Table of Contents

List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>xi</td>
<td></td>
</tr>
</tbody>
</table>

1 Introduction

1.1 Engineering motivation .. 3
1.1.1 Hydrologic problems in northern Chile 3
1.1.2 CO$_2$ emissions in northern Chile 6
1.2 Physical motivation ... 6
1.3 Open questions and contributions of this work 10

I Literature review and previous concepts

14

2 Dimensional quantities and notation

15

3 Physics of fluid mixtures

19

3.1 Dimensionless concentration quantities 19
3.2 Two-fluid miscible model .. 20
3.3 Model for aqueous solutions of propylene-glycol 21

4 Convective phenomena in porous media

27

4.1 Mathematical theory .. 29
4.2 Laboratory experiments ... 34
4.3 Analogue model and CO$_2$ solubility trapping 43

II Theoretical background

46

5 Governing equations for saturated porous media

47

5.1 Introduction .. 47
Table of Contents

5.2 Capture and storage of CO₂ in geothermal reservoirs 50
5.3 Regular perturbation theory ... 53
 5.3.1 Leading order terms .. 54
 5.3.2 \(O(\delta^2) \) expansion ... 55
 5.3.3 \(O(\delta^4) \) expansion ... 56
5.4 Hele-Shaw model .. 57
 5.4.1 Importance of mechanical dispersion 59
 5.4.2 Model for the mean scalar dissipation rate 60

6 Linear stability analysis .. 64
 6.1 Introduction ... 64
 6.2 Thermal convection in porous media 65
 6.2.1 Free slip boundary conditions without interfacial effects 66
 6.2.2 No slip boundary conditions without interfacial effects 68
 6.2.3 Perturbative solutions for velocity and temperature 72
 6.3 Long-wave instability dynamics 79
 6.3.1 Dominant-mode solution using the SS-QSSA technique 82
 6.3.2 \(O(1) \) outer solution .. 85
 6.3.3 \(O(\epsilon) \) inner solution 86
 6.3.4 \(O(\epsilon) \) outer solution and velocity reconstruction 86
 6.3.5 Critical time and wavenumber scalings 87

III Nonlinear simulations .. 90

7 Heat transport in porous media ... 91
 7.1 Introduction ... 91
 7.2 Mathematical model and scalings 94
 7.2.1 Heat transport ... 96
 7.2.2 The role of mechanical dispersion 98
 7.2.3 Scalar dissipation rate .. 100
TABLE OF CONTENTS

IV Visualization and image analysis

8 Optical density visualization methods

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>The Hele-Shaw geometry</td>
<td>105</td>
</tr>
<tr>
<td>8.2</td>
<td>Visualization by light attenuation</td>
<td>106</td>
</tr>
<tr>
<td>8.3</td>
<td>Synthetic Schlieren</td>
<td>108</td>
</tr>
</tbody>
</table>

9 Image processing methods

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Multiphase image segmentation</td>
<td>113</td>
</tr>
<tr>
<td>9.1.1</td>
<td>Chan-Vese model</td>
<td>114</td>
</tr>
<tr>
<td>9.1.2</td>
<td>Level-set formulation</td>
<td>115</td>
</tr>
<tr>
<td>9.1.3</td>
<td>Differential equations for Chan-Vese model</td>
<td>116</td>
</tr>
<tr>
<td>9.1.4</td>
<td>δ-distribution problems in length computation</td>
<td>118</td>
</tr>
<tr>
<td>9.1.5</td>
<td>$TV-L^2$ multiphase Chan-Tai model</td>
<td>119</td>
</tr>
<tr>
<td>9.2</td>
<td>Video motion by $TV-L^1$ optical flow</td>
<td>122</td>
</tr>
<tr>
<td>9.2.1</td>
<td>L^2 Horn-Schunck model</td>
<td>122</td>
</tr>
<tr>
<td>9.2.2</td>
<td>$TV-L^1$ optical flow model</td>
<td>124</td>
</tr>
</tbody>
</table>

10 Thermal experiments in porous media

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>127</td>
</tr>
<tr>
<td>10.2</td>
<td>Statistical metrics</td>
<td>130</td>
</tr>
<tr>
<td>10.3</td>
<td>Experimental setup</td>
<td>131</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Working fluid properties</td>
<td>131</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Experimental setup and procedures</td>
<td>131</td>
</tr>
<tr>
<td>10.3.3</td>
<td>Visualization and error analysis</td>
<td>133</td>
</tr>
<tr>
<td>10.4</td>
<td>Optical flow results</td>
<td>134</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Displacement sensibility analysis</td>
<td>134</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Comparison between digital PIV and OpFlow</td>
<td>136</td>
</tr>
<tr>
<td>10.5</td>
<td>Thermal reconstruction</td>
<td>138</td>
</tr>
<tr>
<td>10.6</td>
<td>Transient dynamics</td>
<td>140</td>
</tr>
</tbody>
</table>

