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Abstract

Using detailed administrative and individual data on schooling and crime records
from Chile, we estimate the effect of grade retention between 4th and 8th grade
on juvenile crime. We base our research on the rule which specifies that students
who fail more than one subject must repeat the year. We present two empiri-
cal strategies to address the strong evidence that the forcing variable is – locally
– manipulated. First, we follow Barreca, Guldi, Lindo, and Waddell (2011) in
implementing a donut-hole fuzzy regression discontinuity design (FRD). Second,
we extend the approach developed by Keele, Titiunik, and Zubizarreta (2015) to
implement a method that combines matching with FRD. These two methodolo-
gies deliver similar results and neither show a statistically significant effect on a
placebo test. According to our results, grade retention increases the probability of
juvenile crime by 1.6 percentage point (pp), an increase of 33% (higher for males
and low SES students). We also find that grade retention increases the probability
of dropping out by 1.5pp. Regarding mechanisms, our findings suggest that the
effect of grade retention on crime does not only manifest itself indirectly as a result
of its effect on dropping out. Furthermore, the effect of grade retention on crime
is worsened when students switch schools right after failing the grade.

Keywords: Juvenile Crime, Grade Retention, Regression Discontinuity, and Match-
ing.
JEL Classification: I21, K42, and C26 .
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1 Introduction

Grade retention increases the education opportunity cost of repeaters, thereby illegal

activities become more attractive (see, for instance, Lochner (2004)). Consequently,

regardless of the grade retention controversy,1 merely by an argument “a la Becker”

there should not be debate about the positive effects that such a policy would have over

the youth delinquency. However, what seems to be clear from the incentive side, as of

yet does not have an overwhelming counterpart from the empirical front. This paper

aims to contribute to this literature, by providing causal evidence on the positive effect

that grade retention has on the level of youth delinquency.

Since the evidence has shown that the repeaters are more likely to have a lower in-

nate ability and weaker social background than promoted students (see, for instance,

Barrington and Hendricks (1989)), there is a challenge in estimating causal effects of

grade retention on crime, given that the latent outcome – crime activity that would

be observed in the absence of grade retention – and the propensity to fail a grade are

simultaneously determined. A proper data-set to address this challenge is not always

available by the researchers (indeed, rarely), and this could be the main reason behind

the scarce literature on the estimation of the causal effect we are concerned with at this

paper. Our investigation is based on administrative data on both academic records and

crime committed by youths in Chile, individually recorded, and properly matched, for

the entire population of them during the period 2007 – 2014.

Our identification strategy relies on a grade retention rule that creates a discontinuity

on the probability of grade retention. This rule specifies that students who fail two or

more subjects should repeat the grade, which appears to be an ideal situation for the

implementation of standard RD methods. However, there is empirical and anecdotal

evidence showing that the forcing variable (the student’s second lowest score) is manip-

ulated, because it is arguable that teachers’ grading decisions at the margin of repetition

may not sort students randomly.2 To deal with this problem, we undertake two com-

1That is, the existence of ambiguous evidence, and even contradictory, over the effects that grade
retention may has over some academic outcomes and/or socio-emotional variables of the youths. See
Holmes et al. (1989), Jimerson (2001) and Rose, Medway, Cantrell, and Marus (1983); see also Reschly
and Christenson (2013) for a fresh look on this debate.

2For the purposes of this paper, to avoid confusion with the concept of grade (level) with grade
(performance) the latter will be referred to as “score”.
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plementary empirical strategies. In the first approach, we follow Barreca, Guldi, Lindo,

and Waddell (2011) in implementing a donut-hole FRD, where, after removing observa-

tions in the immediate vicinity of the threshold for grade repetition, we run a standard

FRD. This method delivers causal evidence to the extent that the manipulation is a local

phenomenon, which is partially supported by the data, and to the extent that removing

observations does not invalidate the RD assumption about the continuity of the outcome

variable’s expectation around the threshold, conditional to the same treatment status. In

the second and preferred approach, we address the latter potential problem (that arises

due to removing observations), by extending the method developed by Keele, Titiunik,

and Zubizarreta (2015) to implement an estimation procedure that combines matching

with fuzzy regression discontinuity design (FRD).

In our preferred specification (the RD-matching), the results show that grade reten-

tion between 4th and 8th grade increases the probability of juvenile crime by 1.8 pp,

an increase of 37.5%.3 Furthermore, we also examine the effect of grade retention on

dropping out and future grade retention. According to our results, grade retention in

primary school decreases the probability of grade retention by 5.9 pp (10.7%) in sub-

sequent years and increases the probability of dropping out by 1.6pp (23.8%).4 Thus,

if we assume that grade retention in higher grades also impacts juvenile crime, then

the effects on future grade retention suggest that we have found a lower bound for the

effect of primary-school grade retention on crime, because those who did not repeat in

primary school (who are non-treated in our estimation) had a higher probability of grade

retention in the future, which also creates an impact on crime. To study the robustness

of our results, we implement a placebo test by replicating the “Donut-hole” RD and

the RD-matching estimations, but in this case we only consider students who did not

repeat the grade, comparing those who scored below, with those whose scored above,

the threshold. These two methods do not deliver a statistically significant effect in this

placebo test for all three outcomes considered.

The literature and our paper have shown the relationship between grade retention and

3In order to study the robustness of our results, we implement a placebo test by replicating the
“Donut-hole” RD and the RD-matching estimations, but in this case we only consider students who did
not repeat the grade, comparing those who scored below, with those whose scored above, the threshold.
These two methods do not deliver a statistically significant effect in this placebo test for all three
outcomes considered.

4The effect on drop out is only statically significant for low SES students.
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high school drop out.5 This evidence, together with the studies showing the impact

of high school drop out on crime,6 could potentially place in doubt the novelty of our

research: why to study the impact of grade retention on crime if we already know the

effect of grade retention on school drop out and the effect of school drop out on crime?

However, our findings suggest that the effect of grade retention on crime does not only

operate through its effect on dropping out. Indeed, we find that the effect of grade

repetition on crime occurring before (or simultaneously to) dropping out is found to be

more relevant than the effect on crime that occurs after dropping out. We also show

that the effect of grade retention on crime is worsened when students switch school right

after failing the grade.

To the best of our knowledge, the closest to our paper was provided by Depew and Eren

(2015), who estimate the impact of grade retention (with summer school) on juvenile

delinquency (and school dropout) in Louisiana.7 They assemble a novel data set after

merging administrative information of educational outcomes with the criminal records of

students attending schools in Louisiana. Then, taking advantage of the test-based grade

promotion policy that has been applied in Louisiana as of a decade ago, the authors

build an RD design, where the forcing variable is the score on a standardized test which

determines whether or not a student is promoted. Their principal conclusion is that,

for students attending eighth grade, the test-based grade retention policy decreases the

likelihood of being involved in felony offences during their youth. Although the authors

make a remarkable effort in identifying a causal effect of grade retention on juvenile

delinquency, they do not correct the latent manipulation that the forcing variable suffers

close to the cut off.8

Our paper is also related with Cook and Kang (2013), who merge administrative data of

5See King, Orazem, and Paterno (2015), Manacorda (2012), and Roderick (1994).
6See Anderson (2014), Fagan and Pabon (1990), and Thornberry, Moore, and Christenson (1985).
7At this part it is worth mentioning that there is a tangential to us literature where is investigated

a sort of inverse problem than here, i.e., how criminal activities (either within the school or outside)
affect some schooling outcomes. See, for instance, Burdick-Will ?, Fagan and Pabon ?, Hirschfield ?.

