Contents

General Introduction 1
Notations 27

1 The data completion problem and the inverse obstacle problem with partial boundary data 31

1 Theoretical analysis of the data completion problem for Laplace operator 33
  1.1 The problem setting ........................................... 34
  1.2 Theoretical results concerning the data completion problem .......... 37
    1.2.1 Properties of $\mathcal{K}$ ................................. 38
    1.2.2 The Regularized Functional $\mathcal{K}_\varepsilon$ and its properties .... 44
  1.3 Theoretical results concerning the data completion problem with noise 51
    1.3.1 A convergence result ................................... 52
    1.3.2 Strategy for choosing $\varepsilon$ ........................ 53

2 Numerical resolution of the data completion problem 56
  2.1 Computation of the derivatives of $\mathcal{K}_\varepsilon$ .................... 57
  2.2 Framework of the numerical simulations ................................ 59
  2.3 Simulations ................................................................ 60
    2.3.1 Simulations without noise .................................. 60
    2.3.2 Simulations with noise ...................................... 62
    2.3.3 Comments on the simulations .............................. 63

3 Obstacle detection with incomplete data via geometrical shape optimization 65
  3.1 The inverse obstacle problem with partial Cauchy data ............... 66
  3.2 Shape derivative of the Kohn-Vogelius functional ...................... 69
  3.3 Framework for the numerical simulations ............................ 71
    3.3.1 Algorithm ..................................................... 72
  3.4 Simulations ................................................................ 73
    3.4.1 Comments on the simulations .............................. 75
II The inverse obstacle problem using topological shape optimization in a bidimensional Stokes flow 79

4 Small object detection using topological optimization for bidimensional Stokes equations 81

4.1 Framework 82
4.2 The main result 84
  4.2.1 Introduction of the needed functional tools 85
  4.2.2 The result 86
4.3 Asymptotic expansion of the solution of the Stokes problem 86
  4.3.1 Defining the approximation 87
  4.3.2 An explicit bound of $r^{-1}_D$ and $r^{-1}_M$ with respect to $\varepsilon$ 89
4.4 Proof of Theorem 4.1 99
  4.4.1 A preliminary lemma 99
  4.4.2 Splitting the variations of the objective 100
  4.4.3 Asymptotic expansion of $A_M$ 101
  4.4.4 Asymptotic expansion of $A_D$ 102
  4.4.5 Conclusion of the proof: asymptotic expansion of $J_{KN}$ 103

5 Numerical detection of obstacles: Topological and mixed optimization method 104

5.1 A Topological Gradient Algorithm 106
  5.1.1 Framework of the numerical simulations 106
  5.1.2 First simulations 108
  5.1.3 Influence of the distance to the location of measurements 111
  5.1.4 Influence of the size of the objects 112
  5.1.5 Simulations with noisy data 115
5.2 A blending method which combines the topological and geometrical shape optimization algorithms 116
  5.2.1 Shape derivative of the Kohn-Vogelius functional 117
  5.2.2 Numerical simulations 118

Conclusions and Perspectives 121

Bibliography 127

Appendices 135

A Useful results for the Data Completion Problem 137
  A.1 Some results about the space $H^1(\Omega, \Delta)$ 137

B Useful results for Stokes equations 139
  B.1 Some results on the Stokes problem with mixed boundary conditions 139
  B.2 A result concerning the space of traces 142
  B.3 Some results on the exterior Stokes problem 142
    B.3.1 Definition of the weighted Sobolev spaces 142
    B.3.2 The exterior Stokes problem in two dimensions 143
List of Tables

2.1 Touching boundaries, non noisy case. ........................................... 61
2.2 Non touching boundaries, non noisy case. ...................................... 61
2.3 Touching boundaries, noisy case. .................................................. 62
2.4 Non touching boundaries, noisy case. ............................................. 63

3.1 Data completion for the object detection problem, non noisy case. .... 73
3.2 Data completion for the object detection problem, noisy case. ........ 73
3.3 Data completion for the object detection problem, non-noisy case. ... 74
3.4 Data completion for the object detection problem, noisy case. ........ 75

