técnico trabaja directamente con el departamento de planificación de la producción, en donde se encargan de planificar las recepciones de fruta que se obtendrán semanalmente para definir en qué planta será procesada la fruta (planta de empresa relacionada o contratación de servicios externos) de acuerdo a la estimación de capacidades de proceso requeridas. También es función de planificación de la producción coordinarse con el área comercial para definir los destinos de la fruta, ya que en función de ellos se confeccionan los programas de embalajes que define cómo será empacada la fruta (tipo de caja, peso, entre otros relacionados a normas de calidad y empaque).
Tal como se muestra en la figura 1-6, actualmente en la empresa si existe una predicción de oferta. Esta consiste en tomar en terreno una muestra de la fruta a cosechar en cada campo y construir con ellos una estimación general para todos los campos. Ésta es enviada con al menos un mes de anticipación al inicio de cada cosecha el cual contiene una proyección de cuatro semanas (programa tetrasemanal).

Las actividades realizadas en la estimación de cosecha son:

- **Tomar una muestra**: para ello se aplica el método estadístico de conteo, lo cual permite predecir el volumen en kilos de cada campo.
- **Transformar la muestra a cajas**: dado que la empresa produce y exporta cajas, los kilos estimados deben ser transformados a cajas equivalentes según un rendimiento exportable histórico (una vez que la fruta es procesada y seleccionada como exportable).
- **Elaboración del plan de cosecha**: cada jefe de programa construye un archivo Excel que contiene la estimación de cosecha total de la especie y productores. El archivo tiene una estimación detallada por variedad de fruta y semana de cosecha, permitiendo conocer qué variedades saldrán primero y cuál será el volumen a recibir cada semana.

El principal problema de este proceso es que su bajo nivel de sistematización ocasiona, por una parte, dificultad para trasmitir los cambios en las estimaciones a todos los usuarios de la información y, por otra parte, problemas de precisión al definir manualmente el rendimiento que tendrá la especie en general, basados en el rendimiento de la temporada anterior, generando estimaciones poco precisas en cuanto volumen de cajas a producir dado que hay productores con mejores/peores rendimientos o incluso dentro de la misma especie hay variedades con mejores/peores rendimientos.

Por otra parte está el departamento comercial, en el cual existe un equipo de 3 market manager, quienes se encargan de vender la fruta al mundo según el siguiente esquema:

- Market Manager 1: Asia
- Marked Manager 2: Estados unidos y Latinoamérica
- Market Manager 3: Europa y resto del mundo.

El departamento comercial trabaja directamente con el departamento de embarques, este último encargado de despachar la fruta de la(s) planta(s) hacia los distintos puertos de embarque. La relación existente entre el área comercial y de embarques es directa y muy estrecha, ya que una vez que el área comercial define una venta es el área de embarques quien se encarga de organizar y controlar su despacho.
Es por esto, que todas estas las áreas mencionadas trabajan entre ellas para planificar y coordinar sus recursos, donde resulta vital anticiparse y coordinarse de la mejor forma posible para ser eficientes en todo el ciclo que requiere la fruta para su venta, especialmente porque la fruta es perecible y requiere una rápida distribución. Sin embargo, lo anterior no es una tarea fácil de lograr. Anticiparse requiere contar con buenas estimaciones tanto de oferta como demanda, ya que es con esta información con la que todas las áreas podrían programar sus recursos.

En cuanto a pronósticos de venta, en la actualidad no se realizan. Es por esto que en la actualidad, al obtener la estimación de cosecha, los integrantes del área comercial comienzan a definir a qué mercados distribuirán la fruta, para lo cual analizan las condiciones del mercado actual, la distribución del año anterior y definen cómo distribuirán la fruta entre sus mercados de dominio. Definido lo anterior, la tarea difícil que plantean los market manager es la de revisar los sistemas para ver cuál fue el comportamiento por especie, variedad y semana a los distintos clientes que conforman su mercado, y hacerles ofertas de fruta ajustados a la producción estimada para la temporada en curso (basados en la estimación de cosecha) y calzando esos volúmenes a la estimación que cada market manager hizo en forma individual.

Por otra parte, las áreas de abastecimiento, programación de la producción, embarques y finanzas, solo se basan en información histórica de sus departamentos ajustados con las expectativas obtenidas con la estimación de cosecha, lo cual queda esquematizado en la figura 1-7.

Anticipación

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>b.1. Predicción de la Oferta</td>
<td>Gestión de Campos y utilización de métodos estadísticos para predicción. La transformación a cajas equivalentes es controlados en planillas Excel y no muy precisa.</td>
</tr>
<tr>
<td>b.2. Pronósticos de Ventas</td>
<td>No se realiza, solo se analiza igual venta año anterior por semana.</td>
</tr>
<tr>
<td>b.3. Planificar producción</td>
<td>Basado en recepciones históricas, sin anticipación.</td>
</tr>
<tr>
<td>b.3. Planificación de Insumos y servicios</td>
<td>Planificación basado en datos históricos, sin anticipación</td>
</tr>
</tbody>
</table>

Figura 1-7: Variables de anticipación, situación actual. Elaboración propia.

Las reglas de coordinación entre los departamentos son informales. Como se dijo anteriormente solo existe la estimación de cosecha la que debe ser enviada por el área técnica con la debida anticipación (4 semanas). Para reforzar la colaboración entre las principales áreas de la empresa, se realizan reuniones semanales (todos los martes).
Para planificar cómo se distribuirá la fruta informada por estimación de cosecha e ir corrigiendo esos números semana a semana. Para ello se reúnen gerentes, jefes de programa, market manager y jefes de planificación y embarques.

El problema detectado es que con una mala sistematización de la información hace que los mecanismos de control y la coordinación al interior de la empresa no sean eficaces. Al no estar unificada la información sobre la distribución de la fruta, la cual se va revisando semana a semana, limita la anticipación conjunta de todas las áreas involucradas, dando la sensación de que cada departamento al interior de la empresa debe planificar sus recursos por separado.

Coordinación

<table>
<thead>
<tr>
<th>c.1. Reglas</th>
<th>Reglas informales</th>
</tr>
</thead>
<tbody>
<tr>
<td>c.2. Colaboración</td>
<td>Reuniones semanales para planificación del negocio (área comercial, adquisición de fruta y embarques,</td>
</tr>
</tbody>
</table>

Figura 1-7: Variables de coordinación, situación actual. Elaboración propia.

Es importante considerar que la fruta tiene ciclos cortos de producción y venta, al ser productos perecibles. Es por esto que la fruta dispone de un tiempo limitado para ser cosechados, procesados y puestos a la venta. Es más, los clientes dan mucho valor a fruta que sea lo más fresca posible, por lo que el retorno final obtenido en cada producto depende de qué tan eficiente sea el ciclo de producción y venta.

Para ello resulta vital tener un alto grado de coordinación entre todas las áreas para distribuir eficientemente la fruta Spot hacia negocios rentables y no caer en la necesidad de recurrir a importadores bajo condiciones en libre consignación lo que permite agilizar el rebaje de inventario por perecer.
1.4. Objetivos del proyecto

1.4.1. Objetivo General

El objetivo principal del proyecto consiste mejorar la rentabilidad de la empresa por medio del aumento de los márgenes de las ventas Spot, pero sin descuidar las ventas por programa. Para ello se plantea mejorar la planificación y coordinación de los procesos de abastecimiento y distribución de fruta, que permita asignar a negocios más rentables las ventas Spot y reduciendo los flujos de fruta en libre consignación, que resultan menos rentables pero permiten reducir inventario de fruta perecible.

1.4.2. Objetivos Específicos

- Mejorar actividades de planificación y coordinación del flujo de la fruta, específicamente en el proceso de abastecimiento y venta de fruta, mejoras que deberán permitir a la empresa actuar de forma anticipada ante eventos futuros y distribuir eficientemente las ventas hacia negocios rentables. Con ello se podrá mejorar el uso de recursos involucrados y tiempos de respuesta, comprometiendo anticipadamente la fruta a buenas oportunidades de negocio, siendo precisos -a su vez- en la estimación para cumplir con tales acuerdos y no fallar compromisos asumidos con clientes.

- A través del rediseño de procesos se pretende impactar a aquellos claves en la generación de las capacidades buscadas, como lo son Abastecimiento de fruta y Venta y Comercialización de fruta. Lo anterior, a través de la sistematización de los procesos de estimación de oferta y demanda, utilizando técnicas de business Intelligence para aprovechar la data histórica de la empresa.

- Con la sistematización que propone este proyecto, se espera lograr brindar información útil no solo para las áreas de Abastecimiento de fruta y Venta y Comercialización de fruta, sino que entregar además información valiosa a todas las áreas de la empresa, e inclusive el productor, permitiéndoles actuar de forma anticipada y planificando de mejor manera sus actividades.

- El proyecto planteado se aplica a la realidad de Geofrut, sin embargo, no quita el hecho de que el problema de estimación de oferta y demanda también exista en otras empresas, por lo otro que el último objetivo consiste en generalizar esta experiencia a través de un frameworks.
Capítulo 2: Marco Teórico Conceptual y Metodológico

En este capítulo, se detalla la base teórica conceptual sobre la cual se apoya el proyecto. Específicamente, en este capítulo se presenta una mirada a la metodología propuesta por la Ingeniería de Negocios (Barros [3]), además de abordar el Business Intelligence, en particular la metodología KDD y Data Mining para comprender como se trabaja sobre grandes volúmenes de datos.

Por otro lado, en este capítulo se analiza las teorías que dan sustento a las estimaciones de cosecha y demanda, definiendo los modelos más adecuados al proyecto y haciendo una revisión de los métodos estadísticos para la estimación de cosecha.

Finalmente se analizan dos de las metodologías para el desarrollo de software más usadas, las cuales serán contrastadas para elegir aquella que mejor se adapte a la realidad en que se desarrolla el proyecto.
2.1. Metodología utilizada

El presente proyecto será abordado a través de la metodología propuesta por la Ingeniería de negocios (Barros [3]), debido a que esta propone una estructura para abordar el rediseño de procesos que requiere la empresa.

La ingeniería de negocios provee de los fundamentos y metodologías que se requieren para rediseñar una empresa (Barros [3]), por lo que, en la búsqueda de mejorar la competitividad de la empresa con la aplicación del proyecto, esta metodología presenta las bases necesarias para su desarrollo.

En primera instancia, la metodología propone investigar sobre el planteamiento estratégico del negocio, el que permite alinear los diseños que se aplicarán en el proyecto con la estrategia de la empresa. Efectuado el paso anterior, se puede comprender qué actividades generan un efecto importante a nivel competitivo y cuáles pasan a ser procesos de negocio claves para ser mejorados. Esto permite además justificar el proyecto, ya que si este se encuentra alineado con las actividades que generan valor a la empresa seguramente será rentable de llevar a cabo.

![Diagrama de la metodología de la Ingeniería de Negocios](image-url)

Figura 2-1: Metodología ingeniería de negocios
Posteriormente, es importante definir un modelo de negocios que aplique al contexto en que se desarrolla el proyecto. Este explicará en una empresa una historia lógica sobre quiénes son sus clientes, a qué dan valor y la forma más apropiada de generar resultados económicos positivos a través de sus propuestas de valor (Barros [3]). Por tanto, en este punto es importante definir el cliente del proyecto, para definir si los rediseños planteados están alineados a la generación de valor que el cliente espera recibir, lo cual permita obtener mejores resultados económicos.

El siguiente paso en la metodología estudiada, consiste en definir el diseño de una arquitectura de negocios que nos ayude a definir los macroprocesos más relevantes en función del planteamiento estratégico y el modelo de negocios definido en las etapas anteriores. Esta arquitectura podrá ser desarrollada para una parte de la empresa o para todo el negocio (Barros [3]), la relevancia es identificar y detallar los procesos más relevantes a ser incluidos en el rediseño que propondrá el proyecto.

Una vez que uno tiene un diseño de una arquitectura global o parcial, el siguiente paso es realizar el diseño de cada proceso de ella. Para esto puede ser tomada o no la situación actual del proceso, esto dependerá si habrá o no un cambio significativo en el proceso (Barros [3]). Si la situación actual servirá como un punto de partida al rediseño claramente se requerirá el mayor detalle posible del proceso actual, en cambio si el proceso será completamente rediseñado sería trivial documentar el proceso. Para construir el rediseño, el enfoque propone analizar distintas variables de diseño de los procesos considerando para ello la situación actual de cada variable de diseño y el cambio propuesto por el proyecto.

Luego prosigue el diseño de la aplicación de apoyo la cual se basa en el rediseño de procesos propuesto en el punto anterior y plantea todos los requerimientos de diseño a ser presentada al programado o equipo de programación, de tal forma que estos comprendan claramente los términos del diseño buscado y obtener una aplicación computacional acorde a tales necesidades.

Finalmente, esta metodología propone la construcción e implementación de la aplicación diseñada, al menos en piloto, incluyendo desarrollo de software. Para esta etapa es fundamental contar con conocimientos de gestión del cambio que soporte los procesos de implementación donde intervienen personas. También es relevante mantener una evaluación y mejora continua para responder eficazmente antes los cambios de mercados altamente competitivos.
2.2. Marco teórico

El marco del cual este proyecto fundamenta sus bases teóricas, hace referencia a principalmente al Business Intelligence y Data Mining, recurriendo a una de las metodologías más utilizadas para el descubrimiento de conocimiento en bases de datos como lo es la metodología KDD (Knowledge Discovery in Database), la cual será fundamental para explicar todo el proceso requerido para obtener conclusiones de la data histórica de la empresa y tomar decisiones a través de ella.

Posteriormente serán analizados los distintos modelos a utilizar en el proceso de Data Mining para obtener las estimaciones de demanda y oferta, revisando además las formas de medir la calidad predictiva de los modelos utilizados.

Finalmente serán analizados los modelos de estimación de cosecha, fundamentales para comprender cómo se estiman los kilos a cosechar por cada productor. Para ello se hará una revisión de los métodos más usados en los campos, en especial el que la empresa utiliza actualmente.

2.2.1. Business Intelligence

El concepto fue introducido por Haward Dresner, miembro del Grupo Gartner\(^4\) en 1989. Para Gartner, Business Intelligence (BI) es una serie de conceptos y metodologías diseñadas para mejorar la toma de decisiones en los negocios a través del uso de hechos y sistemas basados en hechos (Garner group, 2008).

BI puede definirse como un conjunto de modelos matemáticos y metodologías de análisis que usan los datos disponibles para generar información y conocimiento útil para la toma de decisiones complejas. Es más, en un escenario competitivo y globalizado, donde las empresas deben ser más flexibles y ágiles para competir, el valor de la información crece a medida que las decisiones son más complejas. Esta complejidad se funda en que al interior de las empresas hay muchas áreas en donde se puede almacenar, manejar y analizar enormes volúmenes de datos, generándose así la necesidad de transformar estos datos en información útil y manejable.

Es por esto que BI ha tomado un rol fundamental en la toma de decisiones, ya que genera nuevas capacidades al brindar a la toma de decisiones un mayor número de alternativas a considerar, obtener conclusiones más precisas, y hacer que las decisiones que se tomen sean eficaces y oportunas (ver figura 2-2).

\(^4\) Gartner, Inc es el líder mundial en la investigación de las tecnologías de la información y asesoramiento empresas.
La arquitectura TI de un modelo de Business Intelligence se puede definir en tres componentes principales:

- **Bases de datos**: puede desde sistemas transaccionales (ERP, CRM, Sistemas legados) o datos externos que complemente información para tomar decisiones.
- **DataWarehouse (DW) o Data Marts (DM)**: son bases de datos que integran y depuran (a través de herramientas de ETL) información de varias fuentes de datos, lo que permite tener la información concreta y de calidad para hacer análisis desde distintas perspectivas y usos. La distinción entre DW y DM está en que el primero tiene información global de la empresa, mientras que el segundo es más específico a un área o departamento del negocio.
- **Modelos o Metodologías de BI**: El tercer componente de la arquitectura corresponde a la elección de modelos matemáticos o metodologías de BI (como KDD) que se aplicarán a los datos que proveen los DW o DM, para apoyar la toma de decisiones.

![Figura 2-2: Beneficios del Business Intelligence. Fuente: Carlo Versellis [6].](image)

![Figura 2-3: Arquitectura típica de Business Intelligence.](image)
Si analizamos los componentes de un sistema de Business Intelligence de forma piramidal (ver figura 2-4), podemos ver la importancia que los componentes de BI tienen según su complejidad y uso para la toma de decisiones.

En el nivel inferior encontramos las fuentes de datos. A este nivel solo disponemos de datos aislados que no permiten tomar mayores decisiones.

Una vez que disponemos de un Data Warehouse o un Data Marts, los datos transaccionales y externos ya se encuentran trabajados, depurados y preparados para obtener de ellos información útil para la toma de decisiones. En este nivel se pueden obtener reportes multidimensionales (a través de cubos OLAP) que permiten analizar de múltiples dimensiones distintas situaciones que pueden apoyar una decisión.

Un nivel más avanzado en la pirámide, es la exploración de datos y visualizaciones. Las empresas suelen configurar reportes personalizados (Ad Hoc) o desarrollar cuadros de mando que permitan ir analizando el desempeño de los procesos de negocios más importantes.

Algo más sofisticado es la utilización del Data Mining (explicado en 2.2.3) para la obtención de conocimiento a partir de los datos, y a partir de este conocimiento generado tomar decisiones de negocio.

En la cúspide encontramos la Optimización, la cual permite determinar la mejor solución ante un conjunto de alternativas de acción. Un ejemplo de esto, sería la utilización de modelos de Data Mining mezclado con modelos económicos sobre de Teoría de Juegos para optimizar las decisiones de la policía contra las estrategias de los criminales; dado un escenario de escases de policías y la creciente cantidad de crímenes, optimizar las rondas preventivas permitiría combatir de mejor forma el crimen si se logra ser más eficaces en los puntos donde aplicar la vigilancia.

5 Caso práctico analizado en curso IN716-1 Business Intelligence II 2014 del MBE.
Teniendo claro los componentes del Business Intelligence, es posible enfocar a donde irá dirigido el proyecto, ya que el objetivo es lograr confeccionar modelos que nos permitan aprender de los datos históricos de la empresa (Data Mining).

2.2.2. Metodología KDD

El proceso de descubrimiento de conocimiento en Bases de Datos (*Knowledge Discovery in Database*, KDD (Fayyad, Piatetsky-Shapiro and Smyth [7])), se centra en el proceso general de descubrimiento de conocimiento a partir de datos, incluyendo el cómo los datos se almacenan y se acceden, con qué algoritmos se puede escalar a grandes conjuntos de datos, y aun así funcionar de manera eficiente, y cómo los resultados pueden ser interpretados y visualizados.

La serie de pasos en el proceso KDD son:

- **Data**: un paso preliminar es definir la data. Esta puede provenir de muchas fuentes o bases de datos y para un análisis de data mining puede solo requerirse cierta información y con cierta estructura. Por lo que es importante definir con qué datos deseo trabajar y conocer las fuentes de esos datos.
- **Selección de datos**: consiste en seleccionar las variables o atributos relevantes el problema que deseamos resolver. Una buena forma de seleccionar las variables es ser asesorado por expertos del negocio o especialistas en el tema particular. Esto puede ser acompañado de análisis exploratorio de datos para identificar las variables principales o analizar si existe correlación entre variables, etc.

- **Pre-procesamiento**: consiste en eliminar de las bases de datos los valores perdidos. Si el número de valores perdidos es pequeño es posible omitirlos, pero si son muchos los valores perdidos, es necesario definir un criterio para el reemplazo [10].

- **Transformación**: este proceso se utiliza dependiendo del modelo de Data Mining a utilizar, debido a que hay modelos requieren que todas las variables se encuentren normalizadas para que sus resultados sean válidos, pero también hay modelos que trabajan con distintos tipos de variables por lo que la transformación podría ser obviada.

- **Data Mining**: en esta etapa es donde se define la el modelo matemático más adecuado. En este paso pueden ser evaluados más de un modelo, ya que la idea es definir el modelo que más se ajuste a la problemática a resolver y sea el más preciso para apoyar la toma de decisiones, por lo que es necesario comparar los resultados que arroje cada uno de ellos.

- **Interpretación y evaluación**: los resultados del modelo debe ser interpretados de acuerdo a la problemática de negocio y ser evaluados en tal contexto.

Estos pasos son esenciales para asegurar que el conocimiento que se deriva de los datos es útil y no llega a determinar patrones sin sentido y no válidos al problema a resolver.

![Figura 2-5: Proceso KDD](image)
Durante el proceso KDD existen distintos actores que intervienen según el rol que cumplan en el proceso. En las primeras actividades, son los analistas de Data Mining, los administradores de bases y los expertos, quienes analizan y definen el problema a resolver. Luego, son los administradores de bases de datos y analistas de Data Mining quienes se encargan de analizar y recopilar los datos de las distintas fuentes y repositorios.

La preparación de los datos en sí, pre-procesamiento y normalización, el rol es exclusivo del analista de Data Mining, así como la aplicación de los modelos. Pero la interpretación de los resultados debe ser tarea conjunta entre los expertos, que conocen el problema a resolver, y el analista de Data Mining quien aplicó los modelos y puede explicar la metodología empleada.

La aplicación de los resultados, como apoyo a toma de decisiones, es rol del experto en el proceso, explicado en la figura 2-6.

<table>
<thead>
<tr>
<th>Administradores de Bases de datos</th>
<th>Analistas de Data Mining</th>
<th>Dominio Experto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Análisis del problema</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Análisis de los datos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recopilación de los datos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparación de los datos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aplicación de modelos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interpretación de los resultados</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aplicación de los resultados</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control y retroalimentación</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluación de los resultados y consistencia con las alternativas</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 2-6: Actores y roles en el proceso de Data Mining
Entender la figura 2-6 es de gran importancia para el proyecto, debido a que permite definir los roles y funciones que tendrán las distintas personas que conforman los procesos en que se aplicará el Data Mining.

2.2.3. Data Mining: Definición

Como fue ilustrado en la sección 2.2.2., el Data Mining es un elemento del proceso KDD y consiste en la aplicación de algoritmos específicos para la extracción de patrones a partir de datos, distinguiéndose dos objetivos [7]:

- **Verificación:** el sistema se limita a validar la o las hipótesis del usuario.
- **Descubrimiento:** el sistema de forma autónoma encuentra nuevos modelos e hipótesis.

Existen distintos conceptos sobre qué es el Data Mining, por ejemplo:

- Para Gartner Group, 2004: “Es el proceso de descubrimiento de nuevas correlaciones, patrones y tendencias desde enormes repositorios de información, usando tecnologías de reconocimiento de patrones como por ejemplo modelos de programación matemática y modelos estadísticos”

- Para Bery and Linoff, 2000: “Es el proceso de exploración y análisis de la información, en términos automáticos o semiautomáticos, de enormes volúmenes de información en vía de descubrir patrones de comportamiento y reglas importantes para una compañía”.

El Data Mining tiene infinitas dimensiones de aplicación en variadas áreas de la ciencia. Por ejemplo, en agencias de inteligencia y militares para la mejoras en armas y mantenimiento de flotas, o en la medicina para el estudio de enfermedades, en la Geología para el descubrimiento de yacimientos minerales, o en la meteorología para los pronósticos del tiempo y temperatura, entre otros.

Sin embargo, las aplicaciones que nos interesa estudiar son las que se presentan en el mundo de los negocios. Entre ellas encontramos diferente aplicaciones según el objetivo del estudio:

- **Para el análisis de clientes:** con una cartera de clientes grande, resulta interesante determinar ¿cuál de ellos tiene una mayor propensión a aceptar una oferta de mis productos?; o se podría utilizar por ejemplo las características sociodemográficas de los clientes para clasificarlos y aplicar políticas comerciales; además, es posible utilizar algunos métodos de clasificación para determinar cuáles de estos clientes es un buen o mal cliente para la compañía; o
se podría estimar cuánto gastarán en servicios y productos en los próximos meses.

- **Para el estudio de fraudes:** Se podría determinar qué cliente está cometiendo fraudes en las compañías, como en el caso de las Isapres y las licencias médicas falsas; o con el ahora masivo uso de compras por Internet, estudiar la probabilidad de que una transacción sea fraudulenta.

- **Para fuga de clientes:** Ejemplos de esto puede ser la industria bancaria, telecomunicaciones o Isapres, donde la competencia genera una alta tasa de clientes fugados ante opciones más atractivas en la competencia. Sin embargo, no todos los clientes son buenos clientes, pero en aquellos buenos y rentables es recomendable determinar la probabilidad de que se fuguen, para tomar las medidas de retención con tiempo.

- **Aprobación de créditos:** Muchas solicitudes y pocos ejecutivos, son problemas clásicos dentro de la industria financiera, donde resulta vital identificar aquellos clientes riesgosos de no pago. En este tipo de modelos, lo que se buscar es lograr una asignación eficiente de los recursos financieros, reduciendo los niveles de subjetividad en la entrega de créditos mediante un modelo más objetivo respecto al juicio del ejecutivo, y automatizando el proceso de otorgamiento de crédito para aumentar el número de solicitudes cursadas.

2.2.3.1. Elementos del Data Mining

Así mismo, se identifican tres componentes principales de cualquier algoritmo de Data Mining [7]:

- **Representación de modelos:** Es importante que el diseñador de algoritmos indique claramente los supuestos que se están realizando mediante un algoritmo en particular.

- **Evaluación del modelo:** son declaraciones de lo bien o mal que un patrón en particular (un modelo y sus parámetros) cumple con los objetivos del proceso de KDD.

- **La búsqueda:** consiste en dos componentes: (1) la búsqueda de parámetros y (2) búsqueda de modelos. Una vez que la representación del modelo y los criterios de evaluación de modelos son fijos, entonces el problema de minería de datos se ha reducido a la simple tarea de optimización: Encontrar los parámetros y modelos de la familia seleccionada que optimizan los criterios de evaluación.
2.2.3.2. Clasificación de Modelos de Data Mining y tipos de tareas.

Los modelos de data Mining pueden ser clasificados en dos grandes grupos sobre la base de la existencia o no de un atributo de destino\(^6\): los supervisados y los no supervisados:

- **En el aprendizaje supervisado**: los procesos de aprendizaje se orientan hacia la predicción e interpretación con respecto a un atributo de destino (modelos de clasificación y regresión pertenecen a este grupo).

- **En el aprendizaje no supervisado (o indirecto)**: el aprendizaje no se guía por un atributo de destino. Por lo tanto, las tareas de minería de datos en este caso están dirigidas a descubrir patrones en el conjunto de datos (clustering y reglas de asociación pertenecen a este grupo).

Por otra parte, existen distintas tareas en las que el Data Mining puede ser enfocado, por ejemplo:

- **Clasificación**: En un problema de clasificación está disponible un conjunto de observaciones, cuya clase de destino se desconoce. Cada observación es descrita por un número de atributos conocidos, donde el algoritmo de clasificación puede utilizar las observaciones disponibles con el fin de identificar un modelo que pueda predecir la clase de destino de futuras observaciones (Versellis [6]). Una aplicación podría ser si el cliente compra o no compra un productor en particular basado en sus atributos y comportamiento pasado para predecir el comportamiento futuro de compra. Otras aplicaciones podrían ser si califica o no para un crédito, o si una transacción es normal o fraudulenta, entre otras. En el ámbito de los negocios la idea principal del Data Mining en clasificación es determinar la pertenencia del cliente a una clase.

- **Predicción**: su idea central es similar a la de clasificación, salvo que su función es predecir un valor numérico más que una clase. Se relaciona con la predicción de una variable continua más que algo categórico. Algunas aplicaciones podrían ser; estimar demanda de productos, o estimar la probabilidad de que alguien conteste a un mailing, o la estimación del tiempo de vida de un cliente, o estimar el rendimiento exportable como el caso que aplica en este proyecto.

- **Clustering**: El término clúster se refiere a un subgrupo homogéneo existente dentro de una población. Por tanto, técnicas de Clustering están dirigidas a la segmentación de una población heterogénea en un número dado de subgrupos homogéneos entre sí (Versellis [6]). A diferencia de los

\(^6\) Classes of models, Carlo Vercellis [6], Part II, Mathematical models and methods
métodos de clasificación, en el clustering no hay clases predefinidas o ejemplos de referencia que indican la clase de destino, por lo que los objetos se agrupan en función de su homogeneidad, basados en un criterio de distancia y similitud de las observaciones. Una aplicación sería agrupar los clientes (segmentación) para obtener distintos grupos en función del target y sobre los cuales aplicar políticas comerciales según el grupo de pertenencia.

- **Reglas de asociación**: se utilizan para identificar asociaciones interesantes y recurrentes entre grupos de registros de un conjunto de datos [6]. Por ejemplo, es posible determinar qué productos se compran juntos en una sola transacción y con qué frecuencia. La idea central es tratar de encontrar relaciones entre los distintos productos de una compañía que tengan una alta probabilidad de pertenecer a una canasta de compra del grupo familiar. Con estas reglas es posible diseñar, por ejemplo, de mejor forma políticas de descuentos y cupones (ofertas focalizadas) en supermercados, entre muchas otras aplicaciones.

- **Optimización**: Su objetivo se basa en que el tomador de decisiones debe identificar la decisión óptima de acuerdo a la evaluación de un conjunto de decisiones factibles, estableciendo un criterio para la evaluación y comparación de opciones alternativas, como costos o beneficios (Versellis [6]). Los modelos de optimización surgen cuando un conjunto de recursos limitados deberán asignarse de la manera más eficiente. Estos recursos pueden ser personal, materias primas, flujos financieros, entre otros. Su aplicación se da en procesos como; la logística y la planificación de la producción; la planificación financiera; la Planificación de turno de trabajo; entre otros.

2.3.2.3. Modelos de Data Mining Predictivo

Los modelos predictivos son una proporción significativa de los modelos utilizados en los sistemas de Data Mining aplicados en los negocios, los cuales requieren datos de entrada relacionados con eventos futuros. Por ejemplo, los resultados de los eventos aleatorios determinan la futura demanda de un producto o servicio, el desarrollo de nuevos escenarios de la innovación tecnológica y el nivel de precios y costos. Como consecuencia, los modelos predictivos juegan un papel primordial en los sistemas de inteligencia de negocios, ya que están un paso adelante con respecto a otros modelos y, en general, a todo el proceso de toma de decisiones.

Las predicciones permiten anticiparse a diferentes procesos de toma de decisiones, y en distintas industrias. Básicamente, todas las funciones de los departamentos de una empresa hacen algún uso de información predictiva para desarrollar la toma de decisiones, a pesar de que persiguen objetivos diferentes.
Sin embargo, en la actualidad existen muchos modelos de Data Mining, y la razón es que cada modelo puede ser más o menos efectivo según la problemática a resolver. Esto quiere decir que no todos los modelos son buenos para predecir, por lo que a continuación se describirán los grupos de modelos más conocidos y aplicados para tal tarea:

- **Regresión**: El propósito de estos modelos es identificar funcionalmente una relación entre una variable dependiente y un conjunto de atributos independientes. Los modelos de regresión predictivos se ocupan de un conjunto de datos consistentes en observaciones pasadas, para los que se conocen tanto el valor de los atributos explicativos como el valor de las variables objetivo [6]. Existen dos tipos de regresión; modelos de regresión lineal simple, para los cuales existe una interpretación geométrica sencilla en el plano para modelar la relación entre una variable dependiente y una variable independiente; y modelos de regresión múltiple, que utilizan más de una variable explicativa, lo que ofrece la ventaja de utilizar más información en la construcción del modelo y, consecuentemente, realizar predicciones más precisas.

- **Series de tiempo**: El objetivo de los modelos para el análisis de series de tiempo, es identificar cualquier patrón regular de observaciones en relación con el pasado, con el propósito de hacer predicciones para períodos futuros [6]. En este tipo de modelos hay conjuntos de datos en las que el atributo de destino es dependiente del tiempo, ya que se asocia con una secuencia de períodos consecutivos a lo largo de la dimensión temporal, y el interés reside en la naturaleza de tal dependencia. En una serie de tiempo el orden de las observaciones es importante porque se trata de valores que ocurren en un orden determinado. Existen distintos modelos de series de tiempo, tales como el promedio móvil, suavización exponencial o métodos autorregresivos.

2.3.3. Series de tiempo

En esta sección se profundizará sobre los modelos de Data Mining predictivos de series temporales, dado que luego de hacer distintas pruebas para el proyecto se concluyó que eran las más eficientes para este caso en particular. Tal como se dijo en la sección anterior, existen muchos modelos de Data Mining, lo importante es descubrir cuales tienen más ventajas y menos desventajas para resolver cierto tipo de problemática.
Una serie de tiempo es un conjunto de datos numéricos que se obtienen en períodos regulares a través del tiempo [6]. Uno de los problemas que intenta resolver las series de tiempo es el de predicción. Dada una serie de tiempo en particular, el objetivo consiste en describir el comportamiento de la serie, investigar el mecanismo generador de la serie temporal y buscar posibles patrones temporales que permitan sobrepasar la incertidumbre del futuro [6].

El comportamiento de las series de tiempo se debe a 4 componentes [6]:

- **La tendencia**: es aquella tendencia a largo plazo sin alteraciones en una serie de tiempo. Esta tendencia pudiera ser de tipo lineal o no lineal, así como también creciente o decreciente y también como una combinación de alguna de las anteriores. Muchos productos, servicios e indicadores económicos siguen un comportamiento de este tipo.
- **Variación cíclica**: a través del período de tiempo analizado se producen ascensos y descensos en varias oportunidades. Este tipo de comportamiento es muy asociado a variaciones de carácter económico.
- **Variación estacional**: tiene como característica una variación regular dentro de un año y que a su vez se repite cada año en ciertas fechas. Casos típicos son la producción de frutas (como el plantado en este proyecto) o a productos como ropa de temporada.
- **Componente irregular**: tiene un comportamiento extraño e imprevisible que se dan generalmente en el corto plazo. Un ejemplo podría ser el aumento de la demanda en la locomoción colectiva producto de una restricción vehicular que obliga a usar tal medio de transporte.

Los pronósticos además tienen asociados un alcance, entre los que diferenciamos muy corto plazo, corto plazo, mediano plazo y largo plazo. El horizonte de tiempo dependerá de la industria y los objetivos que se desean resolver con la predicción. En la tabla 2-1 se definen los distintos alcances en el tiempo y podemos encasillar en qué alcance se requiere trabajar en el proyecto.

<table>
<thead>
<tr>
<th>Tipo de Pronóstico</th>
<th>Alcance</th>
<th>Decisiones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muy corto plazo</td>
<td>Horas, Días, Semanas</td>
<td>Operaciones especulativas, pronósticos de fruta.</td>
</tr>
<tr>
<td>Corto Plazo</td>
<td>Trimestres, Semestres, Año</td>
<td>Operaciones especulativas, de cobertura y/o de gestión comercial.</td>
</tr>
<tr>
<td>Mediano Plazo</td>
<td>Uno a seis años</td>
<td>Evaluación y control de los resultados de la gestión y de los negocios de una empresa</td>
</tr>
<tr>
<td>Largo Plazo</td>
<td>Seis y más años</td>
<td>Planeación de la producción y evaluación de proyectos</td>
</tr>
</tbody>
</table>

Tabla 2-1. Tipos de pronósticos según alcance de tiempo. Series de Tiempo [12].
Para poder pronosticar cuál es el comportamiento futuro de una variable, es necesario comprender estas características de comportamiento. Esta actividad resulta relevante para poder representar y ajustar de manera eficiente el comportamiento de los datos de oferta y demanda fruta que persigue el proyecto.

2.3.3.1. Promedios móviles

El método de pronóstico de promedio móvil se utiliza cuando se quiere dar más importancia a conjuntos de datos más recientes para obtener la predicción. Cada punto de una media móvil de una serie temporal es la media aritmética de un número de puntos consecutivos de la serie, donde el número de puntos es elegido de tal manera que los efectos estacionales sean eliminados [6].

\[
\text{Promedio móvil} = \frac{\sum_{t=1}^{n} X_{t-1}}{n}
\]

Donde,
- \(\sum\) = sumatoria de datos
- \(n\) = número de datos de la serie
- \(X_{t-1}\) = datos en periodos anteriores a t

Este método resulta relevante de utilizar, ya que para construir las series de tiempo en Geofrut, dada la condición de estacionalidad que se observa en la fruta, se tomaran los datos anuales (periodo t) de temporadas anteriores para predecir el valor buscado. Para esto resulta relevante analizar qué cantidad de periodos (n) es el mejor para minimizar el error de estimación y garantizar la precisión del modelo.

2.3.3.2. Suavización exponencial

A pesar de su simplicidad, los modelos de suavizado exponencial son algunos de los métodos de predicción más versátiles y precisos para el análisis de series de tiempo. Han demostrado ser especialmente eficaz en la predicción de los fenómenos económicos (Veceliss, [6]).

El modelo de suavización exponencial, también llamado el modelo de Brown, se basa en un estimador \(St\) de la media de las observaciones de la serie de tiempo hasta
el tiempo t, llamada la media suavizada y definida a través de una expresión que puede repetirse indefinidamente.

$$St = \alpha y_t + (1 + \alpha) S_{t-1}$$

$$S1 = y_1$$

Donde $\alpha \in [0,1]$ y es un parámetro que regula la importancia de la más reciente y_t valor con respecto a la media alisada de los valores anteriores. Se podría comprobar de manera simple revisando las siguientes igualdades:

$$S1 = y_1$$
$$S2 = \alpha y_2 + (1 + \alpha) S_1$$
$$S3 = \alpha y_3 + (1 + \alpha) S_2$$
...
$$S2 = \alpha y_2 + (1 + \alpha) S_1$$

En resumen, el método de Suavización exponencial es un promedio ponderado de los valores reales y los valores pronosticados. De manera particular, esta técnica considera que las observaciones recientes tienen mayor valor y le otorga mayor peso dentro del promedio.

2.3.3.3. Métodos Autorregresivos

Los Métodos autorregresivos se basan en la idea de identificar las posibles relaciones entre las observaciones de una serie de tiempo en diferentes periodos mediante el estudio de la autocorrelación entre las observaciones separadas por un intervalo de tiempo fijo, denominado lapso de tiempo.

Después de que un lapso de tiempo h ha sido elegido, la nueva serie temporal compuesta de observaciones rezagadas se define a través del operador Backshift (desplazamiento posterior):

$$B^h Y_t = Y_{t-h}, \quad con \ t > h$$
En general, el desarrollo de modelos autorregresivos tiene el supuesto de que la serie de tiempo es estacionaria. Esto significa que su trayectoria se mantiene estable alrededor de un valor medio constante.

Luego se analiza la correlación entre las variables Y_t y B^NY_t. Si Y_t tiene un componente de estacionalidad con un período de L, es razonable esperar que la serie temporal Y_t y $B^LY_t = Y_{t-L}$ sea altamente correlacionado. La diferenciación de orden L puede ser útil para eliminar parcialmente un componente estacional de la duración del ciclo L de una serie de tiempo dado.

Los modelos autorregresivos son por lo general más flexibles que otros modelos vistos (2.3.3.1 y 2.3.3.2). Sin embargo, algunos estudios empíricos (Vecellis [6]), han demostrado que el mayor esfuerzo que se requiere para desarrollar e identificar modelos autorregresivos no siempre es compensado por una mejora en la precisión de la predicción al comparar con modelos más simples.