11 Conclusions and future work

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Interfacial detection using image segmentation</td>
<td>145</td>
</tr>
<tr>
<td>11.2</td>
<td>Numerical simulations</td>
<td>149</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

11.2.1 Thermal convection 149
11.2.2 Mixing convection 149
11.2.3 Mixing convection in geothermal conditions 152

Bibliography .. 153

Appendices .. 172

A Hele-Shaw models .. 173

B Gâteaux functional derivative 175

C Isodata algorithm .. 176

D The split-Bregman iteration 177
List of Tables

2.1 Notation and dimensions of physical quantities used in this work . . . 16
2.2 Scalings and dimensionless numbers used in this work 17
3.1 Model parameters for aqueous solutions of PPG 24
List of Figures

1.0.1 The northern Chile in few images .. 4
1.2.1 Storage mechanisms asociated with the injection of supercritical CO\(_2\) in geologic formations. 9
1.3.1 Summary of the research done .. 13
3.3.1 Models of density for aqueous solutions of PPG 23
3.3.2 Model of viscosity for aqueous solutions of PPG 25
4.1.1 Schematic picture that displays the solubility confinement of CO\(_2\) in a simple geometry (Riaz et al, 2006) ... 30
4.1.2 Scaling behaviour of \(\langle Nu_t \rangle_t = \langle Nu_t \rangle_t (Ra_t)\) (Hewitt et al, 2012), which is compared with heat transport of some stable rolls reported in literature (Palm et al, 1972; Otero et al, 2004) .. 32
4.1.3 The origin of the geometrical relation \(Nu_t^{(g)} \sim Ra_t\) from the scaling analysis of the convective cell pattern 33
4.1.4 Images of the convection of CO\(_2\) dissolved in deionized water in a Hele-Shaw cell under standard conditions of temperature and pressure 34
4.1.2 Experimental setup used by Kneafsey and Pruess 35
4.2.3 Experimental images and numerical simulations obtained by Neufeld et al ... 36
4.2.4 Sherwood number \(Sh\) (Nusselt for mass transfer) as function of \(Ra_s\) ... 37
4.2.5 Fig.(a) shows the constitutive relation between the density and MEG concentration. Fig.(b) shows a schematic physical picture of the far field approximation, where long-lived plumes are developed. Figure from Neufeld et al (2010) ... 37
4.2.6 Experimental studies of Backhaus et al (2011). Fig.(a) shows the experimental setup. Figs.(b) to (d) show an image sequence of mixing convection obtained by optical shadowgraphy. Figure from Backhaus et al (2011) ... 39
4.2.7 Experimental results of the work of Backhaus et al (2011) 40
4.2.8 Experimental setup used by Cherkaoui and Wilcock and experimental images obtained for different Rayleigh numbers 41
4.2.9 Nusselt number as function of the Rayleigh number. Data interpolation from the onset of convection gives the scaling law \(Nu_t^{(g)} \sim Ra_t^{0.81} \). Above \(Ra_t \sim 200 \), the scaling law obtained is \(Nu_t^{(g)} \sim Ra_t^{0.91} \). For this case, \(Ra_{cr} \sim 29.7 \). Figure from Cherkaoui and Wilcock (2001).

4.3.1 Schematic picture that shows typical constitutive equations \(\rho(S_w) \), vertical water concentration \(S_w(z) \) and vertical density profiles \(\rho(z) \), for each of physical systems studied by Hewitt et al, (a) fixed-interface system, (b) immiscible system, where \(h_{int} \) is constant, and (c) miscible system, where \(h_{int} \) is deformable and given by the maximum isopycnal (Hewitt et al, 2013).

4.3.2 Schematic picture of the behaviour observed for the convective flux and interfacial height in the numerical experiments of Hewitt et al (2013), for the immiscible and miscible cases.

5.2.1 Capture and storage of CO\(_2\) in geothermal reservoirs and its analogy with analogous experiments using Hele-Shaw cells.

5.4.1 Analogue and canonical models of convection inside a Hele-Shaw geometry.

6.2.1 The porous media limit in the onset of thermal convection.

6.2.2 Vertical velocity profiles for different values of \(\epsilon \).

6.3.1 The analogue and canonical systems in Hele-Shaw cells.

6.3.2 Asymptotic regions in the canonical model.

6.3.3 The growth rate \(\sigma \) in function of some values of \(\epsilon \), \(\tau_f \) and \(\bar{\vartheta} \).

6.3.4 Critical time \(\tau_c \) in function of the Rayleigh number \(Ra_s \), for different values of \(\epsilon \) and \(\bar{\vartheta} \).

6.3.5 Critical wavenumber \(k_c \) in function of the Rayleigh number \(Ra_s \), for different values of \(\epsilon \) and \(\bar{\vartheta} \).