8Indeed, the key assumption in the RD they run is that teachers (or someone else in charge) do not
exercise precise control over the score in the standardized test near the cut-off point. If this holds, the
variation in scores obtained at the threshold is as good as randomized (Imbens and Lemieux (2008)
and Lee and Lemieux (2010)). Nevertheless, as in our own RD design, we believe that this essential
assumption does not hold. As the figures A1 and A2 (page 47) suggest, it seems that a strategic
allocation of students occurs around the cut-off score, as there are no students who score marginally
below the minimum required.
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academic performance with the criminal record of students attending public schools in

North Carolina. They exploit the sharp RD design generated by the specific date which

establishes the minimum age for school enrollment (cut date) and assess its effect on a

number of educational outcomes, as well as on juvenile crimes committed. They present

two main findings. First, during middle school, students born just after the cut date (the

oldest) are more likely to outperform (in math and reading) those born just before (the

youngest), and are less prone to be involved in juvenile delinquency. Second, those born

after the cut date are more likely to drop out of school and commit a severe offence. Our

research differs on at least two dimensions: we attempt to directly estimate the causal

effect of grade retention on juvenile crime and instead of using the student’s birthdate

as a forcing variable, we employ the student’s second lowest score to generate a fuzzy

RD design, which in turn we improve by combining it with a matching method.

Our paper makes three main contributions. First, together with (Depew and Eren

(2015)), it is the first that estimates a causal effect of grade retention on juvenile crime

and it is the first evidence for a developing country, where the retention rates are higher.9

Second, by extending the method developed by Keele, Titiunik, and Zubizarreta (2015)

to the fuzzy RD case, we present a method that can be useful in many other contexts,

where there is some evidence of manipulation in the forcing variable. Third, it sheds

light on the mechanisms that explain the impact of grade retention on juvenile crime.

The paper proceeds as follows. Section 2 describes the main features of the data and

the grade retention rule. Section 3 discusses the potential problems associated with

implementing a standard RD approach. Section 4 presents the empirical approaches

used in this paper. Section 5 details the results. Section 6 discusses possible mechanisms

behind these results. Finally, Section 7 concludes and discusses future research.

2 Data and Grade Retention’s Rule

In this section, we first describe the characteristics of our data set and then we explain

the way that the grade retention rule operates.

9See Manacorda (2012).
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2.1 Data

In this paper, we assemble administrative data sets from the Ministry of Education and

the Defensoria Penal Publica (DPP). The DPP is the institution in Chile which provides

free legal representation, for those who have been accused of committing a crime. The

final data set includes over 1.2 million students and their juvenile criminal records (ages

from 12 to 18) linked to a large set of demographic characteristics.

The information, collected from the Ministry of Education, is an administrative panel

data set from 2002 to 2015, which for every student in the country, indicates the school

attended every year, the grade level (and whether the student has repeated the grade),

the student’s attendance rate, some basic demographic information, and only for 2007

the annual average score for all subjects taken by the student (their cumulative grade

point average). The latter is needed to establish which students are close to the threshold

for grade repetition. We merge this panel with the information on performance on the

national standardized test (the SIMCE), which is taken annually by all students in the 4th

grade and every other year by all 8th grade students. When students take the SIMCE, a

survey is administered to their parents. From these surveys, we obtain information about

the mother’s and father’s education level and family income. We focus our attention on

the students who, in 2007, were in 4th to 8th grade, attending public or subsidized

schools.10 Due to their high SES and low criminal rate, we excluded students attending

private schools, which represent 8% of the national enrollment.

The DPP’s records contain information on all defendants in criminal cases tried in Chile

during the period of January, 2006 to December, 2014. This database includes informa-

tion at the time of the accusation, the type of offence, and the verdict (including the

length of the sentence). In this study, we consider only juvenile criminal cases and in

order to focus on crimes that can be thought of as motivated by a cost-benefit analysis,

we omit individuals who committed the most severe crimes, such as murder or rape.11

Given that our “treatment” is grade retention in 2007, we also exclude students who

were prosecuted before 2008. Thus, in all our estimations, the students who committed

crimes are those who were prosecuted, between 2008 and 2014, for an offence with an

economic motivation.

10We do not have SIMCE information for those students who were attending 7th grade in 2007. Thus,
most of our estimations do not consider this group.

11We do not consider as crime the juvenile criminal cases where the verdict was not guilty.

7



2.2 Rules for Grade Retention

In Chile, student scores range from 1 to 7, with an increment of 0.1. Although there are

other causes of grade retention, the most prevalent is scoring below 4, on two or more

subjects (≤ 3.9). This rule suggests the possibility of implementing a regression discon-

tinuity approach to study the causal effect of grade retention on crime. In this regard,

Figure 1 shows a strong discontinuity in the probability of grade retention between 3.9

and 4. Each dot represents the grade retention rate of all the students in a particular

grade who have a specific value on the second -lowest score.12

Figure 1: Grade retention rule
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Note: This figure considers only schools which have at least one student scoring 4 or 4.1 and
at least one student scoring 3.9 or 3.8 in their second-lowest score.

Although all schools must apply the 1-7 grading scale, they are free to set their own

grading standards, which means that scores are not comparable across schools. This

institutional feature explains why, in all of our estimations, we compare students – below

and above the threshold – who attend the same school (and the same grade). This is

also why, in all the plots that we present, we consider only students attending schools

12The main reason why this is not a sharp discontinuity, is because students who have two scores
below 4 can pass the grade as long as their average across all subjects is greater or equal to 5.
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with at least one student scoring 4 or 4.1 and at least one student scoring 3.9 or 3.8 in

their second-lowest score.

3 Validity of the RD Design

As we discuss in the following paragraphs, there are institutional reasons and empirical

evidence to support the idea that the forcing variable – the second-lowest score – is

manipulated around the threshold. However, we argue and also present evidence that

this problem could be restricted to the scores closest to the threshold. The existence

of this manipulation problem, and its local nature, is what determines our empirical

strategies to estimate causal effects.

3.1 The Density of the Forcing Variable

Figure 2 shows two histograms for the second lowest score. Panel (a) presents the real

histogram (derived from data), while in panel (b) a hypothetical histogram is introduced,

which is created from panel (a) by only moving a number of students from scoring 4 to

3.9. There are two lessons to be gleamed from these plots. First, there is a remarkable

discontinuity in the histogram for the second-lowest score, around the threshold (3.9−4).