2.3.4. Medición de la calidad predictiva

La medición de la precisión de las predicciones formuladas mediante series de tiempo se justificad por dos razones. En primer lugar, durante la fase de identificación del modelo más adecuado al problema, se necesitan medidas de precisión para comparar modelos alternativos con otros, identificando aquellos más precisos (con menor error total). En segundo lugar, después de que un modelo predictivo se ha desarrollado y utilizado para generar predicciones para periodos futuros, es necesario evaluar periódicamente su precisión, a fin de detectar cualquier anomalía y la insuficiencia en el modelo que pueda surgir en un momento posterior. La evaluación de la exactitud de las predicciones en esta etapa hace que sea posible determinar si un modelo sigue siendo exacto o si se requiere un ajuste o cambios [6].

2.3.4.1. Medidas de distorsión

Índices de distorsión se utilizan para discriminar entre modelos predictivos basados en errores medios (ME). El error medio se define como:

$$ME = \frac{\sum_{t=1}^{k} et}{k} = \frac{\sum_{t=1}^{k} (Y_t - Ft)}{k}$$

Idealmente uno podría elegir entre las alternativas del modelo que se obtiene un valor de error medio lo más cercano a 0.
2.3.4.2. Medidas de dispersión

En ocasiones los índices de distorsión son insuficientes para discriminar entre modelos candidatos. Para ver esto, considere la figura 2-7, que muestra las curvas de densidad de error para tres modelos predictivos diferentes, en relación con las predicciones de la misma serie de tiempo. Como se observa en la figura, los modelos (1) y (3) pueden ser preferibles a modelo (2), ya que indican una menor distorsión. El error medio para (1) y (3) es cero, mientras que para el modelo (2) es igual a 3. Sin embargo, aunque su distorsión es nula, los modelos (1) y (3) no son equivalentes, ya que (1) genera errores que son más pequeños en comparación con (3), y es por lo tanto sería preferible.

![Figura 2-7. La distorsión y dispersión de la densidad de los errores en modelos de predicción [6].](image)

Para discriminar entre modelos con nula distorsión es necesario introducir índices de dispersión, que se basan en errores absolutos medios. Por lo tanto, la desviación media absoluta (MAD) se define como:

\[
\text{MAD} = \frac{\sum_{t=1}^{k} |e_t|}{k} = \frac{\sum_{t=1}^{k} |Y_t - F_t|}{k}
\]

Y el porcentaje de error absoluto medio (MAPE) como:

\[
\text{MAPE} = \frac{\sum_{t=1}^{k} |e_t^p|}{k}
\]
2.3.5. Modelos para estimación de cosecha en árboles frutales

En términos de estimación de cosecha, que aplica en el rubro agrícola, se evidencian distintos métodos frecuentemente utilizados por las áreas técnicas de las empresas para el pronóstico de cosecha. Cada método puede ser más o menos sofisticado y dependerá de la precisión deseada a controlar y el esfuerzo decidido invertir para obtener sus pronósticos. Para ello hay que tener presente que una mayor complejidad de un modelo lo hace más exacto pero a su vez puede hacerlo menos comprensible y útil para quienes usarán los resultados obtenidos.

Por tanto para construir un modelo equilibrado a la realidad de una empresa, se debe tener en cuenta que capacidad se cuenta en función de estas variables:

- Un concepto comprensible de los procesos fisiológicos de los árboles a muestrear.
- Un pensamiento cuantitativo e imaginativo para obtener resultados precisos con la información disponible.
- Una apropiada base de datos agrícola/biológica.

En la figura 2-9 se representa la complejidad de un modelo frutícola, donde a mayor complejidad se obtendrá una mayor exactitud pero a su vez habrá una menor comprensibilidad y utilidad.
Es por esto que a continuación revisaremos los distintos métodos conocidos en la industria para hacer estimaciones de cosecha, describiendo las ventajas y desventajas de cada uno de ellos, y la complejidad requerida por cada uno.

2.3.5.1. Modelos estadísticos por muestreo

Es uno de los métodos más simples y de buena precisión, y es el utilizado por la empresa en estudio. Consiste en un método estadístico, el cual se basa en definir una muestra adecuada de cada campo para estimar -en función de aquella muestra- el potencial rendimiento del campo completo.

El modelo funciona definiendo la estructura del campo o cuartel, en donde se identifican los “n” árboles de la superficie, en las cuales son contados los frutos que determinan una carga promedio por árbol. Luego se debe definir el peso promedio de cada fruto en su etapa de madurez, requiriendo para ello la utilización de algún método para determinar el peso promedio de los frutos en función de su crecimiento. Con la información recopilada de la muestra se puede extrapolada para obtener el resultado del huerto, de acuerdo con la ecuación presentada en la figura 2-10.

Figura 2-9: Complejidad de modelos frutícolas. Fuente: Goldschmidt y Lakso [20].

![Diagrama](image)

Complejidad del modelo

- **Exactitud**
- **Comprensibilidad**

La gráfica muestra la relación entre la complejidad del modelo y su exactitud y comprensibilidad.
Para definir la estructura del sistema productivo, es necesario separar cada superficie según especie y variedad, intentando que sea lo más homogénea posible (similar antigüedad de las plantas), por tanto la estructura puede ser a nivel de cuartel (parte de un campo agrupada homogéneamente) o un campo completo (dependiendo si el campo es homogéneo en sí, principalmente en campos pequeños). En la estructura deben ser contadas las plantas para tener el CENSO de la superficie.

La determinación de la carga se realiza mediante un conteo en árboles muestrales. La determinación de la muestra es por lo general un 10% del total de plantas de la superficie censada, donde los árboles se agrupan en estratos productivos por edades. Para determinar la carga existen varios métodos, entre ellos está el método del Cuadro (Williams [13]) que se basa en inferir la cantidad de frutos totales de la planta a partir de los contados en un área determinada de la copa. Por otra parte existe el método de conteo de Rama, el cual está fundado en la estrecha relación existente entre el área de la sección transversal de la rama y el número de frutos que ésta presenta (Jassen [14]). Finalmente está el método de Conteo Total que es el más preciso (no subestima o sobreestima) pero resulta más engorroso de muestrear, especialmente en árboles de gran tamaño, pero es el método sugerido por la empresa en estudio a sus productores.

La estimación de la masa fresca del fruto en madurez se obtiene utilizando principalmente el método de curvas de crecimiento, el cual consiste en estimar la masa de los frutos a través del comportamiento del desarrollo del fruto a través de los años. Este método se basa en la estrecha relación lineal \(r^2 = 0.96 \) que existe entre el
volumen del fruto y la masa (Williams [13]), por tanto de acuerdo al tamaño se puede inferir el peso del fruto en su estado de madurez.

Ya identificado cómo opera el método estadístico por muestreo, toca analizar las ventajas y desventajas que este presenta:

- La ventaja de este método es que se efectúa una vez la planta ha cuajado (la flor del árbol se convierte en fruto), por lo que la carga de cada árbol es conocida y si se obtiene una buena muestra (representativa) permite obtener una estimación bastante precisa. Además, por su simplicidad, permite repetir la captura de datos para obtener muestras actualizadas, en el caso de generar evento que puedan afectar la estimación inicial.
- Entre las desventajas del modelo está que requiere disponer de muestras bien homogéneas para estimar con mayor precisión. Otra desventaja importante, es que cambios climáticos repentinos y previos a la cosecha, son difíciles de reflejar en la estimación (ya que no se reflejan de forma inmediata en todos los caso) y ésta puede estar bastante lejos de lo real sino se ajusta bien lo estimado frente al daño causado por el factor ambiental.

2.3.5.2. Modelos estadísticos Ambientales

En estos modelos la estimación se obtiene a través de la correlación entre variables del ambiente, como la temperatura, precipitaciones, granizos, entre otros, con los niveles de producción. A través de modelos de regresión multivariado, se puede analizar el impacto que cada variable tiene en la producción y construir con ello un modelo que estime la producción y sus variaciones a medida que las condiciones climáticas se van variando en el tiempo antes de la cosecha. Por lo general las variables ambientales inciden tanto en el volumen como en la calidad de los frutos.

Analizar las variables ambientales permite reflejar la producción de acuerdo a las condiciones "deseadas" u "óptimas" para una producción normal, así también para analizar los efectos positivos/negativos que tales condiciones puedan generar en las distintas especies frutales de acuerdo a su comportamiento. Se ha demostrado que las variables ambientales indicen de forma directa en la producción, por ende su correlación tiende a ser bastante alta ([14], [15], [16], [17], [18]).

Para aplicar este tipo de métodos se requiere una extensa base de datos y el seguimiento constante de la producción a través del tiempo para lograr construir un modelo de regresión de calidad. Es por ello que el costo de mantener este tipo de modelos puede ser bastante alto y requiere personal capacitado y calificado para mantenerlos, en especial si se maneja un gran número de productores distribuidos en distintas zonas del país y bajo distintas condiciones climáticas.
A continuación analizaremos las variables ambientales más importantes como son la temperatura, precipitaciones, granizo y viento.

2.3.5.2.1. Temperatura

La temperatura juega un rol vital en la vida de una planta frutal, es por esto que analizaremos su efecto en la producción y en su calidad, para la construcción de un modelo predictivo. Para ello analizaremos cómo los árboles frutales requieren acumulación de frío invernal (horas frío) para generar un receso o reposo invernal y luego necesitan calor (suma térmica, temperatura y polinización) para el desarrollo y correcta maduración de la fruta. Finalmente revisaremos cómo las heladas afectan a los frutos y ocasionan enormes pérdidas en los agricultores de Chile y el mundo [14].

2.3.5.2.1.1. Horas de frío

Los frutales de hoja caduca⁷ presentan adaptaciones al ciclo anual de temperaturas, en donde primaveras y veranos cálidos son favorables para el crecimiento y fructificación, y, en contraste, otoños e inviernos fríos, lluviosos y con frecuentes heladas, pueden destruir tejidos en crecimiento. Estos frutales concentran su crecimiento durante la estación cálida y durante el invierno restringen su metabolismo y desarrollo.

Los frutales de hoja caduca tienen un período en el cual no se manifiesta crecimiento, aunque tenga condiciones adecuadas para hacerlo, esto es denominado estado de letargo o reposo invernal. Los tejidos en letargo responden a sustancias almacenadas en distintos puntos de la planta, que reprimen su crecimiento y que, debido a su paulatino deterioro por efecto del frío, libera a dichos tejidos de esta represión, permitiendo el nuevo crecimiento a fines de invierno [14].

El sistema más utilizado para cuantificar las horas de frío percibidas por un frutal para finalizar el período de letargo invernal, es el cálculo de horas de frío de exposición de las yemas a temperaturas bajo 7,2°C, la que se hace directamente por la suma de datos horarios, registrados por estaciones meteorológicas, desde el 50% de la caída de hojas hasta inicio de yema hinchada (Weinberger [15]). Este sistema resulta útil para la estimación de frío en zonas con invernos fríos y estacionalidad bien marcada, como por ejemplo la zona central y sur de Chile que es la zona en que Geofrut concentra su mayor producción.

⁷ Hoja Caduca: Órgano de las plantas que crece en las ramas o en el tallo, generalmente de color verde, ligera, plana y delgada, y que puede tener diversas formas; en este órgano se realizan principalmente las funciones de transpiración y fotosíntesis. Fuente: Wikipedia.
Tabla 1. Requisitos generales de frío en las especies que trabaja Geofrut.

<table>
<thead>
<tr>
<th>ESPECIE</th>
<th>HORAS < 7°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arándano</td>
<td>700-1200</td>
</tr>
<tr>
<td>Ciruelo</td>
<td>700-1600</td>
</tr>
<tr>
<td>Damasco</td>
<td>500-900</td>
</tr>
<tr>
<td>Durazno</td>
<td>400-1100</td>
</tr>
<tr>
<td>Guindo</td>
<td>600-1400</td>
</tr>
<tr>
<td>Kiwi</td>
<td>800-1400</td>
</tr>
<tr>
<td>Manzano</td>
<td>800-1700</td>
</tr>
<tr>
<td>Peral</td>
<td>500-1500</td>
</tr>
<tr>
<td>VID</td>
<td>500-1400</td>
</tr>
</tbody>
</table>

Figura 2-10: Requisitos generales de frío en las especies que trabaja Geofrut.

Es por esto que las distintas especies de frutales presentan requerimientos generales de acumulación de frío (ver figura 2-10), donde los efectos de estar fuera de ese umbral impacta por ejemplo en las yemas, en el retraso de apertura de yemas, retraso en la maduración de los frutos, retraso en la floración, irregularidades en la brotación, o en las flores en el aborto del estilo y alteración en el desarrollo del polen, o también la aparición de pistilos múltiples que producen frutos múltiples. Efectos todos que pueden incidir en la producción y la calidad de la misma.

2.3.5.2.1.2. Suma Térmica

Desde la brotación hasta la maduración de la fruta y posterior cosecha, los árboles frutales transitan por diferentes estados fenológicos. Estos cambios están directamente relacionados con las temperaturas que se presentan desde el momento que la planta ha finalizado su proceso de acumulación de frío invernal, para romper el receso. El concepto de “días grado" corresponde a la suma térmica por sobre un umbral o base de temperatura para alcanzar un determinado estado fisiológico. Este umbral depende de la especie, estado fenológico y estado fisiológico. Para las especies de origen templado, el umbral es de 5°C y para las especies tropicales y sub-tropicales es de 10°C (Santibáñez y Uribe [16]); Otras teorías proponen como umbral de crecimiento una temperatura de 10°C, aceptando 5°C en los primeros estados de desarrollo (Gil [17]). Este parámetro se aplica en:

- Programación de fechas de siembra o ciclos de cultivo.
- Pronóstico de fechas de cosecha.
- Determinación del desarrollo esperado en diferentes localidades.
- Determinación del desarrollo esperado en diferentes fechas de siembra o inicio del ciclo de cultivo.
- Determinación del desarrollo esperado de diferentes genotipos.
- Pronóstico de coeficientes de evapotranspiración de cultivos.
Pronóstico de plagas y enfermedades.

Para calcular la acumulación térmica diaria, se obtiene la diferencia entre la temperatura media diaria y la temperatura base o umbral que debe definirse para una especie o para sus variedades. Cada unidad de diferencia corresponde a un día grado. El cálculo diario de este parámetro se presenta a continuación:

Día grado: (T° media diaria – T° umbral)

2.3.5.2.1.3. Temperatura y Polinización

La temperatura juega un rol vital durante el proceso de polinización en las plantas. El polen de la mayoría de las especies frutales cultivadas en Chile, no germina con temperaturas inferiores a 5°C. Entre 5°C y 10°C el tubo polínico crece lentamente, provocando un largo período entre su alargamiento y la fecundación del óvulo. Entre 15°C y 21°C la germinación del polen y posterior fecundación se produce en condiciones óptimas. Por sobre los 28°C, la deshidratación y desecación del grano de polen germinado ocurre rápidamente.

Las abejas, que son las más utilizadas para realizar la polinización en lo árboles frutales (colocando cajones de abejas en determinadas zonas de un campo), ven su actividad de vuelo correlacionada con la radiación solar, por lo que aun cuando existan temperaturas adecuadas, las abejas volarán en la medida que haya mayor radiación. Así también, al haber lluvia y viento excesivo su vuelo tenderá a cero.

Este factor es importante a considerar, dado que ante una menor polinización habrá una menor producción, por tanto la producción puede verse explicada en función de la cantidad de abejas que se coloquen en un huerto y la temperatura.

2.3.5.2.1.4. Heladas

Para la agronomía se considera como “helada” a la ocurrencia de temperaturas que rodean al vegetal o a un órgano vegetal aéreo está bajo los rangos que permiten la actividad normal de la planta, mientras que para la meteorología una helada es la ocurrencia de temperaturas bajo 0°C. Es por esto que se deben analizar también los tipos de heladas entre las cuales encontramos [18]:

8 Tubo Polínico: en botánica, el tubo polínico es una prolongación en forma de tubo que emiten los granos de polen luego de aterrizar en los estigmas de las flores y que actúa como un transporte de los gametos masculinos desde el grano de polen hasta el óvulo. Fuente: Wikipedia.
A. Las heladas radiativas o heladas blancas, que están relacionadas a la fuga intensa de calor desde la tierra durante la noche, asociadas a noches claras y sin viento. Se produce una estratificación del aire en donde las capas más bajas son más frías y las capas más altas son más cálidas. Este tipo de heladas se produce cuando el día presenta una baja nubosidad y la ausencia de viento impide mezclar estas capas. Este tipo de heladas predomina en la zona central de Chile y se caracteriza por cubrir con hielo la superficie del follaje, lo que ejerce un efecto protector sobre la planta, por ende no siendo tan dañinas.

B. Las heladas advectivas, que ocurren por desplazamientos de masas de aire muy heladas, cubriendo extensas áreas del territorio. Estas heladas se asocian con aire más seco y frío, por lo que son potencialmente más dañinas para las plantas y sus estructuras. Se caracterizan por ser más persistentes en el tiempo, pudiendo extenderse por varias noches seguidas.

C. Heladas de evaporación: Debidas a la evaporación de agua líquida desde la superficie vegetal. Suele ocurrir cuando la humedad relativa de la atmósfera desciende formándose las gotas de rocío. Para que la atmósfera recupere la humedad relativa inicial se tiene que producir el paso de agua líquida a gaseosa necesitándose un calor que aporta la planta con su consiguiente enfriamiento.

La magnitud del daño de una helada sobre el rendimiento final de un cultivo o frutal depende directamente del estado fenológico en que se encuentre el mismo. Las especies de árboles también tienen diferente grado de tolerancia a las heladas, por lo que el resultado final de daño de una helada también puede variar de acuerdo con este factor. Pero lo que definitivamente determina el real daño que puede causar una helada es su magnitud (cuántos °C bajo cero) y su tiempo de exposición a temperaturas bajo 0ºC. En la figura 2-11 se detallan algunos ejemplos del daño de las heladas.

<table>
<thead>
<tr>
<th>Estado Fenológico</th>
<th>Duraznos y Nectarines</th>
<th>Círculos</th>
<th>Cerezos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10% de Daño de Órganos (°C)</td>
<td>90% de Daño de Órganos (°C)</td>
<td>10% de Daño de Órganos (°C)</td>
</tr>
<tr>
<td>Inicio Floración</td>
<td>-3,4</td>
<td>-6,1</td>
<td>-2,8</td>
</tr>
<tr>
<td>Plena Flor</td>
<td>-2,8</td>
<td>-4,5</td>
<td>-2,2</td>
</tr>
<tr>
<td>Caída de Pétalos</td>
<td>-2,2</td>
<td>-3,9</td>
<td>-2,2</td>
</tr>
</tbody>
</table>

Figura 2-11: Porcentaje de Daño y rango de temperatura (°C por media hora) para distintos estados fenológicos.
Conocidos los tipos de helas y la magnitud de los daños es necesario precisar que también existen métodos de control de heladas, entre los cuales encontramos:

- **Inversión capas de aire**: consiste en mezclar el aire frío cercano al suelo con el aire cálido de las capas atmosféricas más altas. Esto se realiza generalmente con grandes hélices que se instalan en los campos cada cierta distancia según el alcance de las hélices.

- **Protección por interrupción de la radiación**: consiste en evitar las pérdidas por radiación usando algún tipo de cubierta sobre la vegetación, como plásticos usados en invernaderos.

- **Aportes energéticos al aire que rodea al vegetal u órgano**: consiste en calentar el aire frío que rodea a la planta, ya que es éste el que provoca el enfriamiento de los vegetales. Uno de los métodos más utilizados es encender quemadores (tarros) de petróleo, 100 a 300 tarros por hectárea. Otra alternativa bastante utilizada en la actualidad es la de quemadores a gas (creados en Chile, por Florencio Lazo; siendo una medida a bajo costo y altanamente efectiva, probada y comercializada mundialmente) para esparrar calor en los campos a través de un tractor que pasa por las hileras cubriendo el área mientras dure la helada.

Dado lo anterior, es importante considerar en la construcción del modelo si la helada tuvo alguna medida de control o no, para en función de aquello cuantificar su daño e impacto en los niveles de producción.

2.3.5.2.2. Precipitaciones

La precipitación es un elemento que influye directamente en los árboles frutales y cultivos, donde además de incidir en su sobrevivencia condiciona también la calidad de sus frutos. Por otra parte, la cantidad que cae durante el año y su distribución sobre una zona o región condicionan los ciclos agrícolas. Es por lo anterior que la precipitación es importante para estudiar el efecto en la producción de cultivos.

También, se usa para calcular balances hídricos, índices de sequía y fechas de siembra, entre otras aplicaciones. El efecto que puede tener la lluvia sobre los cultivos depende principalmente de las características más conocidas de la precipitación como son:

- La cantidad (milímetros anuales)
- La distribución (meses más lluviosos y meses más secos) y,
- La frecuencia que tiene la lluvia durante un año.
Zonas más secas serán apropiadas para ciertas especies/variedades de frutas que requieren menos agua (como los viñedos) pero a su vez no serán lugares aptos para especies que requieren gran cantidad de agua como cerezos o perales.

Los árboles de hoja caduca, que hemos estado revisando y que comprende la mayoría de las especies que Geofrut exporta, durante el invierno requieren de una cantidad de agua muy baja al estar la planta en retardo, además de que en dicho periodo el suelo normalmente tiene reservas hídricas suficientes. Cuando aumenta la demanda de agua es tras el invierno con el inicio de la actividad vegetativa y hasta la maduración del fruto, siendo máxima en los meses de verano, momento en el que aumenta la evapotranspiración a la vez que las precipitaciones son muy bajas, por lo que se requiere riego de apoyo.

Que un frutal requiera de más agua se debe principalmente a que esto incide en el calibre del fruto, el vigor del árbol y en los niveles de producción. Donde las variedades de fruto de menor calibre requieren de menos agua para engordar el fruto y las de mayor calibre una mayor cantidad de agua.

Las precipitaciones también generar efectos negativos los que son necesario de que prever para evitar que las lluvias coincidan con dos períodos fundamentales: polinización-cuajado y maduración-recolección. Una lluvia caída sobre cerezo en el momento de la recolección supone el rajado de los frutos (cracking), hecho que se agrava con las variedades tempranas. Por otro lado, más lluvia significa más humedad, y con ello más hongos, aumentando la frecuencia de los tratamientos fitosanitarios, que al estar próximos a la fecha de cosecha no pueden ser aplicados generando enormes pérdidas. Por otro lado, lluvias más o menos intensas durante la madurez de la fruta, provocan de forma general caída de frutos, especialmente en especies de fruto grande.

2.3.5.2.3. Granizo

La formación de granizos se produce durante una lluvia fuerte más la acción de un frío intenso que generan cuerpos de hielo de variados tamaños. El granizo perjudica a la planta durante el período vegetativo, produciendo grietas en la corteza y en los brotes, destruye brotes tiernos y produce la muerte de flores y frutos recién formados. Sobre frutos grandes deja marcas que impiden su posterior comercialización.

Los perjuicios siempre importantes son mayores o menores según la época del año en que se produce, la violencia, el tamaño del granizo y la duración del efecto climático.

Existen numerosos factores que inciden sobre el efecto final de la caída de granizo. En muchos casos no se puede establecer una buena correlación entre la intensidad de la granizada y los daños en cosecha, aunque sí se puede dar una buena
idea del grado de catástrofe. Para conocer con exactitud los daños hay que observar los árboles y valorar los efectos. Estos efectos pueden ser clasificados en dos tipos:

- **Daños sobre el tronco y ramificación:** Para que se produzcan daños sobre el tronco y las ramas debe caer granizo con gran fuerza. En este caso los impactos destrozan la corteza dejando el xilema al descubierto, generando un daño irrecuperable, sobre todo en plantaciones jóvenes. Si el granizo no llega a afectar gravemente a las ramas del árbol pero los impactos originan heridas abundantes en los ramos ya formados, puede verse comprometida la producción del siguiente año, además de incrementar considerablemente el riesgo de enfermedades.

 En este caso, las pérdidas en cosecha se determinan teniendo en cuenta las posibilidades de desarrollo de los frutos afectados, respecto a la producción potencial esperada.

- **Daños sobre la vegetación y la fructificación:** Los daños ocasionados sobre los brotes y las hojas son recuperables con el tiempo, pero los frutos que puedan haber quedado verán reducidas sus posibilidades de crecimiento, además de tener un mayor riesgo de enfermedades. Si el granizo cae sobre frutos con cierto tamaño de desarrollo se pueden desprender los frutos o bien se originar heridas que pueden llegar a cicatrizar si se frena la entrada de patógenos. Si los frutos están próximos a la madurez los daños suelen originar su depreciación total o la pudrición de los frutos.

 En este caso hay que valorar las pérdidas en calidad de los frutos afectados, lo que requiere un conteo de frutos tomado una muestra en terreno para graficar los daños y su impacto en la producción.

2.3.5.2.4. Viento

El viento suave es beneficioso para las plantas, permite renovar el aire que rodea las hojas y como consecuencia es útil para los procesos de respiración y transpiración vegetal. Los vientos moderados son beneficiosos para un correcto transporte de los gramos de polen y posterior polinización y fecundación, en el caso de especies que presentan polinización anemófila (cuando el viento es el encargado de transportar el polen), por ejemplo en el nogal.

Por otra parte, los vientos fuertes ocasionan daños al romper y desgarrar ramas o producir la caída de flores y frutos. Cuando son persistentes durante la brotación los tejidos tiernos quedan expuestos a una excesiva deshidratación. Posteriormente,

9 Xilema: Tejido vegetal formado por células muertas, rígidas y lignificadas que conducen la savia y sostienen la planta. Fuente: Wikipedia.
durante el desarrollo del fruto pueden provocar rugosidad en la fruta. Los daños son más notables si el viento procede del mar y arrastra consigo cloruros u otras sales, produciendo quemaduras en los tejidos.

La principal ventaja de este tipo de métodos es permite ir obteniendo estimaciones más anticipadas y precisas, ya que éstas van reflejando los efectos ambientales que inciden fuertemente en el rendimiento de los árboles frutales, por lo que las estimaciones están tomando muchas variables para tomar la productividad de los campos.

Si bien la precisión puede ser mayor en estos modelos, tiene como desventaja ser un método más costoso, ya que requiere el seguimiento periódico de las variables y almacenar mucha data histórica para alimentar las predicciones y que estas sean precisas, significando un esfuerzo mayor para su control.

Conocidos los principales factores ambientales, es necesario tener claridad qué ventajas y desventajas presenta la construcción de un modelo ambiental:

- La ventaja está en que dada la conocida correlación que tienen los efectos ambientales sobre la producción, construir un modelo que cuantifique los impactos permitirá disponer de un modelo más dinámico y realista de lo que será la producción. A diferencia del método de conteo, este modelo podría reflejar el daño e impacto en la producción luego de una lluvia, granizada o helada, pocos días antes de la cosecha y sin que aún se note el daño real en terreno (partiduras o machucones en la fruta pueden reflejarse días después de un daño ambiental).
- Sin embargo, tiene como principal desventaja que es un modelo más costoso de implementar y mantener. En especial si quien lo construye es una exportadora con producción externa, como el caso de Geofrut, donde los productores provienen de distintas zonas y con características ambientales diversas.
2.3.6. Metodologías para el desarrollo de Software

Las metodologías imponen un proceso disciplinado sobre el desarrollo de software con el fin de hacerlo más predecible y eficiente [19]. Es por esto que en esta sección se detallarán dos de las metodologías más usadas para el desarrollo de software como lo son: el Proceso Racional Unificado (RUP) y la Extreme Programming (XP).

2.3.6.1. Metodología RUP

La metodología RUP (Proceso Racional Unificado o Rational Unified Process por sus siglas) es un proceso de desarrollo de software desarrollado por la empresa Rational Software, actualmente propiedad de IBM. Constituye la metodología estándar más utilizada para el análisis, diseño, implementación y documentación de sistemas orientados a objetos [19].

2.3.6.1.1. Características de la metodología RUP

La metodología RUP se caracteriza por las siguientes razones [19]:

- Es guiado y manejado por Casos de Uso
- Es centrado en la Arquitectura
- Es Iterativo e incremental
- Desarrollo basado en Componentes
- Utilización de UML
- Proceso integrado

2.3.6.1.2. Estructura de RUP y Flujos de trabajo.

La metodología se encuentra estructurada en fases en función del tiempo y en componentes respecto a organización. Por una parte están los componentes del proceso que son las distintas actividades a realizar para desarrollar el sistema. Mientras que los componentes de soporte son aquellas actividades necesarias para generar el cambio y éxito del proyecto, tales como; la gestión del cambio, gestión del proyecto y gestión del entorno o stakeholders.

En el esquema de flujos de trabajo, se puede observar el esfuerzo por actividad requerido en las distintas fases a través del tiempo.
2.3.6.1.3. Fases de la metodología RUP

La metodología se descompone en 4 fases tal como se aprecia en la figura 2-12., las cuales son explicadas a continuación:

2.3.6.1.3.1. Fase de Inicio

En esta fase se establece el alcance del proyecto, de tal forma de dejar bien establecido cuáles serán los entregables esperados del proyecto. Además se identifican los actores y los todos casos de uso, describiendo algunos en detalle. Finalmente, se debe establecer la oportunidad del negocio, que es definir los criterios de éxito, riesgos del proyecto, estimación de recursos necesarios y un plan de fases posteriores definiendo hitos.

Esta fase cuenta con productos o artefactos que servirán para comprender mejor tanto el análisis como diseño del sistema. Para la fase de inicio se utilizan:

- Un documento de visión general:
 - Requisitos generales del proyecto
 - Características principales
 - Restricciones
- Modelo inicial de casos de uso
- Identificación inicial de riesgos.
• Plan de proyecto.
• Caso de negocio:
 ➢ Contexto
 ➢ Criterios de éxito
 ➢ Pronóstico financiero

2.3.6.1.3.2. **Fase de Elaboración**

En esta fase los objetivos serán analizar el dominio del problema, establecer una arquitectura base sólida, desarrollar un plan de proyecto y eliminar los elementos de mayor riesgo para el desarrollo exitoso del proyecto.

Esta fase cuenta con los siguientes productos o artefactos:
• Modelo de casos de uso (80% completo) con descripciones detalladas.
• Otros requisitos no funcionales o no asociados a casos de uso.
• Descripción de la Arquitectura del Software.
 ➢ Vista Lógica
 ✓ Diagrama de clases
 ✓ Modelo E-R
 ➢ Vista de Implementación
 ✓ Diagrama de Secuencia
 ✓ Diagrama de estados
 ✓ Diagrama de Colaboración
 ➢ Vista Conceptual
 ✓ Modelo de dominio
 ➢ Vista física
 ✓ Mapa de comportamiento a nivel de hardware.
• Un prototipo ejecutable de la arquitectura.
• Lista revisada de riesgos y del caso de negocio.
• Plan de desarrollo para el resto del proyecto.
• Un manual de usuario preliminar.

2.3.6.1.3.3. Fase de Construcción

En esta fase todas las componentes restantes se desarrollan e incorporan al producto. Todo es probado en profundidad. El énfasis está en la producción eficiente y no ya en la creación intelectual. Puede hacerse construcción en paralelo, pero esto exige una planificación detallada y una arquitectura muy estable [19].

En esta fase se obtiene un producto Beta que debe decidirse si puede ponerse en ejecución sin mayores riesgos.

Esta fase cuenta con los siguientes productos o artefactos:
• El producto de software integrado y corriendo en la plataforma adecuada.
• Manuales de usuario.

2.3.6.1.3.4. Fase de Transición

El objetivo es traspasar el software desarrollado a la comunidad de usuarios. Esta fase incluye:
• Pruebas Beta para validar el producto con las expectativas del cliente
• Ejecución paralela con sistemas antiguos
• Conversión de datos
• Entrenamiento de usuarios
• Distribuir el producto

Finalizada esta etapa se espera obtener autosuficiencia de parte de los usuarios, concordancia en los logros del sistema de parte de las personas involucradas y lograr el consenso para liberar el producto a productivo.

2.3.6.2. Metodología Extreme Programming (XP)

Es una metodología de desarrollo de software creada por Kent Beck, autor del primer libro sobre la materia [21]. La programación extrema se diferencia de las metodologías tradicionales principalmente en que pone más énfasis en la adaptabilidad por sobre la previsibilidad.

En la metodología XP se consideran que los cambios de requisitos sobre la marcha son un aspecto natural y deseable en el desarrollo de proyectos. Su objetivo es ser capaz de adaptarse a los cambios de requisitos en cualquier punto de la vida del proyecto, por lo que es una aproximación más realista que intentar definir todos los
requisitos al comienzo del proyecto e invertir esfuerzos después en controlar los cambios en los requisitos.

2.3.6.2.1. Características de la metodología XP

- Pone más énfasis en la adaptabilidad por sobre la previsibilidad.
- Se aplica de manera dinámica durante el ciclo de vida del software.
- Es capaz de adaptarse a los cambios de requisitos.
- Los individuos e interacciones son más importantes que los procesos y herramientas.
- Que el Software funcione es más importante que documentación exhaustiva.
- La colaboración con el cliente es más importante que la negociación de contratos.

2.3.6.2.2. Fases de la metodología (XP)

Esta metodología se descompone en 4 fases [21], las que se representan en la figura 2-12 y se detallan en las secciones siguientes:

![Figura 2-12. Metodología XP.](image-url)
2.3.6.2.2.1. Fase Planificación del Proyecto

El primer paso consiste en definir las historias de usuario con el cliente [21]. Éstas tienen la misma finalidad que los casos de uso, pero con la diferencia de que constan de tres o cuatro líneas escritas por el cliente en un lenguaje no técnico sin hacer mucho hincapié en los detalles.

Luego se debe planificar bien entre los desarrolladores del proyecto qué es lo que se requiere para lograr los objetivos finales. Para ello se construye un plan de iteraciones.

2.3.6.2.2.2. Fase de Diseño

Esta fase propone que se deben conseguir diseños simples y sencillos. Procura conseguir un diseño fácilmente entendible e implementable, que implique un menor costo, tiempo y esfuerzo para desarrollarlo [21]. En esta fase se logrará crear la interfaz que tendrá el usuario o cliente con el proyecto.

2.3.6.2.2.3. Fase de Codificación

En esta fase el cliente es una parte más del equipo de desarrollo. Su presencia es indispensable a la hora de codificar, debido a que con él se negocian los tiempos en los que serán implementados los requerimientos planteados por el cliente [21]. El cliente debe especificar detalladamente lo que cada desarrollo hará y también tendrá que estar presente cuando se realicen los test que verifiquen que los requerimientos implementados cumplen la funcionalidad especificada. En esta fase de la codificación los clientes y los desarrolladores del proyecto deben estar en comunicación, para que los desarrolladores puedan codificar todo lo que necesita el cliente.

2.3.6.2.2.4. Fase de Pruebas

Es uno de los pilares de la metodología XP. El uso de test para comprobar el funcionamiento de los códigos que se irán implementando. Se requiere que las pruebas sean continuas, frecuentemente repetidas y automatizadas, incluyendo pruebas de regresión [21].
2.3.6.3. Comparación entre metodologías RUP y XP

Luego de explicar cada una de las metodologías de este marco teórico, a continuación se presenta una tabla comparativa a modo de facilitar al lector la identificación de las diferencias entre cada una de ellas.

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Metodología RUP</th>
<th>Metodología XP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamento</td>
<td>Forma disciplinada de asignar tareas y responsabilidades en una empresa de desarrollo</td>
<td>Nace en busca de simplificar el desarrollo del software y lograr reducir el costo del proyecto</td>
</tr>
</tbody>
</table>
| Metodología | • Metodología Pesada:
 ➢ Un cambio en las etapas de vida del sistema incrementa notablemente el costo
 ➢ Se requiere un equipo grande de programadores.
 • Define un completo set de actividades y artefactos que se necesitan para desarrollar.
 • Las iteraciones tempranas de proyectos conducidos RUP se enfocan fuertemente sobre arquitectura del software; la puesta en práctica rápida de características se retrasa hasta que se ha identificado y se ha probado una arquitectura firme. | • Metodología Ligera:
 ➢ Reduce el costo del cambio en las etapas de vida del sistema.
 ➢ Requiere un equipo más reducido de programadores, el cual aumenta según sea necesario.
 • Combina las mejores prácticas de desarrollo de software y las lleva al extremo.
 • Las iteraciones serán radicalmente más cortas que RUP, esto permite beneficiarse de la retroalimentación tan a menudo como sea posible. Se rediseñará todo el tiempo, dejando el código siempre en el estado más simple posible y se harán pruebas todo el tiempo, no sólo de cada nueva clase (pruebas unitarias) sino que los clientes comprobarán que el proyecto va satisfaciendo los requisitos (pruebas funcionales). |
| Ventajas | • La ventaja principal de RUP es que basa todo en las mejores prácticas que se han intentado y se han probado en el campo.
 • RUP le da énfasis en los requisitos y el diseño, realizando un levantamiento exhaustivo de requerimientos.
 • Planifica y busca detectar defectos en las fases iniciales. | • La ventaja de XP es que intenta reducir la complejidad del desarrollo por medio de un trabajo orientado directamente al objetivo, basado en las relaciones interpersonales y la velocidad de reacción.
 • intenta minimizar el riesgo de fallo del proceso por medio de la disposición permanente de un representante del cliente, quien debe contestar rápida y correctamente a cualquier pregunta del equipo de desarrollo de forma que no se retrasa la toma de decisiones. |
| Desventajas| • En RUP el cliente interactúa con el equipo de desarrollo mediante reuniones a diferencia de la | • XP tiene una debilidad cuando se utiliza en dominios de aplicaciones complejas o situaciones difíciles en |
metodología XP que el cliente es parte del equipo (in situ).

- En RUP pesa más el costo del cambio. Realizar cambios requiere efectuar control de cambios con costos adicionales, mientras que en XP los cambios son parte del proceso iterativo.

la organización, donde el rol del cliente no refleja los diferentes intereses, habilidades y fuerzas a las que enfrentan los programadores durante el desarrollo de proyectos.

- XP es más simple, pero también menos robusta en planificación y previsibilidad de los riesgos del proyecto.

<table>
<thead>
<tr>
<th>Tabla 2-2: Comparación Metodología RUP y XP</th>
</tr>
</thead>
</table>

2.3.6.4. Elección de la Metodología para el Proyecto

El proyecto está pensando en ser licitado a una empresa externa para su desarrollo. Por lo que la elección de una metodología debe ser lo suficientemente robusta para permitir documentar y detallar todos los requerimientos de sistema desde sus fases iniciales, de tal forma de dejar todo muy claro y previsible a la empresa que desarrollará el sistema, evitando confusiones y controles de cambio en su ciclo de vida.

Dado lo anterior, resulta conveniente para el presente proyecto utilizar RUP como metodología de apoyo.
Capítulo 3: Planteamiento Estratégico y Modelo de Negocios

En el presente capítulo se plantea el contexto estratégico del negocio, tanto la posición competitiva de la empresa así como la visión y misión. En esa misma línea se presenta el mapa estratégico de la organización y el modelo de negocios. Finalmente, se presenta el planteamiento estratégico de la empresa.
3.1. Misión y Visión

A continuación se presenta la misión y visión de la empresa en la cual se realizó la investigación.

3.1.1. Misión

La misión de la Exportadora Geofrut es el deseo de cultivar, seleccionar y comercializar fruta fresca desde Chile hacia el mundo. Para ello trabajan día a día por ser los mejores en lo que hacen, para garantizar la calidad de nuestros productos y servicios y responder a las necesidades de nuestros clientes al precio más conveniente.