7.2.1 Numerical simulations of thermal convection using the Hele-Shaw model.

7.2.2 \(\langle Nu \rangle_{\tau} \) computed using Eqns. (7.2.4) and (7.2.8). For each point, \(Ra_t \) has a specific value. Theoretically, global heat transport computed by these formulas must be equal, which is demonstrated in this figure. The dashed red straight line has a slope equal to one. The inset plots show \(Nu \) as function of time for two different points with specific \(Ra_t \) and \(\epsilon \) values.

7.2.3 Time-averaged \(Nu_t \) as function of \(Ra_t \).
LIST OF FIGURES

7.2.4 Time-averaged mean thermal dissipation rate $\langle \varepsilon_t \rangle_{\tau}$ as function of Ra_t in the high-Ra number regime .. 101

7.2.5 Relation between $\langle Nu \rangle_{\tau}$ and $\langle \varepsilon \rangle_{\tau}$. Our numerical results satisfies the theoretical relation $\langle Nu \rangle_{\tau} = Ra_t \langle \varepsilon \rangle_{\tau}$. The error bars are amplified by a factor two, for visualization purposes 102

8.1.1 The Hele-Shaw geometry used in the experiments 105

8.2.1 Hele-Shaw experimental setup for scalar transport visualization using light attenuation .. 107

8.2.2 Spectral characteristics of $T_{sf}(\lambda)$, $I_i(\lambda)$ and $f(\lambda)$ functions and the application of Lambert-Beer law for different values of \bar{c} 108

8.3.1 Light ray deflection due to a variable optical refractive index $n(y)$... 109

8.3.2 Synthetic Schlieren experiment setup 110

9.1.1 Dynamics observed in a density-driven convection experiment 114

9.1.2 Contour $\psi = \{x \in \Omega : \phi(x) = 0\}$ propagating in normal direction 115

9.1.3 Example of Chan-Vese segmentation in an experimental image 117

9.1.4 Spurious oscillations of δ_c-distribution 118

9.1.5 Example of Chan-Tai segmentation in an experimental image 121

9.1.6 Phase segmentation using the Chan-Tai two level set model 121

9.2.1 The aperture problem and the optical flow solution when some structural information is known 122

9.2.2 Enhancement in the detection of structures using $TV-L^1$ optical flow ... 126

10.3.1 Fluid properties of propylene-glycol 131

10.3.2 Schematic view of the Hele-Shaw cell 132

10.3.3 Background dots pattern for BOS measures 133

10.4.1 OpFlow results for $\lambda = 0.1$ and different values of θ 135

10.4.2 Sensitivity analysis of OpFlow parameters, using the maximum displacement detected as the metric 136

10.4.3 SSIM parameter space .. 137

10.4.4 Comparison between OpenPIV and OpFlow 137

10.4.5 OpenPIV compared with OpFlow for the apparent displacement of background dots pattern .. 138

10.5.1 Thermal reconstruction .. 139

10.5.2 Thermal reconstruction for an experimental image sequence for $Ra = 680140$.. 139
LIST OF FIGURES

10.6.1 Temperatures of the aluminium shims, on bottom T_{bot} and top T_{top}.
These measurements were used as boundary conditions for thermal
reconstruction in the transient regime .. 141
10.6.2 Conductive heat flux per unit length, at bottom and top of the cell,
during the transient regime .. 141
10.6.3 Mean temperature $\langle T \rangle$ as function of time 142

11.1.1 Light absorption properties of Rhodamine B in water and PPG. Data
were obtained with the colaboration of prof. J. Brunet and R. Sánchez
in the Spectroscopy and Photophysics laboratory of the Pontifical Catholic
University of Valparaíso, campus Curauma. 147
11.1.2 Normalized transmisivity properties of the Bayer filter in a CMOS APS
sensor. See Fig. 8.2.2, page 108, which shows an academic example of
transmisivity for the red channel .. 147
11.1.3 Results of a density-driven convection experiment, for different dimensionless
times, where deionized water (black) is mixing with PPG (red) 148
11.2.1 Initial condition for $S_w(x, t = 0) = S_o(z)$ with $z_o = 3H/4$. The inset
graph shows the same curve using $n_z = 513$ grid points, in the window
where is the interfacial zone. See Fig. 4.3.1, page 44, which shows the
miscible case discussed by Hewitt et al (2013) 150
11.2.2 Results of the numerical simulations of the analogue model presented
in this section, for different dimensionless times. The dimensionless
parameters are $Pr = 10$, $Ra_s = 3981$ and $Pe_s = 4.1833$. It is
interesting to note that the interfacial zone between both fluids moves
upward from $h_{int} = 0.75$ at $t = 0$ to $h_{int} = 0.8$ at $t = 500$ 151