Second, the discontinuity (and possibly the manipulation) seems to be limited to the

scores closest to the threshold (3.9 − 4), in fact the histogram shown in panel (b) does

not show any evidence of discontinuity.
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Figure 2: Histograms for the 2nd Lowest Score
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The first point raises reasonable doubts about the internal validity of an RD estimator

(see Lee and Lemieux (2010)), because it is arguable that teachers’ grading decisions

at the margin of repetition may not sort students randomly. The second point, which

addresses local manipulation, is in line with the incentives that teachers face. In fact,

even though the anecdotal evidence suggests that school leaders promote an upper bound

for the rate of grade retentions, and, therefore, teachers may be forced to pass students

who have a real score lower than 4, there is no reason to raise that score to a value

higher than 4.13 Moreover, if a student’s real score (a latent variable) was 3.9 and to

avoid any complain from their parents (asking for an small increase to pass the grade),

her teacher manipulates that score grading 3.8, that is going to make our treatment and

control groups more comparable. The relevance of this point is going to be more clear

when we introduce our empirical strategy.

3.2 Graphical Test for Local Manipulation

We present direct evidence of local manipulation by taking advantage of the richness

of our database. Intuitively, local manipulation should imply that the mapping from

knowledge (a latent variable) to scores should be discontinuous around the threshold. In

13Teachers’ grading behavior is not audited to find evidence of manipulation in their grading.
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our framework, this means there should be a discontinuity in such a mapping between

grades 3.9 and 4.

Fortunately, besides students’ GPA at school, we have information on their standardized

test scores (the SIMCE), where the latter can be thought as unbiased proxies of student’s

knowledge. Thus, we can test manipulation by studying the behavior of the mapping

from SIMCE to GPA around the threshold, at each primary school. We do so in the

following steps:

• To have the closest possible relationship between standardized tests and grade

scores, we focus on the math Simce and math GPA for 8th grade students.14

• Let i index students, we run the following OLS regression for each school s:

MathSimceis = µs
0 + µs

1 ∗MathGPAis + υis.

• We allow for a different mappings for each school, because schools may have dif-

ferent standards to grade their students.15 Furthermore, to have enough precision

in our estimated parameters, we exclude schools with less than 20 students. By

doing so we drop 1625 schools, keeping 4125 for our OLS estimations.

• Given 4125 pairs of OLS estimations for µ0 and µ1, we calculate the residual for

each student i, such that:

Residualis = MathSimceis − µ̂s
0 − µ̂s

1 ∗MathGPAis.

• In Figure 3 we present the mean of these residuals for each value of MathGPA.

As can be seen in this figure, and even though there are other smaller jumps in

14To be clear, this means that the sample that we use to show local manipulation is different from
the sample that we consider in our estimations of the effect of grade retention on crime. While in the
former we only use 8th grade students and their math performance, in the latter we consider data from
4th to 8th grade and their average performance across subjects. Because we do not have standardized
tests measuring all subject, we are constrained to show local manipulation in math and to assume that
it is also local for the other subjects.

15In Figure 4 of Appendix A, we show how different are µ0 (constant) and µ1 (slope) across schools.

11



other parts of the Math score range, there is a clear discontinuity between 3.9 and

4.

Figure 3: Test for Local Manipulation
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The simple test developed has clear limitations. The most important one is the assump-

tion of a linear relationship between knowledge (measured by the SIMCE) and school

GPA.16 Indeed, this assumption is what determines the negative slope of the mean of

the residuals. That said, it is remarkable that even imposing a linear relationship, the

figure only show a clear jump between 3.9 and 4.

3.3 Tests Involving Covariates

To study the extent to which this manipulation could be a problem and how useful it

is to use an RD approach in this context, Table 1 shows the differences in observables

among different groups. In Group A, we compare students who were retained, in 2007,

with students who were not. In this selected sample, the normalized differences in the

means of the independent variables are all economically relevant, ranging from 1.49

16Another potential limitation is to assume that the SIMCE is an unbiased measure of the student
knowledge. In our opinion what is relevant in this regard is that given the way in which the SIMCE
is taken, where regular teachers are not in the classroom during the test (there are some external
evaluators), there is no reason to think that SIMCE scores are manipulated.
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to 0.29.17 Moreover, all of these differences are in the same direction: the repeaters

are students with characteristics highly correlated with future criminal behavior. They

come from lower socioeconomic groups (measured by income and parents’ education),

they have lower levels of academic performance, their attendance rate is lower, and males

are overrepresented in this group.

This story contrasts to that of Group B, where we compare students who, in 2007, scored

3.9 with those who scored 4, in their second-lowest subject. The stories from these two

samples differ in two ways. First, the magnitudes of the normalized differences are

remarkably smaller in Group B, where the largest normalized difference is 0.1. Second,

in Group B, the signs of the differences in observables – between the highly probable

repeaters and the rest– are in some cases in the opposite direction of those in Group

A. For instance, students scoring 3.9 have a lower mean in repetition before 2007, and

higher means in attendance in 2006 and in family income.

17The normalized difference in the mean is equal to X̄1−X̄2√
(Sd(X1)2+Sd(X2)2)/2

, where X̄i is the sample

mean for group i and Sd(Xi)
2 is the estimated variance for group i.
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Table 1: Differences in covariates among different treatments and control groups

Group A: All

Variable Non Repeaters Repeaters Norm. Dif. Statistic p-value N (Non Rep.) N (Rep.)

Repeated before 2007 0.09 0.29 -0.54 -65.25 0.000 683972 21293

Attendance 2006 94.6 92.3 0.38 49.71 0.000 683972 21293

Math SIMCE 0.01 -0.89 1.00 154.64 0.000 683972 21293

Language SIMCE 0.01 -0.88 0.99 151.55 0.000 683972 21293

Mother Education 10.78 9.50 0.37 52.61 0.000 683972 21293

Father Education 10.86 9.70 0.32 45.76 0.000 683972 21293

Family Income 98960 74412 0.28 43.81 0.000 683972 21293

Male 0.50 0.64 -0.30 -42.24 0.000 683972 21293

Group B: second lowest subject score ∈ {3.9, 4.0}

Variable Mean (= 4.0) Mean (= 3.9) Norm. Dif. Statistic p-value N (= 4.0) N (= 3.9)

Repeated before 2007 0.25 0.20 0.10 2.65 0.008 2496 885

Attendance 2006 93.5 93.6 -0.02 -0.63 0.528 2496 885

Math SIMCE -0.58 -0.65 0.08 2.09 0.037 2496 885

Language SIMCE -0.58 -0.62 0.05 1.28 0.200 2496 885

Mother Education 10.43 10.29 0.04 1.07 0.283 2496 885

Father Education 10.54 10.39 0.04 1.08 0.282 2496 885

Family Income 91620 95597 -0.04 -1.08 0.280 2496 885

Male 0.56 0.60 -0.07 -1.68 0.093 2496 885

Group C: second lowest subject score ∈ {3.8, 4.1}

Variable Mean (= 4.1) Mean (= 3.8) Norm. Dif. Statistic p-value N (= 4.1) N (= 3.8)

Repeated before 2007 0.21 0.23 -0.05 -2.71 0.007 7463 3889

Attendance 2006 93.2 93.1 0.01 0.61 0.540 7463 3889

Math SIMCE -0.54 -0.73 0.23 11.89 0.000 7463 3889

Language SIMCE -0.57 -0.73 0.19 9.89 0.000 7463 3889

Mother Education 10.36 10.17 0.06 2.82 0.005 7463 3889

Father Education 10.52 10.40 0.04 1.84 0.065 7463 3889

Family Income 88325 88132 0.00 0.11 0.913 7463 3889

Male 0.57 0.58 -0.00 -0.17 0.865 7463 3889

Note: Norm. Dif. is the normalized differences in the means.