3.1.2. Visión

Posicionarnos en el top ten de las más grandes exportadoras de fruta fresca del País y ser líderes en los principales mercados del mundo.

3.2. Mapa Estratégico de la Empresa.

El mapa estratégico de la empresa -reflejado en la figura 3-1- es un modelo realizado por el autor en base a su conocimiento del negocio y no forma parte de un Mapa Estratégico oficial de la empresa, ya que ésta no dispone de uno actualmente.

Este Balance Scorecard permite que la empresa comprenda su estrategia a través de una serie de objetivos estratégicos definidos como los más relevantes del negocio y ordenados de forma causa-efecto a través de distintas perspectivas para explicar la creación de valor.

Estos son presentados en 4 perspectivas:

- **perspectiva de innovación y aprendizaje**: reúne objetivos relacionadas a la innovación requerida en la empresa así como las principales necesidades de capacitación, todo con el fin de ir mejorando para ser más eficientes y competitivos.
- **Perspectiva de procesos internos**: agrupa objetivos relacionados a la mejora de procesos internos, la cual depende y se relaciona con la primera perspectiva, en un plan de mejora continua.
- **Perspectiva de cliente**: esta perspectiva reúne objetivos relacionados a la creación de valor con el cliente, y las estratégicas comerciales definidas para aumentar las ventas y mejorar el posicionamiento de la
empresa. Estos objetivos dependen a su vez del cumplimiento de los objetivos de procesos internos de la perspectiva relacionada.

- **Perspectiva financiera:** finalmente están los objetivos financieros, los cuales reflejan si nuestra estrategia se está cumpliendo o no. Por lo general se trata de objetivos relacionados a la rentabilidad y creación de valor. Todos los objetivos de las distintas perspectivas deben influir en la consecución de los objetivos de esta última perspectiva.

Un mapa estratégico debe hacer operativa la estrategia a través de objetivos claros y precisos, que toda la organización entienda con claridad, estableciendo las métricas o KPI para hacer cumplir cada objetivo. El detalle del mapa estratégico de Geofrut relacionado al proyecto será explicado en detalle en la sección 5.5.

![Balance Scorecard Geofrut](image-url)
3.3. **Modelo de Negocio de la Empresa**

Para entender el modelo de negocios [4] que aplicará en Geofrut a través del proyecto, lo principal es definir con claridad al cliente, cuál será la propuesta de valor a ofrecerle y cuáles serán los procesos y recursos claves que permitan lograrlo.

3.3.1. Esquema del Modelo de negocios

El siguiente esquema muestra el modelo de negocios del proyecto.

![Figura 3-2: Modelo de Negocios]

3.3.2. Propuesta de valor al cliente

A continuación se definirá con claridad al cliente para Geofrut y este proyecto, así como el trabajo requerido para cumplir con la propuesta de valor ofrecida.
3.3.2.1. Definición del Cliente

El cliente para la mayoría de las exportadoras es un intermediario y no el consumidor final. Lo anterior se explica en el siguiente esquema sobre los canales de distribución:

Figura 3-3: Canales de distribución.

Por lo general en la industria aplican los casos B, C y D, debido a que rara vez una empresa dispone de centros de distribución masivos (como supermercados) en el país de destino, por lo que se llega hacia supermercados en algunos casos o importadores quienes se encargan de distribuir en otros canales para llegar al consumidor final.

Si bien no se trabaja con consumidores es necesario satisfacer las necesidades de éstos, las cuales son solicitadas por los intermediarios quienes se encargan de estudiar a sus clientes/consumidores y comprender los principales atributos buscados.

Dentro de los clientes de Geofrut, independiente si es importador o supermercado, existen dos grupos o modalidades de venta:

- **Programas de venta**: se caracterizan por ser acuerdos previos al inicio de la temporada, con el compromiso de cumplir un determinado volumen de fruta durante la temporada la cual es enviada en pedidos parciales. Estos programas se caracterizan en que cada cliente entrega un anticipo pretemporada para hacer válido el compromiso de venta, por lo que este tipo de venta es el que brinda parte importante del capital de trabajo de la empresa en meses en que aún no hay ventas ni ingresos (principalmente en temporada baja).
- **Ventas Spot**: se caracterizan por ser ventas instantáneas donde cada cliente hace un pedido en particular a precio de mercado durante el instante de la
venta. Esta modalidad deja importantes márgenes al negocio a diferencia de los programas quienes brindan financiamiento y estabilidad en los ingresos.

Ambas modalidades de venta pueden trabajar con distintos acuerdos comerciales de precios:

- **Firme**: un precio fijo al momento de la venta, el que no varía salvo condiciones de llegada del pedido. Por lo general usado en ventas a supermercado (canal más directo).

- **Mínimos garantizados**: el cliente compromete un precio mínimo el cual cancela al momento de recibir la fruta y posteriormente (uno o dos meses) liquida un mayor valor en función del precio puesto en el mercado. Por lo general usado con importadores.

- **Libre consignación**: No existe precio al momento de la venta, solo un precio referencial para la facturación y salida de las mercaderías por aduana. En este acuerdo el precio se obtendrá luego de que el importador haya vendido la fruta al cliente final, donde declara el precio de venta de mercado y descuenta una comisión por venta. Esta modalidad es la menos rentable, dado que es el importador quien tiene la función de vender la fruta (pudiendo hacer un buen o mal negocio). Sin embargo, con esta modalidad se da rápida salida a fruta que está en riesgo de perecer al no ser vendida.

A continuación se presenta un esquema que resumen las distintas combinaciones de modalidad de venta y acuerdo comercial.
3.3.2.2. Trabajo a realizar

El trabajo a realizar se centrará en la modalidad de venta Spot y no venta por Programa. Lo anterior debido a que en un programa la fruta ya está comprometida previamente, por tanto las estimaciones deben trabajar sobre aquella fruta que aún no se conoce su destino y basado en ello planificar una distribución tomando como base el comportamiento histórico.

Las ventas Spot promedian en las últimas 3 temporadas un 66.94% de las ventas totales. Mientras que la especie cerezas, la cual será usada para la evaluación económica del proyecto, las ventas spot representan un 65.96% de las ventas totales.

<table>
<thead>
<tr>
<th>Etiquetas de fila</th>
<th>2011-2012</th>
<th>2012-2013</th>
<th>2013-2014</th>
<th>Total general</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROGRAMA</td>
<td>35,59%</td>
<td>32,11%</td>
<td>31,45%</td>
<td>33,06%</td>
</tr>
<tr>
<td>SPOT</td>
<td>64,41%</td>
<td>67,89%</td>
<td>68,55%</td>
<td>66,94%</td>
</tr>
<tr>
<td>Total general</td>
<td>100,00%</td>
<td>100,00%</td>
<td>100,00%</td>
<td>100,00%</td>
</tr>
</tbody>
</table>

Figura 3-4: Distribución histórica de ventas según programa y ventas spot.

3.3.2.3. Oferta de valor

La propuesta de valor busca posicionar una imagen en los clientes de ser la mejor oferta precio/calidad del mercado, tomando en consideración el cumplimiento de
pedidos, tiempo de respuestas y frescura de la fruta, lo anterior comparativamente con otras exportadoras de la industria.

3.3.3. Beneficios Económicos

La mejora de los beneficios económicos, a través del proyecto, se centra en el aumento del margen de ventas. Lo anterior se consigue a través de una mejor distribución de las ventas hacia negocios más rentables y reduciendo los envíos con acuerdos de libre consignación. Para ello es necesario conocer bien el flujo de fruta a distribuir en las distintas semanas hacia los mercados, y así cerrar ventas con oportunidad y no verse en la necesidad de mandar fruta en consignación para bajar los inventarios de fruta por perecer.

A su vez, una mejor planificación de las actividades y recursos involucrados, permitirá reducir los costos de coordinación entre las distintas áreas y mejorar aún más los márgenes.

3.3.4. Recursos Claves

Uno de los recursos claves del proyecto es el personal, tanto del área de abastecimiento de fruta como área de ventas. En el área de abastecimiento, son los agrónomos quienes conocen y trabajan en terreno con cada productor para el desarrollo de los campos y la calidad de su fruta, por lo que ese conocimiento que poseen resulta vital traspasarlo a la organización. A su vez, el área comercial es quien tiene el contacto directo con los clientes, mismos que estudian y traspasan las necesidades del consumidor final.

Por otra parte, las áreas como embarques, planificación de la producción, comercio exterior, abastecimiento de materiales e insumos, son personal relevante que debe tener conocimiento de la fruta y su distribución para planificar sus actividades y recursos.

Otro recurso clave y que tomará mayor relevancia, son los recursos computacionales que proveerán de información útil y oportuna para la toma de decisiones.

3.3.5. Procesos claves

En cuanto a los procesos claves se identifican los que están directamente relacionados al proyecto y aquellos que participan de forma indirecta. Por una parte, los procesos de gestión de cosechas y planificación de ventas serán los que directamente serán planificados con el desarrollo del proyecto, para definir el mejor plan de distribución de la fruta basado en la capacidad de oferta que provee el plan de cosecha.
Por otra parte, programación de la producción, la gestión logística y de embarques, podrán planificar sus actividades de mejor forma y agilizar el ciclo de producción y venta de forma más coordinado y eficiente para cumplir con los pedidos de clientes en calidad y tiempo.

3.4. **Posicionamiento y estratégica competitiva.**

Para explicar el posicionamiento competitivo de Geofrut, se utilizará el modelo Delta de Hax [2] combinado con las definiciones sobre estrategia competitiva de Porter [1], dado que la estrategia de Geofrut se basa principalmente en las economías del producto por sobre otra fuente de rentabilidad, por lo que resultará interesante explicitar la estrategia basados en ambos modelos.

3.4.1. **Estrategia según modelo Delta**

El análisis competitivo según el modelo Delta y sus tres estrategias posibles; Mejor producto, Solución integral al cliente o consolidación del sistema, corresponde para Geofrut y el proyecto a la de mejor producto.

Dentro de la estrategia de mejor producto existen dos caminos viables: adoptar una estrategia de Liderazgo en costos o una de Diferenciación de producto. En ambos casos priman las características del producto las cuales deben exceder las características que el cliente espera satisfacer.

Lo anterior se explica, ya que la fruta fresca es un producto bastante estándar el cual no presenta mayor diferenciación salvo en aquella fruta deshidratada, fruta en conserva u otro tipo de casos en que exista mayor elaboración para resaltar atributos del producto y generar diferencias que el cliente de valor. Dado el contexto anterior, se podría afirmar que los esfuerzos de Geofrut no apuntan a diferenciar el producto sino más bien a hacer más eficientes los procesos extractivos, selectivos y de venta y distribución de la fruta, para ofrecer a los clientes precios atractivos y liderar la industria basados a un bajo costo.
Sin embargo, sería inapropiado desconocer que existan otras estrategias que puedan ser utilizadas para competir, y afirmar que solo prima la de ser el “mejor producto” del mercado. Por eso la importancia de analizar la estrategia según el modelo Delta. La integración del cliente, por ejemplo, se puede dar especialmente en clientes cuya relación es de años, en donde el conocimiento mismo del cliente permite a la empresa trabajar sobre sus necesidades para cultivar la relación, o en algunos casos particulares ofrecerle al cliente participar del proceso de selección de la fruta; logrando que el cliente inspeccione la fruta antes de ser exportada asegurando la calidad y satisfacción. Los casos anteriores nos darían indicios de que la empresa ofrece un servicio integral al cliente. Sin embargo, estas actividades son casos particulares y no representan una forma general de interactuar con todos los clientes, más cuando el mercado es amplio y diversificado a todo el mundo.

3.4.2. Estrategias Competitiva según M. Porter

El análisis estratégico según el modelo de Porter, apunta en asumir una estrategia de Liderazgo en costos, dado que la empresa centra su estrategia competitiva en ofrecer productos al menor costo y su foco está hacia un mercado amplio (mundial).
Exportadoras de menor tamaño por lo general apuntan a una estrategia de foco en costo destinando su volumen a solo un mercado. Sin embargo, Geofrut con un volumen que supera los cinco millones de cajas en su mix de productos, requiere un mercado amplio para mover tal volumen en las pocas semanas que dura cada ciclo productivo de la fruta.

![Figura 3-7. Estrategia competitiva. Porter [1]](image)

3.4.3. Conclusiones sobre el posicionamiento competitivo

El mercado en el que participa Geofrut, demanda fruta fresca sin mayor diferenciación. Por eso resulta vital para el negocio minimizar los costos en la toda la cadena de producción y venta para obtener el mayor retorno posible en la fruta. La innovación bajo esta estrategia está centrada en tecnología que permita generar economías de producto; tales como, la adquisición de maquinaria de proceso de punta para reducir costos de mano de obra, generar planes de capacitación del personal para mejorar la calidad de selección y empaque, reforzar la cadena de abastecimiento, en particular productores de fruta para obtener productos de mejor calidad, y mejorar la planificación y coordinación de los procesos para ser más eficientes y rentables.
Capítulo 4: Arquitectura de Procesos

En este capítulo se presenta la arquitectura de procesos de Geofrut, lo que equivale a decir cuáles deberían ser los macroprocesos presentes en un diseño a implementarse en cierta área de la empresa y sus relaciones [3]. Para diseñar la arquitectura de procesos contaremos con la definición de macroprocesos, dentro de los cuales se presentarán los relevantes al proyecto y especializados al caso particular de la empresa, para dar respuesta a los objetivos del proyecto. La especialización consiste en explicitar, a partir de la definición general de un macroproceso, las características específicas que debería tener el rediseño, para generar las capacidades que el planteamiento estratégico y el modelo de negocio definen en el capítulo anterior.
4.1. Macroprocesos

La arquitectura de procesos de la empresa está representada en la figura 4-2 y se ha utilizado Igrafx Process para su diseño y técnicas de BPMN para diagramar los procesos y sus relaciones.

![Figura 4-1: Patrones de Procesos. Barros [3]](image)

El primer macroproceso corresponde a la cadena de valor. En este macroproceso encontramos tres cadenas para el Grupo Geofruit: la cadena de valor de Geoagro, la cadena de valor de la exportadora y la cadena de valor del Packing. Además, podemos identificar la cadena de valor del Productor, quien provee de fruta e información clave en los procesos de abastecimiento.

Para este proyecto el foco será la cadena de valor de la Exportadora, ya que el estudio está enfocado en esa unidad de negocio la cual es responsable de planificar la
cosecha y ventas del negocio y donde las otras solo brindan materias primas y servicios dentro de la generación de valor al cliente. Sin embargo, dichas cadenas interactúan constantemente para la generación de valor al cliente final.

El segundo macroproceso corresponde a Desarrollo de Nuevas Capacidades el cual se alimenta de las necesidades del mercado y el desarrollo de las actividades de la cadena de valor. El control se efectúa a través de la planificación del negocio quien controla que las nuevas capacidades vayan en línea con los objetivos estratégicos. Este macroproceso debe proveer constantemente nuevas capacidades a los procesos de la cadena de valor.

El tercer macroproceso corresponde a planificación del negocio, la cual se alimenta de la información del mercado y de la cadena de valor y sus planes entran como control estratégico hacia todos los otros macroprocesos.

En los macroprocesos también encontramos servicios compartidos por las tres cadenas de valor antes mencionadas. Estos corresponden a servicios de abastecimientos e insumos, el cual opera como una gran unidad de compras, quien gestiona las necesidades de materiales e insumos del grupo y aprovecha las economías a escala y poder de negociación del grupo Geofrut más que operar de forma aislada e independiente en cada una de las empresas.

El cuarto y último macroproceso proporciona información y recursos a todos los otros macroprocesos y recibe de éstos información de su funcionamiento. Este está enfocado principalmente en ser la Macro financiera del grupo, la cual se encarga de responder a las necesidades de financiamiento que tiene cada empresa del grupo, el cual es atendido por el gerente de finanzas, quien planifica los flujos financieros de todas las filiales. Cada proyecto, activo fijo, o requerimiento de deuda de largo y/o corto plazo es analizada por la gerencia en cuestión, quien se encarga de negociar con entidades bancarias. Además realiza la gestión de cobranza y pagos hacia clientes y proveedores respectivamente.

4.2. Macroproceso Cadena de Valor

En la figura 4-2 se detalla la cadena de valor actual de la exportadora Geofrut, que es la empresa que será abordada en el presente proyecto.

Venta y comercialización de frutas interactúa de distintas formas con los potenciales clientes en el extranjero para definir las necesidades de ventas. Por una parte, previo al inicio de la temporada, los market manager participan de ferias masivas en Estados Unidos, Europa y Asia, lugar donde interactúan clientes y exportadoras para analizar el comportamiento del mercado, y donde los importadores exponen las necesidades y expectativas del consumidor final que han logrado capturar a través de
distintos estudios de mercado. A su vez, el área comercial debe constantemente analizar los mercados y estar al tanto de cómo los efectos económicos afectarán directo o indirectamente en las ventas de fruta. En otros casos es el mismo cliente quien recurre a la exportadora para efectuar pedidos especiales y exponer sus necesidades.

![Diagrama de la Cadena de Valor Exportadora](Figura 4-2. Cadena de Valor Geofrut)

Es función de Venta y comercialización de frutas enviar información a clientes. Ya sea previo a la venta, enviando presupuestos para acordar programas de venta, informando el estado de sus pedidos y despachos; o ya cerrando el ciclo con la negociación de precios basados en comparativas (que aplica para acuerdos de Precio Mínimo garantizado y/o libre consignación). Como el área comercial interactúa previamente con clientes y estudia y conoce el comportamiento del mercado, envía a...
Gestión de abastecimiento de fruta las necesidades de venta para la temporada para que esa área comience a negociar con productores los precios de compra.

Gestión abastecimiento se encarga de trabajar con el productor y asesorarlo en la pre-temporada. Para ello se alimenta del plan de calidad, con lo cual define los trabajos y cuidados necesarios en los campos para cumplir con los estándares de calidad mínima esperada por la exportadora. Ya cercanos al inicio de la temporada, los agrónomos efectúan estimaciones en todos los campos y productores, con lo cual se define la estimación de cosecha por especie y variedad. Con la muestra obtenida se construye un plan de cosecha, el cual es enviado a Gestión de Packing y exportaciones para programar los procesos y despachos de venta. Gestión de Abastecimiento de fruta interactúa con el productor enviado información de su fruta procesada y exportada, la cual obtiene del sistema de producción, así como el resultado de las ventas a través de las liquidaciones finales de venta.

Gestión de Exportaciones se encarga de planificar la producción y exportaciones, programando las reservas de los despachos con navieras y transportistas para cumplir con los embarques programados por el área de ventas.

Exportación de fruta en tanto, se encarga de controlar la recepción de la fruta en los distintos Packing en los cuales se procesa según la programación recibida por Gestión de exportaciones. Envía información a Ventas sobre inventarios y fruta disponible e instruye y realiza los embarques hacia los distintos clientes.

Además existe una mantención de estado conformada por Sistemas de apoyo a todo el ciclo que experimenta la fruta (desde la compra hasta la venta). Para ello existen dos sistemas. Por una parte, está el sistema de producción, denominado Sistema General de Exportaciones (SGE), que registra la información de producción que se genera en los Packing y la retroalimenta a todas las áreas, inclusive envía al productor información sobre las cantidades recibidas, procesadas y vendidas. Por otra parte, la información contable es manejada en un sistema ERP (Microsoft Dynamics AX2012) el cual recibe, de forma integrada con el sistema SGE, información de los inventarios de fruta en proceso, inventarios de productos terminados y las ventas a clientes, llevando en línea la gestión operacional, deuda con productores y cobranza de clientes, además de controlar toda la información financiera, presupuestaria y contable del grupo.

Sin embargo, no existen aún flujos de información formales o automatizados que permitan manejar estimaciones sobre la cosecha y venta de fruta, consiguiendo así anticipar la planificación de actividades entre los macroprocesos de Venta y Comercialización de fruta y Gestión de Abastecimiento de frutas.
4.3. **Principales procesos de la cadena de valor**

A continuación se detalla el diseño actual de los principales procesos que abarcan los objetivos perseguidos con el desarrollo del proyecto dentro de la cadena de valor de Geofrut.

4.3.1. **Venta y comercialización de fruta**

El proceso correspondiente a Venta y Comercialización de fruta, posee las típicas actividades de definidas por Barros [3], salvo algunas adaptaciones referidas a la empresa. Del análisis del mercado se definen los clientes potenciales que toma Atención de Compradores y Venta para tomar requerimientos, revisarlos con el plan de cosecha para visualizar los stocks y en base a ellos tomar una decisión de venta.

El proceso relevante de analizar, dado el rediseño propuesto en el capítulo 5, es Análisis del mercado, dado que es acá donde se analiza el comportamiento del mercado para la construcción de una plan de ventas que apoye las decisiones.

El proceso actualmente es un análisis manual, basado en datos de la temporada anterior y el sondeo del mercado. Cada market manager utiliza vistas Excel que leen las bases de datos de temporadas anteriores, para lo cual realizan informes dinámicos que les permiten analizar las ventas por mercado y cómo fue su distribución en cada semana. Sin embargo, estos análisis son aislados y dependen de lo que quiera revisar cada vendedor.
Figura 4-3: Venta y Comercialización de fruta.

Figura 4-4: Análisis de mercado.
La planificación de las ventas se define cada semana, donde se estudia la predicción de producción, se revisan los mercados a donde podría destinarse la fruta (cada vendedor plantea sus requerimientos de fruta basados en sus análisis de mercado) y en conjunto definen el programa de ventas semana a semana por mercado. Si a lo anterior sumamos que esta actividad debe ser efectuada por especie y variedad, se puede concluir que es una actividad bastante atenuante considerando las 128 variedades existentes (Ver figura 4-5).

<table>
<thead>
<tr>
<th>Especie</th>
<th>Qty variedad</th>
<th>Cajas temp1314</th>
</tr>
</thead>
<tbody>
<tr>
<td>NECTARINES</td>
<td>35</td>
<td>304,934</td>
</tr>
<tr>
<td>DURAZNOS</td>
<td>24</td>
<td>175,845</td>
</tr>
<tr>
<td>CIRUELAS</td>
<td>21</td>
<td>600,695</td>
</tr>
<tr>
<td>CEREZAS</td>
<td>21</td>
<td>289,187</td>
</tr>
<tr>
<td>UVAS</td>
<td>11</td>
<td>2,229,621</td>
</tr>
<tr>
<td>MANZANAS</td>
<td>9</td>
<td>338,800</td>
</tr>
<tr>
<td>PERAS</td>
<td>3</td>
<td>113,256</td>
</tr>
<tr>
<td>KIWIS</td>
<td>2</td>
<td>438,427</td>
</tr>
<tr>
<td>PLUMCOT</td>
<td>2</td>
<td>19,200</td>
</tr>
<tr>
<td>Total general</td>
<td>128</td>
<td>4,509,965</td>
</tr>
</tbody>
</table>

Figura 4-5. Cantidad de variedades por especie y cantidad de cajas en temporada 2013-2014

4.3.2. Gestión de Abastecimiento de fruta

Por otra parte, en gestión de abastecimiento de frutas se presentan los procesos principales, tal como lo hace Barros [3] en su capítulo 8 para el caso de la empresa de Packing.

Los procesos actuales en gestión de abastecimiento de fruta, corresponde a tres procesos principales: 1) gestionar a los productores, buscando estratégicas de retención así como la captación de nuevos productores; 2) la estimación de cosecha, que consiste en tomar en cada campo una muestra para estimar el potencial de cosecha; y 3) brindar asesoría técnica a los productores durante todo el proceso previo a la cosecha, para garantizar que ésta mantenga los estándares de calidad deseados por la empresa y el cumplimiento de buenas prácticas agrícolas.
Figura 4-5: Gestión de abastecimiento de fruta.

El proceso actualmente no considera la entrega de información a productores respecto a la estimación de cosecha, ésta solo alimenta a procesos internos como son Gestión de Venta de fruta y Gestión de Exportaciones. Por otra parte, esta estimación es un proceso manual y no sistematizado, el cual en ocasiones presenta problemas de oportunidad en la entrega de la información a todas las áreas y así como de precisión en la transformación de kilos a cajas equivalentes (la cual es transformada de acuerdo al rendimiento que cada agrónomo estime para sus productores).
Capitulo 5: Rediseño de Procesos

Como ha sido expuesto en capítulos anteriores, el negocio de la fruta requiere un trabajo dinámico y eficiente para ser rentables en mercados altamente exigentes. Al operar con productos perecibles y disponer de un tiempo limitado para cosechar, procesar y embarcar la fruta, la anticipación y coordinación resultan actividades claves para hacer al negocio más competitivo.

Tomando como marco de referencia el diseño de procesos, a partir de la situación actual, la estrategia de la empresa, el modelo de negocios y la arquitectura de procesos revisados en capítulos anteriores, es que en el presente capítulo se plantean las variables asociadas a las diferentes innovaciones que se pueden efectuar en tales procesos. Para ello se presentará la motivación y objetivo del rediseño, los procesos claves, las variables para la dirección del cambio, el detalle del rediseño de procesos, detalle de las lógicas de negocio y, finalmente, cómo se alinea el proyecto con la estrategia de la empresa.
5.1. Definición del rediseño de procesos.

A continuación se definirá el alcance del rediseño de procesos que será abordado con el presente proyecto. También se especifica qué procesos quedan fuera del alcance del rediseño.

5.1.1. Alcance del rediseño de procesos

La estimación de cosecha existe -tal como se señaló en la sección 1.3- y es de gran utilidad en la empresa. Sin embargo se desea, por una parte, formalizar el proceso a través de un sistema centralizador de la información y, por otra parte, se busca mejorar la precisión, ya que la transformación de la cosecha de kilos a cajas resultantes después del proceso es poco precisa debido a la metodología usada por los agrónomos en la actualidad. Lo anterior debido a que como los agrónomos usan un rendimiento exportable fijo para todos los productores según la especie, esta práctica presenta principalmente dos errores:

- No todos los productores tienen la misma calidad en su fruta.
- El rendimiento exportable también depende de la variedad, los rendimientos pueden ser muy distintos entre variedades (dado que algunas variedades son más sensibles a los cambios climáticos o cuidados en pre-cosecha).

Lo anterior incide en que la estimación de cosecha en cajas por semana, no sea precisa al usar un rendimiento promedio general para todos los productores de una misma especie, más aun cuando el volumen que opera Geofrut supera los 4.5 millones de cajas, por lo que las desviaciones sí pueden ser significantes en las estimaciones.

Adicionalmente, la estimación de cosecha actual es solo de uso interno y no es compartida hacia el productor. Esta situación espera ser revertida con el proyecto, ya que se considera relevante traspasar dicha información para mejorar la relación empresa/productor, además de ser conveniente que el productor también maneje estimaciones para mejorar la planificación de sus recursos y ser más eficiente en la entrega misma de su fruta. Sin embargo, por temas de confidencialidad la estimación a compartir debe ser segregada solo a la de sus campos, quedando reservada solo para Geofrut la información global de estimaciones.

Del punto de vista de las ventas, no existe una estimación propiamente tal –como fue especificado en la sección 1.3- por lo que el objetivo es diseñar y formalizar el proceso de estimación de ventas. Con esto se espera lograr generar un efecto positivo en la organización al proveer de información relevante para varios procesos de la

10 Rendimiento exportable: es el cociente entre los kilos exportados (que fueron transformados a caja) y los kilos cosechados por el productor.
empresa que en la actualidad trabajan con sus propios análisis de venta basados en información histórica. Diseñar un plan de ventas general de la exportadora, permitirá que tanto el área comercial apoye mejor sus decisiones, así como otras áreas de la empresa que se basan en la gestión comercial para planificar (como programación de la producción, programación de embarques (fletes y navieras), adquisición de materiales, entre otros).

El plan de ventas definido por el área comercial debe considerar como input el plan de cosecha, debido a que las ventas dependen de la capacidad que tiene los productores de ofrecer fruta, mientras que la empresa debe hacer todo lo posible en su gestión por vender el 100%, dado que es un producto perecible y requiere un tiempo muy breve para ser vendida y consumida desde que es cosechada. Es por esto que el diseño en ventas brindará la capacidad de trabajar anticipadamente en la distribución de la fruta hacia los mercados creando un nuevo proceso que estimará las ventas basados en el comportamiento histórico mezclado con el juicio experto de área comercial para asignar la oferta hacia los mercados.

Conocer la distribución por especie, variedad, mercado y semana de venta, permite al área comercial ofrecer programas de ventas con sus clientes, con datos precisos en las variables expuestas, ya que en tal punto serán variables conocidas y ajustadas a la estimación de oferta de la temporada.

5.1.2. Fuera de alcance de rediseño de procesos

No se considera como parte del rediseño de procesos la Programación de la Producción. Lo anterior debido a que el objetivo del proyecto actual se basa en el aumento de las ventas basado en una mejor planificación y coordinación de las actividades de Abastecimiento y Comercialización de frutas, y no en un proyecto para optimizar la producción.

Sin embargo, se asume que los nuevos flujos de información que proveen los planes de cosecha y venta servirán como input importante para apoyar las decisiones de programación de la producción y podrán ser formalizadas y optimizadas en trabajos futuros a partir de los avances logrados con este proyecto.
5.2. Dirección del cambio del rediseño

Las variables a considerar se resumen en la Figura 5-1, donde se destaca el orden en que debieran ser analizadas las relaciones entre las variables y las teorías y conceptos. El orden va desde variables que cambian más estructuralmente al negocio a aquéllas que son consecuencia de tal cambio o se centran en aspectos más locales.

Figura 5-1. Variables de diseño. Fuente: Oscar Barros [3]

5.2.1. Estructura de empresa y mercado

Esta es la variable de mayor impacto sobre el proceso y está presente cuando -al nivel de estrategia, modelo de negocio y de arquitectura de procesos- se ha decidido hacer cambios significativos en la estructura de negocio y los procesos, o en las relaciones con clientes y proveedores [3].

En cuanto a estructura empresa y mercado de Geofrut, el cambio más importante es la integración con productores para precisar la estimación de cosecha. Actualmente el productor no maneja información de las estimaciones que desarrollan los agrónomos, ya que ésta es desarrollada en Excel en un informe global, y no individual por cada productor, así que es información clasificada y usada solo internamente, obviando el
beneficio que se podría obtener si el productor trabaja de forma más coordinada y alineada con la exportadora.

Además la estructura interna cambia a una centralización de los servicios de información y apoyo a los productores por medio de un sistema que será operado por los agrónomos y Market Manager de la empresa.

Para la toma de decisiones, como las basadas en el plan de ventas y estimación de cosecha, el objetivo será descentralizarlas a través de la mayor información que recibirá cada departamento, los cuales de manera coordinada tomarán decisiones de manera más autónoma, pero basados en lógicas de negocios aprobadas centralmente por el principal.

<table>
<thead>
<tr>
<th>VARIABLES DE DISEÑO</th>
<th>ACTUAL</th>
<th>PROPUESTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Estructura empresa y mercado</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a.1. Servicio integral al cliente</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>a.2. Lock-in sistémico</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>a.3. Integración con proveedores</td>
<td>Asesorías y gestión de Campos. Estimaciones de cosecha control Excel por cada agrónomo jefe de Programa</td>
<td>Integración con productores para para obtener una estimación de cosecha precisa a través de modelos predictivos.</td>
</tr>
<tr>
<td>a.4. Estructura interna: centralizado o descentralizado</td>
<td>CENTRALIZADA</td>
<td>Centralizar servicios, pero con operación descentralizada</td>
</tr>
<tr>
<td>a.5. Toma de decisiones: centralizada o descentralizada</td>
<td>CENTRALIZADA</td>
<td>Descentralizar decisiones con lógicas de negocio aprobadas centralmente por el principal.</td>
</tr>
</tbody>
</table>

Estos cambios propuestos implican importantes modificaciones en la estructura de la empresa, en forma subyacente, hay tecnología que puede ser usada en este proyecto para hacer factible el cambio.

5.2.2. Anticipación

La anticipación incluye situaciones en las cuales, con métodos analíticos apropiados, se predicen comportamientos futuros que pueden ser enfrentados adecuadamente. La justificación económica de la anticipación viene de la Teoría de Coordinación (O. Barros [3], capítulo 8) y tiene que ver con el mejor uso de los recursos de la empresa, eliminando holguras tales como inventario innecesario, bajo uso de capacidad instalada, servicio insatisfactorio a los clientes, compras ineficientes de
productos o insumos, presión excesiva sobre los recursos humanos, baja productividad debido a problemas de calidad y de trabajo, y muchos otros.

La anticipación en este proyecto está presente en desarrollar procesos formales para la estimación de cosecha y demanda, permitiendo tomar decisiones sobre las decisiones de compra y comercialización de fruta, pero a su vez permitiendo que otras áreas dispongan de esta vital información, como lo son planificación de la producción y planificación de insumos y servicios.

<table>
<thead>
<tr>
<th>VARIABLES DE DISEÑO</th>
<th>ACTUAL</th>
<th>PROPUESTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. Anticipación</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b.1. Predicción de la Oferta</td>
<td>Gestión de Campos y asesorías con métodos informales de predicción controlados en planillas Excel</td>
<td>Métodos de Proyección de cosecha formales para anticipar la llegada de fruta con mayor precisión. Permitirá anticipar la programación de Producción, reservas navieras y de fletes y compra de insumos.</td>
</tr>
<tr>
<td>b.2. Pronósticos de Ventas</td>
<td>No</td>
<td>Métodos de Proyección de la ventas. Permitirá anticipar la programación de Producción, reservas navieras y de fletes y compra de insumos.</td>
</tr>
<tr>
<td>b.3. Planificar producción</td>
<td>Basado en recepciones históricas, sin anticipación.</td>
<td>Planificación de los turnos y líneas de procesos basados en estimaciones de cosecha (b.1) y plan de Ventas (b.2)</td>
</tr>
<tr>
<td>b.2. Planificación de Insumos y servicios</td>
<td>Planificación basado en datos históricos, sin anticipación</td>
<td>Compra de materiales de embalaje y plan de requerimiento de servicios (fletes y navieras) basados en modelos predictivos de oferta y demanda.</td>
</tr>
</tbody>
</table>

5.2.3. Coordinación

La coordinación tiene que ver con la teoría correspondiente, incluyendo otras variables complementarias tales como el uso de reglas, jerarquía y colaboración (O. Barros [3], capítulo 8).

La coordinación aplica en este proyecto por medio de flujos de información bien definidos y formalizados, y prácticas de trabajo que los utilizan; principalmente en los procesos de Gestión de abastecimiento de frutas y Gestión de ventas y comercialización de frutas. Donde además otras áreas logran coordinar mejor sus actividades al conocer la estimación de fruta y cómo ésta será distribuida, planificando producción, despachos, servicios de fletes y navieras, entre otros.
5.2.4. Prácticas de Trabajo

Las prácticas de trabajo materializan y detallan las opciones de diseño expresadas en los puntos anteriores. Ellas deben permitir ejecutar las tareas del proceso de manera que se cumpla con tal diseño, por lo que agrónomos, vendedores y analistas de sistemas deberán considerar los esfuerzos adicionales requeridos por hacer posible la sistematización de los procesos relevantes para el proyecto.

<table>
<thead>
<tr>
<th>VARIABLES DE DISEÑO</th>
<th>ACTUAL</th>
<th>PROPUESTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>c. Coordinación</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.1. Reglas</td>
<td>Reglas informales</td>
<td>Reglas formales con apoyo computacional, las que por medio de flujos de información bien definidos y formalizados permitirá compartir información relevante para el negocio.</td>
</tr>
<tr>
<td>c.2. Colaboración</td>
<td>Reuniones semanales para planificación del negocio (área comercial, adquisición de fruta y embarques,</td>
<td>Con el uso de nuevas tecnologías permitirá compartir, de manera simple, la diversa información que se genera entre abastecimiento de frutas, operaciones y ventas, y Embarques..</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VARIABLES DE DISEÑO</th>
<th>ACTUAL</th>
<th>PROPUESTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>d. Prácticas de Trabajo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d.1. Lógica de Negocio</td>
<td>Informal y control planilla Excel</td>
<td>Lógica automatizada, con modelos predictivos, para elaborar planes de cosecha.</td>
</tr>
<tr>
<td>d.2. Lógicas de Apoyo a actividades tácitas.</td>
<td>NO</td>
<td>Revisión y ajustes a modelos predictivos</td>
</tr>
<tr>
<td>d.3. Procedimientos de comunicación integración</td>
<td>Reuniones semanales para plan de venta y cosecha.</td>
<td>Mantener las reuniones de planificación, pero disponiendo de planes de cosecha y venta en sistema computacional disponible para toda la cadena.</td>
</tr>
<tr>
<td>d.4. Lógica y procedimientos de medición de desempeño y control</td>
<td>NO</td>
<td>Indicadores de compra, producción y venta mediante KPI's, para monitorear Estimación versus Realidad.</td>
</tr>
</tbody>
</table>
5.2.5. Integración de Procesos conexos

La integración define el grado de interacción entre los procesos dentro de un macroproceso o entre diferentes macroprocesos. Los procesos de ventas, abastecimiento, operaciones y despacho (toda la cadena) se integran por medio de los planes mejorados de ventas y cosecha.

<table>
<thead>
<tr>
<th>VARIABLES DE DISEÑO</th>
<th>ACTUAL</th>
<th>PROPUESTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>e. Integración de Procesos Conexos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e.2. Todos o la mayor parte de los procesos de un macroproceso</td>
<td>Sí</td>
<td>Integración de ventas, abastecimiento, operaciones y despacho (toda la cadena).</td>
</tr>
<tr>
<td>e.3. Dos o más macros que Interactúan</td>
<td>Sí</td>
<td>Integración con cadena proveedor</td>
</tr>
</tbody>
</table>

5.2.6. Mantención Consolidada de estado

La mantención de estado existe para proveer todos los datos necesarios para ejecutar las prácticas de trabajo y comunicar las actividades y procesos. La información de planes de cosecha y venta que actualmente son manejados en planillas Excel, mails y papeles. Para el proyecto, se desea desarrollar una nueva capa de aplicaciones web que permita manejar la información del plan de cosecha y venta.

Por otra parte, se requiere obtener colaboración de productores para la obtención de la información de sus estimaciones de cosecha, las cuales se harán en colaboración con el agrónomo encargado del programa. Con esto se logrará hacer que la actividad sea más ágil y con la colaboración y compromiso del productor, quien hará un mejor trabajo si desea obtener información de calidad (la que también le será relevante poseer).
5.2.7. Apoyo Computacional y Tecnologías Habilitantes

El proyecto requerirá para su funcionamiento del apoyo computacional y tecnologías que posibilitan el desarrollo del mimo. Estas son descritas a continuación:

- **Apoyo Computacional**
 - Conjunto de aplicaciones web que proveen las nuevas prácticas de trabajo en la cadena de valor.

- **Tecnologías Habilitantes**
 - Conjunto de tecnologías que permiten habilitar nuevas capacidades en los procesos, tales como:
 - Aplicaciones web
 - Data Marts
 - Herramientas de Data Mining
 - Integración con sistemas internos.
5.3. Detalle del diseño de Procesos

A través de la arquitectura de proceso presentada en secciones anteriores, se establece el primer rediseño relevante, debido a que en la arquitectura de procesos se definen cuáles debieran ser los macro procesos presentes en un diseño a implementarse en una cierta área de la empresa y sus relaciones.