5.1 Detection of $\omega_1^*, \omega_2^*$ and $\omega_3^*$. ........................................ 109
5.2 Detection of $\omega_1^*, \omega_2^*$ and $\omega_3^*$. ........................................ 109
5.3 Detection of $\omega_{1}^{*}, \omega_{2}^{*}$ and $\omega_{3}^{*}$ ....................................... 112
5.4 Detection when we move away from boundary ................................. 114
5.5 Detection when we increase the size of the object, with center rel. error $= \|c_{\text{real}} - c_{\text{app}}\|/\text{diam}(\Omega)$ and radio rel. error $= |r_{\text{real}} - r_{\text{app}}|/r_{\text{real}}$ ........................................ 114
5.6 Detection when we introduce noisy data: results. ........................... 116
5.7 Detection when we introduce noisy data: relative errors. ................. 117
## List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Example when $\Gamma_{\text{obs}} \cap \Gamma_i \neq \emptyset$, real solution (left) and obtained solution (right).</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>Illustration of the problem.</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>Detection of a square with incomplete boundary data: Positive results.</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>The initial domain and the same domain after inclusion of an object.</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>Detection of small circle and 'donut': Positive results.</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>Bad Detection for a ‘very big sized’ object</td>
<td>24</td>
</tr>
<tr>
<td>7</td>
<td>Detection with the combined approach (the initial shape is the one obtained after the “topological step”) and zoom on the improvement with the geometrical step for the obstacle in the right.</td>
<td>25</td>
</tr>
<tr>
<td>1.1</td>
<td>An example domain</td>
<td>35</td>
</tr>
<tr>
<td>2.1</td>
<td>Case $\Gamma_{\text{obs}} \cap \Gamma_i \neq \emptyset$.</td>
<td>61</td>
</tr>
<tr>
<td>2.2</td>
<td>Case $\Gamma_{\text{obs}} \cap \Gamma_i = \emptyset$.</td>
<td>62</td>
</tr>
<tr>
<td>2.3</td>
<td>Case $\Gamma_{\text{obs}} \cap \Gamma_i \neq \emptyset$.</td>
<td>63</td>
</tr>
<tr>
<td>2.4</td>
<td>Case $\Gamma_{\text{obs}} \cap \Gamma_i = \emptyset$.</td>
<td>63</td>
</tr>
<tr>
<td>3.1</td>
<td>An example domain for the obstacle problem.</td>
<td>66</td>
</tr>
<tr>
<td>3.2</td>
<td>Object detection without noise: Real solution and initial guess (up) and obtained solutions $u_D, u_N$ respectively (down).</td>
<td>74</td>
</tr>
<tr>
<td>3.3</td>
<td>Object detection with noise: Real solution and initial guess (up) and obtained solutions $u_D, u_N$ respectively (down).</td>
<td>75</td>
</tr>
<tr>
<td>3.4</td>
<td>Object detection without noise: Real solution and initial guess (up) and obtained solutions $u_D, u_N$ respectively (down).</td>
<td>76</td>
</tr>
<tr>
<td>3.5</td>
<td>Object detection with noise: Real solution and initial guess (up) and obtained solutions $u_D, u_N$ respectively (down).</td>
<td>77</td>
</tr>
<tr>
<td>4.1</td>
<td>The initial domain and the same domain after inclusion of an object.</td>
<td>85</td>
</tr>
<tr>
<td>5.1</td>
<td>Detection of $\omega^<em>_1$, $\omega^</em>_2$ and $\omega^*_3$.</td>
<td>108</td>
</tr>
<tr>
<td>5.2</td>
<td>Evolution of the functional $J_{KV}$ during the detection of $\omega^<em>_1$, $\omega^</em>_2$ and $\omega^*_3$.</td>
<td>109</td>
</tr>
<tr>
<td>5.3</td>
<td>Detection of $\omega^<em>_4$, $\omega^</em>_5$ and $\omega^*_6$.</td>
<td>110</td>
</tr>
<tr>
<td>5.4</td>
<td>Detection of $\omega^<em>_4$, $\omega^</em>_5$ and $\omega^*_6$.</td>
<td>111</td>
</tr>
<tr>
<td>5.5</td>
<td>Detection of $\omega^<em>_7$, $\omega^</em>_8$ and $\omega^*_9$.</td>
<td>112</td>
</tr>
<tr>
<td>5.6</td>
<td>Detection of $\omega^<em>_10$ and $\omega^</em>_11$.</td>
<td>113</td>
</tr>
<tr>
<td>5.7</td>
<td>Bad Detection for a ‘very big sized’ object.</td>
<td>114</td>
</tr>
</tbody>
</table>
### List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.8</td>
<td>Detection of several ‘big sized’ objects</td>
<td>115</td>
</tr>
<tr>
<td>5.9</td>
<td>Detection of $\omega_{12}$ and $\omega_{13}$ with the combined approach (the initial shape is the one obtained after the “topological step”) and zoom on the improvement with the geometrical step for $\omega_{13}$</td>
<td>120</td>
</tr>
<tr>
<td>B.1</td>
<td>The truncated domain</td>
<td>145</td>
</tr>
</tbody>
</table>