The comparison between these two selected samples (Groups A and B) illustrates how

much we gain by taking advantage of the discontinuity. Without an RD approach, the

initial differences between the treated and the control groups – presented in Group A –

would be too large to implement an empirical method based on controlling observables

(e.g., a type of matching), as a credible approach to estimate a causal effect. That said,

as was anticipated in the density analysis and in our test for local manipulation, Group

B shows some evidence of manipulation around the threshold, because theoretically,

14



without manipulation students scoring 3.9 should have – on average – worse performance

and lower socioeconomic status than those students scoring 4, which is not always the

case with our data. Of particular note, is the difference in the fraction of students who

have previously repeated. A reasonable explanation for this difference is that teachers

are more demanding with students who have not previously failed a grade, which creates

a non random sorting around the threshold.

To address the sorting of students around the threshold, in Group C we compare students

who scored 3.8 with those who scored 4.1 in their second-lowest subject. This selected

sample has advantages and disadvantages, when compared to Group B. In regards to the

former, all of the mean differences in observables between students below and above the

threshold have the expected sign, which is consistent with the previous evidence that

supports the idea that beyond 3.9 and 4 the data is free of manipulation. Regarding the

disadvantages, we lose comparability between the groups below and above the thresh-

old, particularly in respect to student performance. In sum, the remaining differences

observed in Group C are much smaller than the ones observed in Group A and arguably

free of manipulation. However, they are large enough to suggest the need to complement

the RD design with another approach, to control for the differences in observables.

4 Empirical Approach

Considering the opportunities and problems with our data, we implement three different

strategies to estimate the effect of grade retention on juvenile crime. In the first ap-

proach, which takes advantage of the local nature of the manipulation, we implement a

standard FRD, but only using the students who scored 3.8 or 4.1 in their second-lowest

score (Group C sample, Table 1). This RD method is known in the literature as the

“Donut-hole” regression discontinuity; see Barreca, Guldi, Lindo, and Waddell (2011).

In the second approach (FRD-matching), which addresses the differences in observables

observed in the Group C sample, we combine a fuzzy regression discontinuity design

(FRD) with the matching approach, named design matching, developed by Zubizarreta

(2012).18 This is our preferred empirical strategy. Finally, our third approach is to im-

plement OLS estimator considering all of the students in our sample, and controlling

18This method is an extension of Keele, Titiunik, and Zubizarreta (2015), where the authors combine
sharp regression discontinuity design with matching.
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for all the variables used in the other empirical approaches. As opposed to the first

two methods, this last approach is not implemented to deliver causal evidence, but is

presented to give a reference point.

Given that in the first two methods we follow the FRD approach, which allows us to

obtain the local treatment effect (LATE),19 we begin this exposition by describing this

empirical method. As detailed below, the difference between our two empirical strategies

to estimate the causal effect (“Donut-hole” RD and FRD-matching) is in the procedure

to define the sample used to implement the FRD estimation.

Let Yi be a variable that takes the value one if the student committed a crime after 2007

and zero otherwise; Zi a variable that takes the value one if the student’s second-lowest

subject score, in 2007, is below the threshold and zero otherwise; Wi a variable that

takes the value one if the student repeats the grade, and zero otherwise; and Xi a set of

covariates of student i. Hence, as is shown in Hahn, Todd, and der Klaauw (2001), when

the sample considered is close to the threshold, the identification of the LATE parameter

is given by a type of Wald estimator, such that:

τ̂FRD =
E[Y |Z = 1]− E[Y |Z = 0]

E[W |Z = 1]− E[W |Z = 0]
(1)

Furthermore, as pointed out by Imbens and Lemieux (2008), it is possible to obtain this

Wald estimator by implementing a Two Stage Least Square method, where the first and

second stages are described by:

First Stage : Wi = αw
c + αw

z Zi + αw
xXi + εwi , (2)

Second Stage : Yi = αy
c + τFRDŴi + αy

xXi + ε
y
i . (3)

In this context, τ̂FRD is the estimation of the local average treatment effect.20

The first empirical approach, the “Donut-hole” RD, is the standard FRD but excluding

the students whose second-lowest score is 3.9 or 4. Specifically, the sample consists of all

the students who score 3.8 or 4.1 in their second lowest subject score, who belong to a

19See Imbens and Lemieux (2008) and Lee and Lemieux (2010) for reviews of RDD methods.
20This method is implemented in Stata using the command ivreg, with robust standard errors. It

should be noted that this method of calculating robust standard errors does not take into account that
the sample to implement the FRD estimation is built using a matching procedure.

16



schools-cohort with at least one student at each side of the threshold (Group C, Table

1).21 Thus, given this restricted sample, the local average treatment effect is obtained

by regressing equations (2) and (3).

The second empirical approach, the FRD-matching method, has as its starting point

the same sample as the first approach (Group C sample). The difference lies in that

in order to address the imbalance in observables between students scoring below and

above the threshold, we use the design matching estimator to build similar groups.

Unlike the standard matching methods, which attempt to achieve covariate balance by

minimizing the total sum of distances between treated units and matched controls, this

method achieves covariate balance directly by minimizing the total sum of distances

while constraining the measures of imbalance to be less or equal to certain tolerances. In

our implementation of this matching, we optimally find a pair for each student scoring

3.8, selected from those who are attending the same school-cohort and score 4.1,22 by

minimizing the weighted distance in math and language standardized test scores, parents

education, previous retentions repetitions, attendance at past year, an income variable

and gender; subject to mean balance on the same set of variables.23

We decided to implement this matching approach, as opposed to a more standard type,

given that we have a relevant number of school-cohort clusters for which there are few

students scoring 4.1 that qualify as a match for those scoring 3.8.24 This situation

creates an imbalance in observables that can only be reverted by a method that takes

advantage of the school-cohort clusters with more options, by not only seeking more

similar pairs, but also looking for pairs that compensate this imbalance. For instance,

if at the school-cohort clusters with only one student scoring 4.1 (i.e., with no option),

there is also a higher fraction of males below the threshold, the design matching method

will prefer –in some cases– to match males scoring 4.1 with females scoring 3.8, in the

other school-cohort clusters, to compensate the former imbalance.