Una vez definido el diseño de la arquitectura, el siguiente paso consiste en realizar el rediseño de cada proceso de ella. Para esto, en cada proceso se detallará cómo se satisfarán utilizando las variables de cambio que se explicaron en el punto anterior.

Figura 5-2. Cadena de Valor Geofrut, Macro 1 [3], Impacto Proyecto.

Las flechas verdes reflejan los nuevos flujos de información a desarrollar, los cuales serán canalizados en los sistemas de apoyo dentro de los cuales se encontrará el nuevo sistema a desarrollar con el proyecto.
5.3.1. Venta y Comercialización de Fruta

Al abrir el primer proceso de la cadena de valor, correspondiente a Venta y Comercialización de Fruta, se desea rediseñar el proceso de Análisis de Mercado, ya que en éste se analizará el comportamiento de las ventas históricas y se analizará el mercado para crear el plan de ventas.

Figura 5-3: Venta y Comercialización de Fruta.

En una especialización de Análisis de Mercado, se llega al proceso de Comportamiento de Ventas. Acá lo que interesa es estimar a través de un modelo de Data Mining (del capítulo 2) cómo será la distribución por mercados de las variedades para decidir la programación de ventas y generar el plan de ventas.
La obtención del plan de ventas, se logra luego de construir el siguiente BPMN, el cual se desprende de seguir especializando Analizar Comportamiento de Ventas.
El BPMN propuesto considera que:

1. Cada Market Manager\(^{11}\) podrá interactuar con el sistema y definir la estimación a nivel de especie, donde será preparada la información por el sistema para todas sus variedades (o parte de ellas, si se selecciona especie y variedad).

2. El Sistema prepara los datos invocados por el Market Manager, tomando una muestra de los datos históricos de venta. Esta información vendrá por especie detallando cada variedad y las temporadas tomadas por el modelo (2, 3, o n periodos que se definen para el promedio móvil en su ajuste de parámetros).

3. Si hubiesen problemas en los datos (como haber seleccionado mal la especie) el Market Manager podrá volver a invocar los datos.

4. Si los datos están OK, el Market Manager invoca la predicción en el sistema.

5. El sistema ejecutará un algoritmo predictivo del cual se obtendrá la estimación de distribución de ventas porcentuales por mercados, especie y variedades.

6. Luego el comité, conformado por los 3 market manager, será quien define la distribución de las ventas por mercados y determina si los datos están correctos. De ser así, el comité define la situación del mercado, caso contrario tendrán la opción de ajustar manualmente la distribución basados en su juicio experto respecto al comportamiento del mercado.

7. Genera propuesta comportamiento de ventas. Esta propuesta formará parte de un plan generado por el comité, a modo de decidir la distribución hacia los mercados más rentables según un análisis hecho en conjunto. Los valores de la estimación de ventas serán obtenidos con el comportamiento histórico, que al ser por sistema se agiliza enormemente tal acción, pero también permitiendo hacer ajustes a la estimación según el juicio experto del responsable de cada mercado.

\(^{11}\) Market Manager. En Geofrut existen 3 personas responsables de las ventas de un determinado mercado. Uno para Asia, otro para Europa y otro en LATAM y EEUU.
5.3.2. Abastecimiento de Fruta

Al abrir el segundo proceso de la Cadena de Valor (Figura 10), correspondiente a Gestión de Abastecimiento de Fruta, se identifica como proceso relevante “Estimación de cosecha”, proceso en el cual se aplicará el modelo para predecir los volúmenes de cajas por especie, variedad y semana de cosecha, que permitan construir el plan de cosecha en un sistema integrado.

Estimación de cosecha actualizará al sistema integrado sobre la estimación de cada campo y productor, recibiendo de éste la proyección de cosecha general de la especie la cual será enviada a Venta y comercialización de fruta y Gestión de Packing.

La gestión de productores, a través de un nuevo diseño de coordinación e integración con el productor, hará partícipe al Productor en la estimación de la cosecha y le enviará información del sistema integrado sobre la estimación de su cosecha (cantidad de cajas por especie, variedad y semanas de cosecha). Es así como cualquier cambio en la estimación de cosecha, producto del cambio de alguna variable por parte del agrónomo a cargo del programa, se informará automáticamente al Productor que vea modifica su estimación.
De la especialización de Estimación de Cosecha, se desprende el siguiente modelo BPMN el cual resume las actividades a realizar en la estimación.

El BPMN propuesto considera que:

- El Agrónomo12 invocará los datos del cuartel y plan de muestreo (incluye especie, variedad y campo).
- El sistema recupera los datos invocados y determina la muestra requerida. El sistema genera un archivo PDF, el cual vendrá personalizado para cada campo respecto a los datos de la muestra requerida.
- El agrónomo, con ayuda del productor, toma la muestra. Luego el agrónomo actualiza el sistema.
- El sistema Actualiza y establece adecuación de los datos de la muestra obtenidos.

12 Agrónomo: en Geofrut existe un agrónomo por especie, el cual está encargado de gestionar el programa de cosechas y gestionar las relaciones con productores.
• Si los datos están correctos, procesa datos con el algoritmo. Si ocurre algún error, el sistema envía alerta al agrónomo quien debe adecuar y actualizar la muestra hasta que los datos estén correctos.
• Obtenida la estimación, el agrónomo evalúa los resultados del productor.
• Si la predicción no es correcta para el agrónomo, éste ajusta los parámetros del modelo y vuelve a procesar los datos hasta quedar conforme con la estimación.
• Si la predicción esta correcta actualiza Mantención de estado, flujo que informa a Venta y Comercialización de fruta, gestión de Packing y al Productor.
• Esta estimación se hace por productor, así que cada productor recibirá su estimación. Sin embargo solo los usuarios internos tendrán acceso a la sumatoria de estimaciones para cada especie (plan de cosecha).

5.3.3. Rediseño en la cadena de valor

Luego de aplicar el rediseño de la arquitectura de procesos de la empresa en los procesos de Gestión de Abastecimiento de fruta y Venta y Comercialización de fruta, a continuación se describe cómo cambia la cadena de valor con los nuevos flujos de información diseñados de acuerdo a la figura 5-2:

• Se formaliza el plan de cosecha por medio de un sistema centralizado y se mejora la calidad de la predicción, basada en técnicas analíticas y estadísticas, las cual se registra en mantención de estado en el sistema de apoyo.
• Se formaliza un plan de ventas por medio del análisis del mercado y su comportamiento de ventas obteniendo un modelo de predicción de ventas que permitirá definir a qué mercados se destinará la fruta, contando también con un ajuste manual por parte del Market Manager.
• Comercialización y Venta de frutas, Abastecimiento de frutas se coordinarán registrando en un sistema integrado, para la construcción de un plan de ventas ajustado a las estimaciones de cosecha.
• Existen flujos de información de apoyo a los productores de fruta a los cuales se les envían las estimaciones de fruta.

5.4. Detalle del diseño

En esta sección se presenta el detalle del rediseño de procesos propuesto en este proyecto. Para ello se especifican las lógicas de negocios requeridos en los procesos de Estimación de Cosecha y Estimación de Ventas, detallando además los procedimientos de ejecución de tales procesos y los flujos de información que proveerá el sistema integrado.
5.4.1. Lógicas de negocio

En el proyecto se desarrollan dos lógicas de negocio principalmente, las cuales están estrechamente relacionadas. Estas son estimación de cosecha y estimación de demanda, las cuales serán explicadas en primera instancia de forma individual para entender su lógica de uso, y luego se hará una explicación de forma conjunta, para detallar cómo se relacionan ambas lógicas (oferta = demanda).

5.4.1.1. Lógica de negocio estimación de cosecha

Para la estimación de cosecha se requiere una muestra de cada campo de los productores, ya que a partir de esto se realizarán 2 procesos: la estimación de la cosecha en kilos, y la estimación de la cosecha en cajas.

Con ambas estimaciones se puede disponer de dos análisis relevantes, uno es la estimación individual de cada productor (que será compartido con cada productor) y el otro análisis es la estimación global a través del plan de cosecha.

5.4.1.1.1. Estimación de cosecha en kilos, método por muestreo

El método para obtener la estimación de cosecha que utiliza la empresa es el método por muestreo (explicado en capítulo 2), donde los datos requeridos para obtener la estimación en kilogramos son:

- Datos del productor y campo
- Superficie: cantidad de hectáreas del campo contratado
- Carga: es el conteo de frutos estimado por hectárea. Se obtiene con el número de árboles por hectárea, donde se testea una muestra de árboles que conforman la muestra, y con el número de frutos promedio de la muestra se extrapola para el total de árboles por hectárea.
- Peso fruto: se mide el calibre de ciertos frutos que se extraen, se miden según su crecimiento y fecha de cosecha estimada, permitiendo a través de una regla de calibres conocida la estimación del peso una vez que tomará la cosecha. El peso promedio de cada fruto se promedia y se definen los kilogramos promedios unitarios.
- Producción: es el producto de las variables anteriores. Cantidad de hectáreas por el número de frutos por hectárea, multiplicado por el peso
promedio de ese total de frutos del campo estimados, da como resultado la producción del campo.

Figura 5-9: Fórmula estimación cosecha en kilos.

La estimación anterior, realizada por especie y variedad, implica que el sistema obtendrá el primer resultado y es la estimación de producción en kilogramos por productor.

Otro factor relevante es conocer la fecha de inicio de la cosecha y la duración de la misma. Este dato se obtiene a través de juicio experto por parte del agrónomo y el productor, quienes durante todo el periodo de pre-cosecha llevan un registro de los trabajos realizados, los líquidos aplicados, control de las etapas de floración y maduración de la fruta. Con estas variables cualitativas, el agrónomo define la fecha de inicio de cosecha.

Adicionalmente, y en coordinación con el productor, se define la duración que tendrá la cosecha en semanas, ya que es el productor quien define cuánta gente dispondrá para la cosecha y a su vez es el agrónomo quien sugiere la extensión máxima deseada para impedir que la fruta se madure antes de ser cosechada. El agrónomo, basado en su expertización y conocimiento del campo define en una tabla en la ficha de estimación con la duración en semanas y los porcentajes de la distribución semanal, la cual se explica con el siguiente ejemplo:

<table>
<thead>
<tr>
<th>Cod_Productor</th>
<th>Especie</th>
<th>Variedad</th>
<th>Semanas</th>
</tr>
</thead>
<tbody>
<tr>
<td>0528</td>
<td>Cerezas</td>
<td>VAN</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>49</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>51</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Figura 5-10: Distribución de cosecha por semana.

5.4.1.1.2. Estimación del rendimiento exportable por productor
La estimación de la producción en kilogramos analizada en el punto anterior es una condición necesaria para obtener la estimación de cosecha pero aún no suficiente, ya que la estimación debe ser entregada en cajas, unidad de medida con la que se trabaja en la organización, unidad en la cual se representa lo que realmente se exporta y que nunca es igual a lo cosechado, dada la existencia de un margen de fruta que no califica para la exportación y que es segregada en el proceso de selección y empaque en cajas.

La estimación del rendimiento exportable es el factor que hace posible transformar la estimación de cosecha en kilos a la estimación de cajas exportables. Como fue explicado en la situación actual (sección 1.3.), por temas de simplicidad el área técnica usa el rendimiento general de la especie durante la temporada inmediatamente anterior para la transformación de kilos a cajas. Por ejemplo: en la figura 5-11 se representa un ejemplo de cómo se obtiene el rendimiento exportable, el cual toma el total de kilos exportados sobre el total de kilos recibidos.

| Rendimiento exportable = Kg exportados = 1.735.600 = 86.78% |
|---------------------|---------------------|---------------------|
| Cerezas | kg recibidos 2.000.000 |

Figura 5-11: Obtención del rendimiento exportable.

Si el rendimiento de cerezas en la temporada 2012-2013 fuera 86.78% este promedio se utilizará para todos los productores, independiente a que existan campos más productivos que otros, o variedades en sí más o menos productivas, donde el promedio puede presentar una varianza significativa si se toma en cuenta el volumen de cada especie.

Para evitar la situación anteriormente expuesta, y aprovechando el uso de tecnologías e información para trabajar con grandes volúmenes de datos versus un trabajo manual, se hará una estimación del rendimiento exportable para cada productor aplicando los siguientes criterios:

- El rendimiento será por productor, obtenido por especie y variedad.
- Se seguirá la metodología KDD para seleccionar y preparar la información de cada productor. Una vez la información preparada se aplicará el modelo elegido.

El resultado de la estimación deberá quedar se la siguiente forma:

<table>
<thead>
<tr>
<th>COD PRODUCTOR</th>
<th>ESPECIE</th>
<th>VARIEDAD</th>
<th>REND EXPORTABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0528</td>
<td>Cerezas</td>
<td>Van</td>
<td>.858</td>
</tr>
<tr>
<td>0528</td>
<td>Cerezas</td>
<td>Lapins</td>
<td>.876</td>
</tr>
<tr>
<td>0528</td>
<td>Cerezas</td>
<td>Bins</td>
<td>.815</td>
</tr>
</tbody>
</table>
5.4.1.1.3. Selección del Modelo de Rendimiento Exportable

Existen distintos métodos en el Data Mining predictivo, tal como fue planteado en la sección 2.3.2.3., lo importante es ver qué modelo se ajusta mejor al problema a resolver y cuál presenta un menor error en la estimación así como una complejidad abordable por la empresa en estudio.

Para entender qué modelo usar es necesario aplicar previamente los pasos del KDD, donde el modelo a elegir representa solo una actividad dentro del proceso.

Para simplificar la selección, a continuación se presenta cómo fue abordada la problemática y aplicada la metodología KDD:

- **Data:** La información será proporcionada por el sistema de producción de la empresa, denominado SGE. El sistema almacena la información por temporadas, así que debe ser proveída indicando en cada observación su respectivo indicador de la temporada, el detalle de cómo obtener los datos será analizado en las secciones 6.1.1.2 y 6.1.3.

- **Selección de datos:** tal como fue mencionado en la sección 2.2.2. es recomendable asesorarse de juicio experto para definir las variables indicadas. Las variables más relevantes para la estimación de cosecha, son:

 - Especie: existen más de 10 especies con las que Geofrut opera.
 - Variedad: las variedades superan las 100 entre todas las especies.
 - Productor: productores son más de 150.

Sin embargo, y luego de un análisis exploratorio de los datos, se construyó una segmentación entre productores según su antigüedad, reflejado en la figura 5-13.
En la segmentación se aprecia que existe un porcentaje importante de productores nuevos, esto implica que aplicar un modelo para todos los productores requeriría rellenar con promedios o eliminar muchos valores perdidos, por lo que se optó en forma preliminar (previo a la prueba de modelos) por hacer modelos según la antigüedad del productor siguiendo el esquema de la figura 5-14. Se ha separado de esa forma, debido a que en la fruta se considera como un periodo razonable de datos de 2 a 4 años. Más de cuatro años es un período amplio, ya que en tal extensión de tiempo varían tanto las técnicas de proceso así como las normas de calidad, e incluso las condiciones climáticas son bastante variables cada año. Menos de dos años, son productores muy resientes por lo que prácticamente no hay datos para poder estimar.

Pre-procesamiento: como el análisis se define por productor, los valores faltantes no pueden ser simplemente eliminados. Para ello y de acuerdo con la segmentación de proveedores, se debe definir qué técnica de reemplazo de valores faltantes se aplicará en cada caso. Revisando los datos se ha definido
que en todos los casos será aplicado el promedio que presente el proveedor para tal especie variedad, salvo en aquellos casos donde el proveedor sea nuevo o tenga solo un año de antigüedad, donde aplicará el promedio de la especie variedad.

- **Transformación:** las observaciones deben venir agrupadas por temporada, de esta manera serán representativas, ya que como ha sido explicado en capítulos anteriores la fruta se cosecha en periodos breves y en meses específicos del año. Por lo anterior es necesario comparar temporada por temporada la información. En la figura 5-15, se presenta el esquema que representa como deben ser agrupados los datos, en los cuales se representa las variables seleccionadas Especie y Variedad para la temporada n. Esto quiere decir que los datos no serán de continuos, sino que agrupados desde un periodo t hasta un periodo t-n (donde –n representa la cantidad de años anteriores al periodo t).

![Figura 5-15: agrupación de los datos por temporada y variables seleccionadas.](image)

- **Selección del modelo:** de acuerdo a lo revisado en la sección 2.3.2.3 existen distintos modelos para el data Mining predictivo. Dada la cantidad reducida de datos (al comparar temporadas) y luego de revisar el resultado de distintos modelos, se ha optado por evaluar en detalle los modelos de series temporales, los cuales demostraron tener un mejor rendimiento al trabajar con pocos datos y en periodos del muy corto plazo como requiere este proyecto. Para demostrar lo anteriormente expuesto, fueron seleccionados dos productores de la variedad Cerezas Bing que son los más representativos según la figura 5-16.
En la figura 5-17 y 5-18, se muestra cómo se comportan gráficamente modelos de regresión versus uno de serie temporal, aplicados a los dos productores más representativos en las cerezas Bing (dado que el modelo será por productor), donde los modelos de regresión presentar muy mal desempeño ($r^2 = 0.02$ en un caso y $r^2=0.05$) mientras que la media móvil sigue un comportamiento muy similar al real.
Realizando pruebas de los modelos analizados en la sección 2.3.3., de series temporales, se aplican pruebas a los productores más representativos cuya antigüedad supera los 4 años.

- **Modelo Suavización Exponencial**: este modelo presentó buenos rendimientos con α entre 0.7 y 0.8. para el productor más representativo de la variedad Bing, tal como se muestra en la figura 5-19. Se aplicó mismo modelo a varios productores de la variedad Bing y el modelo de suavización exponencial se comportaba de forma similar con α entre 0.6 y 0.8.

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c}
\hline
\text{Valores} & \text{Real} & \text{Pronostico} \\
\hline
\text{Temp 2008-2009} & 86,60 & 86,60 & 86,60 & 86,60 & 86,60 & 86,60 & 86,60 & 86,60 & 86,60 & 86,60 & 86,60 \\
\text{Temp 2009-2010} & 83,20 & 86,60 & 86,60 & 86,60 & 86,60 & 86,60 & 86,60 & 86,60 & 86,60 & 86,60 & 86,60 \\
\text{Temp 2010-2011} & 81,90 & 86,26 & 85,92 & 85,58 & 85,24 & 84,90 & 84,56 & 84,22 & 83,88 & 83,54 & 83,54 \\
\text{Temp 2011-2012} & 82,80 & 85,82 & 85,12 & 84,48 & 83,90 & 83,40 & 82,96 & 82,60 & 82,30 & 82,06 & 82,06 \\
\text{Temp 2012-2013} & 86,48 & 85,52 & 84,65 & 83,97 & 83,46 & 83,10 & 82,87 & 82,74 & 82,70 & 82,73 & 82,73 \\
\text{Temp 2013-2014} & 85,54 & 85,62 & 85,02 & 84,73 & 84,67 & 84,79 & 85,03 & 85,36 & 85,72 & 86,10 & 86,10 \\
\hline
\end{array}
\]

Figura 5-19: Resultados modelos de suavización exponencial en Cerezas Bing

- **Media Móvil**: tal como en el caso anterior, el modelo fue probado en la variedad Bing para los productores más representativos. En la figura 5-20 se muestra el resultado aplicado en el productor más representativo, cuyo desempeño fue en general bueno, particularmente con $n = 2$.

Figura 5-20: Resultados modelos de suavización exponencial en Cerezas Bing
Si te toman en cuenta los resultados de ambos modelos, se puede concluir que ambos presentan un buen desempeño con bajo error (media móvil n=2 y suavización exponencial con α entre 0.7 o 0.8), sin embargo, para tomar la decisión sobre qué modelo es el más conveniente son considerados otros factores.

En la figura 5-21, se presenta un resumen de las variedades de cerezas más importantes aplicando los modelos a la totalidad de productores y resumidos los errores tanto de los modelos propuestos como los del modelo actual. Estos resultados fueron presentados al área técnica, quienes plantean el argumento que los datos entre más recientes presentan mayor importancia, por lo que un promedio móvil puede ser más representativo ya que va tomando la información actualizada de las últimas dos temporadas y además, ante las oscilaciones en los rendimientos (productos de factores ambientales, cuidados, etc.), un promedio móvil puede ser más práctico que un modelo que pondere más/menos a un periodo en particular.

Figura 5-20: Resultados modelos de media móvil en Cerezas Bing

5.4.1.1.4. **Validación del Modelo de Rendimiento Exportable**

Resumen de MAPE obtenidos en modelos de estimación de Oferta

<table>
<thead>
<tr>
<th>VARIEDAD</th>
<th>% Total Exportado</th>
<th>MEDIA MOVIL</th>
<th>SUAVIZACIÓN EXPONENCIAL</th>
<th>PROMEDIO ESPECIE (Según Temp. Anterior)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N=2</td>
<td>α = 0,7</td>
<td>α = 0,8</td>
</tr>
<tr>
<td>BING</td>
<td>20%</td>
<td>1,75%</td>
<td>1,71%</td>
<td>1,99%</td>
</tr>
<tr>
<td>SWEET HEART</td>
<td>15%</td>
<td>1,56%</td>
<td>2,24%</td>
<td>2,47%</td>
</tr>
<tr>
<td>LAPINS</td>
<td>15%</td>
<td>0,76%</td>
<td>0,64%</td>
<td>0,55%</td>
</tr>
<tr>
<td>VAN</td>
<td>14%</td>
<td>0,73%</td>
<td>0,78%</td>
<td>0,77%</td>
</tr>
<tr>
<td>ROYAL DAWN</td>
<td>14%</td>
<td>1,08%</td>
<td>0,89%</td>
<td>0,94%</td>
</tr>
</tbody>
</table>

Figura 5-21. Comparativa del error de estimación de cosecha con y sin proyecto
Para validar que el rendimiento exportable obtenido del promedio móvil de las últimas dos temporadas es más confiable que el promedio de la especie del año anterior, se debe analizar cuál es el impacto en la estimación de cajas de ambos métodos. En la figura 5-22 se puede apreciar el comportamiento histórico del porcentaje exportable y la cantidad de cajas exportadas en cada variedad de la especie cerezas.

Si comparamos los métodos con las cajas reales de la temporada 2013-2014, se aplicarían dos métodos:

- **Promedio Especie temporada anterior**: si el rendimiento es fijo para todas las variedades de acuerdo al rendimiento promedio del periodo anterior de la especie, para el caso sería 86.78%

- **Promedio móvil últimos dos temporadas**: de cada variedad de los últimos 2 años.

Figura 5-22: Rendimiento exportable de las tres últimas temporadas.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Suma de % Exportable</td>
<td>Suma de cajas</td>
<td>Suma de % Exportable</td>
</tr>
<tr>
<td>BING</td>
<td>85,74</td>
<td>56867</td>
<td>86,83</td>
</tr>
<tr>
<td>SWEET HEART</td>
<td>79,48</td>
<td>31887</td>
<td>81,81</td>
</tr>
<tr>
<td>LAPINS</td>
<td>88,29</td>
<td>30846</td>
<td>88,94</td>
</tr>
<tr>
<td>VAN</td>
<td>88,56</td>
<td>35600</td>
<td>88,62</td>
</tr>
<tr>
<td>ROYAL DAWN</td>
<td>87,18</td>
<td>42614</td>
<td>87,45</td>
</tr>
<tr>
<td>SANTINA</td>
<td>91,39</td>
<td>22166</td>
<td>90,79</td>
</tr>
<tr>
<td>BROOKS</td>
<td>82,02</td>
<td>14147</td>
<td>83,51</td>
</tr>
<tr>
<td>STELLA</td>
<td>86,92</td>
<td>6425</td>
<td>90,91</td>
</tr>
<tr>
<td>SUPERIOR</td>
<td>87,02</td>
<td>5885</td>
<td>84,09</td>
</tr>
<tr>
<td>LAMBERT</td>
<td>84,90</td>
<td>6969</td>
<td>80,42</td>
</tr>
<tr>
<td>SOMERSET</td>
<td>87,81</td>
<td>1784</td>
<td>88,42</td>
</tr>
<tr>
<td>CELESTE</td>
<td>70,54</td>
<td>1646</td>
<td>73,43</td>
</tr>
<tr>
<td>NEW STAR</td>
<td>87,20</td>
<td>1583</td>
<td>85,99</td>
</tr>
<tr>
<td>CRISTALINA</td>
<td>91,66</td>
<td>467</td>
<td>90,89</td>
</tr>
<tr>
<td>REGINA</td>
<td>84,45</td>
<td>103</td>
<td>79,44</td>
</tr>
<tr>
<td>KORDIA</td>
<td>85,97</td>
<td>192</td>
<td>83,02</td>
</tr>
<tr>
<td>Total general</td>
<td>86,04</td>
<td>259181</td>
<td>86,78</td>
</tr>
</tbody>
</table>

Figura 5-23: Comparación rendimiento exportable según promedio especie año anterior y promedio móvil de la variedad de los últimos dos años.
Algunas conclusiones respecto a la figura 5-23:

- Al aplicar el modelo comparando las estimaciones con las cajas reales de la temporada, notamos que existe un mayor error al aplicar un método fijo para la especie de la temporada anterior, versus un modelo para cada variedad que considere un rendimiento según un promedio móvil.

- Con un rendimiento fijo para la especie el MAPE sería de un 3.94%, mientras que con un rendimiento obtenido del promedio móvil se genera un 1.34%.

- La varianza respecto al promedio no es menor, en particular en aquellas variedades con mayor volumen de cajas. Por ejemplo, el rendimiento promedio de la variedad Bing es del 86.29% muy similar al promedio de la especie, por lo que ambos métodos tiene un error similar. Pero si analiza la variedad Sweet Heart, que tiene un rendimiento promedio del 80.65%, se puede apreciar que el error toma mayor peso cuando se usa un método fijo por la especie.

- Si se analiza las especies con mayor volumen de cajas (sobre 20.000 cajas) se puede visualizar en la figura 5-23 como las distintas variedades tiene un comportamiento similar temporada tras temporada, pero distinto entre variedades. Lo anterior se debe a que hay variedad más sensibles que otras a condiciones climáticas, de cosecha o de proceso, por lo que pueden tener un rendimiento mayor/menor.

<table>
<thead>
<tr>
<th>Temporadas</th>
<th>BING</th>
<th>SWEET HEART</th>
<th>LAPINS</th>
<th>VAN</th>
<th>ROYAL DAWN</th>
<th>SANTINA</th>
<th>PROMEDIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp 2011-2012</td>
<td>85,74</td>
<td>79,48</td>
<td>88,29</td>
<td>88,56</td>
<td>87,18</td>
<td>91,39</td>
<td>86,78</td>
</tr>
<tr>
<td>Temp 2012-2013</td>
<td>86,83</td>
<td>81,81</td>
<td>89,44</td>
<td>88,62</td>
<td>87,45</td>
<td>90,79</td>
<td>86,78</td>
</tr>
<tr>
<td>Temp 2013-2014</td>
<td>84,80</td>
<td>79,41</td>
<td>89,29</td>
<td>87,95</td>
<td>88,27</td>
<td>90,03</td>
<td>86,78</td>
</tr>
<tr>
<td>Total general</td>
<td>85,78</td>
<td>80,01</td>
<td>88,91</td>
<td>88,37</td>
<td>87,56</td>
<td>90,74</td>
<td>86,78</td>
</tr>
</tbody>
</table>
Para comprender el impacto de cada método, podemos usar como ejemplo el valor de venta FOB promedio de las cajas de cerezas. Las cajas de cerezas se venden en promedio en 30 dólares para la modalidad de Precio mínimo garantizado y en 24 USD promedio para precio en libre consignación. Por tanto, si tomamos el error estimado en ambos métodos, considerando que las cajas resultantes del error de estimación se venderían en libre consignación, se obtiene que habría un diferencial de 46 mil dólares en la estimación de cosecha y su impacto en las ventas.

Para demostrar cómo funcionará la estimación de cosecha se presenta el siguiente ejemplo, donde la estimación de cerezas van del productor 0528 se obtendría se la siguiente forma:

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Cajas</th>
<th>Dif. Precio USD (PMG - L.Consig.)</th>
<th>Total USD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promedio fijo especie</td>
<td>11644</td>
<td>6</td>
<td>69864</td>
</tr>
<tr>
<td>Promedio Movil Variedad</td>
<td>3958</td>
<td>6</td>
<td>23748</td>
</tr>
<tr>
<td>Diferencial</td>
<td></td>
<td></td>
<td>46116</td>
</tr>
</tbody>
</table>

Figura 5-25. Valorización error en estimación rendimiento exportable.

5.4.1.1.5. **Estimación de Cosecha en Cajas**

El sistema debe tener la capacidad de transformar la producción de kilogramos a cajas exportables, aplicando para ello:

- Técnicas de estadística para estimación de cosecha en kilos
- Técnicas de Business Intelligence usando series temporales para obtener el rendimiento exportable, y
- Conocimiento experto para definir las fechas de inicio de cosecha de cada productor y la distribución porcentual de kilos por semana.
- Usar la norma de calidad de la empresa, que define la unidad de medida estándar por especie. Esto debido a que las cajas de una especie pueden tener distintos embalajes (3.5 kg, 5 kg o 7 kg en cerezas por ejemplo), pero se define un embalaje estándar representativo.
5.4.1.1.5. Informes relevantes para la estimación de cosecha

El diseño del proceso de estimación de cosecha considera la creación de flujos de información tanto internos como externos para con el proveedor.

Considerando que el productor participará más del proceso de estimación de cosecha y el diseño busca mejorar la comunicación con proveedores, es relevante compartir con ellos la información de estimación con el objetivo de que también logre obtener los beneficios buscados con el desarrollo de la capacidad de anticipación y coordinación de actividades de valor.

El informe tipo a enviar a productores sería como el presentado en la figura 5-27 el cual reúne la información más relevante definida por los agrónomos, como son: la estimación de kilos, la distribución semanal de cosecha y la estimación de cajas por semana.
Por otra parte, internamente se requiere una estimación global de todos los productores para conocer el volumen de cajas que se recibirán por semanas y a partir de ella apoyar la toma de decisiones referentes a:

- Los planes de venta
- La programación de la producción
- Los requerimientos de materiales e insumos
- Los requerimientos de servicios: como fletes y navieras
- La previsión de flujos en finanzas (cuentas por pagar)
- Gestión de contratos y precios con productores (área financiera de compras)
- Entre otras decisiones.

Para ello se desea replicar el informe usado actualmente en planillas Excel, el cual incorporará mejoras tales como la actualización en línea de cambios de estimación (sistematización del proceso) o la de obtener mayor precisión en los datos al usar business Intelligence (sección 5.4.1.1.3.). El diseño tipo se muestra a continuación y permitirá obtener una visión general de la estimación de cosecha por especie, variedad y semana de producción:
Lógica de negocio para Estimación de Demanda

Para la estimación de demanda se requiere analizar el comportamiento de ventas histórico por especie y variedad, analizadas por mercados. A partir de esto se realizarán 2 actividades: la estimación de demanda según mercado (y si se requiere ajustada por el juicio experto) y la adecuación de tal estimación de ventas con el plan de cosecha, con lo cual se construirá el plan de ventas.

5.4.1.2.1. Estimación de la demanda, distribución por mercado.

El negocio frutícola opera un mercado global, dado que se exporta fruta a gran parte de los países del mundo. Revisando con el área comercial se definió que la estimación de demanda debe cumplir el rol de estimar los porcentajes de ventas por mercado, basado en el comportamiento histórico.
El concepto de mercado es tratado por la empresa según las principales zonas económicas mundiales: Europa, Latinoamérica, Asia, Estados Unidos y Resto del mundo. Esta clasificación permite a los Market Manager definir cuáles clientes tienen a su cargo, abarcando uno o más mercados. Resulta relevante entonces saber qué porcentaje de las ventas se destinarán a cada mercado basados en el comportamiento histórico de las ventas y el análisis del mercado futuro.

Considerando que las ventas dependen de cuánta fruta disponga la empresa en cada temporada; la cual puede variar de un año a otro dadas las condiciones climáticas, o la capacidad de captar nuevos productores, o el potencial para comprar nuevos campos (por parte de la filial agrícola), entre otros factores, y dada la característica de ser productos perecibles en que siempre debe existir la forma de distribuir toda la fruta comprada antes que perezca, resulta importante entonces saber cómo se distribuyen las ventas para cada mercado según la especie y variedad y semana, para tener comprometida la fruta con la oportunidad suficiente.

Tomando como marco de referencia el capítulo 2, específicamente las series de tiempo tratadas en la sección 2.3.3, es que se ha definido construir un modelo que estime el porcentaje de la fruta vendida que irá a cada mercado, basado en el proceso KDD que se expone a continuación:

- **Data**: La información será proporcionada por el sistema de producción de la empresa, denominado SGE. El sistema almacena la información por temporadas, así que debe ser proveída indicando en cada observación su respectivo indicador de la temporada, el detalle de cómo obtener los datos será analizado en las secciones 6.1.1.2 y 6.1.3.

- **Selección de datos**: tal como fue mencionado en la sección 2.2.2. es recomendable asesorarse de juicio experto para definir las variables indicadas. Las variables más relevantes para la estimación de cosecha, son:
 - Especie: existen más de 10 especies con las que Geofrut opera.
 - Variedad: las variedades superan las 100 entre todas las especies.
 - Mercado: Existen 5 mercados los cuales son asociados a 3 Market Manager tal como fue explicado en la sección 1.3.

- **Pre-procesamiento**: como el análisis se define por mercados, los valores faltantes serán eliminados dado que siempre existirá un mercado para una variedad vendida al menos en un periodo anterior y si fuese nuevo solo se aplicaría el ajuste manual que hace el market Manager explicado en la sección 5.4.1.2.2.

- **Transformación**: las observaciones deben venir agrupadas por temporada, de esta manera serán representativas, ya que como ha sido explicado en capítulos anteriores la fruta se cosecha en periodos breves y en meses específicos del
año. Por lo anterior es necesario comparar temporada por temporada la información. En la figura 5-29, se presenta el esquema que representa como deben ser agrupados los datos de ventas, en los cuales se reflejan las variables seleccionadas: Mercado, Especie y Variedad para la temporada n. Esto quiere decir que los datos no serán de continuos, sino que agrupados desde un periodo t hasta un periodo t-n (donde –n representa la cantidad de años anteriores al periodo t).

![Diagrama segmentos por temporada: por especie, variedad y mercado.](attachment:diagram.png)

Figura 5-29: Diagrama segmentos por temporada: por especie, variedad y mercado.

- **Selección del modelo:** de acuerdo a lo revisado en la sección 2.3.2.3 existen distintos modelos para el data Mining predictivo. El área comercial en particular exponen la necesidad de contar con datos muy frescos, idealmente dos temporadas previas. Lo anterior, debido a que los mercados presentan variaciones importantes en el mediano plazo (3 años), ya sea por cambios en las coyunturas económicas o el surgimiento de mercados emergentes, entre muchas otras variables. Dada esta cantidad reducida de datos y luego de revisar el resultado de distintos modelos, se ha optado por evaluar en detalle los modelos de series temporales, los cuales demostraron tener un mejor rendimiento al trabajar con pocos datos y en periodos del muy corto plazo como requiere este proyecto.

- **Modelo de promedio Móvil:**
Cada segmento tendrá el porcentaje de ventas histórico de cada mercado, por especie, variedad y temporada.

Así el promedio móvil tomará el porcentaje de cada mercado según segmento y obtendrá el promedio de las últimas 2 temporadas (T-1) y (T-2), donde (T-0) será la temporada actual.

La estimación se aplicará para las principales variedades de la especie cereza en la temporada 2013-2014, usando para ello los datos de las temporadas 2011-2012 y 2012-2013 para calcular el promedio móvil (ver figura 5-30).

<table>
<thead>
<tr>
<th>Etiqueta de fila</th>
<th>Suma de cajas 2011-2012</th>
<th>Suma de cajas 2012-2013</th>
<th>Suma de cajas 2013-2014</th>
<th>Total general</th>
<th>% del Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>BING</td>
<td>58385</td>
<td>66258</td>
<td>57152</td>
<td>181795</td>
<td>20%</td>
</tr>
<tr>
<td>SWEET HEART</td>
<td>32713</td>
<td>33820</td>
<td>65543</td>
<td>132076</td>
<td>15%</td>
</tr>
<tr>
<td>LAPINS</td>
<td>34684</td>
<td>42337</td>
<td>52954</td>
<td>129975</td>
<td>15%</td>
</tr>
<tr>
<td>VAN</td>
<td>42663</td>
<td>44386</td>
<td>40245</td>
<td>127294</td>
<td>14%</td>
</tr>
<tr>
<td>ROYAL DAWN</td>
<td>46791</td>
<td>43183</td>
<td>31218</td>
<td>121192</td>
<td>14%</td>
</tr>
</tbody>
</table>

Figura 5-30: Principales variedades embarcadas de Cerezas.

Como se observa en los resultados de la estimación de la figura 5-31, la distribución por mercados estimadas estuvo bien cerca de los valores reales y en algunos casos el error estuvo cercano al 1.8%.
Media Movil Principales Variedades Cerezas

Suma de cajas

|-----------|------------|-----------|-----------|-----------|----------------------|-----------|-------
| HRDA | MERCADO | 100,00% | 100,00% | 100,00% | 100,00% | 0,00% | 0,00%
| HRDA | Asia | 17,88% | 8,92% | 13,85% | 13,40% | 0,45% | 0,45%
| HRDA | Europa | 3,98% | 3,17% | 13,34% | 2,58% | 0,14% | 0,14%
| HRDA | LATAM | 0,28% | 0,00% | 0,00% | 0,14% | 0,00% | 0,00%
| HRDA | USA | 79,86% | 87,91% | 72,81% | 83,88% | 11,07% | 5,65%
| HRDA | Total | 100,00% | 100,00% | 100,00% | 100,00% | 0,00% | 0,00%
| HRDA | Total | 100,00% | 100,00% | 100,00% | 22,42% | 5,65% |

Suma de cajas

|-----------|------------|-----------|-----------|-----------|----------------------|-----------|-------
| HVAN | MERCADO | 100,00% | 100,00% | 100,00% | 100,00% | 0,00% | 0,00%
| HVAN | Asia | 31,45% | 76,95% | 48,23% | 54,20% | 0,45% | 0,45%
| HVAN | Europa | 0,15% | 0,30% | 0,83% | 0,45% | 0,00% | 0,00%
| HVAN | LATAM | 0,90% | 0,00% | 0,00% | 0,14% | 0,14% | 0,14%
| HVAN | USA | 67,49% | 22,75% | 50,94% | 41,12% | 5,82% |
| HVAN | Total | 100,00% | 100,00% | 100,00% | 100,00% | 0,00% | 0,00%
| HVAN | Total | 100,00% | 100,00% | 100,00% | 12,84% | 3,21% |

Suma de cajas

|-----------|------------|-----------|-----------|-----------|----------------------|-----------|-------
| HSHE | MERCADO | 100,00% | 100,00% | 100,00% | 100,00% | 0,00% | 0,00%
| HSHE | Asia | 48,49% | 95,72% | 74,52% | 72,00% | 2,41% | 1,29%
| HSHE | Europa | 10,24% | 0,00% | 2,43% | 0,12% | 0,00% | 0,00%
| HSHE | LATAM | 39,47% | 4,28% | 23,05% | 21,87% | 1,18% |
| HSHE | USA | 0,88% | 0,00% | 0,00% | 0,90% | 0,90% |
| HSHE | Total | 100,00% | 100,00% | 100,00% | 100,00% | 0,00% | 0,00%
| HSHE | Total | 100,00% | 100,00% | 100,00% | 7,18% | 1,79% |

Suma de cajas

|-----------|------------|-----------|-----------|-----------|----------------------|-----------|-------
| HLAP | MERCADO | 100,00% | 100,00% | 100,00% | 100,00% | 0,00% | 0,00%
| HLAP | Asia | 35,11% | 83,33% | 71,60% | 99,22% | 1,38% |
| HLAP | Europa | 0,88% | 0,54% | 5,71% | 0,71% | 0,00% | 0,00%
| HLAP | LATAM | 3,23% | 0,00% | 0,00% | 1,22% | 1,22% |
| HLAP | USA | 60,78% | 16,13% | 22,69% | 16,45% | 1,79% |
| HLAP | Total | 100,00% | 100,00% | 100,00% | 100,00% | 0,00% | 0,00%
| HLAP | Total | 100,00% | 100,00% | 100,00% | 34,77% | 8,05% |

Suma de cajas

|-----------|------------|-----------|-----------|-----------|----------------------|-----------|-------
| HBIN | MERCADO | 100,00% | 100,00% | 100,00% | 100,00% | 0,00% | 0,00%
HBIN	Asia	44,14%	87,71%	69,30%	95,32%	2,34%
HBIN	Europa	0,13%	0,49%	10,13%	0,21%	9,83%
HBIN	LATAM	0,25%	0,00%	0,00%	0,12%	0,12%
HBIN	USA	55,49%	11,80%	20,56%	31,65%	12,08%
HBIN	Total	100,00%	100,00%	100,00%	100,00%	0,00%
HBIN	Total	100,00%	100,00%	100,00%	26,65%	6,00%

Figura 5-31: Promedio Móvil aplicado en las principales variedades de cereza para estimar la Temporada 2013-2014

- **Modelo de Suavización Exponencial:**
 - Tal como en el modelo anterior, se toman la distribución por mercados para las principales variedades de la especie cereza.
• En la figura 5-32 se resume el resultado de la estimación a través del método de suavización exponencial en todos sus α. En tal figura podemos observar que los mejores resultados se obtienen con un $\alpha = 0.5$ y $\alpha = 0.6$, lo cual es casi equivalente al método de media móvil el cual se refleja al extremo derecho de la figura a modo de comparar los resultados obtenidos.

<table>
<thead>
<tr>
<th>Suavización</th>
<th>Media Movil</th>
<th>n=2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha = 0.1$</td>
<td>MAPE</td>
<td>MAPE</td>
</tr>
<tr>
<td>BING</td>
<td>15,39%</td>
<td>13,19%</td>
</tr>
<tr>
<td>SWEET HEARD</td>
<td>10,65%</td>
<td>8,29%</td>
</tr>
<tr>
<td>LAPIS</td>
<td>18,27%</td>
<td>15,87%</td>
</tr>
<tr>
<td>VAN</td>
<td>6,45%</td>
<td>4,16%</td>
</tr>
<tr>
<td>ROYAL DAWN</td>
<td>5,62%</td>
<td>5,56%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\alpha = 0.2$</th>
<th>$\alpha = 0.3$</th>
<th>$\alpha = 0.4$</th>
<th>$\alpha = 0.5$</th>
<th>$\alpha = 0.6$</th>
<th>$\alpha = 0.7$</th>
<th>$\alpha = 0.8$</th>
<th>$\alpha = 0.9$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAPE</td>
<td>MAPE</td>
<td>MAPE</td>
<td>MAPE</td>
<td>MAPE</td>
<td>MAPE</td>
<td>MAPE</td>
<td>MAPE</td>
</tr>
<tr>
<td>11,00%</td>
<td>8,80%</td>
<td>6,60%</td>
<td>4,90%</td>
<td>4,88%</td>
<td>4,87%</td>
<td>7,40%</td>
<td>6,60%</td>
</tr>
<tr>
<td>5,93%</td>
<td>3,57%</td>
<td>1,79%</td>
<td>2,35%</td>
<td>4,11%</td>
<td>4,10%</td>
<td>6,06%</td>
<td>8,33%</td>
</tr>
<tr>
<td>13,48%</td>
<td>11,09%</td>
<td>8,69%</td>
<td>6,30%</td>
<td>3,90%</td>
<td>2,55%</td>
<td>3,61%</td>
<td>8,69%</td>
</tr>
<tr>
<td>0,98%</td>
<td>0,89%</td>
<td>0,321%</td>
<td>5,44%</td>
<td>7,67%</td>
<td>9,90%</td>
<td>12,13%</td>
<td>3,21%</td>
</tr>
<tr>
<td>5,50%</td>
<td>5,44%</td>
<td>5,60%</td>
<td>5,99%</td>
<td>6,38%</td>
<td>6,77%</td>
<td>7,16%</td>
<td>5,60%</td>
</tr>
</tbody>
</table>

Figura 5-32: Suavización Exponencial aplicado a las principales variedades de cereza para estimar la Temporada 2013-2014

Dada la comparación de ambos métodos, los cuales llegan a casi idénticos resultados, será seleccionada la media móvil como método formal, dada su simplicidad y demostrado su aceptable desempeño.

Es necesario tener en cuenta que cada variedad tiene distinto comportamiento según mercado, inclusive hay variedades que son destinadas 100% a un mercado. Lo anterior implica que la estimación de demanda deberá ser por especie y por variedad, para definir con claridad en el plan de ventas qué especies/variedad y en qué %, irán destinadas a cada mercado.

Si bien hasta este punto solo obtendríamos la estimación por mercado, especie y variedad, el modelo podría hilar más fino y construir segmentos en donde la información sea analizada por agrupaciones más específicas. Para ello acuñaremos el concepto de sub-mercado para referirnos a un grupo de clientes pertenecientes a un mercado y además poseen características comunes tales como:

- Mismo puerto de llegada
- Similares condiciones comerciales: modalidades de precio, forma de cobranza, similar riesgo crediticio, entre otras.
- Entre otras características conocidas por el área comercial de la empresa, quien hace agrupaciones de acuerdo a su conocimiento del negocio.

Estos sub-mercados podrían ser obtenidos con algún modelo de clúster o segmentación que permita agrupar los clientes según su correlación. Sin embargo, ese estudio está fuera del alcance de este proyecto, pero se hace mención ya que podría
ser abordado en trabajos futuros. Además, la distribución por mercados podría ser efectuada inclusive por clientes, sin embargo el alcance inicial buscado por el área comercial apunta solo a nivel de mercado, ya que se considera un nivel suficiente para mejorar y apoyar la toma de decisiones.

5.4.1.2.2. Ajuste en la estimación de la demanda

Es necesario tener en cuenta que la empresa tiene más de 24 años en el mercado, por lo que sus ventas y clientes presentan un comportamiento regular año tras año, dado que existen relaciones comerciales desarrolladas por años en todos los mercados. Sin embargo, la demanda no está ajena a cambios económicos en uno o más mercados (producto de crisis que impacten el consumo), por lo que estos shocks de demanda pueden incidir en qué un mercado sea más o menos atractivo en el tiempo. Es por esto que el juicio experto y el conocimiento del mercado por parte de cada Market Manager debe ser un input importante de conocer y registrar en el sistema.

Para ello la estimación de demanda por mercado debe permitir cambiar los % obtenidos en la distribución por mercados antes de calcular el plan de ventas. Estos cambios debe ser por especie variedad y mercado, con el fin de que los cambios en los porcentajes siempre totalicen el 100% de la variedad en cuestión.

<table>
<thead>
<tr>
<th>esp_nombre</th>
<th>CEREZAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>cod_variedad</td>
<td>HVAN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Suma de cajas</th>
<th>Temp</th>
<th>MERCADO</th>
<th>2011-2012</th>
<th>2012-2013</th>
<th>2013-2014</th>
<th>Estimación</th>
<th>Ajuste Estimación</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASIA</td>
<td></td>
<td>31,45%</td>
<td>76,95%</td>
<td>48,23%</td>
<td>54,20%</td>
<td>50,00%</td>
<td></td>
</tr>
<tr>
<td>EUROPA</td>
<td></td>
<td>0,15%</td>
<td>0,30%</td>
<td>0,83%</td>
<td>0,22%</td>
<td>0,00%</td>
<td></td>
</tr>
<tr>
<td>LATAM</td>
<td></td>
<td>0,90%</td>
<td>0,00%</td>
<td>0,00%</td>
<td>0,45%</td>
<td>0,00%</td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td></td>
<td>67,49%</td>
<td>22,75%</td>
<td>50,94%</td>
<td>45,12%</td>
<td>50,00%</td>
<td></td>
</tr>
<tr>
<td>Total general</td>
<td></td>
<td>100,00%</td>
<td>100,00%</td>
<td>100,00%</td>
<td>100,00%</td>
<td>100,00%</td>
<td></td>
</tr>
</tbody>
</table>

Figura 5-33. Ejemplo del Ajuste de la estimación de la distribución por mercados

Con el cambio reflejado en la figura 5-33, donde la estimación fue cambiada repartiendo 50 y 50% entre Asia y USA, se obtendrá un nuevo plan de ventas para la variedad, tal como se refleja en la figura 5.34.
5.4.1.2.3. Adecuación de la demanda según la oferta disponible

Para construir el plan de ventas, se utilizan los % estimados para cada mercado y sobre ellos se aplican las cantidades que proporciona el plan de cosecha oferta analizada en el punto 5.4.1.1.3.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ASIA</td>
<td>31,45%</td>
<td>76,95%</td>
<td>48,23%</td>
<td>54,20%</td>
</tr>
<tr>
<td>EUROPA</td>
<td>0,15%</td>
<td>0,30%</td>
<td>0,83%</td>
<td>0,22%</td>
</tr>
<tr>
<td>LATAM</td>
<td>0,90%</td>
<td>0,00%</td>
<td>0,00%</td>
<td>0,45%</td>
</tr>
<tr>
<td>USA</td>
<td>67,49%</td>
<td>22,75%</td>
<td>50,94%</td>
<td>45,12%</td>
</tr>
<tr>
<td>Total general</td>
<td>100,00%</td>
<td>100,00%</td>
<td>100,00%</td>
<td>100,00%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Especie</th>
<th>Espacio</th>
<th>temporad</th>
<th>48</th>
<th>49</th>
<th>50</th>
<th>51</th>
<th>52</th>
<th>1 Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerezas</td>
<td>Van</td>
<td>1.437</td>
<td>5.749</td>
<td>8.623</td>
<td>8.623</td>
<td>4.312</td>
<td>0</td>
<td>28.743</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MERCADO</th>
<th>% Dist.</th>
<th>48</th>
<th>49</th>
<th>50</th>
<th>51</th>
<th>52</th>
<th>1 Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerezas</td>
<td>Van</td>
<td>54,20%</td>
<td>779</td>
<td>3.116</td>
<td>4.674</td>
<td>4.674</td>
<td>2.337</td>
</tr>
<tr>
<td>EUROPA</td>
<td>0,22%</td>
<td>3</td>
<td>13</td>
<td>19</td>
<td>19</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>LATAM</td>
<td>0,45%</td>
<td>6</td>
<td>26</td>
<td>39</td>
<td>39</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>USA</td>
<td>45,12%</td>
<td>648</td>
<td>2594</td>
<td>3891</td>
<td>3891</td>
<td>1945</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
<td>1.437</td>
<td>5.749</td>
<td>8.623</td>
<td>8.623</td>
<td>4.312</td>
<td>0</td>
</tr>
</tbody>
</table>

Figura 5-35: distribución de la oferta según estimación por mercados.

Entonces, en plan de ventas mezclará los % distribución por mercados obtenidos en el punto 5.4.1.2.1., adecuando la oferta en cajas obtenidas en la sección 5.4.1.1.3. Esto no dará como resultado un plan de ventas en cajas exportables, agrupada por mercado, especie, variedad y semana.
5.4.2. Procedimiento de Ejecución del sistema

Para lograr que la lógica de negocios detallada en secciones anteriores se execute, es necesario disponer de tecnologías habilitantes que lo permitan. Las lógicas de negocio presentadas deberían estar contenidas en el servidor interno de Geofrut, mismo que se usará para el desarrollo de la base de datos que contendrá la información para generar las estimaciones (Data Marts de productores y clientes).

Como el sistema será operado por personal del área técnica y comercial, agrónomos y market manager respectivamente, se deberá diseñar una interfaz simple y amigable que permita una carga de datos, procesarlos y hacer las correcciones necesarias de forma simple e intuitiva.

5.4.3. Información requerida

Para ejecutar las lógicas de negocio expuestas, es necesario estructurar la información que debe ser cargada al sistema, para que en cada captura de información ésta siga un protocolo de carga y se obtengan la información requerida en forma y fondo.

5.4.3.1. Datos de entrada

A continuación se detallan los datos de entrada requeridos para ejecutar las lógicas de negocio:

5.4.3.1.1. Datos de conteo

Esta lista de datos contiene:

- **Código de productor**: que permita identificarlo con la misma nomenclatura del sistema de producción de la empresa.
- **Código de Artículo**: que permite identificar la especie y variedad.
- **Temporada**: para identificar la temporada en que se trabaja.
- **Superficie**: indica la cantidad de hectáreas del campo.
- **Carga**: es la cantidad de frutos por hectárea obtenidos de la muestra.
- **Peso Fruto**: es el peso promedio por fruto obtenido de la muestra.
- **Producción**: es el resultado de los datos de conteo, tiene un algoritmo que se encarga de multiplicar los factores superficie, carga y peso fruto, obteniendo la estimación en kilos.
• **Distribución de la cosecha por semana**: este dato permite conocer el plan de cosecha que tiene cada productor, en cuanto a su distribución semanal.

5.4.3.1.2. Rendimiento exportable

- **Código de productor**: que permita identificarlo con la misma nomenclatura del sistema de producción de la empresa.
- **Código de especie**: que permita identificar la especie con la misma nomenclatura del sistema de producción de la empresa.
- **Código de variedad**: que permite identificar la variedad con la misma nomenclatura del sistema de producción de la empresa.
- **Rendimiento exportable**: identifica el rendimiento que tiene cada productor, basado en un promedio móvil de las dos temporadas inmediatamente anterior a la actual. El rendimiento exportable representa los kilos exportados versus los kilos cosechados.
- **Ajuste rendimiento exportable**: productores nuevos sin data histórica, podrán ser ingresados en este dato. La finalidad es que ante un dato no disponible, sea el agrónomo quien defina el dato basado en su expertiz.

5.4.3.1.3. Datos para estimación de demanda

Para la estimación de demanda se requiere el siguiente listado de datos:

- **Código de especie**: que permita identificar la especie con la misma nomenclatura del sistema de producción de la empresa.
- **Código de variedad**: que permite identificar la variedad con la misma nomenclatura del sistema de producción de la empresa.
- **Ajuste Distribución por mercado**: este corresponde a un ajuste manual de la distribución que entrega como salida la lógica de negocios. La idea es que con la expertiz del market manager defina la distribución que desea basado en los cambios en los mercados actuales.
- **Temporada**: para identificar la temporada en que se trabaja.
- **Producción por cajas**: el dato de salida de estimación de cosecha forma parte de los input para demanda, ya que ventas debe encargarse de vender toda la fruta procesada (dada su característica de ser perecible).
- **Distribución de la cosecha por semana**: este dato que proviene del plan de cosecha, permite definir en qué semanas debe ser despachada la fruta.

5.4.3.2. Datos de salida
El sistema provee la siguiente información de salida:

- Estimación de la producción en cajas por especie, variedad y por semana de cosecha.
- Estimación de las ventas por especie, variedad, mercados y semana de venta.

5.4.4. Comparación estimaciones versus datos reales.

Si bien el sistema hará estimaciones de oferta y demanda, algo importante en el diseño es considerar la comparación con los datos reales una vez que estos se vayan generando. Dado que la estimación se efectúa con al menos 4 semanas de anticipación (para permitir anticiparse) es necesario contar con datos reales que permitan ver si las estimaciones fueron de calidad o en qué grado se desviaron.

Con lo anterior se podrán tomar decisiones sobre en qué variable se está estimando erróneamente y ajustar los modelos actuales hasta llegar a uno más preciso en el tiempo.

5.4.4.1. Comparación estimación de cosecha versus real

Es importante contar con las mismas variables estimadas en su versión real, es decir, desde el punto de vista de la estimación de cosecha:

- Distribución por semana real
- Cajas exportadas reales

5.4.4.2. Comparación estimación de demanda versus real

Desde el punto de vista de la estimación de demanda es necesario considerar las siguientes variables reales a comparar:

- cajas reales por semana
- Distribución por mercado real.

5.5. Alineamiento del proyecto con la estrategia de la empresa
En la siguiente sección se presenta la forma en que el proyecto se alinea con la estrategia de la empresa. Esta tarea puede ser realizada una vez que se conoce el rediseño de los procesos. Los indicadores marcados en rojo en el Mapa Estratégico, corresponden a los procesos que serán impactados con el proyecto.

5.5.1. Perspectiva de innovación y Desarrollo.

Alinear Tecnología con la creación de Valor: el indicador del negocio apunta a guiar la estrategia hacia el mejor aprovechamiento de la tecnología para conseguir mejoras de eficiencia operacional y sostener una venta en costos. Para el proyecto en particular, este puede ser interpretado en el cómo a través del diseño de nuevos procesos basados en los Patrones de procesos se crean nuevas capacidades que impacten en la creación de valor, basado principalmente en el uso de técnicas de Data Mining.

Gestionar relaciones con productores de fruta. El indicador del negocio intenta guiar a la organización a mantener una constante y estrecha relación con los productores de fruta, debido a que son estos quienes proveen más del 80% de las ventas de la empresa, por lo que se torna relevante participar de su proceso productivo, asesorarlos continuamente para garantizar los estándares de calidad de la fruta y conocer detalladamente los niveles de producción y fechas de cosecha. Este punto será de gran impacto para el proyecto, ya que uno de los objetivos del mismo apunta a aplicar técnicas de analítica para estimar los niveles de cosecha exportable de cada productor y las fechas (para planificar la oferta).

Perspectiva Financiera

Crear Valor (EVA)
Aumentar ingresos desarrollando nuevos mercados
Mejorar rentabilidad
Reducir gastos operacionales

Perspectiva Cliente

Captar clientes en nuevos mercados
Captar clientes en mercados actuales
Fidelizar clientes

Proposición de valor: La mejor calidad/precio de fruta fresca
Imagen moderna, eficiente y profesional
Eficiencia operativa basada en calidad/precio

Perspectiva Procesos Internos

Optimizar la cadena de abastecimiento y distribución
Minimizar devoluciones de venta por calidad

Segmentar la demanda y adecuar la oferta
Optimizar programación de producción y embarques

Perspectiva de innovación y Aprendizaje

Alianzas con Productores
Gestionar relaciones con Productores de Fruta
Capacitar a productores con nuevas técnicas de cultivo.

Tecnología
Allinear la tecnología con la creación de valor

Personas
Allinear personas con la estrategia

Capacidades empresa
Desarrollar competencias y conocimientos
Promover liderazgo y trabajo en equipo
5.5.2. Perspectiva de Procesos Internos.

Segmentar la demanda y adecuar la oferta: este indicador es constantemente monitoreado por el área de planificación de la empresa, ya que semana a semana se actualiza el plan de ventas y se adecúa la oferta en función de las estimación que cada agrónomo entregue (existe un agrónomo encargado por cada especie de fruta). Para el proyecto tendrá gran relevancia, ya que otro objetivo del proyecto consiste en estimar la demanda de clientes para anticiparse a las ventas/aprovisionamiento de fruta con la mejor exactitud posible y contribuir en la eficiencia operacional buscada.

Optimizar la programación y embarques. Uno de los procesos críticos de éxito en las exportadoras en programar adecuadamente la producción (para estimar costos y requerimientos de personal) y distribuir eficientemente los embarques para reducir costos y cumplir en plazos y calidad los pedidos de clientes. La relación al proyecto se da en que los planes de venta y cosecha que serán trabajados con analítica para anticiparse con mayor exactitud, darán un potenciar no menor para que estos objetivos puedan desarrollarse de la mejor forma y planifiquen sus operaciones de manera más eficiente.

Optimizar la cadena de abastecimiento y distribución. Este indicador que proviene de los dos anteriores, lo que persigue es monitorear que tan bien se están coordinando los planes de cosecha, venta y programación de producción embarque a modo de responder de la mejor forma posible al cliente.

5.5.3. Perspectiva cliente.

Eficacia Operativa basada en calidad precio: optimizar las operaciones pretende dar al cliente una propuesta de valor basada en un producto de calidad a bajo costo, así como también el cumplimiento de los pedidos en calidad y tiempo. Por tanto, el beneficio del proyecto impactará al cliente en este punto debido a que a través de Data Mining se dará cumplimiento de una forma innovadora a la promesa de valor con el cliente.

5.5.4. Perspectiva Financiera.

Reducción de Gastos operacionales. Este indicador refleja en la empresa la necesidad de ser cada día más eficiente para mantener su competitividad y supervivencia en una industria global y competitiva, donde hay escasa diferenciación y el cliente es sensible a precios.
Anticiparse a eventos con data Mining impactará directamente en que se estén planificando mejor los recursos de la empresa y esta sea más eficiente, cuyo resultado financiero debe significar menores gastos de operación. De lo dicho se desprende que la anticipación siempre va acompañada del uso de prácticas analíticas modernas que dan capacidad de predicción, como modelos de pronósticos de venta y cosecha o modelos de sistemas productivos como los que se pretenden aplicar en este proyecto.

La justificación económica de la anticipación viene de la Teoría de Coordinación [3] y tiene que ver con el mejor uso de los recursos de la empresa, eliminando holguras tales como bajo uso de capacidad instalada, servicio insatisfactorio a los clientes, compras ineficientes de productos o insumos, presión excesiva sobre los recursos humanos, baja productividad debido a problemas de calidad y de trabajo, y muchos otros.
Capítulo 6: Requerimientos de Sistema para la Aplicación de Apoyo

En el presente capítulo se presenta un detalle del diseño de la aplicación que sirve de apoyo al rediseño de procesos propuesto. Aquí se describen las características que deberán poseer el sistema así como la integración con los sistemas actuales de la empresa, definiendo para ello la arquitectura de integración de sistemas, casos de usos y especificación de requerimientos de sistemas y además un análisis de los riesgos y planificación para gestionar el proceso de cambio.

Para ello se ha utilizado como metodología de apoyo el Proceso Racional Unificado (RUP) para el diseño del software, adaptando la metodología al contexto y necesidades de la organización, debido a que es una metodología estructurada y completa respecto a los requerimientos de software que se especificarán en la licitación requerida para el desarrollo del software así como en su posterior implementación en la empresa.
6.1. Fase de Inicio

En esta fase se establece el alcance del proyecto, definir los requerimientos del sistema, proponer una visión general de la arquitectura de software, generar el plan de las fases y de iteraciones posteriores, y definir los actores y casos de uso general del proyecto. Además, se efectúa una identificación general de los riesgos del proyecto y un plan general del proyecto.

A nivel de prototipo, se hará una especificación de las interfaces requeridas para cada módulo del sistema, lo que permite completar la especificación de requerimientos del sistema que irá en la licitación del proyecto.

6.1.1. Alcance del proyecto

El proyecto pretende lograr la construcción de un sistema en ambiente web, que proporcione información de las estimaciones de oferta y demanda de fruta para la empresa, y que además permita llevar un seguimiento de los flujos reales de la empresa para comparar con las estimaciones. Con lo anterior se pretende mejorar la planificación y coordinación de actividades claves del negocio respecto al flujo de fruta.

Es por eso que a continuación de define un detalle del alcance y también se detallan las integraciones requeridas con el sistema de producción de la empresa.

6.1.1.1. Detalle del alcance

De acuerdo con el detalle del diseño detallado en las secciones sobre el desarrollo de procesos y detalle del desarrollo (5.3 y 5.4 respectivamente) se desprende el detalle del alcance del software a desarrollar:

- Debe existir un módulo de parámetros y configuración, que permita de forma simple hacer ajustes en los modelos y sus parámetros, así como ajustes generales y permisos del sistema.
- Se debe desarrollar un módulo que contenga información de cosecha y su gestión.
- Se debe desarrollar un módulo que contenga toda la información de demanda y su gestión. Debe incluir también el plan de ventas, el cual considere el ajuste de la estimación de cosecha con la estimación de ventas por mercado.
• Se debe disponer de un módulo de informes, que permita ver estadísticas que refleje el comportamiento real de la fruta versus las estimaciones de cosecha y demanda. Este debe reflejar información dependiendo del tipo de usuario que lo revise.

• Debe existir una vista de reportes para el productor, que considere solo su propia estimación de cosecha.

6.1.1.2. Integración con sistema de producción

El alcance del proyecto debe considerar la integración con el sistema general de exportaciones (SGE), el cual controla todo el ciclo de producción y venta de frutas de la exportadora y plantas de procesos. Esta integración comprende el traspaso de información en línea sobre el inventario de cajas embaladas y el traspaso de las confirmaciones de ventas por mercado, lo que permitirá comparar el flujo real con las estimaciones de cosecha y ventas de fruta por mercado.

En la figura 6-1 se muestra el flujo de procesos cubiertos por los sistemas transaccionales y su integración, además de la interfaz con el nuevo sistema que estará en una capa analítica. Cabe destacar que en una primera etapa, dentro de una cartera de proyectos de la empresa, los esfuerzos estuvieron dedicados en integrar el sistema de producción y sistema ERP para unificar la información transaccional y mejorar el control productivo y financiero. Ya con una buena capa transaccional, la empresa inicia una nueva fase de proyectos que apunta al uso de información desde una capa analítica, que permita a las distintas áreas de la empresa anticiparse y trabajar de forma coordinada ante el flujo dinámico y altamente competitivo de la fruta.

Para comprender el flujo de procesos y sus puntos de conexión, es necesario entender cómo funcionan los procesos en el sistema SGE. El primer proceso es la recepción de la fruta, la cual es almacenada a la espera de ser procesada. Posteriormente viene el proceso y selección de la fruta, instancia en que se genera la compra de la fruta una vez que se ha seleccionada aquellas frutas con las características para ser exportada. Una vez procesada la fruta es almacenada en un proceso de frío y queda disponible en el inventario de fruta embalada. Posteriormente, la fruta es programada para su despacho una vez que el área de embarque recibe las instrucciones de venta. Una vez que la fruta se encuentra en el puerto de zarpe (aéreo, marítimo o terrestre) se genera una confirmación al cliente con el detalle de la venta.
De acuerdo al proceso de producción definido anteriormente, es que se generarán dos puntos de integración. Uno será informar las cajas reales procesadas una vez que la fruta pasa al inventario de fruta embalada en unidad caja. El otro punto de integración será el traspaso de las ventas reales por mercado una vez que se ha confirmado la venta al cliente.

6.1.2. Casos de uso

Una pieza fundamental en el desarrollo de las aplicaciones de apoyo bajo la metodología RUP, es el diagrama de casos de uso el cual se detalla en esta sección.

A partir del diagrama de pistas propuesto para estimación de cosecha y estimación de demanda, se generan los casos de uso de la figura 6-2, los que ayudarán a comprender la forma en que el sistema deberá comportarse en cada
proceso, ya que nos brindarán los requerimientos del sistema desde el punto de vista del usuario.

Figura 6-2: Diagrama de Casos de Uso.

En la siguiente sección se detallan los distintos casos de uso para comprender los escenarios que propone cada caso de uso.

6.1.2.1. Casos de Uso Actualizar datos de Conteo

Este caso de uso comprende el ingreso de datos de cada productor, por parte del agrónomo, el cual provee los datos de conteo de frutos por especie que alimentarán la estimación de cosecha.
Caso de Uso Actualizar datos de conteo

<table>
<thead>
<tr>
<th>Actor que inicia el caso de uso</th>
<th>Agrónomo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condiciones Previas</td>
<td>El agrónomo, en colaboración con el productor, obtiene de cada campo una muestra a través del método estadístico de conteo, el cual permite predecir la producción en Kg.</td>
</tr>
<tr>
<td>Pasos en el escenario</td>
<td>El agrónomo ingresa datos, el sistema valida datos correctos y luego actualiza datos de conteo.</td>
</tr>
<tr>
<td>Condiciones posteriores</td>
<td>Al actualizar correctamente los datos, se alimenta un Data Marts de Estimación de cosecha el cual proveerá los datos para la estimación de cosecha general.</td>
</tr>
</tbody>
</table>

6.1.2.2. Casos de Uso Ejecutar Modelo de Cosecha

Este caso de uso comprende la ejecución del modelo una vez que los datos de conteo de todos los productores se encuentran ya cargados en el sistema.

<table>
<thead>
<tr>
<th>Caso de uso</th>
<th>Ejecutar modelo de cosecha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actor que inicia el caso de uso</td>
<td>Agrónomo</td>
</tr>
<tr>
<td>Condiciones Previas</td>
<td>Se encuentra completa la información de todos los productores en el caso de uso anterior, y se encuentra cargada la data histórica de producción de dos temporadas.</td>
</tr>
<tr>
<td>Pasos en el escenario</td>
<td>El agrónomo ejecuta el modelo, el modelo incluye una integración con Analysis Services quien ejecuta la lógica predictiva. De acuerdo al diagrama de pistas, luego de la ejecución del modelo se evalúan los datos de la estimación donde se define si los datos son correctos (donde actualiza) o si requieren ajustes (por lo que vuelve a ejecutar el modelo).</td>
</tr>
<tr>
<td>Condiciones posteriores</td>
<td>Al actualizar correctamente los datos, se alimenta un Data Marts de Estimación de cosecha general, el cual alimentará a distintos procesos/usuarios de acuerdo a los flujos definidos en el diagrama de procesos de la Cadena de Valor.</td>
</tr>
</tbody>
</table>
6.1.2.3. Casos de Uso Revisar Estimación de Oferta

Este caso de uso comprende la revisión de la información obtenida de los modelos predictivos. Como la información es de utilidad para toda la empresa, así como para el productor que colabora en reunir los datos para la estimación, este caso de uso debe ser utilizado por un usuario principal y otro secundario con privilegios restringidos.

<table>
<thead>
<tr>
<th>Caso de uso</th>
<th>Revisar estimación de oferta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actor que inicia el caso de uso</td>
<td>Agrónomo</td>
</tr>
<tr>
<td>Actor Secundario del caso de uso</td>
<td>Visitante: como el sistema será en ambiente web y proveerá información a distintas áreas internas de la empresa como productores externos a la organización, este caso de uso podrá tener un actor secundario que podrá obtener los resultados de la estimación de acuerdo a los roles y privilegios que posea para visualizar información.</td>
</tr>
<tr>
<td>Condiciones Previas</td>
<td>Se encuentra completa la información de la estimación</td>
</tr>
<tr>
<td>Pasos en el escenario</td>
<td>Revisar reportes de estimación</td>
</tr>
<tr>
<td>Condiciones posteriores</td>
<td>Los reportes de estimación podrán ser exportadas a distintos formatos como Excel, pdf o impresión. Además de ser enviada a estimación de demanda.</td>
</tr>
</tbody>
</table>

6.1.2.4. Casos de Uso Preparar Datos de Demanda

Este caso de uso comprende la preparación de la información que incluirá la estimación de ventas por mercados. Para ello el Market Manager debe seleccionar la especie y variedad.

<table>
<thead>
<tr>
<th>Caso de uso</th>
<th>Preparar datos de demanda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actor que inicia el caso de uso</td>
<td>Market Manager</td>
</tr>
<tr>
<td>Condiciones Previas</td>
<td>Un Data Marts está preparado con datos históricos de las ventas por mercado, creando segmentos de 2 temporadas previas para calcular la estimación.</td>
</tr>
<tr>
<td>Pasos en el escenario</td>
<td>El Market Manager define especie y su variedad del cual desea obtener la estimación.</td>
</tr>
<tr>
<td>Condiciones posteriores</td>
<td>La información se encuentra completa y correcta para iniciar la estimación.</td>
</tr>
</tbody>
</table>
6.1.2.5. Casos de Uso Ejecutar Modelo de Demanda

Este caso de uso comprende la ejecución del modelo de estimación de demanda una vez que los datos del mercado y especie se encuentran ya cargados en el sistema y validados.

<table>
<thead>
<tr>
<th>Caso de uso</th>
<th>Ejecutar modelo de demanda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actor que inicia el caso de uso</td>
<td>Market Manager</td>
</tr>
<tr>
<td>Condiciones Previas</td>
<td>Los datos de la especie y variedad se encuentran preparados y validados.</td>
</tr>
<tr>
<td>Pasos en el escenario</td>
<td>El Market Manager ejecuta el modelo, el cual incluye una integración con Analysis Services quien ejecuta la lógica predictiva. De acuerdo al diagrama de pistas, luego de la ejecución del modelo se evalúan los datos de la estimación donde se revisa si los datos son correctos (donde actualiza) o si requiere ajuste manual de acuerdo al juicio experto del market manager.</td>
</tr>
<tr>
<td>Condiciones posteriores</td>
<td>Al actualizar correctamente los datos, se alimenta un Data Marts de Estimación de la distribución por mercados de la especie y variedades, el cual será input del siguiente caso de uso para adecuar la oferta con la distribución por mercados.</td>
</tr>
</tbody>
</table>

6.1.2.6. Adecuar oferta y demanda

Este caso de uso comprende un ajuste entre la estimación de los porcentajes de distribución de fruta hacia los mercados que se obtiene del caso de uso anterior, con la adecuación del flujo de fruta que proporcionará el plan de cosecha. Para ello el Market Manager debe seleccionar Adecuar Oferta y Demanda y el sistema lo que hará será tomar la oferta distribuida por especie, variedad y semanas y asignarla según la distribución hacia los distintos mercados obtenidos de la estimación de demanda. Para ello, como requisito fundamental es que el plan de cosecha de la especie/variedad debe estar en un estado 100% completo.

<table>
<thead>
<tr>
<th>Caso de uso</th>
<th>Adecuar oferta y demanda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actor que inicia el caso de uso</td>
<td>Market Manager</td>
</tr>
<tr>
<td>Condiciones Previas</td>
<td>Se encuentra completa la información de oferta de una especie en particular (no se requiere que estén completas las estimaciones de todas las</td>
</tr>
</tbody>
</table>
variedades y especies dado que ellas pueden presentar distinto periodo de cosecha durante el año).

Pasos en el escenario

El Market Manager presiona adecuar y se genera una lógica de negocio la cual asocia la fruta obtenida de la estimación de cosecha a los distintos mercados según el porcentaje estimado a repartir en cada uno de ellos.

Condiciones posteriores

La información se encuentra completa y correcta para actualizar el sistema y los distintos procesos que usarán la información.

6.1.2.7. Casos de Uso Revisar Estimación de Demanda

Este caso de uso comprende la revisión de los resultados de estimación de demanda, la cual debe proveer informes personalizables y flexibles que serán utilizados tanto por el área comercial así como otras áreas interesadas de la empresa.

<table>
<thead>
<tr>
<th>Caso de uso</th>
<th>Revisar estimación de demanda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actor que inicia el caso de uso</td>
<td>Market Manager</td>
</tr>
<tr>
<td>Actor Secundario del caso de uso</td>
<td>Visitante: como el sistema será en ambiente web y proveerá información a distintas áreas internas de la empresa, este caso de uso podrá tener un actor secundario que podrá revisar los resultados de la estimación de acuerdo a los roles y privilegios que posea para ingresar.</td>
</tr>
<tr>
<td>Condiciones Previas</td>
<td>Se encuentra completa la información de la estimación de cosecha y la data histórica del comportamiento de ventas de tres temporadas.</td>
</tr>
<tr>
<td>Pasos en el escenario</td>
<td>Revisar reportes de estimación, seleccionar tipos de reportes, aplicar filtros a elección para ordenar la información por especie (s), variedad (es), mercado (s), etc.</td>
</tr>
<tr>
<td>Condiciones posteriores</td>
<td>Los reportes de estimación podrán ser exportadas a distintos formatos como Excel, pdf o impresión.</td>
</tr>
</tbody>
</table>
6.1.3. Especificación de requerimientos de sistema

En esta sección se especificarán los distintos requerimientos de sistema para el alcance del proyecto definido en la sección 6.1.1., de este capítulo. Estos serán de utilidad para definir con claridad los requerimientos a incluir en el proceso de licitación para elegir a la empresa que desarrolle el software, así como para el equipo de desarrollo interno de Geofrut quien deberá proveer de información según la lógica que aquí se detalle.

6.1.3.1. Módulo Administración del sistema

Este módulo servirá para definir los distintos parámetros y funciones para configurar el sistema, así como la parametrización para la integración con otros sistemas. Las opciones disponibles que debe disponer el módulo de administración del sistema se presenta en la figura 6-3.

Por una parte debe estar una opción para configurar los parámetros de sincronización de maestros desde SGE y otra opción para la sincronización de transacciones. También debe haber una opción para la configuración de la conexión de sistemas. A su vez, debe haber una opción donde se puedan crear los usuarios del sistema y sus roles. Finalmente debe haber una opción para configurar los roles, los cuales tendrán como finalidad definir las actividades que pueda hacer el usuario en el sistema.

Figura 6-3: Opciones del módulo administración del sistema.
6.1.3.1.1. Parámetros Sincronización Maestros

Quién provee de la información para los datamarts e información real de cosecha y ventas es el sistema de producción de la empresa, SGE. Es por ello que se deben establecer criterios de sincronización de maestros desde un sistema a otro para unificar información de acuerdo a los requerimientos del proyecto y la información que se desea ver.

En la figura 6-4 se presenta un flujo de sincronizaciones entre el sistema SGE y el sistema de Estimaciones a desarrollar. Para ello se propone crear una tabla de sincronización, que permita definir una estructura fija de traspaso de información, la cual será validada en ambos sistemas para chequear que no existan errores de traspaso.

Es necesario precisar que el modelo de datos de SGE usa diferentes tablas para las especies y variedades de fruta, mientras que la codificación que se definió para el sistema de Estimaciones tiene su propia estructura definiendo un maestro general de artículos, no habiendo una directa relación entre ambos (ver figura 6-5).

![Figura 6-4. Sincronización de Maestros SGE - Estimaciones](image-url)
El resto de los maestros como Clientes, Proveedores, Plantas de proceso, mercados y temporadas son homologables a lo que tienes SGE y el sistema GEO Estimaciones.

Debido a que durante la operación Normal de Geofrut se pueden crear nuevos códigos de Productores, Clientes, Mercados, artículos (si se contratan nuevas especies + variedades), es necesario ejecutar procesos de validación en la sincronización de transacciones que deben informar vía log los siguientes eventos para revisar, por tanto, en la sincronización de maestros:

- Artículos creados erróneamente en GEO Estimaciones
- Artículos existentes en SGE y no creados en GEO Estimaciones
- Plantas creados erróneamente en GEO Estimaciones
- Plantas existentes en SGE y no creados en GEO Estimaciones
- Productores creados erróneamente en GEO Estimaciones
- Productores existentes en SGE y no creados en GEO Estimaciones
- Códigos de Clientes creados erróneamente en GEO Estimaciones
- Códigos de Clientes existentes en SGE y no creados en GEO Estimaciones
- Temporada no existe
- Mercado creado erróneamente en GEO Estimaciones
- Mercado existente en SGE y no creado en GEO Estimaciones.