Table 2 presents the balance achieved by this matching procedure on the mentioned

covariates. Comparing the differences observed in Table 2 with the differences presented

21That is, a cohort within a school with at least one student scoring 3.8 and one student scoring 4.1
in their subject with the second lowest score.

22In one specification, we also implement an exact match in gender.
23The details of this matching approach are described in Appendix B.
24In 12% of the cases there is only one, and in 29%, one or two.
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in Group C in Table 1, it is clear that there is an improvement in terms of balance in

observables.25 However, there is an important reduction in the sample size (from 3889

to 2931 individuals below the threshold).

Table 2: Post matching differences in covariates

Variable 4.1 3.8 Norm. Dif. Statistic p-value N (= 4.1) N (= 3.8)

Repeated before 2007 0.20 0.20 -0.01 -0.55 0.582 2959 2959

Attendance 2006 93.3 93.2 0.02 0.70 0.481 2959 2959

Math SIMCE -0.65 -0.68 0.03 1.15 0.248 2959 2959

Language SIMCE -0.65 -0.68 0.03 1.28 0.202 2959 2959

Mother Education 10.33 10.26 0.02 0.79 0.430 2959 2959

Father Education 10.51 10.48 0.01 0.34 0.731 2959 2959

Family Income 89012 88476 0.01 0.23 0.821 2959 2959

Male 0.57 0.58 -0.01 -0.39 0.693 2959 2959

Note: Norm. Dif. is the normalized differences in the means.

Let Nbt be the number of students who score below the threshold and who have a match

– above the threshold – found by the design matching procedure. Then, we estimate

the local average treatment effect by implementing the 2SLS estimator described by

equations (2) and (3), with a sample of 2 ∗ Nbt students, where, for each of the Nbt

students scoring below the threshold, we have one similar student scoring above the

threshold.

5 Results

In this section, we present our findings on the impact of grade retention on juvenile

crime, student drop out, and future grade retention. Moreover, we show the results of a

placebo test.

25We also tried to achieve this balance by implementing a more standard matching approach (e.g.,
minimizing the mahalanobis distance). However, in that case the improvement was only partial, probably
due to the important number of school-cohort clusters for which there are few students scoring 4.1 that
qualify as a match for those scoring 3.8.
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5.1 Impact of Grade Retention on Crime

The main results of this paper are presented in Table 3, which shows the effect of grade

retention on juvenile crime for different populations and under different empirical ap-

proaches. Focusing on the first two columns, which summarize the results of the empirical

strategies intended to deliver causal effects, we find that the effect of grade retention on

crime ranges from 1.6 to 3.7 pp, and in almost all specifications the effect is statistically

significant.26

Table 3: Effect of grade retention on juvenile crime

(1) (2) (3)

Donut-Hole FRD FRD-Matching OLS
Sample

All 0.016 0.018 0.035
( 0.0068) ( 0.0082) ( 0.0019)
N = 9681 N = 5130 N = 705261

Low SES 0.024 0.037 0.044
( 0.0120) ( 0.0142) ( 0.0027)
N = 4527 N = 2330 N = 359021

Males 0.024 0.025 0.042
( 0.0114) ( 0.0147) ( 0.0026)
N = 4187 N = 2176 N = 353552

First Repetition 0.011 0.015 0.034
( 0.0079) ( 0.0097) ( 0.0021)
N = 6630 N = 3338 N = 638582

Note: In the case of FRD-Matching there are Nbt/2 students with
their second lowest score equal to 3.8 and Nbt/2 students with that
score equal to 4.1. Standard errors in parentheses.

The effect is heterogeneous and economically significant. In particular, the impact – mea-

sured as percentage points – is larger for males and students from low SES.27 Regarding

the magnitudes, given that the crime rate for the students in this sample is about 4.8%

(see Table 1, Group C), the estimates range from an effect of 33% to 77%.28 Finally, the

26The difference between the sample size of columns one and two is due to the fact that in the former,
most of the time, there are more than one student scoring 4.1 for each student scoring 3.8, which is not
the case in column 2 (by construction).

27Low SES is defined as the group of students attending schools which fall below the median for a
school’s average income.

28A precautionary note about this range: these population groups also have different crime rates. For
example, the male rate is 6.7% (the female rate is 2.2%) and the crime rate for students attending low
SES schools is 6.8%.
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effect is not statistically significant for those students this is their first time repeating a

grade (row four). However, this last result should not be emphasized, because the point

estimations are rather similar and the p-value are close to 0.1.

5.2 Effects on Other Outcomes

Given the informative nature of our panel data set, we can also examine the effect of

grade retention on other outcomes.29 Specifically, we could also focus on dropping out

and future grade retention (after 2007). To do so, we implement the same empirical

strategies that we followed to estimate the effect on crime. Table 4 shows the effect of

grade retention in 2007 on the probability of future repetitions.30 In particular, grade

retention in 2007 decreased the probability of future repetitions from 2.3 to 10.4 pp

(column (1)). Given that, in the estimation sample, 55% of the students repeat at least

one grade after 2007, these figures represent a decrease from 4.1 to 18.9%.31

29We focus on the Donut-Hole RD method, as opposed to FRD-matching, given that this approach
presents the smaller point estimates in the placebo analysis, and it also delivers the smaller effects in
all the estimations.

30Given that there are drop-outs, there is a potential selection bias problem that we do not address
in this paper.

31In the estimation sample, 55% of the students repeat at least one grade after 2007, which reflects two
features of the data. First, the grade retention rate is remarkably high in Chile; in fact, the percentage
for the entire population is 39%. Second, low performing students are overrepresented in the estimation
sample.
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Table 4: Effect of grade retention on future grade retention

(1) (2) (3)

Donut-Hole FRD FRD-Matching OLS
Sample

All -0.082 -0.059 0.116
( 0.0155) ( 0.0191) ( 0.0035)
N = 9681 N = 5130 N = 705261

Low SES -0.050 -0.023 0.107
( 0.0221) ( 0.0272) ( 0.0047)
N = 4527 N = 2330 N = 359021

Males -0.104 -0.096 0.111
( 0.0215) ( 0.0278) ( 0.0044)

N = 4187 N = 2176 N = 353552

First Repetition -0.068 -0.048 0.152
( 0.0189) ( 0.0238) ( 0.0041)
N = 6630 N = 3338 N = 638582

Note: In the case of FRD-Matching there are Nbt/2 students with
their second lowest score equal to 3.8 and Nbt/2 students with that
score equal to 4.1. Standard errors in parentheses.

We define drop out as a situation in which the student does not attend school in the

years corresponding to 11th and 12th grade. For instance, we say that a student who was

attending 4th grade in 2007 dropped out, if she did not attend school in 2014 and 2015.