En la figura 6-6 se presentan las tablas y campos obligatorios para realizar la sincronización de maestros entre el sistema SGE y Geo Estimaciones.
Figura 6-6. Tablas requeridas para la sincronización de maestros.

En la figura 6-7 se muestra la forma en que debe ser diseñada la interfaz de sincronización de maestros, la cual debe mostrar los distintos maestros y permitirá la programación de la periodicidad de sincronización así como permitir actualizar manualmente un maestro cuando se requiera.

Figura 6-7: Interfaz sincronización de maestros.
6.1.3.1.2. Sincronización de transacciones

Otra sincronización importante es la de transacciones desde SGE hacia el sistema de estimaciones. Por una parte estará el traspaso de datos para alimentar los DataMarts de cosecha y ventas, y por otra parte las transacciones reales de proceso y venta de fruta definidos en la figura 6-1.

![Tabla Sincronización](attachment:Tabla%20Sincronización.png)

<table>
<thead>
<tr>
<th>Nombre de campo</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>INTEGER</td>
</tr>
<tr>
<td>TIP_MOV</td>
<td>INTEGER</td>
</tr>
<tr>
<td>COD_TEMP</td>
<td>CHAR(5)</td>
</tr>
<tr>
<td>COD_PLANTA</td>
<td>CHAR(4)</td>
</tr>
<tr>
<td>COD_PROD</td>
<td>CHAR(4)</td>
</tr>
<tr>
<td>COD_ESP</td>
<td>CHAR(2)</td>
</tr>
<tr>
<td>COD_VAR</td>
<td>CHAR(4)</td>
</tr>
<tr>
<td>TRANSFER_DATE</td>
<td>DATETIME</td>
</tr>
<tr>
<td>STATUS</td>
<td>INTEGER</td>
</tr>
<tr>
<td>LOG</td>
<td>CHAR(50)</td>
</tr>
</tbody>
</table>

Figura 6-8. Campos mínimos requeridos para la sincronización.

La tabla de sincronización de transacciones será única para simplificar el control y revisión, mientras que los movimientos serán clasificados según el tipo de movimiento y destinados a las tablas que correspondan. En la figura 6-8 se puede apreciar los distintos campos requeridos por la tabla, los que son descritos a continuación:

- **ID**: este campo debe venir desde SGE, el cual será el identificador único para las transacciones. El sistema de producción genera distintas bases de datos por cada temporada, donde los identificadores de movimientos son únicos según la temporada, planta o tipo de movimiento, iniciando cada uno de ellos desde cero. Para no duplicar información al mezclar plantas o temporadas, se considera necesario crear un ID que refleje los distintos movimientos desde sus distintos orígenes y no perder la trazabilidad al crear un ID correlativo.

En la figura 6-9, se detalla la estructura que el equipo interno de Geofrut debe crear en el sistema de producción para generar el ID de transacciones de integración general que se usará en el proyecto, ya sea traspasos hacia los DataMarts (de cosecha y ventas) o para el traspaso de información real según esquema presentado en la sección 6.1.1.2., figura 6-1.
Tip_Mov: se distinguirán 4 tipos de movimientos posibles en la tabla de integraciones, de acuerdo a la figura 6-10, los cuales servirán para clasificar los distintos movimientos de integración que pasarán al sistema de Estimaciones, dependiendo el tipo de movimiento es a la tabla que irá direccionada la transacción.

TRANSFER_DATE: Es la fecha de traspaso de un ID por la tabla de integración.
• **STATUS**: este campo permitirá clasificar la información de la tabla de integración de acuerdo al flujo de información, existiendo 4 estados según figura 6-11.

![Tabla Diseño funcional requerido](image)

Figura 6-11. Diseño campo Status

• **Log**: Este campo deberá reportar el resultado de las distintas validaciones que efectúe la tabla de sincronización de integraciones.

El diseño general para revisar la sincronización de transacciones desde la web es el propuesto en la figura 6-12, con los campos básicos. Los campos finales a usar serán explicados en la medida que se analiza cada proceso en secciones posteriores.

![Figura 6-12. Diseño sincronización de transacciones](image)
6.1.3.1.3. Parámetros de conexión

SGE deberá estar conectado a una base de datos intermedia para el traspaso de maestros y transacciones desde su origen del motor de bases de datos Sybase hasta SQL Server que será la base de datos utilizada por el sistema GEO Estimaciones. Para ello el sistema de estimaciones tendrá un flujo constante de sincronización con la base de datos intermedia consiguiendo actualizar sus propios maestros de acuerdo con la figura 6-7.

Los datos de conexión están expresados en la figura 6-13 donde se requiere representar la clave SA de forma encriptada.

![Figura 6-13. Parámetros de conexión.](image)

6.1.3.1.4. Usuarios

El módulo de Administración debe tener una opción de Usuarios, la cual debe disponer de un listado general de todos los usuarios creados en el sistema de Estimaciones. Donde los campos básicos deben ser de acuerdo a la figura 6-14. Esta sección del módulo debe disponer de dos campos que lleven al formulario de creación/actualización de usuarios, mediante bonotes de “Usuario” y “Editar” para crear uno nuevo o actualizar uno existente, respectivamente.

![Figura 6-14: Campos requeridos para opciones de usuario.](image)
El formulario de creación/actualización de usuarios debe estar descompuesto en dos secciones de acuerdo con la figura 6-15:

- **General**: Esta sección permite crear todos los campos básicos del usuario; id de usuario; nombre de usuario; contraseña y tipo de cuenta (interno o externo).
- **Roles del usuario**: en esta sección se asignan los roles que cada usuario del sistema tendrá disponible para navegar por el sistema. Un usuario podrá tener uno o más roles.

![Figura 6-15: creación-actualización de usuarios.](image)

6.1.3.1.5. Roles

La opción roles del módulo de administración, debe permitir configurar los distintos accesos que tendrá de forma estándar los usuarios a través del sistema. Estos accesos serán configurados de acuerdo a las distintas actividades a generar en el sistema. Es necesario precisar que un usuario del sistema puede disponer de uno o más roles, lo importante es definir que cada rol se refiera a una actividad en particular por lo que un usuario puede hacer una o más actividades de acuerdo a su cargo en la empresa.

En la figura 6-16 se aprecia el formulario de creación de roles. Deben haber 2 botones, uno para crear roles (nuevo) y otro para eliminar roles. Dentro de cada rol debe ir un nombre y una descripción, más un detalle con el contenido de cada rol. El contenido del rol se refiere a funciones que cada usuario podrá hacer, tales como cargar datos, generar reportes, entre otras.
6.1.3.2. Módulo Gestión de Cosecha

Este módulo debe contener distintas opciones para permitir la gestión de la estimación de cosecha. Por una parte debe estar una opción para cargar datos de conteo; también debe haber una sección que permita ejecutar modelos; otra que permita ajustar modelos, y finalmente debe haber una sección que permita ver reportes de estimación de cosecha.

![Figura 6-16. Formulario de creación de roles.](image)

Figura 6-16. Formulario de creación de roles.

6.1.3.2.1. Conteo de fruta

Esta actividad del módulo de Cosecha corresponde al caso de uso descrito en el punto 6.1.2.1., el cual comprende la actualización de los datos de conteo de fruta.

El diseño requerido para esta actividad requiere de dos secciones de acuerdo a lo que se puede apreciar en la figura 6-18:

- **General**: Esta sección permite visualizar el estado de carga de los datos de conteo, resumido por especie e indicando un porcentaje de carga (el cual
se obtiene de acuerdo al número de productores con datos completados versus el total de productores de la especie).

- **Detalle de Conteo**: esta sección permite visualizar los productores pendientes de carga de datos de conteo de acuerdo a la especie seleccionada en la sección General. Al posicionarse sobre un productor y presionar el botón “Actualizar conteo” debe ser desplegado el formulario que permite actualizar los datos de conteo para ese productor en particular.

![Figura 6-18. Vista general datos de conteo](image)

La carga de información es por parte del agrónomo, quien recolectada en los distintos campos de productores la información requerida para estimar la cosecha. Para esto se generan plantillas Excel con campos preestablecidos y con validación de datos para evitar errores.

En la figura 6-19 se presenta el formulario de carga de archivos, el cual permite seleccionar el archivo, cargar los datos, visualizar los errores, visualizar los datos cargados y configurar el mapeo de datos.
Este formulario debe permitir hacer las siguientes funcionalidades:

- **Mapeo de datos**: Esta sección permite definir los campos que deberá poseer cada archivo de carga de datos de conteo. En la fuente se agregan los campos del archivo de carga, mientras que el almacenamiento son los campos de la tabla de destino (ver figura 6-20) que viene por defecto (Tabla Conteo Fruta). Notar que el mapeo de datos debe configurarse una vez por cada archivo y debe ser configurado antes que el usuario cargue la información. Sin embargo, debe ser dinámico y modificable por el usuario para hacer más ágil el cambio en las estructuras de datos de los archivos de carga.

 Notar que cada archivo no debe poseer todos los campos, en particular los campos semanas (n = 1, 2, 3,… 53), debido a que el archivo de carga sería muy extenso y las especies tienen un rango de semanas predefinido de cosecha por tanto se usará tal rango para configurar cada mapeo de datos.
Carga de datos de conteo: La secuencia en este formulario asume que el usuario subirá la plantilla y el sistema validará que todos los datos requeridos estén completos, luego validará que el formato sea el correcto, donde solo si todo está correcto guardará los datos y enviará un mensaje de que éstos fueron actualizados correctamente, caso contrario enviará un mensaje que no se ha cargado la información (ver figura 6-21), la cual almacenará los datos en la tabla de conteo de fruta.

Figura 6-20. Mapeo de datos.

Figura 6-21. Log de carga correcta.
- **Detalle de errores**: cuando haya errores se puede ver el detalle de errores que tendrá los siguientes logs:
 - El formato de datos es incorrecto
 - Los datos requeridos no están ingresados o están incompletos

Figura 6-23. Opciones de Log de carga incorrecta.
6.1.3.2.2. Estimación de Cosecha

Esta actividad del módulo de Cosecha corresponde al caso de uso descrito en el punto 6.1.2.2., el cual comprende Ejecución de modelos de Cosecha.

El diseño requerido para esta actividad requiere de dos secciones de acuerdo a lo que se puede apreciar en la figura 6-24:

- **General Estimaciones**: Esta sección permite visualizar el estado de ejecución de modelos predictivos, resumido por especie e indicando un porcentaje de estimaciones (el cual se obtiene de acuerdo al número de variedades con estimación completada versus el total de variedades de la especie).

- **Detalle de Estimaciones**: esta sección permite visualizar las variedades de cada especie, en donde se puede visualizar el estado de conteo y estimación. Al posicionarse sobre un artículo y presionar el botón “Ejecutar modelos” se ejecuta la lógica del modelo predictivo de acuerdo al flujo de procesos definido en la sección 5.3.2, figura 5-7. Nótese que si el estado de
conteo está pendiente, el botón “Ejecutar modelo” no debe estar activo al seleccionar tal registro, ya que no hay suficiente información para realizar la estimación. Por su parte el botón “Ajustar Parámetros” corresponde al cambio en los parámetros del modelo predictivo si el resultado de la estimación no fue satisfactorio para el agrónomo que supervisa las estimaciones.

En la figura 6-25 se presenta la secuencia que debe hacer el sistema al momento de ejecutar el modelo para obtener la predicción de cosecha, una vez que los datos de conteo se encuentran cargados y completados.

En este escenario el agrónomo ejecuta el modelo en el sistema, el cual recurre a Analysis Services para ejecutar la lógica del modelo predictivo que previamente se encontrará configurado.

El Modelo es quien procesa los datos y obtiene una estimación la cual Analysis Services comunica al sistema mediante una consulta.

![Figura 6-25. Secuencia Ejecutar Modelo de estimación de cosecha.](image)
6.1.3.2.2.1. **Data Marts de Cosecha**

Se ha planteado la creación de un Data Marts que almacene información histórica sobre los procesos y su rendimiento exportable, esto para los distintos productores de Geofrut y registrados por especie, variedad y temporada. La finalidad del Data Marts será almacenar la información histórica que se usará para los modelos predictivos de oferta y demanda.

Para ellos se usará la tabla de Sincronización planteada en la sección 6.1.3.1.1., para funcionar como tabla intermedia y permitir la validación de datos en el traspaso de información hacia el Data Marts.

Figura 6-26. Sincronización de rendimiento fruta a proceso a DataMarts Cosecha.
El proceso de sincronización de transacciones de Rendimiento fruta a proceso es detallado en la figura 6-26. En ella debe haber distintas validaciones que permitan no duplicar información y segmentarla bien por temporada, planta, productor y artículo. Si hay problemas la información no debe ser traspasada al Data Marts y quedar en un estado de error en la tabla de sincronización de transacciones hasta que se corrija.

Los campos de la tabla de integración se detallan en la figura 6-27. Los cuales son necesarios para hacer las validaciones necesarias antes de traspasar a la tabla de Rendimiento Fruta del DataMarts.

A continuación se detalla la finalidad de los campos demarcados con naranjo para el entendimiento de la funcionalidad requerida (los otros campos fueron detallados en la sección 6.1.3.1.2.):

- **Kg_Ing**: corresponde al total de kilos recibidos de un productor por cada especie-variedad.

- **Kg_Exp**: corresponde al total de kilos con calidad exportable que fue embalado en cajas.

- **Rend_Exp**: corresponde al cociente entre kg_exp y kg_ing.
6.1.3.2.2. Determinación del Rendimiento exportable

Para determinar el rendimiento exportable, se debe crear un procedimiento almacenado en SQL que se llame KDD_Rendimiento_Exp1 la cual tenga las siguientes instrucciones:

- **Data:** Se usarán los datos del DataMarts de cosecha, recurriendo a los maestros y tabla de transacciones de rendimiento de fruta, de la base de datos APCL_GEO_INTEGRACIONSGE.

- **Selección datos:** para seleccionar los datos se debe seguir la siguiente lógica:
 - Declarar valor de temporada actual con la variable t
 - Declarar las temporadas anteriores t-1, t-2... t-n
 - Declarar la variable productor
 - Agrupar la información por productor y temporada, con la siguiente lógica:
 - Seleccionar artículo (especie + variedad)
 - Traer valor del rendimiento exportable del artículo

- **Preprocesamiento:** si hay productores que no tienen información histórica en temporadas anteriores, por ser nuevos, tener un artículo nuevo, o tener un periodo sin movimiento se debe seguir la siguiente lógica:
 - Declarar la variable rend_prom_articulo, la cual reunirá el rendimiento promedio de una especie/variedad para una temporada.
 - Seleccionar el valor “perdido” en el productor y reemplazar el valor del rendimiento promedio del artículo.

- **Transformación:** en el modelo elegido no se requiere transformación de variables, pero de cambiar de modelo en un futuro, esta actividad debe quedar activa.

- **Modelo:** el modelo debe seguir la siguiente lógica:
 - Declarar la variable Est_Rendimiento_Exp1
 - Seleccionar al proveedor
 - Seleccionar el artículo y su rendimiento exportable para la temporada t-1
 - Seleccionar el artículo y su rendimiento exportable para la temporada t-2
 - El rendimiento exportable será el promedio de t-1 y t-2.
6.1.3.2.2.3. Modelo para la Estimación de Cosecha

Para determinar la estimación de cosecha, se debe crear un procedimiento almacenado en SQL que se llame KDD_Estim_Cosecha_Mod1 la cual tenga las siguientes instrucciones:

- **Data**: Se usarán los datos del DataMarts de cosecha, recurriendo a los maestros y tabla de transacciones de rendimiento de fruta, de la base de datos APCL_GEO_INTEGRACIONSGE.

- **Selección datos**: para seleccionar los datos se debe seguir la siguiente lógica:
 - Declarar la variable Est_Rendimiento_Exp, para el rendimiento exportable estimado
 - Declarar valor de temporada actual con la variable t
 - Declarar la variable Prod, para el productor
 - Declarar la variable P(t), para la Producción de la temporada t
 - Agrupar la información por productor de la temporada actual (t), con la siguiente lógica:
 - Seleccionar artículo (especie + variedad) del conteo
 - Seleccionar el campo Producción para el artículo de la tabla de conteo para P(t)

- **Preprocesamiento**: Si un productor no tiene información de conteo el modelo no se ejecuta por estar incompleta la información.

- **Transformación**: no se requiere en este modelo.

- **Modelo**: el modelo debe seguir la siguiente lógica:
 - Declarar la variable Estim_Cosecha
 - Seleccionar al proveedor
 - Seleccionar el artículo
 - Definir el P(t) del artículo
 - El proceso para calcular la estimación de cosecha será:
 - P(t) x Est_Rendimiento_Exp (redondear a cero decimal, dado que las cajas son números enteros).
 - Se debe traer el valor de la distribución por semana de la tabla de Conteo de Fruta y multiplicar el factor de cada semana por el resultado obtenido de la estimación en cajas (el valor de la distribución debe ser redondeado a cero decimal, dado que las cajas son números enteros).
El resultado de Estim_Cosecha debe ser almacenado en una tabla temporal de nombre Temp_Estim_Cosecha para estar disponible en la primera revisión del resultado.

Si el modelo es aprobado por el usuario, el resultado del modelo debe ser enviado a la tabla Estim_Cosecha, la cual tendrá la siguientes estructura (notar que la tabla tendrá 53 semanas, con formato numérico y no decimal a diferencia de la tabla de conteo):

<table>
<thead>
<tr>
<th>Nombre de campo</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>COD_TEMP</td>
<td>INTEGER</td>
</tr>
<tr>
<td>TIP_MOV</td>
<td>INTEGER</td>
</tr>
<tr>
<td>COD_ART</td>
<td>CHAR(6)</td>
</tr>
<tr>
<td>Sem1</td>
<td>NUMERIC(8)</td>
</tr>
<tr>
<td>Sem2</td>
<td>NUMERIC(8)</td>
</tr>
<tr>
<td>Sem3</td>
<td>NUMERIC(8)</td>
</tr>
<tr>
<td>Sem4</td>
<td>NUMERIC(8)</td>
</tr>
<tr>
<td>Sem5</td>
<td>NUMERIC(8)</td>
</tr>
<tr>
<td>Sem6</td>
<td>NUMERIC(8)</td>
</tr>
</tbody>
</table>

Figura 6-28. Tabla de Estimación Cosecha

6.1.3.2.3. Ajuste en los modelos de Estimación de Cosecha

El ajuste de modelos debe ser una función fácil de modificar por el usuario. Para ello se requiere crear distintos procedimientos almacenados con distintos escenarios posibles en los modelos. Por tanto, al momento de ajustar en el portal web un modelo lo que se hará será cambiar el llamado a distintos procedimientos almacenados. De acuerdo a la figura 6-29, lo que se requiere es crear dos secciones, una para modelos de rendimiento exportable y otro para modelo de cosecha, y mediante campos listas dar las opciones disponibles los cuales deben contar con una descripción breve de cada modelo.
Figura 6-29. Sección Ajuste de modelos de Cosecha.
6.1.3.2.4. Reportes de Cosecha

De acuerdo a los requerimientos de la sección 5.4.1.1.5., deberá haber dos tipos de reportes. El primero será para revisar las estimaciones de forma individual por productor (figura 6-30) y el segundo será un reporte general de cosecha de todos los productores (figura 6-31).

En la barra lateral izquierda, estarán las opciones para filtrar un productor escribiendo su código, o seleccionado Todos los Productores se borrará el filtro y se mostrará el informe general.

Las especies a revisar estarán detalladas y se podrá seleccionar sobre ella para filtrar el informe.

Figura 6-30. Reporte de estimación de cosecha por productor.
Figura 6-31. Reporte de estimación de cosecha general.

En la sección de Exportar Reporte, presionado el botón “guardar” se desplegará una lista de opciones con los distintos formatos en que podrá ser exportado el archivo.
6.1.3.3. Módulo Gestión de Ventas

Este módulo debe contener distintas opciones para permitir la gestión de la estimación de ventas. Por una parte debe estar una opción para ejecutar la estimación; también debe haber una sección que permita ajustar la estimación de ventas manualmente de acuerdo al juicio experto y conocimiento del comportamiento del mercado; otra opción que permita ejecutar el ajuste de la estimación de ventas con la estimación de cosecha para formar un plan de ventas mediante reportes del sistema, y, finalmente, debe haber una sección que permita ajustar los modelos de estimación.

Figura 6-32: Opciones disponibles en Módulo gestión de Ventas

6.1.3.3.1. Estimación de ventas

Esta actividad del módulo de Cosecha corresponde al caso de uso descrito en el punto 6.1.2.2., el cual comprende Ejecución de modelos de Cosecha.

El diseño requerido para esta actividad requiere de dos secciones de acuerdo a lo que se puede apreciar en la figura 6-33:

- **General Estimaciones**: Esta sección permite visualizar el estado de ejecución de modelos predictivos, resumido por especie.

- **Detalles de Estimaciones**: esta sección permite visualizar las variedades de cada especie, en donde se puede visualizar el estado de conteo y estimación. Al posicionarse sobre un artículo y presionar el botón “Ejecutar modelos” se ejecuta la lógica del modelo predictivo de acuerdo al flujo de procesos definido en la sección 5.3.1, figura 5-5. Los artículos ya ejecutados, deben mostrar en las columnas de cada mercado el porcentaje de distribución de las ventas que le corresponde según la estimación.
Figura 6-33. Vista general Estimación de Ventas.

En la figura 6-34 se presenta la secuencia que debe hacer el sistema al momento de ejecutar el modelo para obtener la predicción de demanda por mercados, una vez que los datos de las ventas históricas de las ventas se encuentran cargadas. A diferencia del modelo de cosecha, este modelo se alimenta solo de la información histórica, por lo iniciada una temporada ya se puede trabajar con las estimaciones por mercado basados en los años anteriores.

En el escenario de la figura 6-34 el Market manager ejecuta el modelo en el sistema, el cual recurre a Analysis Services para ejecutar la lógica del modelo predictivo que previamente se encontrará configurado. El Modelo es quien procesa los datos y obtiene una estimación, la cual Analysis Services comunica al sistema mediante una consulta.
6.1.3.3.1.1. **Data Marts de Ventas**

Se ha planteado la creación de un Data Marts que almacene información histórica sobre las ventas de la exportadora hacia los distintos mercados, esto registrado por cliente, mercado, especie, variedad y temporada. La finalidad del Data Marts será almacenar la información histórica que se usará para los modelos predictivos de demanda.

Para el Data Marts de ventas, se usará la tabla de Sincronización planteada en la sección 6.1.3.1.1., para funcionar como tabla intermedia y permitir la validación de datos en el traspaso de información hacia el Data Marts.

El proceso de sincronización de transacciones de ventas es detallado en la figura 6-35. En ella debe haber distintas validaciones que permitan no duplicar información y segmentarla correctamente por temporada, mercado, cliente y artículo. Si hay problemas la información no debe ser traspasada al Data Marts y quedar en un estado de error en la tabla de sincronización de transacciones hasta que se corrija.
Figura 6-35. Sincronización de ventas por mercado a DataMarts de Ventas.

Los campos de la tabla de integración se detallan en la figura 6-36. Los cuales son necesarios para hacer las validaciones necesarias antes de traspasar a la tabla de Ventas por mercado del DataMarts.
A continuación se detalla la finalidad de los campos demarcados con naranjo para el entendimiento de la funcionalidad requerida (los otros campos fueron detallados en la sección 6.1.3.1.2. y 6.1.3.2.2.1.):

- **Cajas**: corresponde al total de cajas por un recibidor y mercado, por cada artículo (especie-variedad).

- **Cod_MDO**: corresponde al código del mercado al cual corresponden las cajas embarcadas.

6.1.3.3.1.2. Modelo de estimación de ventas

Para determinar la estimación de ventas, se debe crear un procedimiento almacenado en SQL que se llame KDD_Estim_Ventas_Mod1 la cual tenga las siguientes instrucciones:

- **Data**: Se usarán los datos del DataMarts de cosecha, recurriendo a los maestros y tabla de transacciones de rendimiento de fruta, de la base de datos APCL_GEO_INTEGRACIONSGE.
• **Selección datos**: para seleccionar los datos se debe seguir la siguiente lógica:
 - Declarar valor de temporada actual con la variable t
 - Declarar las temporadas anteriores t-1, t-2… t-n
 - Declarar la variable mercado
 - Agrupar la información por mercado y temporada, con la siguiente lógica:
 - Seleccionar artículo (especie + variedad)
 - Traer valor de las cajas exportadas del artículo por mercado.

• **Preprocesamiento**: no se consideran variables con valores perdidos en este modelo.

• **Transformación**: en el modelo elegido no se requiere transformación de variables, pero de cambiar de modelo en un futuro, esta actividad debe quedar activa.

• **Modelo**: el modelo debe seguir la siguiente lógica:
 - Declarar las variables Mdo_1; Mdo_2; Mdo_3; Mdo_4; Mdo_5 para almacenar el resultado de la distribución desde los 5 mercados.
 - Seleccionar el mercado y hacer la siguiente lógica:
 - Seleccionar el artículo y sus cajas para la temporada t-1
 - Seleccionar el artículo y sus cajas para la temporada t-2
 - Las ventas por mercado serán el promedio móvil de t-1 y t-2.

• **Resultado**: el resultado del modelo debe ser almacenado en la tabla EST_DEMANDA. Los campos de esta tabla son definidos en la figura 6-37.

<table>
<thead>
<tr>
<th>Nombre de campo</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>COD_TEMP</td>
<td>INTEGER</td>
</tr>
<tr>
<td>TIP_MOV</td>
<td>INTEGER</td>
</tr>
<tr>
<td>COD_ART</td>
<td>CHAR(6)</td>
</tr>
<tr>
<td>Mdo_1</td>
<td>NUMERIC(5,2)</td>
</tr>
<tr>
<td>Mdo_2</td>
<td>NUMERIC(5,2)</td>
</tr>
<tr>
<td>Mdo_3</td>
<td>NUMERIC(5,2)</td>
</tr>
<tr>
<td>Mdo_4</td>
<td>NUMERIC(5,2)</td>
</tr>
<tr>
<td>Mdo_5</td>
<td>NUMERIC(5,2)</td>
</tr>
</tbody>
</table>

Figura 6-37: campos requeridos en la tabla de Estimación de demanda.
6.1.3.3.2. Ajuste de la distribución por mercado

El resultado de la estimación de ventas por mercado puede requerir ajuste manual por parte del market manager, de acuerdo a su conocimiento experto y estudio constante de las condiciones del mercado. La estimación en este caso sirve de ayuda para agilizar la distribución de ventas de acuerdo al comportamiento histórico, pero no quita el hecho que el market manager pueda ajustar esta distribución, dado que él maneja las decisiones de venta y negociación previa con clientes.

Sin embargo, dado el ciclo maduro que se encuentra la empresa, con clientes bien estables y cautivos, la distribución dada por la historia solo debería sufrir pequeñas modificaciones.

El proceso de ajuste se ilustra en la figura 6-38, en donde se requiere una edición bastante sencilla y simple para el usuario, quien al posicionarse sobre un artículo y presionando editar puede ajustar la distribución de acuerdo a su criterio experto.

6-38: Ajuste estimación de ventas.
Una vez ajustado, el usuario debe presionar el botón “aplicar cambios” para finalizar el proceso de ajuste y actualizar los campos de la tabla de ventas. Tal como se ilustra en la figura 6-39, en la tabla de estimación por mercados, se agregan nuevos campos, los cuales registran los ajustes en las estimaciones (por tanto no se pierden los datos provenientes de la estimación desde el modelo).

![Tabla Estimación Demanda](image)

<table>
<thead>
<tr>
<th>Nombre de campo</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>COD_TEMP</td>
<td>INTEGER</td>
</tr>
<tr>
<td>TIP_MOV</td>
<td>INTEGER</td>
</tr>
<tr>
<td>COD_ART</td>
<td>CHAR(6)</td>
</tr>
<tr>
<td>Mdo_1</td>
<td>NUMERIC(5,2)</td>
</tr>
<tr>
<td>Mdo_2</td>
<td>NUMERIC(5,2)</td>
</tr>
<tr>
<td>Mdo_3</td>
<td>NUMERIC(5,2)</td>
</tr>
<tr>
<td>Mdo_4</td>
<td>NUMERIC(5,2)</td>
</tr>
<tr>
<td>Mdo_5</td>
<td>NUMERIC(5,2)</td>
</tr>
<tr>
<td>Mdo_1_A</td>
<td>NUMERIC(5,2)</td>
</tr>
<tr>
<td>Mdo_2_A</td>
<td>NUMERIC(5,2)</td>
</tr>
<tr>
<td>Mdo_3_A</td>
<td>NUMERIC(5,2)</td>
</tr>
<tr>
<td>Mdo_4_A</td>
<td>NUMERIC(5,2)</td>
</tr>
<tr>
<td>Mdo_5_A</td>
<td>NUMERIC(5,2)</td>
</tr>
</tbody>
</table>

Figura 6-39: campos requeridos en la tabla de Estimación de demanda Ajustada

6.1.3.3.3. Plan de Ventas

En la figura 6-40 se ilustra cómo debe ser el plan de ventas. Para ello hay dos secciones disponibles:

- **General**: esta sección muestra el estado de ejecución de los modelos de oferta y demanda y señala si ambos se encuentran sincronizados.

- **Detalle de ventas**: esta sección muestra un resumen por especie, donde está la opción de sincronizar si es que aún está pendiente. El detalle de ventas debe mostrar un resumen por mercado, total de cajas y la distribución por semana obtenida desde la gestión de cosecha.
6.1.3.3.4. Ajuste de modelos de Estimación de Ventas

El ajuste de modelos debe ser una función fácil de modificar por el usuario. Para ello se requiere crear distintos procedimientos almacenados con distintos escenarios posibles en los modelos de demanda. Por tanto, al momento de ajustar en el portal web un modelo lo que se hará será cambiar el llamado a distintos procedimientos almacenados.

De acuerdo a la figura 6-41, lo que se requiere es crear una sección que mediante campos listas dar las opciones disponibles para seleccionar. Tal como se muestra en la figura, los modelos disponibles deben contar con una descripción breve de cada modelo.
6.1.3.4. **Página Principal**

El diseño de la página principal del sistema se presenta en la figura 6-42, el cual detalla el comportamiento de cosecha y ventas comparando lo estimado versus lo real. Para ello se requiere la integración de las cajas reales procesadas y vendidas, según esquema de integración de la figura 6-1.

Esta interfaz debe ser bastante gráfica, tal como se muestra en la figura 6-42, ya que está enfocado en dar una idea general de las cajas por cada especie variedad que se esté trabajando.

El filtro debe ser por especie, donde cada cuadro comparativo debe mostrar el artículo, las cajas reales y las cajas estimadas, más un total por especie.
La información de las estimaciones de cajas del comportamiento de cosecha y ventas, provienen de las tablas cajas procesadas reales y ventas por mercado reales que se detallan a continuación:

6.1.3.4.1. Sincronización de transacciones de cajas procesadas reales

La sincronización de transacciones de cajas reales procesadas, se detalla en la figura 6-43. Las transacciones reales deben provenir desde SGE con el movimiento “traspaso cajas reales procesadas”, ser validadas en la tabla de sincronización y ser almacenada en el Data Marts de Cosecha en una tabla de Transacciones de cajas procesadas reales.

El proceso de sincronización de transacciones de cajas procesadas reales debe hacer distintas validaciones que permitan no duplicar información y
segmentarla bien por temporada, planta, productor y artículo. Si hay problemas la información no debe ser traspasada al Data Marts y quedar en un estado de error en la tabla de sincronización de transacciones hasta que se corrija.

6.43. Sincronización de transacciones de cajas procesadas reales.

Los campos de la tabla de integración se detallan en la figura 6-44. Los campos ahí detallados son lo que utilizará la sincronización para hacer las validaciones necesarias antes de traspasar a la tabla de cajas procesadas reales del Data Marts.
A continuación se detalla la finalidad de los campos demarcados con naranjo para el entendimiento de la funcionalidad requerida (los otros campos fueron detallados en secciones anteriores)

- **CAJAS_REALES**: corresponde al campo que recibirá el total de cajas procesadas reales que informe SGE.

![Tabla Sincronización](image)

Tabla Sincronización

<table>
<thead>
<tr>
<th>Nombre de campo</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>INTEGER</td>
</tr>
<tr>
<td>TIP_MOV</td>
<td>INTEGER</td>
</tr>
<tr>
<td>COD_TEMP</td>
<td>CHAR(5)</td>
</tr>
<tr>
<td>COD_PLANTA</td>
<td>CHAR(4)</td>
</tr>
<tr>
<td>COD_RECIB</td>
<td>CHAR(4)</td>
</tr>
<tr>
<td>COD_ESP</td>
<td>CHAR(2)</td>
</tr>
<tr>
<td>COD_VAR</td>
<td>CHAR(4)</td>
</tr>
<tr>
<td>KG_ING</td>
<td>NUMERIC(8,2)</td>
</tr>
<tr>
<td>KG_EXP</td>
<td>NUMERIC(8,2)</td>
</tr>
<tr>
<td>REND_EXP</td>
<td>NUMERIC(5,2)</td>
</tr>
<tr>
<td>TRANSFER_DATE</td>
<td>DATETIME</td>
</tr>
<tr>
<td>STATUS</td>
<td>INTEGER</td>
</tr>
<tr>
<td>LOG</td>
<td>CHAR(50)</td>
</tr>
<tr>
<td>CAJAS</td>
<td>NUMERIC(8)</td>
</tr>
<tr>
<td>COD_MDO</td>
<td>CHAR(4)</td>
</tr>
<tr>
<td>CAJAS_REALES</td>
<td>NUMERIC(8)</td>
</tr>
</tbody>
</table>

Cajas Procesadas Reales

<table>
<thead>
<tr>
<th>Nombre de campo</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>INTEGER</td>
</tr>
<tr>
<td>TIP_MOV</td>
<td>INTEGER</td>
</tr>
<tr>
<td>COD_TEMP</td>
<td>CHAR(5)</td>
</tr>
<tr>
<td>COD_PLANTA</td>
<td>CHAR(4)</td>
</tr>
<tr>
<td>COD_PROD</td>
<td>CHAR(4)</td>
</tr>
<tr>
<td>COD_ART</td>
<td>CHAR(6)</td>
</tr>
<tr>
<td>CAJAS_REALES</td>
<td>NUMERIC(8)</td>
</tr>
<tr>
<td>TRANSFER_DATE</td>
<td>DATETIME</td>
</tr>
</tbody>
</table>

Figura 6-44. Campos tabla integración y tabla Cajas Procesadas Reales.

6.1.3.4.2. Sincronización de transacciones de ventas por mercado reales

La sincronización de transacciones de ventas por mercado reales, se detalla en la figura 6-45. Las transacciones reales deben provenir desde SGE con el movimiento “traspaso Ventas por mercado reales”, ser validadas en la tabla de sincronización y ser almacenada en el Data Marts de Ventas en una tabla de Transacciones de Ventas por mercado reales.

El proceso de sincronización de transacciones de Ventas por mercado reales debe hacer distintas validaciones que permitan no duplicar información y segmentarla bien por temporada, mercado, cliente y artículo. Si hay problemas la información no debe ser traspasada al Data Marts y quedar en un estado de error en la tabla de sincronización de transacciones hasta que se corrija.
Los campos de la tabla de integración se detallan en la figura 6-46. Los campos ahí detallados son lo que utilizará la sincronización para hacer las validaciones necesarias antes de traspasar a la tabla de Ventas por mercado reales del Data Marts de ventas.
A continuación se detalla la finalidad de los campos demarcados con naranjo para el entendimiento de la funcionalidad requerida (los otros campos fueron detallados en secciones anteriores)

- **CAJAS_REALES**: en la tabla de sincronización se utilizará el mismo campo correspondiente al que recibirá el total de cajas procesadas reales que informe SGE. Pero diferenciado por el tipo de movimiento en la tabla de integración. Este campo reunirá el total de ventas por mercado reales.

<table>
<thead>
<tr>
<th>Tabla Sincronización</th>
<th>Tipo</th>
<th>Ventas por Mercado Reales</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre de campo</td>
<td>Tipo</td>
<td>Nombre de campo</td>
<td>Tipo</td>
</tr>
<tr>
<td>ID</td>
<td>INTEGER</td>
<td>ID</td>
<td>INTEGER</td>
</tr>
<tr>
<td>TIP_MOV</td>
<td>INTEGER</td>
<td>TIP_MOV</td>
<td>INTEGER</td>
</tr>
<tr>
<td>COD_TEMP</td>
<td>CHAR(5)</td>
<td>COD_TEMP</td>
<td>CHAR(5)</td>
</tr>
<tr>
<td>COD_PLANTA</td>
<td>CHAR(4)</td>
<td>COD_PLANTA</td>
<td>CHAR(4)</td>
</tr>
<tr>
<td>COD_RECIB</td>
<td>CHAR(4)</td>
<td>COD_RECIB</td>
<td>CHAR(4)</td>
</tr>
<tr>
<td>COD_ESP</td>
<td>CHAR(2)</td>
<td>COD_ESP</td>
<td>CHAR(2)</td>
</tr>
<tr>
<td>COD_VAR</td>
<td>CHAR(4)</td>
<td>COD_VAR</td>
<td>CHAR(4)</td>
</tr>
<tr>
<td>KG_ING</td>
<td>NUMERIC(8,2)</td>
<td>KG_ING</td>
<td>NUMERIC(8,2)</td>
</tr>
<tr>
<td>KG_EXP</td>
<td>NUMERIC(8,2)</td>
<td>KG_EXP</td>
<td>NUMERIC(8,2)</td>
</tr>
<tr>
<td>REND_EXP</td>
<td>DATETIME</td>
<td>REND_EXP</td>
<td>DATETIME</td>
</tr>
<tr>
<td>TRANSFER_DATE</td>
<td>DATETIME</td>
<td>TRANSFER_DATE</td>
<td>DATETIME</td>
</tr>
<tr>
<td>STATUS</td>
<td>INTEGER</td>
<td>STATUS</td>
<td>INTEGER</td>
</tr>
<tr>
<td>LOG</td>
<td>CHAR(50)</td>
<td>LOG</td>
<td>CHAR(50)</td>
</tr>
<tr>
<td>CAJAS</td>
<td>NUMERIC(8)</td>
<td>CAJAS</td>
<td>NUMERIC(8)</td>
</tr>
<tr>
<td>COD_MDO</td>
<td>CHAR(4)</td>
<td>COD_MDO</td>
<td>CHAR(4)</td>
</tr>
<tr>
<td>CAJAS_REALES</td>
<td>NUMERIC(8)</td>
<td>CAJAS_REALES</td>
<td>NUMERIC(8)</td>
</tr>
</tbody>
</table>

Figura 6-46. Campos tabla integración y tabla Ventas por mercado Reales.

6.1.3.5. **Productor**

El productor, será un actor externo en el sistema. Éste tendrá acceso solo a la información correspondiente a sus campos y frutas, con el fin de proteger la información confidencial entre productores la cual será de uso exclusivo de la exportadora.

El diseño del módulo del productor se ejemplifica en la figura 6-47. El panel de opciones solo debe permitir seleccionar la ficha productor y tener acceso restringido al resto de los módulos.
En la sección “Mis especies” se deberá mostrar el listado de especies de cada productor y actualizar la información de la estimación. La estimación por su parte debe mostrar la estimación de cosecha, la distribución por semana y la estimación de cajas.

Figura 6-47. Interfaz del productor.
6.1.4. Licitación del Proyecto

Dado que el proyecto debe ser desarrollado por una empresa externa, se efectúa un proceso de licitación para evaluar económica y técnicamente la viabilidad del proyecto. Para ello se contacta a los proveedores de desarrollo de software que frecuentemente trabajan con el grupo Geofrut, por su conocimiento del negocio y su ya conocida forma de trabajo, para hacer entrega del documento formal con la especificación de requerimientos de sistema (RFP13).

De acuerdo con las políticas de licitación del grupo Geofrut, las empresas convocadas entran en el siguiente orden de actividades:

- Entrega de la RFP
- Recepción de preguntas y aclaración de puntos
- Reuniones previas a la propuesta comercial (análisis de expectativas).
- Recepción de Propuestas Comerciales
- Elección de la propuesta comercial
- Formalización de acuerdos para futura implementación.
- Inicio del proyecto

<table>
<thead>
<tr>
<th>SEMANA</th>
<th>Octubre</th>
<th>Noviembre</th>
<th>Abril</th>
<th>Mayo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrega de las Bases de Licitación (RFP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recepción de preguntas o reuniones y visitas.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entrega de propuestas comerciales</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elección Propuesta</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formalización de Acuerdos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inicio de los servicios de implementación.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 48: Carta Gantt de actividades.

De las dos alternativas la empresa optó por aquella que presentó la mejor alternativa en cuanto a costo, conocimiento del negocio, calidad en las integraciones con el sistema SGE, el servicio de continuidad operacional y la calidad técnica propuesta. Las ponderaciones de los factores se presentan en la figura 6-49, en donde las variables más importantes en la evaluación fueron integración con el sistema legado y calidad técnica propuesta para el desarrollo del sistema. Por temas de confidencialidad, no se dará mayor detalle de la empresa seleccionada ni de aquellas que fueron parte de la licitación, solo se presenta el esquema de para seleccionar alternativas en una licitación que usa actualmente la empresa.

13 RFP; Request for Proposal o documento con bases de licitación.
6.1.5. Plan del Proyecto

De acuerdo con la Metodología RUP, las siguientes fases del proyecto son las de elaboración, construcción y transición. Estas etapas, que corresponden al desarrollo del software y su respectiva implementación, son delegadas a una empresa externa a través de un proceso de licitación en el cual se elige a la encargada de tal misión.

Dado que se hará trabajo interno y externo, se define una estructura organizacional del proyecto, la cual se refleja en la figura 6-50. Por parte de Geofrut, se designa al siguiente equipo:

- **Sponsor**: el Gerente Comercial será el Sponsor del proyecto completo. Su misión será defender el proyecto como suyo ante la alta dirección, usuarios del sistema y toda la organización en general.

- **Gerente de proyecto**: será el líder del proyecto quien guiará todas las actividades internas durante la implementación, siendo el principal nexo con la empresa externa encargada del desarrollo del software.

- **Especialista interfaces**: se designa a un integrante del equipo de TI, uno de los creadores del sistema de producción SGE, quien cuenta con vasta experiencia en diseño de interfaces con diversos sistemas.
Figura 6-50: Estructura de trabajo para la implementación del sistema.

- **Usuarios de área técnica:** Dado que no son muchos los agrónomos área técnica se define que todos los integrantes del área sean parte del equipo de proyecto durante la implementación.
- **Usuarios de área comercial:** al ser solo tres market manager se define que todos participarán del proyecto de implementación.

Por su parte la empresa externa define su estructura de trabajo, donde el PMO externo será el principal nexo con el PMO de Geofrut y se definirán reuniones de seguimiento semanal mientras dure el proyecto.

El plan del proyecto contempla dar continuidad a las etapas siguientes con un conjunto de actividades por cada fase acordadas por la empresa externa seleccionada en la licitación, actividades que se detallan en la figura 6-51. En ella se detallan los componentes de proceso y soporte, asignando actividades, tiempos y responsables para las distintas fases que quedan y que están fuera de alcance del presente proyecto de tesis.
Figura 6-51. Plan del proyecto por fases.

<table>
<thead>
<tr>
<th>Componentes de proceso</th>
<th>Componentes de Soporte</th>
<th>Tiempos</th>
<th>Responsables</th>
</tr>
</thead>
<tbody>
<tr>
<td>FASE DE INICIO</td>
<td>FASE DE ELABORACION</td>
<td>FASE DE CONSTRUCCION</td>
<td>FASE DE TRANSICION</td>
</tr>
<tr>
<td>Actividades</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Problema de negocio</td>
<td>* Kick Off inicio proyecto</td>
<td></td>
<td>* Trasiego data inicial</td>
</tr>
<tr>
<td>* Objetivos del Proyecto</td>
<td>* Preparación de los servidores</td>
<td></td>
<td>* Comunicación del proyecto</td>
</tr>
<tr>
<td>* Diseño de procesos</td>
<td>* Preparación de los ambientes de desarrollo test y productivo</td>
<td></td>
<td>* Cierre del proyecto</td>
</tr>
<tr>
<td>* Alcance del proyecto</td>
<td>* Reuniones de planificación</td>
<td></td>
<td>* Un mes de acompañamiento de un consultor funcional</td>
</tr>
<tr>
<td>* Casos de Uso del proyecto</td>
<td>* Desarrollo del sistema</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Especificacion de requerimientos de sistemas</td>
<td>* Desarrollo de las integraciones</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Licitacion del proyecto</td>
<td>* Desarrollo de los casos de prueba</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Elección del proveedor de solución TI</td>
<td>* Pruebas del sistema</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Aplicación de los Test Script</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiempos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Se han invertido cerca de 16 meses de estudio interno para el análisis y diseño de nuevos procesos y requerimientos de sistema.</td>
<td>2 semanas</td>
<td>3,5 meses</td>
<td>1 mes</td>
</tr>
<tr>
<td>Responsables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estudio interno a cargo de la Gerencia de proyectos</td>
<td>Empresa externa seleccionada en la licitación</td>
<td>Empresa externa seleccionada en la licitación</td>
<td></td>
</tr>
<tr>
<td>Lider interno, asignado a gerencia PMO</td>
<td>Lider interno, asignado a gerencia PMO</td>
<td>Lider interno, asignado a gerencia PMO</td>
<td></td>
</tr>
<tr>
<td>* Problema de negocio</td>
<td>* Identificación inicial de riesgos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Objetivos del Proyecto</td>
<td>* Gestión del cambio en fases iniciales</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Diseño de procesos</td>
<td>* Liderezo del cambio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Alcance del proyecto</td>
<td>* Sentido del cambio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Casos de Uso del proyecto</td>
<td>* Cambio y conservacion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Especificacion de requerimientos de sistemas</td>
<td>* Gestión del poder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Licitacion del proyecto</td>
<td>* Gestión estados de ánimo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Elección del proveedor de solución TI</td>
<td>* Comunicación</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gestión del Cambio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Identificación de riesgos</td>
<td>* Identificación de riesgos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Gestión del cambio en fases iniciales</td>
<td>* Comunicación</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Liderezo del cambio</td>
<td>* Gestión estados de ánimo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Sentido del cambio</td>
<td>* Reuniones de seguimiento</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Cambio y conservacion</td>
<td>* Comunicación</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Gestión del poder</td>
<td>* Reuniones de seguimiento</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Gestión estados de ánimo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Comunicación</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Responsables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lider interno, asignado a gerencia PMO</td>
</tr>
</tbody>
</table>
6.1.6. Identificación inicial de los riesgos

Es importante, en este nivel del Proyecto, hacer un primer análisis de los riesgos que involucra la ejecución del Proyecto, tanto desde el punto de vista del impacto interno en la organización (empleados, jefaturas, clima organizacional) como el impacto hacia entes externos (clientes, proveedores).

El estudio de riesgos es un tema de Gestión del Cambio, el cual debe ser efectuado por un Equipo (interno o externo) encargado en tal función o delegar a alguien que efectúe tan importante tarea, tanto en las etapas de análisis como en etapas posteriores. Está enfocado en identificar los posibles riesgos que puedan afectar al proyecto, realizando las siguientes medidas:

- **Identificación de los riesgos**: determinando qué riesgos pueden afectar al proyecto documentando las características (por ejemplo, los meses críticos del año en que una empresa por su nivel de actividad no puede enfrentar proyectos de cambio, o el riesgo de no llevar adelante el proyecto y el cómo puede esta decisión afectar su situación competitiva, etc.).

- **Análisis de los riesgos**: priorizar los riesgos de acuerdo a su probabilidad de ocurrencia y su impacto en el proyecto.

- **Planificación de las actividades de mitigación de riesgos**: definir las acciones para mejorar las oportunidades y reducir las amenazas en los objetivos del proyecto.

Estas medidas fueron estudiadas frecuentemente por el encargado de la gestión del cambio durante toda la fase inicial, trabajo que deberá ser intensificado una vez que se inicien las fases de elaboración, construcción y transición.

Los riesgos de la fase de inicio son los presentados en la tabla 6-1, en el cual se presenta la identificación, un breve análisis y un plan de actividades de mitigación.
<table>
<thead>
<tr>
<th>Identificación de riesgos</th>
<th>Análisis</th>
<th>Plan de mitigación</th>
</tr>
</thead>
</table>
| **1. Disposición al cambio de parte de los agrónomos en llevar las estimaciones por sistema.** | • La probabilidad de ocurrencia es alta en aquellos agrónomos con menos habilidades computacionales y resistentes a cambios. | • Realizar un plan de comunicación, informando los beneficios del proyecto así como comunicar que se harán las capacitaciones necesarias para que todos operen bien el nuevo sistema.
• Deben ser medidos los estados de ánimo del equipo de proyecto y generar estrategias para cada caso. |
| **2. Fecha de implementación no debe ser en alta temporada.** | • La empresa dispone de una temporada alta, la cual se extiende de noviembre a abril de cada año, por lo que en tal periodo es difícil contar con personal dispuesto a colaborar y participar de proyecto a desarrollarse en paralelo. | • El proyecto de implementación deberá desarrollarse entre mayo y octubre, con un plazo máximo de 5 meses dejando un mes libre (octubre) para la puesta en marcha del nuevo sistema. |
| **3. Disposición al cambio del área de ventas** | • El proceso actualmente no considera efectuar planes de ventas, por lo hay un riesgo importante al crear un nuevo proceso y teniendo este además una variable tecnológica. | • El gerente comercial debe ser uno de los sponsor del proyecto y liderar el cambio interno en el proceso de su competencia.
• Debe haber un plan de comunicación eficiente, que incorpore narrativas para seducirlos con los beneficios. Además debe incorporar las fechas de capacitaciones, inicio de proyecto, datos requeridos, entre otros.
• Deben ser medidos los estados de ánimo del equipo de proyecto y generar estrategias para cada caso. |

Tabla 6-1: Riesgos iniciales del proyecto.
6.1.7. Gestión del cambio

Enfrentar un cambio en una organización, ya sea a nivel tecnológico, organizacional, de gestión u otra perspectiva, implica que la organización sufrirá un impacto (positivo o negativo) el cual debe ser gestionado para no ver frenada la consecución de los resultados esperados.

Los cambios en las organizaciones usualmente generan, tanto en las personas como en los equipos de trabajo, reacciones y emociones muy diversas, siendo las más características: motivación, ambición, temor, escepticismo, inseguridad, desconfianza, resistencia, desconcierto, sensación de fragilidad, impotencia [8].

La gestión del cambio es un proceso activo que opera durante todo el proceso del cambio. Su finalidad es establecer quiénes estarán a cargo de liderar el cambio, establecer una estrategia, generar los contextos acorde al proyecto y la cultura organizacional, diseñar los planes y acciones para enfrentar el cambio, realizar la implementación procurando definir bien qué cambia y qué se conserva, estableciendo efectivos planes de comunicación y finalmente dar cierre al proceso.

Es por esto, que en la siguiente sección serán analizadas las principales variables de la gestión del cambio, según las metodologías propuestas por Olguín [8] y Kotter [9].

6.1.7.1. Liderazgo en la gestión del cambio

El líder en el proceso de cambio tiene un rol clave en todo proyecto de cambio. Ya que asume el rol de ir interpretando los objetivos de cambio del proyecto, analiza la cultura organizacional dado el contexto en que se ejecuta el proyecto e ir midiendo los estados de ánimos en los cuales de desarrolla el proyecto.

Para el proyecto y dado el alcance de esta etapa de implementación piloto, el líder del cambio es el autor del presente documento.
6.1.7.2. Estrategia y sentido del proceso de cambio.

Adicionalmente a los objetivos del proyecto, que están asociados a objetivos del proyecto, debe ser analizada la estrategia para seducir a las personas para lograr tales objetivos.

Para ello es importante contar con narrativas claras sobre el sentido del cambio y que sean diseñadas para cada persona o equipo de personas.

6.1.7.3. Cambio y conservación

Todo proceso de cambio es también un proceso de conservación [9]. Lo importante es identificar claramente qué cambia con el proyecto y dejar muy en claro también lo que se conserva y será cuidado.

El primer proceso que cambia es el de estimación de cosecha, pero solo en la forma en que son controladas y calculadas ciertas variables, ya que el proceso en sí es bastante bueno y su lógica principal ha sido desarrollada por años. Los cambios detectados en este proceso son:

- Se pasará de un control en planillas Excel a una sistematización del proceso, mediante un sistema integrado que reunirá la información del proceso y enviará flujos de información en tiempo real a los usuarios internos de dicha información, pero también incorporando la entrega de información a cada productor. Acá un cambio importante es que cada agrónomo maneja sus planillas Excel de acuerdo al conocimiento que posea cada cual de tal herramienta, pero acá todos ingresarán la información en un sistema con un mecanismo único de carga de datos y obtención de resultados.

- El método de estimación de cosecha por conteo estadístico, se mantiene.

- Un cambio importante es el proceso de conversión de la cosecha en kilos a cajas equivalentes, donde el factor de conversión pasa de ser determinado manualmente y de forma general a todos los productores a ser un factor obtenido según el comportamiento histórico de cada productor por especie y variedad.
Otro proceso que también cambia es el de generación de los planes de venta. Ante la no existencia de una estimación de ventas, los planes de ventas en términos prácticos no son conocidos por la organización. De forma individual cada market manager analiza el comportamiento de su mercado y hace sus proyecciones de acuerdo a la estimación de oferta disponible para vender y con esto cerrar sus programas de venta. Construir planes de venta implica cambios y conservaciones siguientes:

- El proceso es diseñado en conjunto con el área comercial, por lo que ellos definen los cambios en tal proceso. Esto es una ventaja importante para el proyecto, ya que se logra mayor involucramiento con el proyecto y disposición a que éste tenga buenos resultados.

- Diseñar un proceso formal, hace que se pase de análisis individuales a decisiones como equipo comercial para definir la distribución de los mercados.

- Lo que se conserva, es que la estimación de oferta será un input relevante para crear los planes de venta, por lo que el modelo debe considerar una adecuación de la demanda según la oferta disponible.

- Otras áreas como planificación de las operaciones, embarques, finanzas, entre otros, dispondrán de esta información, por lo que el cambio a impulsar es el uso de esta información como el plan general de ventas de la empresa y planificar cada uno de ellos en función de esta nueva información.
6.1.7.4. Gestión del poder

La gestión del poder es central para cualquier proceso de cambio. Kotter [9] habla de formar una coalición poderosa que promueva el cambio internamente, mientras que Olguín [8] cita la interpretación de poder del Management, que lo entiende como la capacidad de hacer que las cosas ocurran.

<table>
<thead>
<tr>
<th>Actor</th>
<th>Rol</th>
<th>Tipo Poder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gerente técnico</td>
<td>Gerente de todos los agrónomos jefes de programas.</td>
<td>• Cargo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Identidad</td>
</tr>
<tr>
<td>Jefes de programa</td>
<td>Encargados de la asesoría, estimaciones y todo lo relacionado con la gestión de abastecimiento de fruta.</td>
<td>• Cargo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Conocimiento</td>
</tr>
<tr>
<td>Gerente Comercial</td>
<td>Gerente de todos los market manager, supervisa las decisiones de venta.</td>
<td>• Cargo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Identidad</td>
</tr>
<tr>
<td>Market Manager</td>
<td>Encargados de uno o más mercados y la gestión de la relación de clientes.</td>
<td>• Cargo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Conocimiento</td>
</tr>
</tbody>
</table>

Tabla 6-2: Mapa de poder del proyecto

Para conocer los niveles de poder se presenta a continuación un organigrama organizacional proporcionado por la empresa. En este se marcan en rojo los niveles implicados directamente en el proyecto.

Figura 6-52: Organigrama Geofrut
Como se ha mencionado en capítulos anteriores, el proyecto se centra en el área comercial (para estimación de ventas) y el área técnica (para estimación de cosecha).

6.1.7.5. **Manejo estados de ánimo**

Los estados de ánimo pueden hacer fracasar una gran inversión en un proceso de cambio si no son controlados. Dado que una organización puede decaer o entrar en cualquier estado de ánimo en un proceso de cambio, es rol del líder del cambio ir midiendo continuamente estos estados y gestionarlos de tal forma que no sean revertidos o mitigados.

Algo importante es establecer diversas instancias que permitan escuchar, identificar e intervenir en los estados de ánimo de la organización. Por ejemplo, en la siguiente imagen se muestra una de las distintas entrevistas que se aplicaron para ir midiendo la disposición y entendimiento del beneficio del proyecto.

Figura 6-53: Entrevista para medir percepciones sobre el proyecto.
Para medir los estados de ánimo se analizó cada caso, de acuerdo al ejemplo de la figura 6-54, ya que es necesario influir a tiempo en aquellas personas con dudas o con falta de confianza respecto a los resultados del proyecto.

<table>
<thead>
<tr>
<th>ACTOR</th>
<th>ESTADOS DE ANIMO</th>
<th>CONCLUSIONES ESTADO DE ANIMO</th>
<th>ESTRATEGIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARKET MANAGER</td>
<td>AMBICION</td>
<td>Frases como: "Necesitamos disponer", "de la forma más agil posible", demuestran la necesidad y ambición por conseguir el resultado buscado del proyecto</td>
<td>Comunicar los avances a corto plazo, demostración de funcionalidades del sistema de acuerdo a sus expectativas, hacer parte del cumplimiento de hitos, en particular si es parte de los usuarios claves del nuevo sistema.</td>
</tr>
<tr>
<td></td>
<td>INSEGURIDAD</td>
<td>Frases como: "no se si será facil el cambio desde Excel (manejable) a un sistema estructurado</td>
<td>Comunicar de forma simple la funcionalidad buscada en el requerimiento del sistema, y a medida que se cuente con un piloto demostrar la facilidad de uso del sistema, incluyendo pruebas de uso y sencillez en los test Script</td>
</tr>
<tr>
<td></td>
<td>MOTIVACION</td>
<td>Frases como: "sería ideal concretar el proyecto y estoy dispuesto a colaborar para que tenga éxito"</td>
<td>Aprovechar la motivación en colaborar con el éxito, haciendo un usuario líder en las distintas actividades del proyecto, revisando avances y haciendo pruebas funcionales. Además de delegarle la función de comunicar los avances a otros integrantes de su área</td>
</tr>
</tbody>
</table>

Figura 6-54: Manejo de los estados de ánimo
6.1.7.6. Estrategia comunicacional

Desarrollar una estrategia comunicacional permite cuidar la comunicación general del proyecto, esto considera diseñar y establecer todas las instancias necesarias así como los canales de comunicación requeridos. No se debe confundir la comunicación, que es bidireccional, con la información que es unidireccional [8], dada esta distinción es que con la gestión del cambio se busca comunicar a todos los niveles de la organización que forma parte de público interesado (stakeholders).

Desde las primeras fases se comunica el inicio del proyecto, transmitiendo la problemática observada y los objetivos buscados con el proyecto. Con esto se logra mantener a toda la organización que directa o indirectamente se beneficiarán con el mismo.

Comunicar los avances y resultados, como el diseño detallado de procesos final, la validación de resultados o el diseño de la aplicación y su puesta en marcha, entre otros, permite mantener a las personas comunicadas, motivadas y comprometidas, consiguiendo la colaboración necesaria en todas las fases.

6.1.7.7. Evaluación y cierre de la fase

En esta etapa del proyecto se comunica a la organización se ha llegado al fin de su primera fase, donde ya se cuenta con un diseño detallado de procesos, validado por todos, y se han generado las especificaciones del sistema requeridas para cumplir con el nuevo proceso.

En este cierre de declaran y comunican los límites de la fase, es decir, el alcance y entregables, en un documento formal el cual debe ser firmado por todos los participantes del proyecto, ya que aquí se detalla el nuevo proceso y el diseño requerido por todos. Además, se comunica que el desarrollo final se ejecutará en otra etapa a cargo de especialistas en el desarrollo de software, quienes deberán hacer la implementación del nuevo sistema en un periodo de tiempo dado.

Al finalizar las siguientes fases se deberá hacer el mismo proceso de evaluación y cierre, a través de documentos de entregables firmados por todas las partes involucradas en el proyecto.
Capítulo 7: Evaluación Económica del proyecto

El resultado económico se relaciona con la implementación del proyecto. Este debe reflejar si existen beneficios económicos al intervenir en el diseño de procesos. Por lo tanto, en este capítulo se desea validar si la mayor coordinación y planificación, por medio de la creación de actividades que permiten anticipación por el uso de tecnologías de información, brinda los resultados económicos necesarios para que el proyecto se desarrolle.

La justificación económica del proyecto proviene de una mejor distribución de la fruta al planificar mejor las ventas y los flujos de fruta (cosecha) que se disponen cada temporada, lo que permite llevar a mejores oportunidades de negocio a mercados que tienen tendencia a seguir creciendo, con buenos precios y retornos atractivos.
7.1. Horizonte de evaluación del proyecto

El horizonte de evaluación del proyecto es calculado tomando en cuenta que el efecto será de mediano/largo plazo, por tanto se estima un plazo de cinco años. En este periodo se evidenciará si se cumplen o no los objetivos del proyecto, a través de procesos más eficientes que permitan un aumento de los ingresos por venta.

7.2. Costos del Proyecto

Los costos requeridos para realizar el proyecto se desglosarán en costos variables y costos de inversión inicial, los que serán detallados a continuación:

7.2.1. Costos variables

Los costos variables son aquellos que una vez hecha la transición del proyecto, el sistema como tal comienza a generar costos propios de la ejecución del proceso. A continuación se detallan los principales costos involucrados:

- **Costo por comisión de ventas**: El área de ventas recibe un % por las ventas que efectúen en situación sin proyecto. Consiguiendo aumentar los ingresos por venta, todos los ingresos marginales aumentarán también las comisiones por venta entregadas al área comercial, los cuales deben ser considerados al momento de medir los beneficios del proyecto.

 Costo de Venta: Comisión de ventas

<table>
<thead>
<tr>
<th>Detalle</th>
<th>AÑO 1</th>
<th>AÑO 2</th>
<th>AÑO 3</th>
<th>AÑO 4</th>
<th>AÑO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Var. Ingresos</td>
<td>58587</td>
<td>61461</td>
<td>64566</td>
<td>67788</td>
<td>71178</td>
</tr>
<tr>
<td>Comisión Ventas</td>
<td>1757</td>
<td>1843</td>
<td>1936</td>
<td>2033</td>
<td>2135</td>
</tr>
</tbody>
</table>

 *Comisión es del 0,1%.

 Figura 7-1: Costo variables de comisión de ventas.

- **Costos de soporte**: El nuevo sistema requerirá que haya una mesa de ayuda para resolver cualquier problema o inconveniente con el sistema y su correcto funcionamiento. Para ello, en la licitación del proyecto, se exige a la empresa delegada para desarrollar el software, disponer de personal dedicado a dar
soporte con cierto nivel de servicio mínimo detallado en el contrato de soporte para cumplir con continuidad operacional. Para esto se fija una tarifa anual de soporte, el cual se refleja en la figura.

<table>
<thead>
<tr>
<th>Costos Soporte</th>
<th>AÑO 1</th>
<th>AÑO 2</th>
<th>AÑO 3</th>
<th>AÑO 4</th>
<th>AÑO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrato Anual</td>
<td>3500,00</td>
<td>3500,00</td>
<td>3500,00</td>
<td>3500,00</td>
<td>3500,00</td>
</tr>
</tbody>
</table>

Figura 7-2: costos de soporte.

7.2.2. **Costos de inversión inicial:**

- **Costos de Desarrolladores:** se requiere que personal interno de la empresa desarrolle ciertas integraciones con el software a desarrollar de acuerdo a la especificación de requerimientos de sistemas de la sección 6.1.3. De acuerdo con la estimación interna, este requerirá un total de 300 horas de desarrollo para cumplir con las distintas integraciones definidas entre SGE y el sistema de estimaciones. Este costo es interno pero no hundido, ya que las horas del desarrollador podrían ser utilizadas en otro proyecto, por tanto se considera el costo empresa de las horas invertidas por el desarrollador a cargo del proyecto de integraciones.

- **Costo de PMO:** se requiere que la gerencia de proyectos tome el proyecto y vaya supervisando el desarrollo y éxito del mismo, en tiempos, costos y calidad deseados. Además, se le asignará la función de gestionar el cambio durante todo el proyecto y su transición. Para esto se requiere un tiempo de 400 horas. Este costo es interno pero no hundido, ya que las horas del PMO de Geofrut podrían ser utilizadas en otro proyecto.

- **Bonificación por Proyecto:** El equipo de Proyectos y TI tienen bonificaciones especiales por proyectos, los cuales se cancelan por proyecto exitoso, terminado y funcionando. El costo al ser variable por proyecto forma parte de la inversión inicial.
• **Desarrollo e implementación del Sistema:** tal como se explicó en la Planificación del proyecto (sección 6.1.4.) el proyecto es delegado a una empresa externa la cual se define luego de un proceso de licitación. La empresa seleccionada presenta un costo de proyecto para el desarrollo e implementación del software que se detalla en la figura 7-5, el cual corresponde a una implementación que se extenderá por cinco meses para cumplir con todas las características definidas en la especificación de requerimientos de sistemas (sección 6.1.3.).

<table>
<thead>
<tr>
<th>INVERSIONES DEL PROYECTO</th>
<th>MONTOS USD</th>
</tr>
</thead>
<tbody>
<tr>
<td>COSTOS INTERNOS</td>
<td></td>
</tr>
<tr>
<td>1 Desarrollador SGE</td>
<td>4.285,71</td>
</tr>
<tr>
<td>1 Jefe de Proyecto y encargado de Gestión del Cambio</td>
<td>10.793,65</td>
</tr>
<tr>
<td>Bonificaciones por proyecto terminado</td>
<td>7.428,57</td>
</tr>
<tr>
<td>Subtotal Costos Internos</td>
<td>22.507,94</td>
</tr>
<tr>
<td>COSTOS EXTERNOS</td>
<td></td>
</tr>
<tr>
<td>Costo Desarrollo e Implementación Software (5 meses)</td>
<td>90.000,00</td>
</tr>
<tr>
<td>RESULTADO NO OPERACIONAL</td>
<td>90.000,00</td>
</tr>
<tr>
<td>TOTAL INVERSION INICIAL</td>
<td>112.507,94</td>
</tr>
</tbody>
</table>

Figura 7-3: Costos de inversión inicial del proyecto.

• **Activos fijos:** otro costo relevante es la adquisición de activos fijos para la ejecución del proyecto. Este contempla la compra de un servidor y las licencias respectivas. Estas tiene costos netos estimados de 4500 dólares.

<table>
<thead>
<tr>
<th>ACTIVO</th>
<th>MONTO USD</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERVIDOR HP PROLIANT</td>
<td>2.500,00</td>
</tr>
<tr>
<td>LICENCIAS WINDOWS SERVER</td>
<td>2.000,00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>4.500,00</td>
</tr>
</tbody>
</table>

Figura 7-4: Costos de Activos fijos requeridos.
• **Depreciaciones y valor residual**: el proyecto contempla la compra de activos fijos detallados en el punto anterior, los cuales serán depreciados según en seis años, de acuerdo a la figura 7-5. Considerando que el proyecto es evaluado a cinco años plazo, se tomará el último año como valor residual. Es decir el valor residual será el valor libro de los activos fijos al final del quinto año.

<table>
<thead>
<tr>
<th>MONTO USD DEPRECIACION</th>
<th>CUOTAS DEPRECIACION</th>
</tr>
</thead>
<tbody>
<tr>
<td>416,67</td>
<td>Depreciación 6 años</td>
</tr>
<tr>
<td>333,33</td>
<td>Depreciación 6 años</td>
</tr>
<tr>
<td>750,00</td>
<td>Cuota anual depreciación</td>
</tr>
<tr>
<td>3.750,00</td>
<td>Valor depreciable</td>
</tr>
<tr>
<td>750,00</td>
<td>Valor libro 5to año</td>
</tr>
</tbody>
</table>

Figura 7-4: Depreciación

7.3. Ingresos del proyecto

Como fue planteando anteriormente, el proyecto contempla solo la evaluación de la especie cerezas para justificar todo el proyecto. Bajo este contexto, se analizará cómo varían las ventas al disponer de planes de venta más eficientes.

Para ello se analizará el comportamiento de las cerezas en la temporada 2012-2013, las cuales tuvieron un volumen de 290 mil cajas que representan un total de 8 millones de dólares, con un precio promedio FOB por caja estándar (5 kilos) de 28.05 USD.

<table>
<thead>
<tr>
<th>Especie</th>
<th>Cajas T12-13</th>
<th>PROM USD</th>
<th>Monto USD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEREZAS</td>
<td>289.187</td>
<td>28,05</td>
<td>$ 8.111.695,35</td>
</tr>
</tbody>
</table>

Figura 7-5: comportamiento cerezas temporada 2012-2013.

Sin embargo, esos ingresos se componen de distintos precios los que se diferencian principalmente dependiendo de la modalidad de ventas que haya canalizado cada venta. Para ello en la figura 7-6 se analiza cómo fue el desglose según la modalidad de venta.
La modalidad de ventas Libre Consignación es la menos rentable pero es la que da más agilidad al flujo de fruta cuando hay mucho stock disponible y sin compromisos de ventas. En esta modalidad la empresa despacha al cliente la fruta con un precio aún no definido, entregado a libre venta a un tercero (importador) quien hará la gestión de venta en el país de origen. Considerando que este intermediario cobrará una comisión por su gestión, los ingresos de este canal son más bajos.

De acuerdo al análisis del área de ventas, ese canal puede reducir su peso si se lograra mejorar la planificación de ventas, ya que se logrará anticipar los flujos de fruta y su distribución a cada mercado, logrando generar anticipadamente gestión de esa fruta comprometiéndola a clientes. Para ello, el área comercial, área experta, estima que:

- **Escenario pesimista**: de un 1% a un 3% el aumento anual de negocios en Firme o PMG, reduciendo, por tanto, en misma magnitud el porcentaje de ventas en libre consignación.

- **Escenario conservador**: de un 3% a un 8% el aumento anual de negocios en Firme o PMG, reduciendo, por tanto, en misma magnitud el porcentaje de ventas en libre consignación.

- **Escenario Optimista**: de un 8% a un 12% el aumento anual de negocios en Firme o PMG, reduciendo, por tanto, en misma magnitud el porcentaje de ventas en libre consignación.

- **Escenario muy optimista**: superior al 12% el aumento anual de negocios en Firme o PMG, reduciendo, por tanto, en misma magnitud el porcentaje de ventas en libre consignación.

La evaluación de la variación de ingresos se hará considerando el escenario conservador, definiendo un aumento anual en negocios firme y PMG del 5%, el cual es reflejado en la figura 7-7.
Varianza Anual de las Ventas según Modalidad de Venta

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Año 0</th>
<th>Año 1</th>
<th>Año 2</th>
<th>Año 3</th>
<th>Año 4</th>
<th>Año 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precios Promedio</td>
<td>33</td>
<td>30</td>
<td>24</td>
<td>28,05</td>
<td>28,2525</td>
<td>28,465125</td>
</tr>
<tr>
<td>% Cajas x Contrato</td>
<td>25%</td>
<td>30%</td>
<td>45%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Cajas x contrato</td>
<td>72297</td>
<td>86756</td>
<td>130134</td>
<td>289187</td>
<td>289188</td>
<td>289188</td>
</tr>
<tr>
<td>Monto USD x Contrato</td>
<td>$2.385.801,00</td>
<td>$2.602.680,00</td>
<td>$3.123.216,00</td>
<td>$8.111.697,00</td>
<td>$8.170.284,00</td>
<td>$8.231.745,00</td>
</tr>
</tbody>
</table>

Varianza Año 1 5%

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Año 0</th>
<th>Año 1</th>
<th>Año 2</th>
<th>Año 3</th>
<th>Año 4</th>
<th>Año 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precios Promedio</td>
<td>33</td>
<td>30</td>
<td>24</td>
<td>28,2525</td>
<td>28,465125</td>
<td>28,686278</td>
</tr>
<tr>
<td>% Cajas x Contrato</td>
<td>26%</td>
<td>32%</td>
<td>42%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Cajas x contrato</td>
<td>7912</td>
<td>91094</td>
<td>122182</td>
<td>289187</td>
<td>289188</td>
<td>289188</td>
</tr>
<tr>
<td>Monto USD x Contrato</td>
<td>$2.505.096,00</td>
<td>$2.732.820,00</td>
<td>$2.932.368,00</td>
<td>$8.170.284,00</td>
<td>$8.231.745,00</td>
<td>$8.296.311,00</td>
</tr>
</tbody>
</table>

Varianza Año 2 5%

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Año 0</th>
<th>Año 1</th>
<th>Año 2</th>
<th>Año 3</th>
<th>Año 4</th>
<th>Año 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precios Promedio</td>
<td>33</td>
<td>30</td>
<td>24</td>
<td>28,465125</td>
<td>28,686278</td>
<td>28,9228031</td>
</tr>
<tr>
<td>% Cajas x Contrato</td>
<td>28%</td>
<td>33%</td>
<td>36%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Cajas x contrato</td>
<td>83693</td>
<td>100431</td>
<td>105063</td>
<td>289187</td>
<td>289188</td>
<td>289188</td>
</tr>
<tr>
<td>Monto USD x Contrato</td>
<td>$2.630.331,00</td>
<td>$2.869.470,00</td>
<td>$2.731.944,00</td>
<td>$8.231.745,00</td>
<td>$8.296.311,00</td>
<td>$8.364.099,00</td>
</tr>
</tbody>
</table>

Varianza Año 3 5%

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Año 0</th>
<th>Año 1</th>
<th>Año 2</th>
<th>Año 3</th>
<th>Año 4</th>
<th>Año 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precios Promedio</td>
<td>33</td>
<td>30</td>
<td>24</td>
<td>28,686278</td>
<td>28,9228031</td>
<td>29,16894033</td>
</tr>
<tr>
<td>% Cajas x Contrato</td>
<td>29%</td>
<td>35%</td>
<td>36%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Cajas x contrato</td>
<td>87877</td>
<td>105453</td>
<td>95857</td>
<td>289187</td>
<td>289188</td>
<td>289188</td>
</tr>
<tr>
<td>Monto USD x Contrato</td>
<td>$2.761.869,00</td>
<td>$3.012.930,00</td>
<td>$2.521.517,00</td>
<td>$8.296.311,00</td>
<td>$8.364.099,00</td>
<td>$8.435.277,00</td>
</tr>
</tbody>
</table>

Varianza Año 4 5%

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Año 0</th>
<th>Año 1</th>
<th>Año 2</th>
<th>Año 3</th>
<th>Año 4</th>
<th>Año 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precios Promedio</td>
<td>33</td>
<td>30</td>
<td>24</td>
<td>29,16894033</td>
<td>29,42280031</td>
<td>29,686278</td>
</tr>
<tr>
<td>% Cajas x Contrato</td>
<td>30%</td>
<td>36%</td>
<td>33%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Cajas x contrato</td>
<td>92271</td>
<td>110725</td>
<td>86191</td>
<td>289187</td>
<td>289188</td>
<td>289188</td>
</tr>
<tr>
<td>Monto USD x Contrato</td>
<td>$2.899.941,00</td>
<td>$3.163.590,00</td>
<td>$2.300.568,00</td>
<td>$8.364.099,00</td>
<td>$8.435.277,00</td>
<td>$8.511.943,00</td>
</tr>
</tbody>
</table>

Varianza Año 5 5%

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Año 0</th>
<th>Año 1</th>
<th>Año 2</th>
<th>Año 3</th>
<th>Año 4</th>
<th>Año 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precios Promedio</td>
<td>33</td>
<td>30</td>
<td>24</td>
<td>29,686278</td>
<td>29,92280031</td>
<td>29,16894033</td>
</tr>
<tr>
<td>% Cajas x Contrato</td>
<td>32%</td>
<td>38%</td>
<td>30%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Cajas x contrato</td>
<td>92271</td>
<td>110725</td>
<td>86191</td>
<td>289187</td>
<td>289188</td>
<td>289188</td>
</tr>
<tr>
<td>Monto USD x Contrato</td>
<td>$3.044.943,00</td>
<td>$3.321.750,00</td>
<td>$2.068.584,00</td>
<td>$8.435.277,00</td>
<td>$8.511.943,00</td>
<td>$8.587,00</td>
</tr>
</tbody>
</table>

Aumento Ventas

<table>
<thead>
<tr>
<th>Año 0</th>
<th>Año 1</th>
<th>Año 2</th>
<th>Año 3</th>
<th>Año 4</th>
<th>Año 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.111.697,00</td>
<td>8.170.284,00</td>
<td>8.231.745,00</td>
<td>8.296.311,00</td>
<td>8.364.099,00</td>
<td>8.435.277,00</td>
</tr>
</tbody>
</table>

Ingresos Totales

<table>
<thead>
<tr>
<th>Año 0</th>
<th>Año 1</th>
<th>Año 2</th>
<th>Año 3</th>
<th>Año 4</th>
<th>Año 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>58.587,00</td>
<td>61.461,00</td>
<td>64.566,00</td>
<td>67.788,00</td>
<td>71.178,00</td>
<td></td>
</tr>
</tbody>
</table>

Figura 7-7: Varianza Anual de las Ventas según Modalidad de Venta.
7.4. Cálculo de indicadores

Para obtener indicadores financieros que nos permitan decidir sobre la viabilidad financiera del proyecto, se utilizará el valor actual neto (VAN) y la tasa interna de retorno (TIR). Para ello primero debe ser obtenida la tasa de descuento del proyecto.

7.4.1. Tasa de descuento

En la figura 7-8 se presenta la forma en que es calculada la tasa de descuento. La empresa en estudio no permite declarar las estructuras de deuda, pero sí comparte las primas por riesgo que aplica a cada unidad de negocio. Por tanto, se obtiene una tasa de descuento del capital utilizando una tasa de interés libre de riesgo del tipo BCU a 5 años más la prima por riesgo que le corresponde a Geofrut. Luego del análisis la tasa de descuento del proyecto es del 9.7%.