We apply this definition, in order to have a comparable measure of drop out, among

a group of students who were in different grades in 2007 (4th to 8th grade). Table 5

shows the effects of grade retention on dropping out. Specifically, grade retention in 2007

increases the probability of dropping out, from 1.2 to 3.2 pp (column (1)).32 According

to the drop out measure used in this paper, 6.3% of the students dropped out after 2007.

Thus, these figures represent an increase from 19 to 51%. We find no effects for those

students who repeated for the first time in 2007.

32These results are along the same lines as the findings of Manacorda (2012) and Jacob and Lefgren
(2009).
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Table 5: Effect of grade retention on Dropping out

(1) (2) (3)

Donut-Hole FRD FRD-Matching OLS
Sample

All 0.015 0.016 0.059
( 0.0079) ( 0.0096) ( 0.0023)
N = 9681 N = 5130 N = 705261

Low SES 0.030 0.032 0.081
( 0.0142) ( 0.0174) ( 0.0035)
N = 4527 N = 2330 N = 359021

Males 0.010 0.019 0.057
( 0.0118) ( 0.0141) ( 0.0029)

N = 4187 N = 2176 N = 353552

First Repetition 0.006 0.003 0.039
( 0.0076) ( 0.0093) ( 0.0022)
N = 6630 N = 3338 N = 638582

Note: In the case of FRD-Matching there are Nbt/2 students with
their second lowest score equal to 3.8 and Nbt/2 students with that
score equal to 4.1. Standard errors in parentheses.

In addition to the discussion on magnitudes, there are several aspects of these results

that are important to highlight. First, as in the crime estimation, the OLS estimation

delivers larger effects, probably due to unobservable variables, because in that case we do

not take advantage of the discontinuity in the grade retention probability (Column (3)),

which adds further evidence supporting the soundness of the empirical method developed

in this paper (i.e., the FRD-matching, extension of Zubizarreta (2012)). Second, the

effect of grade retention on dropping out suggests a relevant mechanism through which

grade retention may affect juvenile crime: grade retention impacts on dropping out and

dropping out impacts on crime. Third, if we assume that grade retention in higher grades

also impacts on juvenile crime, then the results of Table 4 suggest that we are finding

a lower bound for the effect of grade retention on crime, because those who did not

repeat in 2007 (who are non-treated in our estimation) had a higher probability of grade

retention in the future, which also impacts on crime.

5.3 Robustness Analysis

To examine the robustness of our results, we perform two empirical exercises. In the first

one, we re-estimate the “Donut-hole” RD and the RD-matching, but now we restrict the
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sample to the students whose final status at school is consistent with the retention rule.

In practice, this is equivalent to re-estimating Columns (1) and (2) of Table 3, but now

imposing a sharp RD design.

To be clear, we re-estimate the “Donut-hole” RD specification in two steps: (1) among

all students whose second lowest score is 3.8 or 4.1, we only keep the students whose final

status at school is consistent with the retention rule: below the threshold we drop the

students who pass the grade, and above the threshold, we drop the students who repeat

the grade; (2) given this sample, we estimate a standard sharp design RD, by regressing

the following equation:33

Yi = αy
c + τWi + αy

xXi + ε
y
i . (4)

Along the same line, we re-estimate the RD-matching in two steps: (1) among all students

whose second lowest score is 3.8 or 4.1, as before, we only keep the students whose final

status at school is consistent with the retention rule; (2) given the matched sample, the

LATE parameter (τ) is estimated by regressing equation 4.34

The second empirical exercise to review the robustness of our results is to implement

a placebo test. In this case, we replicate the “Donut-hole” RD and the RD-matching

estimations, but now we only compare students scoring below and above the threshold,

who did not repeat the grade.35 For instance, in the case of the “Donut-hole” RD, we

proceed with the following two steps: (1) among all students whose second lowest score

is 3.8 or 4.1, we only keep the students whose final status at school is pass the grade; (2)

given this sample, we estimate E[Yi|Zi = 0,Wi = 0, Xi] and E[Yi|Zi = 1,Wi = 0, Xi] by

regressing equation 4. To support our empirical approach, we should get that E[Yi|Zi =

0,Wi = 0, Xi] = E[Yi|Zi = 1,Wi = 0, Xi].
36

33Given step (1), this sample does not require a 2SLS estimator. Indeed, it is a sharp design RD.
34We are using the matched sample described in Table 2, as opposed to finding a new matched sample

given the smaller number of students scoring below the threshold. These samples would be different due
to the fact that design matching involves constraining the measures of imbalance to be less or equal to
certain tolerances.

35In principle, we could do the same by comparing those who are below and above the threshold and
repeated the grade. However, we do not have a sufficiently large sample size to do that.

36See Imbens and Rubin (2015).
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Table 6: Effect of grade retention on juvenile crime (sharp design and placebo)

Sharp Design Placebo

(1) (2) (3) (4)

Donut-Hole RD RD-Matching Donut-Hole RD RD-Matching
Sample

All 0.015 0.018 0.002 -0.001
( 0.0058) ( 0.0067) ( 0.0082) ( 0.0081)
N = 8694 N = 4421 N = 7054 N = 3236

Low SES 0.018 0.033 0.015 0.014
( 0.0102) ( 0.0118) ( 0.0165) ( 0.0166)
N = 4096 N = 2040 N = 3259 N = 1435

Males 0.021 0.026 0.022 0.005
( 0.0101) ( 0.0123) ( 0.0158) ( 0.0168)
N = 3783 N = 1910 N = 2891 N = 1340

First repetition 0.013 0.016 -0.003 -0.004
( 0.0067) ( 0.0080) ( 0.0097) ( 0.0092)
N = 5934 N = 2878 N = 4782 N = 2103

Note: In the case of FRD-Matching there are Nbt/2 students with their second lowest
score equal to 3.8 and Nbt/2 students with that score equal to 4.1. Standard errors in
parentheses.

The results of these empirical exercises are presented in Table 6. In short, the figures of

the first two columns, coming from the re-estimation of the “Donut-hole” RD and the

RD-matching (but now imposing a sharp design), are remarkably similar to the results

presented in Table 3. More importantly, the results of the placebo exercises (Columns

(3) and (4)) show no statistical significance. Regarding the magnitudes, although all the

estimates are not statistically significant, column (3) shows better (closer to zero) point

estimates compared to column (4), namely, the “Donut-hole” RD seems more robust

than the RD-matching. Overall, placebo results are rather important given that they

reinforce the claim that the numbers presented in Columns (1) and (2) of Table 3 can

be interpreted as (local) causal effects.37

Finally, in appendix C.2, we present the robustness analysis for drop out and grade

retention after 2007 (Tables 11 and 12). As in the case of crime, in the placebo test

37That said, it is important to consider that the robustness of our approaches critically depend on
the level of the initial imbalance in observables. For instance, we ran the same placebo approaches,
but compared students who scored 4.1 to students who scored 4.4, and we found differences that were
statistically significant. However, the differences in observables between these two groups (scoring 4.1
and 4.4) were much higher than the differences between the groups that were used in our estimation.
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all parameters are statistically insignificant in the case of future grade retention and

drop out. These results confirm the soundness of our empirical strategy to find causal

estimates.