Figura 7-8: Cálculo de la tasa de descuento.
FLUJO DE EFECTIVO DEL PROYECTO

<table>
<thead>
<tr>
<th></th>
<th>AÑO 0</th>
<th>AÑO 1</th>
<th>AÑO 2</th>
<th>AÑO 3</th>
<th>AÑO 4</th>
<th>AÑO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flujos Operacionales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(+) Aumento Ingresos por ventas marginales con proyecto</td>
<td>58.587,00</td>
<td>61.461,00</td>
<td>64.566,00</td>
<td>67.788,00</td>
<td>71.178,00</td>
<td></td>
</tr>
<tr>
<td>(-) Comisiones de Venta</td>
<td>-1.757,61</td>
<td>-1.843,83</td>
<td>-1.936,98</td>
<td>-2.033,64</td>
<td>-2.135,34</td>
<td></td>
</tr>
<tr>
<td>(-) Costo anual contrato soporte software</td>
<td>-3.500,00</td>
<td>-3.500,00</td>
<td>-3.500,00</td>
<td>-3.500,00</td>
<td>-3.500,00</td>
<td></td>
</tr>
<tr>
<td>(-) Depreciación Activos Fijos</td>
<td>-750,00</td>
<td>-750,00</td>
<td>-750,00</td>
<td>-750,00</td>
<td>-750,00</td>
<td></td>
</tr>
<tr>
<td>(+) RESULTADO OPERACIONAL</td>
<td>52.579,39</td>
<td>55.367,17</td>
<td>58.379,02</td>
<td>61.504,36</td>
<td>64.792,66</td>
<td></td>
</tr>
<tr>
<td>Flujos no Operacionales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(+) Ingresos Financieros</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td></td>
</tr>
<tr>
<td>(-) Intereses</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td></td>
</tr>
<tr>
<td>(+) RESULTADO NO OPERACIONAL</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td></td>
</tr>
<tr>
<td>(+) UTILIDAD ANTES DE IMPUESTO</td>
<td>52.579,39</td>
<td>55.367,17</td>
<td>58.379,02</td>
<td>61.504,36</td>
<td>64.792,66</td>
<td></td>
</tr>
<tr>
<td>(-) Impuesto a la renta (20%)</td>
<td>-10.515,88</td>
<td>-11.073,43</td>
<td>-11.675,80</td>
<td>-12.300,87</td>
<td>-12.958,53</td>
<td></td>
</tr>
<tr>
<td>(+) UTILIDAD DESPUES DE IMPUESTO</td>
<td>42.063,51</td>
<td>44.293,74</td>
<td>46.703,22</td>
<td>49.203,49</td>
<td>51.834,13</td>
<td></td>
</tr>
<tr>
<td>(+) Depreciación Activos Fijos</td>
<td>750,00</td>
<td>750,00</td>
<td>750,00</td>
<td>750,00</td>
<td>750,00</td>
<td></td>
</tr>
<tr>
<td>(+) Ganancias/ Perdidas de Capital</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td></td>
</tr>
<tr>
<td>(+) Flujo Operacional</td>
<td>42.813,51</td>
<td>45.043,74</td>
<td>47.453,22</td>
<td>49.953,49</td>
<td>52.584,13</td>
<td></td>
</tr>
<tr>
<td>Flujos de Capitales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(-) Inversión Fija</td>
<td>-112.507,94</td>
<td>-112.507,94</td>
<td>-112.507,94</td>
<td>-112.507,94</td>
<td>-112.507,94</td>
<td></td>
</tr>
<tr>
<td>(+) Valor Residual de los Activos</td>
<td>750,00</td>
<td>750,00</td>
<td>750,00</td>
<td>750,00</td>
<td>750,00</td>
<td></td>
</tr>
<tr>
<td>Flujo de Capitales</td>
<td>-112.507,94</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td></td>
</tr>
<tr>
<td>Flujo de Caja Privado</td>
<td>-112.507,94</td>
<td>42.813,51</td>
<td>45.043,74</td>
<td>47.453,22</td>
<td>49.953,49</td>
<td></td>
</tr>
</tbody>
</table>

Van: 67.960,86

TIR: 30%

Aumento marginal ventas: 5,0%

Tasa descuento: 9,70%

Figura 7-9: Resultados financieros del proyecto.
7.4.2. Valor Actual Neto (VAN) del proyecto

De acuerdo con la figura 7-9, el VAN del proyecto se estima en 67,960,86 dólares en los 5 años de evaluación. Por tanto, el proyecto presenta un resultado positivo y muy rentable, ya que los flujos en los 5 años ya descuenta la exigencia de los inversionistas para con el proyecto, se aplica solo a una especie y aun así es muy rentable.

Así mismo, si se analiza el comportamiento del VAN en la figura 7-10, se puede apreciar como éste varía ante los distintos aumentos marginales de las ventas Spot hacia negocios más rentables versus la baja porcentual de las ventas en libre consignación. Con un aumento marginal del 3.3% el VAN es un dólar, de ahí en adelante el VAN aumenta considerablemente.

Figura 7-10 Comportamiento del VAN según Variación Marginal de Ventas Spot.
7.4.3. Tasa interna de retorno (TIR) del proyecto

La tasa interna de retorno que genera el proyecto se estima en 30%. Si bien la tasa de retorno es alta, esta puede ser explicada por que el cambio tecnológico conseguirá un aumento considerable en la eficiencia de ventas de la empresa, eficiencia que es rentable al contrastarlo con los costos requeridos para su desarrollo y mantención en el tiempo.

En la figura 7-11, se puede apreciar cómo se comporta la TIR ante los distintos aumentos marginales en las ventas Spot hacia negocios más rentables versus las ventas en libre consignación.
7.4.4. Sensibilización de variables

La principal variable que explica los buenos resultados obtenidos es la variación marginal de los ingresos por ventas spot hacia ventas en firme y precio mínimo garantizado por sobre ventas en libre consignación, las que el área comercial ha estimado en un 5% bajo un escenario conservador.

Se plantean varios escenarios distintos para ver cómo varía el VAN y la TIR, donde solo en el escenario pesimista (con variación de las ventas de 1% a 3%) el VAN sería negativo. Es menester considerar que la evaluación del proyecto se aplica solo a una especie de las que opera la empresa, por lo que los resultados pueden ser aún más positivos si se consiguen aumentos marginales en ventas Spot hacia negocios más rentables otras especies del mix de productos.

<table>
<thead>
<tr>
<th>Variaciones</th>
<th>Porcentaje</th>
<th>VAN</th>
<th>TIR</th>
<th>Escenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Var_Marg Vtas 1%</td>
<td>1,0%</td>
<td>-86.789</td>
<td>-30%</td>
<td>Pesimista</td>
</tr>
<tr>
<td>Var_Marg Vtas 2%</td>
<td>2,0%</td>
<td>-50.154</td>
<td>-9%</td>
<td></td>
</tr>
<tr>
<td>Var_Marg Vtas 3%</td>
<td>3,0%</td>
<td>-12.160</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>Var_Marg Vtas 3,3%</td>
<td>3,3%</td>
<td>1</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>Var_Marg Vtas 4%</td>
<td>4,0%</td>
<td>27.189</td>
<td>18%</td>
<td>Conservador</td>
</tr>
<tr>
<td>Var_Marg Vtas 5%</td>
<td>5,0%</td>
<td>67.961</td>
<td>30%</td>
<td></td>
</tr>
<tr>
<td>Var_Marg Vtas 6%</td>
<td>6,0%</td>
<td>110.165</td>
<td>41%</td>
<td></td>
</tr>
<tr>
<td>Var_Marg Vtas 7%</td>
<td>7,0%</td>
<td>153.887</td>
<td>52%</td>
<td></td>
</tr>
<tr>
<td>Var_Marg Vtas 8%</td>
<td>8,0%</td>
<td>199.125</td>
<td>62%</td>
<td>Optimista</td>
</tr>
<tr>
<td>Var_Marg Vtas 9%</td>
<td>9,0%</td>
<td>245.934</td>
<td>72%</td>
<td></td>
</tr>
<tr>
<td>Var_Marg Vtas 10%</td>
<td>10,0%</td>
<td>294.374</td>
<td>82%</td>
<td></td>
</tr>
<tr>
<td>Var_Marg Vtas 11%</td>
<td>11,0%</td>
<td>344.437</td>
<td>92%</td>
<td></td>
</tr>
<tr>
<td>Var_Marg Vtas 12%</td>
<td>12,0%</td>
<td>396.234</td>
<td>102%</td>
<td></td>
</tr>
<tr>
<td>Var_Marg Vtas 13%</td>
<td>13,0%</td>
<td>449.736</td>
<td>111%</td>
<td></td>
</tr>
<tr>
<td>Var_Marg Vtas 14%</td>
<td>14,0%</td>
<td>505.053</td>
<td>121%</td>
<td>Muy Optimista</td>
</tr>
<tr>
<td>Var_Marg Vtas 15%</td>
<td>15,0%</td>
<td>562.236</td>
<td>130%</td>
<td></td>
</tr>
<tr>
<td>Var_Marg Vtas 16%</td>
<td>16,0%</td>
<td>621.260</td>
<td>140%</td>
<td></td>
</tr>
<tr>
<td>Var_Marg Vtas 17%</td>
<td>17,0%</td>
<td>682.231</td>
<td>149%</td>
<td></td>
</tr>
<tr>
<td>Var_Marg Vtas 18%</td>
<td>18,0%</td>
<td>745.179</td>
<td>158%</td>
<td></td>
</tr>
<tr>
<td>Var_Marg Vtas 19%</td>
<td>19,0%</td>
<td>810.174</td>
<td>168%</td>
<td></td>
</tr>
<tr>
<td>Var_Marg Vtas 20%</td>
<td>20,0%</td>
<td>877.217</td>
<td>177%</td>
<td></td>
</tr>
</tbody>
</table>

Figura 7-12. Escenarios de Variación de Ventas.
Capítulo 8: Generalización

La estructura de procesos y sistemas desarrollada para Geofrut puede ser válida para otra empresa o industria con procesos similares, por lo que admite la posibilidad de generalización. Esto se logra a través de Frameworks, que son estructuras de software válidas en muchas situaciones diferentes (Barros [3]). En este capítulo se detalla el Framework que permite encapsular el conocimiento adquirido en Geofrut a través del proyecto, en el cual fue trabajada la gestión de la cadena de abastecimiento y distribución de fruta. Una vez generalizado, será aplicado para una empresa porcina, la cual tiene un tratamiento particular pero muy similar al de la empresa en estudio, lo cual quedará demostrado y explicado en el desarrollo del presente capítulo.
8.1. **Framework de Generalización**

Los frameworks son estructuras de software válidas en muchas situaciones diferentes (Barros [3]). A partir de las estructuras de procesos y sistemas analizadas en el presente proyecto de tesis, la experiencia y resultados obtenidos pueden ser generalizados a través del desarrollo de un frameworks.

Considerando que fue utilizada la metodología de ingeniería de procesos (Barros [3]), en la cual se analizó en detalle el diseño de procesos, rediseño, lógicas de negocios y requerimientos de sistema, podemos proponer una estructura generalizada para enfrentar problemas similares en otras empresas de la industria o incluso de otra industria con características similares en cuanto al problema a resolver planteado.

8.1.1. **Dominio del framework**

El dominio de esta generalización se define para todas aquellas empresas que utilizan materias primas perecibles, las procesan bajo ciertos estándares para ser exportables y la distribuyen al mercado mundial y no local. Este dominio representa situaciones como la estimación de las materias primas y su rendimiento exportable, lo que podría ser aplicable tanto para lácteos, carnes, fruta, vegetales, entre otros, y el proceso estimación de la distribución de estos productos hacia los mercados.

8.1.2. **Lógica de negocios generalizada**

En el capítulo 4 del presente documento, se describió en qué proceso de la arquitectura se encuentra –específicamente- la lógica de negocios que será generalizada. En tal capítulo se detallan dos procesos que han sido desarrollados a lo largo de la tesis, Gestión de abastecimiento de fruta y gestión de ventas, ambos procesos pertenecientes a la cadena de Valor (Macro 1, Barros [3]). Es por ello que a continuación se presentará la lógica de negocios generalizada para cada uno de los procesos.
8.1.2.1. Lógica de negocios generalizada en la estimación de la oferta

La estimación de la oferta, que en la agroindustria puede ser denominada como cosecha en frutos y vegetales y producción en porcinos, peces o lácteos, se encuentra en la Macro 1 al ser una actividad 100% operacional, y dentro de esta macro específicamente en la gestión de abastecimiento.

La gestión de abastecimiento es generalizada para la industria y se refleja en la figura 8-1. En ella se aprecia que existe una gestión de productores (fruta, porcino, lácteos, etc.), debe existir también un proceso de estimación de la producción y un proceso de asesoría técnica, el que toda exportadora debe procurar hacer para instaurar las políticas y normas del plan de calidad requerido para exportar y cumplir con las obligaciones sanitarias requeridas por mercados internacionales.

El problema de la estimación de la producción en esta industria requiere de dos estimaciones; por una parte está la estimación de la producción como materia prima (kilos, cerdos, litros, peces, etc.), pero también es necesario estimar la producción en unidades de venta (cajas, pallet, etc.). El flujo de procesos genérico se presenta en la figura 8-2, en el cual se presenta cómo deberían ser los
procesos y sus interacciones, entre el área técnica, el sistema y el productor para obtener la estimación de la producción.

La propuesta de esta tesis es que el sistema determine la muestra necesaria para cada productor, el área técnica tome la muestra en colaboración con el productor, que los datos sean cargados al sistema y estos sirvan de entrada para ejecutar el modelo, el cual incorpora además datos históricos para determinar el rendimiento exportable y con esto obtener una estimación de la producción en la unidad de venta. La estimación pasa a ser evaluada por el área técnica, de estar con errores deberá dar la opción de ajustar parámetros y volver a ejecutar el modelo, caso contrario se acepta estimación para actualizar el sistema hacia los siguientes flujos relacionados y también dar aviso al productor del resultado de su estimación.

En cuanto al sistema, el módulo de producción debería contar con 4 secciones necesarias:

- Una para la estimación de la materia prima y poder cargar la información según la técnica utilizada.
- Otra para la estimación de la Producción, la cual toma como input los datos de conteo y lo mezcla con la data histórica respecto al rendimiento exportable, siguiendo la metodología KDD para preparar los datos, y obtener con ella la producción en unidad de venta. Este módulo es donde se hace la ejecución del modelo predeterminado, ya sea con técnica simples, como series de tiempo, o modelos más sofisticados, como análisis clúster, redes neuronales, entre otras técnicas de data Mining.
- Otra sección importante es la que permite ajustar los modelos, la cual debe permitir configurar o cambiar modelos de acuerdo a la necesidad de la empresa según el desempeño que presenten en el tiempo (medidos por el error de estimación).
- Finalmente, una de las secciones más importantes para el usuario; la sección reportes. Esta sección es la que permite visualizar la información de acuerdo a los requerimientos de cada empresa, creando informes ad-hoc.

![Diagrama de la estructura del sistema de estimación de producción](image)

Figura 8-3: estructura del sistema para módulo de estimación de producción.

En cuanto a la interfaz gráfica del usuario, reflejada en la figura 8-4, se plantea la separación dentro del módulo de oferta en las 4 secciones descritas en la figura 8-3 para aislar los análisis de cada proceso. Sin embargo, el contenido de cada sección no se especificará mayormente, ya que es parte de los requerimientos que quiera representar cada organización.

![Interfaz del módulo de oferta](image)

Figura 8-4: interfaz módulo de oferta.

En la figura 8-5 se presenta el diagrama de paquetes generalizada para mantener modelos de estimación de oferta. Este esquema propone tener un paquete desarrollador y mantenedor de modelos predictivos, que permita el ajuste y eventual recalibración de modelos de pronóstico de acuerdo al cambio en los datos de entrada para la estimación. Estos modelos, tanto para materia prima como estimación de oferta, pueden ir de muy simples a muy complejos,
dependiendo de la evaluación de su desempeño predictivo en el tiempo y la capacidad que tenga la empresa de mantener modelos más sofisticados.

Figura 8-5: Diagrama Paquetes para mantener modelos de Estimación Oferta

8.1.2.2. **Lógica de negocios genérica para la estimación de ventas**

La estimación de las ventas corresponde a una actividad de la cadena de valor (Macro 1), la cual se encuentra en la gestión de Marketing y Ventas, ingresando en Análisis del Mercado y específicamente en Analizar comportamiento de Ventas, tal como fue descrito en el capítulo 4.

El flujo de procesos generalizado para Analizar el comportamiento de Ventas se refleja en la figura 8-6. La propuesta de generalización propone contar con un equipo de Market Manager, en especial para empresas con gran volumen de ventas y a nivel mundial en que dividen sus mercados para especializarse, además de un comité de ventas que se encargue de evaluar las decisiones globales de ventas y aprobar la estimación. En cuanto a las actividades, la propuesta generalizada es que cada market manager pueda invocar la predicción pero quien analiza los resultados es el comité de ventas. Este flujo permite también que cada market manager pueda ajustar las estimaciones de ventas de sus mercados de acuerdo a su análisis de las condiciones futuras del mercado que puedan diferir de la estimación, lo anterior, sin embargo, exige ser validado como equipo de ventas para determinar la distribución final de las ventas de la compañía. Una vez aceptada la estimación pasa a otro proceso que es programación de ventas.
En cuanto a la interfaz gráfica del usuario de gestión de ventas, reflejada en la figura 8-7, se plantea la separación dentro del módulo en las 4 secciones:

- Estimación: Establece la estimación de demanda obteniendo la distribución con la data histórica y el uso de modelos previamente configurados.
- Ajuste Estimación: Permite cambiar la estimaciones de acuerdo al conocimiento experto de cada responsable de ventas, basados en su juicio experto y estudio de los cambios en las condiciones del mercado no captados por la data histórica.
- Plan de Ventas: en esta sección se puede apreciar cómo queda adecuada la oferta ante la estimación de ventas.
- Ajuste Modelos: sección que permite ir cambiando o actualizando los modelos predictivos.

El contenido de cada sección no se especificará mayormente, ya que es parte de los requerimientos que quiera representar cada organización.

Figura 8-7: interfaz módulo de demanda.
En la figura 8-8 se presenta el diagrama de paquetes generalizada para mantener modelos de estimación de demanda. Al igual que el esquema presentado para la estimación de oferta, este esquema propone tener un paquete desarrollador y mantenedor de modelos predictivos, que permita el ajuste y eventual recalibración de modelos de pronóstico de acuerdo al cambio en los datos de entrada para la estimación. El paquete de modelos, permite definir cuán simple o complejo será el modelo a utilizar, dependiendo de las necesidades de cada empresa y el nivel de detalle al que se quiera llegar con la estimación.

Figura 8-8: Diagrama Paquetes para mantener modelos de Estimación demanda
8.2. Especialización para una empresa Porcina

El Framework se validará enfrentando un problema similar al resuelto en Geofrut pero en otra empresa. Para ello se ha seleccionado la empresa Maxagro. Esta empresa nace en 1971 y está dedicada principalmente a producción y comercialización de carne de cerdo. Para ello dispone de criaderos de cerdo, una planta faenadora y comercial Maxagro, quien realiza la gestión de exportación de la carne a distintos mercados en el mundo.

En la actualidad Maxagro exporta a más de 50 países y cuenta con tres oficinas en los principales mercados de carne de cerdo: España, Japón y China. Además de contar con puntos de venta en el mercado local, principalmente en la VI región.

8.2.1. Estimación de Oferta

Al igual que en el caso de Geofrut, la materia prima experimenta un proceso de selección para determinar aquellos productos que califican como exportables y/o productos para venta nacional. También, al tratarse de un producto alimenticio y ser un producto perecedero experimenta procesos similares en su ciclo de abastecimiento y distribución, ya que debe ser faenado, congelado y puesto a la venta en tiempos breves para evitar su descomposición y garantizar la satisfacción del cliente.

A continuación se presentan los procesos generalizados para obtener la estimación de oferta, tales como el conteo estadístico y el rendimiento exportable, que en conjunto construyen la estimación de oferta.

8.2.1.1. Conteo estadístico

A diferencia de la fruta en este rubro la materia prima se obtiene todo el año y no por temporada, pese a ello si debe existir un proceso de monitoreo de los cerdos en función del tiempo que debe permanecer en el criadero antes de poder ser faenado, por lo que el conteo estadístico es una actividad clave en cuanto a la capacidad de oferta de la empresa, así como en la programación de la faena y posterior venta.

El modelo de conteo puede presentar variables en cuanto a la técnica utilizada para determinar la cantidad, puede ser un método por muestreo

estadístico o manejar un inventario del universo de cada cerdo, dado que es más fácil de controlar a diferencia de la fruta. Sin embargo, e independiente del método utilizado, es importante clasificar la materia prima en distintos segmentos basados en sus características fisiológicas: edad, peso, estatura, enfermedades, etc., y definir este inventario en distintas fechas de posible faena para mantener un plan de producción y ventas.

8.2.1.2. Rendimiento exportable

Al igual que la fruta, el cerdo experimenta un proceso similar en cuanto a la forma de determinar el rendimiento exportable. El peso bruto de cada cerdo no es 100% exportable por razones evidentes, por lo que obtener un rendimiento exportable es clave para cuantificar los kilos reales de venta exportable. Sin embargo, la elaboración del modelo de rendimiento exportable en este caso debe ser más específico y sofisticado, dado que de no calificar para exportación el margen no exportable puede calificar para el mercado nacional y tener distintas categorizaciones igualmente rentable. Al ser un proceso de producción y venta continuo, se maneja más data para hacer mejores y más completos análisis respecto al rendimiento, lo importante es definir la actividad como clave en la obtención de un plan de producción que permita anticipar los flujos y actividades en las áreas relacionadas.

8.2.2. Estimación de demanda

La distribución a distintos mercados también es una actividad relevante, ya que cada mercado tiene distintas exigencias en cuanto a estilos de corte o tipos de carnes requeridas, por lo que una correcta agrupación de las categorías de carne hacia los mercados es un factor relevante a considerar para hacer una correcta distribución.

La agrupación de las ventas por mercados debería ser ajustada a las categorías de carne a vender, estimando por cada tipo de corte a qué mercado será destinado. Al igual que el caso de la oferta, la demanda cuenta con más datos y las ventas son continuas durante todo el año, por lo que se pueden aplicar modelos más sofisticados para definir a qué mercado distribuir cada categoría de carne procesada.
Capítulo 9: Conclusiones

En este capítulo se presentan conclusiones recolectadas a lo largo de este proyecto de tesis. La investigación fue amplia y abarcó distintos procesos al interior de la empresa en estudio, por lo que las conclusiones serán separadas en distintos ítems para acotarlas a cada caso en particular. Finalmente, se presenta el trabajo futuro ligado a este proyecto, en el que se pueden conseguir ampliar los beneficios para la empresa en estudio, a través de la mejora de procesos relacionados a los trabajados en el alcance de este proyecto.
9.1. **Lecciones aprendidas**

A modo de conclusión del proyecto se presentan las lecciones aprendidas tanto en la metodología utilizada, en el estudio de procesos y su rediseño, en la gestión de la oferta y demanda en el sector frutícola, en la determinación de los modelos más apropiados según el problema de negocio a resolver y finalmente en la evaluación económica del proyecto.

9.1.1. **De la metodología utilizada y su relación con la estrategia**

La metodología de ingeniería de procesos aprendida en el MBE y puesta en práctica en el presente proyecto de tesis, proporciona un marco de referencia importante para abordar proyectos al interior de las empresas en las cuales existe un problema de negocio. Esta metodología se enfoca en mejorar el funcionamiento de los procesos mediante la incorporación de tecnologías de información que tengan un impacto estratégico. Lo anterior debido a que la metodología inicia con un estudio de la estrategia de la empresa, su modelo de negocio y su arquitectura de procesos, antes de proponer un rediseño. Por consiguiente, los resultados obtenidos estarán alineados a la estrategia de la empresa.

La metodología utilizada fue adecuada a los objetivos que requerían la empresa en estudio y su problema de negocio. Es por esto que, a través del estudio estratégico de Geofrut y su arquitectura de procesos, se logra entender el sentido del porqué el proyecto generaría un impacto positivo en la organización que justificase su realización. Esto además permite gestionar el cambio organizacional en la empresa, a través de narrativas fundadas sobre los beneficios estratégicos que tendrá el proyecto para la empresa.

9.1.2. **De los procesos, rediseño y la lógica de negocios utilizadas**

El presente proyecto se basa en un análisis profundo del diseño de procesos, el cual permite acotar el alcance del mismo hacia aquellos procesos que, luego de un análisis acabado, se detectan oportunidades de mejora. La lógica de negocio desarrollada y los modelos seleccionados, son personalizados a los requerimientos de cada proceso en particular, por lo que su implementación es liderada por los dueños de estos procesos y permiten que su transición a la práctica se logre de forma exitosa.

La empresa en estudio, y agroindustria en general, se caracteriza por estar en un proceso de crecimiento en cuanto a la madurez de sus procesos. A través
del estudio de la arquitectura de procesos en Geofrut (capítulo 4), se concluye que hay procesos claves en la generación de valor al cliente que no existen (como estimación de demanda) o son aún informales (como la estimación de oferta) con
información descentralizada o poco precisa, lo cual hace que los procesos sean
ineficientes. La falta de madurez de los procesos mencionados, hace que en la
práctica la empresa no logre trabajar de forma eficiente, coordina y anticipada ante
eventos futuros, por lo que conseguir un cambio mediante lo propuesto en el
presente proyecto puede tener como resultado un impacto significativo en los
procesos de negocio y beneficio a nivel económico.

Al estudiar los procesos y lógicas de negocio de Gestión de ventas, se
puede apreciar la relevancia de contar con estimaciones de demanda, proceso
clave para el negocio que, sin embargo, y a la fecha, no cuenta con tales
actividades pese a su enorme impacto en los resultados del negocio. Dado que la
fruta requiere ser totalmente vendida y de forma ágil, por su rasgo de ser
altamente perecible, anticiparse a la venta y distribución de los inventarios en
ventas Spot permite conseguir mejores oportunidades de negocio y no destinar
hacia ventas en libre consignación tal como fue explicado en el desarrollo del
proyecto. La planificación actual, al ser tan informal, pasa a ser delegada
principalmente a la gestión y experiencia de cada Market Manager más que un
trabajo colaborativo y coordinado que permita a la empresa, como un todo,
anticiparse a los flujos de venta cada temporada.

Por su parte, la gestión de cosecha cuenta con un proceso más formal
aunque inmaduro e ineficiente aún. La simplicidad para obtener cálculos de
estimación y la descentralización de la información por la falta de un sistema, hace
que el proceso aunque esté instaurado no sea lo suficientemente robusto para
actuar con agilidad y precisión y permitir a la empresa completa trabaje de forma
coordinada y anticipada.

9.1.3. De la empresa y gestión de exportación de frutas

La empresa en estudio tiene cerca de 25 años en la industria, tal como se
indicó en la sección 1.2.1., por lo que es una empresa relativamente madura
considerando que la industria aun es emergente y comienza a tomar fuerza recién
da fines de la década de los 80 con la apertura comercial del país (sección 1.2.2).

A nivel de gestión de exportación es una empresa consolidada y
competitiva, estando dentro del top 15 en una industria con más de 500
competidores locales. Sin embargo, a nivel tecnológico, los esfuerzos y recursos
se han destinado principalmente hacia los sistemas transaccionales con la misión
de que sean capaces de acompañar el crecimiento de la empresa, más que
invertir recursos en sistemas que permitan usar la data transaccional para mejorar los procesos.

Pasar a una capa analítica es un paso aún no cubierto, tanto por la variable tecnológica aún no disponible, por el diseño de procesos actual, y por no contar con el personal requerido para dar tal paso. Por lo mismo los esfuerzos han sido destinados solo a mejoras en la capturas de datos más que en el uso de esos datos para generar conocimiento.

La anticipación a los flujos de fruta y su distribución es un requisito evidente para ser competitivos. Al trabajar con fruta fresca, que posee la característica de ser altamente perecible, además de que el periodo de cosecha o temporada de cada fruta promedia de 4 a 8 semanas, es necesario ser precisos y ágiles en la planificación de la distribución de fruta la que pasa a ser una ventaja competitiva clave en la generación de valor. Para lograr lo anterior, se requiere que toda la empresa formalice y ejecute procesos de planificación a través de información centralizada y precisa, la cual reúna reglas de negocio sobre la distribución de las ventas que permita tomar decisiones acertadas y coordinadas anticipadamente.

La empresa posee una gran cantidad de información de todo el ciclo que experimenta la fruta desde su cosecha hasta su venta. Sin embargo, el sistema de producción, que almacena esta información, maneja distintas bases de datos para cada temporada frutícola, por lo que para hacer análisis las áreas deben recurrir a distintas planillas que leen cada base de datos y hacer con ello análisis entre una temporada y otra. Esta limitante dificulta hacer análisis como los propuestos por este proyecto, más aún si se considera que no existe un área específica para hacer análisis desde bases de datos, como en otras empresas más grandes, y esta función de análisis queda en responsabilidad de cada dueño de proceso, los cuales no siempre tienen habilidades suficientes para manejar datos y construir buenos análisis.

El rediseño de procesos propuesto puede generar un efecto importante en los procesos de negocio de la empresa. Pese a ello, se requiere el compromiso de toda la organización, en particular el equipo comercial y agrónomos, para que la información sea fluida, de calidad y precisa para la toma de decisiones y que se logre instaurar como proceso formal en el tiempo. Dado que los procesos de estimación de cosecha y planificación de ventas son el núcleo de la cadena de abastecimiento y distribución de la empresa, resulta relevante tomar el peso que tendrá esta información en todas las áreas de la empresa, en procesos también claves como son Embarques, Packing, Abastecimiento de insumos y finanzas.
9.1.4. Sobre los resultados del proyecto

Los resultados obtenidos del rediseño de procesos tomando como muestra a la especie cerezas y acotarlo a las ventas Spot, de acuerdo a lo solicitado por la empresa, demuestran que en la teoría es posible aumenta la eficiencia en los procesos y conseguir resultados positivos luego de hacer una inversión en el proyecto tecnológico planteados. El diseño del sistema no solo genera una plataforma de información, sino que además permite centralizar la información y ponerla a disposición de toda la empresa, instaurando además procesos formales de análisis de datos que permitan la anticipación.

Lo anterior debido a que el proyecto define la forma en que se debe hacer la estimación de cosecha, pero procurando conservar las actividades que no se desean tocar (como el método de conteo de frutos) y mejorando aquellos detectados como poco precisos (como el mecanismo usado para determinar el rendimiento exportable), todo lo anterior formalizado en un sistema que permite centralizar la información y asegurar una mejor calidad en la estimación de cosecha.

Respecto a la forma de obtener una mejor estimación del rendimiento exportable, en la figura 9-1 se muestra un cuadro comparativo que resume el MAPE obtenido en los distintos modelos analizados, versus la realidad actual en donde solo se usa un promedio del rendimiento de la especie de la temporada inmediatamente anterior. El modelo seleccionado fue la media móvil con n=2, ya que el modelo presentó un buen desempeño y además fue de gusto para el área técnica de la empresa quien argumentó que es mejor usar datos recientes, dados los cambios experimentados en el tiempo (2 o 3 años): como mejoras en las técnicas de cultivo o proceso, entre otras.

<table>
<thead>
<tr>
<th>VARIEDAD</th>
<th>MEDIA MOVIL</th>
<th>SUAVIZACIÓN EXPONENCIAL</th>
<th>PROMEDIO ESPECIE (Según Temp. Anterior)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N=2</td>
<td>α = 0,7</td>
<td>α = 0,8</td>
</tr>
<tr>
<td>BING</td>
<td>20%</td>
<td>1,75%</td>
<td>1,71%</td>
</tr>
<tr>
<td>SWEET HEART</td>
<td>15%</td>
<td>1,56%</td>
<td>2,24%</td>
</tr>
<tr>
<td>LAPINS</td>
<td>15%</td>
<td>0,76%</td>
<td>0,64%</td>
</tr>
<tr>
<td>VAN</td>
<td>14%</td>
<td>0,73%</td>
<td>0,78%</td>
</tr>
<tr>
<td>ROYAL DAWN</td>
<td>14%</td>
<td>1,08%</td>
<td>0,89%</td>
</tr>
</tbody>
</table>

Figura 9-1. Comparativa del error de estimación de cosecha con y sin proyecto.

Por otra parte el proyecto crea, con la colaboración de los representantes del área de ventas, un proceso inexistente como lo es la estimación de ventas por mercados. Para ello, se busca el mecanismo de solución que mejor responda a la
problemática de negocio del área comercial y se definen los criterios de estimación, consiguiendo construir -con la data histórica- un modelo simple pero efectivo que define para cada especie variedad los porcentajes de distribución por mercados los cuales son calzados con la estimación de cosecha. Esta estimación además cuenta con la capacidad de ser modificada según el juicio experto de cada Market Manager, respecto a su evaluación del comportamiento futuro del mercado, pero ya contando con una base de distribución que agilice la toma de decisiones de venta. Esto permitirá disponer de una estimación basados en el comportamiento histórico, pero además dar la agilidad para responder ante cambios naturales que enfrentan los mercados en sus demandas.

El resultado real conseguido con esta mejora de procesos, se materializará en el aumento de las ventas Spot hacia negocios más rentables por sobre las ventas en libre consignación que hoy por hoy permiten reducir inventarios de fruta perecible, esto ya que al contar con una asignación anticipada de la fruta que dispondrá cada mercado permite a cada Market Manager gestionar anticipadamente acuerdos de venta con mejores condiciones de venta.

Respecto a las técnicas de Data Mining aplicadas en este proceso, se optó por trabajar con técnicas de series de tiempo para la estimación de demanda, dado que presentaban un buen desempeño para trabajar con pocos datos (al ser una demanda que opera en el muy corto plazo y en temporadas breves de tiempo en cada año). De los modelos utilizados se optó por la media móvil ya que presentaba el mejor desempeño (bajo MAPE), era el modelo más comprendido por el área involucrada, y además el modelo de suavización exponencial era más eficiente con α = 0.5 y α = 0.6 lo cual presentaba resultados equivalentes a la media móvil.

<table>
<thead>
<tr>
<th>VARIEDAD</th>
<th>% Total Exportado</th>
<th>MEDIA MOVIL</th>
<th>SUAVIZACIÓN EXPO</th>
</tr>
</thead>
<tbody>
<tr>
<td>BING</td>
<td>20%</td>
<td>6,60%</td>
<td>6,60%</td>
</tr>
<tr>
<td>SWEET HEART</td>
<td>15%</td>
<td>1,79%</td>
<td>1,79%</td>
</tr>
<tr>
<td>LAPINS</td>
<td>15%</td>
<td>8,69%</td>
<td>8,69%</td>
</tr>
<tr>
<td>VAN</td>
<td>14%</td>
<td>3,21%</td>
<td>3,21%</td>
</tr>
<tr>
<td>ROYAL DAWN</td>
<td>14%</td>
<td>5,60%</td>
<td>5,60%</td>
</tr>
</tbody>
</table>

Figura 9-2. Resumen de Modelos de Estimación de Demanda
9.2. **Trabajos futuros**

En esta sección se presentan un conjunto de trabajos que se consideran factibles de llevar a cabo en un futuro, a partir de las mejores planteadas en el presente proyecto.

9.2.1. **De los Procesos Relacionados**

La estimación de cosecha y demanda analizada en este proyecto, afecta directamente a las áreas de abastecimiento y venta de fruta. Sin embargo, al estar dentro de la cadena de valor del Packing, vemos como estos flujos de información permitirían optimizar las decisiones de la Gestión de Packing de la figura 9-3, tales como programación de turnos y operación de máquinas, programación de fletes de ingreso de bins cosechados y programar despachos de fruta embalada a clientes.

![Figura 9-3. Gestión de Packing.](image)

Es clara la relación de estos procesos con los flujos que genera el proyecto y cómo esta información podría ser utilizada para optimizarlos. De esta forma
todas las empresas del grupo podrán trabajar de forma más coordinada y ser más precisas en la generación de valor al cliente.

9.2.1.1. Programación de turnos y maquinaria

Para la gestión de Packing es relevante conocer la estimación de cosecha y su fecha de inicio, ya que con esta información puede planificar la capacidad requerida y en qué semanas habrá un mayor/menor flujo. Por su parte, conocer el plan de ventas, permite planificar los insumos y materiales requeridos de acuerdo a los embalajes específicos para cada mercado. Por tanto ambas fuentes de información permitirían planificar debidamente los turnos requeridos y su dotación óptima, así como la cantidad de líneas de procesos (maquinaria) y capacidad de frío requerida para cada semana y los materiales a utilizar. Por tanto, utilizando los flujos de información, además de hacer análisis con estos datos, se podría trabajar en otro módulo que permita planificar la programación de la producción.

9.2.1.2. Programación de fletes de ingreso de bins

La programación de fletes de ingreso de bins, corresponde a la programación del envío de la fruta por parte de los productores y el transporte requerido para trasladarlos hacia la planta. Esta actividad también incluye el despacho previo de Bins vacíos al productor, el cual depende del tamaño del campo y volumen de fruta a procesar. Es por esto, que la estimación de cosecha es un flujo muy relevante para este proceso, el cual puede ser optimizado en un trabajo futuro programando reglas de negocio que se alimenten de la información de cosecha y permitan hacer una buena programación.

9.2.1.3. Programación de despachos

La programación de los despachos es un proceso muy relacionado con el área comercial. Inclusive el área depende de la gerencia comercial y sus decisiones de ventas. Dentro de sus funciones se encuentra la programación de los despachos de acuerdo a los requerimientos de los clientes, pero distribuyéndolo eficientemente en el mejor medio de envío (marítimo, aéreo o terrestre). La programación anticipada de los espacios navieros o aéreos o los transportes terrestres por Sudamérica, dependen netamente del plan de ventas, es decir de la distribución a los mercados ajustados con el plan de cosecha. En el presente proyecto se considera esta información como un flujo informal en el cual
el área puede acceder a la información para su uso, pero no se genera una lógica de negocios que permita optimizar las tareas relevantes en este proceso con tal información. Por ende se detecta la necesidad de un trabajo futuro que abarque este proceso.

9.2.2. De los proyectos TI y área de analítica

Como ha sido estudiado previamente, la empresa no ha centrado esfuerzos en proyectos TI hacia el desarrollo de una capa analítica. Sin embargo, el hecho de trabajar por años en mejorar la información transaccional, permite que exista mucha data histórica que puede ser trabajada. Sin embargo, es necesario crear un área que se dedique al estudio de proyectos de analítica que permita mejorar los procesos y hacer un mejor uso de la información para obtener conocimiento. Para ello deben ser estudiadas las necesidades de información extra o que requieren mejora, para en un futuro contar con data de calidad para ampliar el set de modelos de BI.

9.2.3. De los modelos Ambientales

En la sección 2.3.5.2 se analizaron los modelos ambientales y su relación con la producción frutícola. Si bien en los modelos de conteo la calidad de su precisión es aceptable y su aplicación es simple, tiene como requisito que los frutos ya se encuentren en formación y próximos a la cosecha para ser precisos, por lo que su uso es a corto plazo. Por su parte, los modelos ambientales tienen un campo interesante de ser estudiado, dada su enorme correlación con los niveles de producción que permitan anticiparse al largo plazo si se estudian bien las variables ambientales y se construye una base de datos de la calidad requerida.
Capítulo 10: Bibliografía

En este capítulo se presentan las referencias bibliográficas utilizadas en todo el proyecto. Las cuales fueron citadas en el desarrollo de cada tema en particular.

10. Material docente, Diplomado en Business Intelligence, FEN, Universidad de Chile, primera versión 2012.