6 Mechanisms

In this section, we present two exercises to shed some light on what may explain the

impact of grade retention on juvenile crime. First, we explore how grade retention

increases the probability of the occurrence of negative trajectories after 2007. Second,

we discuss the relevance of school switching in reinforcing the negative effect of grade

retention on student’s future.

6.1 The interaction between drop out and crime

The causal effect of grade retention on juvenile crime, documented in the previous section,

could have operated through different mechanisms. For instance, grade retention could

have impacted only through the effect of repetition on drop out, and the subsequent

effect of drop out on crime. To explore what happens after grade repetition and how

this event affects students’ trajectories, we run a multinomial logit with four trajectories

as possible outcomes, whose results are presented in Table 7. The possible trajectories

after 2007 are: attending school in all periods of our sample, without committing a crime

over those years (column (1)); dropping out in a year t (after 2007), without committing

a crime in a year t + a, with a > 0 (column (2)); dropping out in a year t (after 2007)

and committing a crime in a year t+ a (column (3)); and committing a crime in a year

t (after 2007) and dropping out after that, simultaneously, or never (column (4)).

Given the non-linearity of this model we avoid the use of the score in the second lowest

subject as the instrument in a fuzzy RD design, and instead we run a multinomial logit

as if we had a sharp design RD environment. We do so by following the same approach

described in section 5.3, namely, among all students whose second lowest score is 3.8 or

4.1, we only keep the students whose final status at school is consistent with the retention

rule. Given this sample, we implement the design matching to optimally find a pair for

each student scoring 3.8 among those who score 4.1. Therefore, and given this matched

sample, the variable of interest is a dummy that takes one, if the student repeated the
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grade in 2007, scoring 3.8 in the second lowest score, and it takes zero, if the student

did not repeat the grade in 2007, scoring 4.1 in the second lowest score.38 Besides this

variable, the model includes the same controls as the models of the previous section.39

Table 7: Effect of grade retention on the probability of different teens’ trayectories

Always at School, Dropout, First Dropout, First crime, then,
no crime no crime then crime or simultaneously, dropout (if so)

Grade Retention (in 2007) -0.0435 0.0282 0.0053 0.0100

( 0.0118) ( 0.0108) ( 0.0020) ( 0.0048)

Number of Obs. = 4961 Pseudo R2 = 0.11

Note: This is a multinomial logit model with a dependent variable with four categories. The model includes the following
controls: gender, father education, mother education, math and language simce, family income, attendance in 2006, previous
grade retentions. The table presents the marginal effects.

Table 7 shows the marginal effects of this multinomial logit. It says, for example, that

grade retention increases the probability of committing a crime after 2007 before drop-

ping out (if so) by 1 pp. Overall, the results show that grade retention increases the

probabilities of “bad trajectories” (involving either dropping out or crime) and that the

effect of grade retention on crime is not only through its effects on dropping out. In fact,

the effect on crime occurring before (or simultaneously to) dropping out is more relevant

than the effect on crime that occurs after dropping out.

6.2 Switching schools after grade retention

As documented in Hanushek, Kain, and Rivkin (2004), as a result of switching schools,

students may experience a substantial pedagogical cost. If so, it could be the case that

part of the effect of grade retention on crime found in this paper, is due to the fact that

repetition may increase the probability of switching schools.

38It should be noted that even though this approach does not allow for a discussion on causality, since
the right approach would be a FRD, the analysis of the effects of grade retention on crime, drop out,
and grade retention after 2007 (presented in the previous sections) shows that this fake sharp design
RD delivers rather similar results to the fuzzy Rd estimators.

39These are: gender, father’s education, mother’s education, math and language SIMCE, family
income, attendance in 2006, previous grade retentions.
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To explore the relevance of this mechanism, we run an OLS regression among all the

students who repeated in 2007, scoring between 3.0 and 4.5 on the second lowest score,40

and we study the correlation between switching schools (between 2007 and 2008) and

juvenile crime, controlling for the same variables as in the models of the previous section,

and including school-grade fixed effects. Considering that 8th grade a higher rate of

student turnover, we present the results of this model including and excluding this grade.

Table 8: Crime and switching schools

4th to 8th grade Excluding 8th grade
Variables

Switching school 0.0220 ( 0.0068) 0.0224 ( 0.0080)

Attendance 2006 -0.0012 ( 0.0005) -0.0014 ( 0.0006)

Mother Education -0.0018 ( 0.0012) -0.0022 ( 0.0013)

Father Education -0.0019 ( 0.0011) -0.0023 ( 0.0012)

Family Income -0.0000 ( 0.0000) -0.0000 ( 0.0000)

Male 0.0546 ( 0.0061) 0.0591 ( 0.0070)

Math SIMCE 0.0008 ( 0.0047) 0.0009 ( 0.0057)

Language SIMCE -0.0011 ( 0.0044) -0.0031 ( 0.0053)

Constant 0.1794 ( 0.0476) 0.2066 ( 0.0554)

N 18946 15171

R2 0.086 0.093

Note: These two estimations include school-grade fixed effects.
Standard errors in parentheses.

Table 8 shows that for those students who repeated a grade, switching schools increases

the probability of crime by 2.2 pp, a result that does not change when 8th grade is

excluded. Thus, in concordance with the literature, grade retention could be particularly

negative for a student’s future when directly followed by a change in school.

7 Conclusion

We exploit a discontinuity in the grade retention probability, given a repetition rule,

to examine the effect of grade retention in primary school on juvenile crime. Due to

clear evidence about – local – manipulation on the forcing variable, we depart from

standard RD methods. First, we follow Barreca, Guldi, Lindo, and Waddell (2011)

40We use this set of students to have both a large enough sample size, and a group which is similar
to the sample used in section 5.1.
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to implement a donut-hole FRD, where, after removing observations in the immediate

vicinity of the threshold for grade repetition, we run a standard FRD. Second, we extend

the method developed by Keele, Titiunik, and Zubizarreta (2015) to implement a method

that combines matching with a fuzzy regression discontinuity design.

This paper makes three main contributions. First, together with a recent paper (Depew

and Eren (2015)), it is the first that estimates a causal effect of grade retention on juvenile

crime and it is the first evidence for a developing country. This causal evidence calls into

question the appropriateness of grade repetition as a public policy, a concern that is even

more relevant in the context of Chile, a developing country with a high rate of grade

retention.41 That said, the interpretation of our findings should consider that we are not

taking into account other aspects of this policy, e.g., for example, the threat of retention

could serve as an incentive for all students to exert more effort. Second, by extending the

method developed by Keele, Titiunik, and Zubizarreta (2015) to the fuzzy RD case, we

present an empirical approach that can be useful in many other contexts in which there

is some evidence of manipulation in the forcing variable. Third, the paper sheds light

on the mechanisms that could explain the impact of grade retention on juvenile crime.

From this analysis, it is possible to infer relevant insights for public policy debate.

On one hand, because the effect of grade retention on crime does not only operate through

its effect on dropping out, it is not possible to argue that rather than concern ourselves

with grade retention, we should only start to worry when the student who has been held

back, drops out. The evidence presented in this paper implies that policy makers should

be concerned about high levels of grade retention on its own merit.

On the other hand, the relevance of the interaction between grade retention and school

switching in the determination of juvenile crime, gives important clues about a possible

avenue to attenuate the negative effects of grade retention, in case policy makers decide

to continue supporting this practice. In particular, since repetition is a negative response

from the education system, it may discourage students’ commitment to their educational

process. Thus, it is essential to design policies that will counteract this negative effect,

breaking the connection between grade repetition and other causes of dropping out and

juvenile crime. Particularly, for those students who have repeated more than once.

41In fact, in our sample 13.1% of the students repeated at least one grade between 1st and 8th grade.
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A Grading Standards

Figure 4: Heterogenous Grading Standards Across Schools
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Let Z1 denote the group of students whose second-lowest score in 2007 is below the

threshold (i.e., equal to 3.8), and let Z0 denote the group of students whose second-

lowest score is above the threshold (equal to 4.1).42 Let j1 index the members of group

Z1 and j0 index the members of group Z0. Define dj1,j0 as the covariate distances (in

math and language standardized test scores, parents’ education, previous repetitions,

attendance during the previous year, per capita income, and gender) between unit j1

and j0. To enforce specific forms of covariate balance, define e ∈ ε as the index of the

covariate (school and grade identification) for which it is needed to match exactly, and

be ∈ Be as the categories that covariate e takes, so that xj1;e is the value of nominal

covariate e for unit j1 with xj1;e ∈ Be. Finally, let m ∈ M be the index of covariates for

which it is desired to balance their means, in this case: math and language standardized

test scores, parents’ education, previous retentions, attendance during the previous year,

per capita income, and gender. So that xj1;m is the value of covariate m for unit j1, and

xj0;m is the value of covariate m for j0.

42We follow the notation and the description from Keele, Titiunik, and Zubizarreta (2015)
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To solve the problem optimally, the following decision variables are introduced:

aj1;j0 =











1 if unit j1 is matched to unit j0

0 otherwise,

Then, for a given scalar λ, the objective function to minimize is equal to:43

∑

j1∈Z1

∑

j0∈Z0

dj1,j0aj1,j0 − λ
∑

j1∈Z1

∑

j0∈Z0

aj1,j0, (5)

subject to pair matching and covariate balancing constraints. Under this penalized

match, if distance can be minimized it will be, and if it cannot be minimized in every

case, it will be minimized as often as possible. In particular, the pair matching constraints

require each treated and control subject to be matched at most once,

∑

j0∈Z0
aj1,j0 ≤ 1, ∀j1 ∈ Z1 (6)

∑

j1∈Z1
aj1,j0 ≤ 1, ∀j0 ∈ Z0 (7)

This implies that it matches without replacement. The covariate balancing constraints

are defined as follows

∑

j1∈Z1

∑

j0∈Z0

∣

∣1xj1;e
=bexj1;e − 1xj0;e

=bexj0;e

∣

∣ aj1,j0 = 0, ∀e ∈ ε, (8)

∣

∣

∣

∑

j1∈Z1

∑

j0∈Z0
aj1;j0xj1;m −

∑

j1∈Z1

∑

j0∈Z0
aj1;j0xj0;m

∣

∣

∣
≤ εm

∑

j1∈Z1

∑

j0∈Z0
aj1;j0, ∀m ∈ M,

(9)

where 1 is the indicator function.

These constraints enforce exact matching and mean balance, respectively. More precisely,

(8) requires exact matching by matching each subject in Z1 to a subject in Z0 in the same

school and grade; and (9) forces the differences in means after matching to be less than

43We solve this optimization problem, by implementing the R package described in Zubizarreta and
Kilcioglu (2016).
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or equal to εm = 0.03 standard deviations apart for all m ∈ M , with M = standardized

scores in language and math, parents’ education, previous retentions, attendance during

the previous year, an income variable and gender.

The Designmatch incorporates optimal subset matching into the integer programming

framework in the objective function (5) via the λ parameter. The first term in (5) is the

total sum of mahalanobis distances between matched pairs, and the second term is the

total number of matched pairs. Therefore, λ emphasizes the total number of matched

pairs in relation to the total sum of distances and, according to (5), it is preferable

to match additional pairs if on average they are at shorter distances than λ. In our

application, we choose λ to be equal to the median mahalanobis distance between j1 and

j0 subjects so, according to (5), it is preferable to match additional pairs if on average they

are at a shorter distance than the typical distance (as measured by the median).44 Subject

to the pair matching constraints (6) and (7) and the covariate balancing constraints

(8) and (9), this form of penalized optimization addresses the lack of common support

problem in the distribution of observed covariates of subject in Z1 and Z0.

Due to this penalty, the Design match keeps the largest number of matched pairs for

which distance is minimized and the balance constraints are satisfied. This implies that

as we alter the distances or the balance constraints, the number of j1 and j0 subjects

retained changes. In particular, for stricter constraints we tend to retain a smaller

number of subjects.

44λ can be thought of as a parametrization of the trade-off between bias and variance: a higher value
of it would imply a bigger sample size, but more differences between treated and controls.
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C Robustness Analysis

C.1 Results excluding students who repeated before 2007

Table 9: Effect of grade retention on juvenile crime (excluding who repeteated before
2007)

(1) (2) (3)

Donut-Hole FRD FRD-Matching OLS
Sample

All 0.011 0.015 0.034
( 0.0079) ( 0.0097) ( 0.0021)
N = 6630 N = 3338 N = 638582

Low SES 0.026 0.045 0.045
( 0.0153) ( 0.0185) ( 0.0032)
N = 2718 N = 1326 N = 312667

Males 0.005 0.001 0.041
( 0.0133) ( 0.0193) ( 0.0030)
N = 2815 N = 1412 N = 313398

Note: In the case of FRD-Matching there are Nbt/2 students
with their second lowest score equal to 3.8 and Nbt/2 students
with that score equal to 4.1. Standard errors in parentheses.

Table 10: Effect of grade retention on juvenile crime: sharp design and placebo, excluding
who repeteated before 2007.

Sharp Design Placebo

(1) (2) (3) (4)

Donut-Hole RD RD-Matching Donut-Hole RD RD-Matching
Sample

All 0.013 0.016 -0.003 -0.004
( 0.0067) ( 0.0080) ( 0.0097) ( 0.0092)
N = 5934 N = 2878 N = 4782 N = 2103

Low SES 0.020 0.041 0.013 0.010
( 0.0132) ( 0.0157) ( 0.0215) ( 0.0203)
N = 2448 N = 1161 N = 1926 N = 814

Males 0.008 0.011 0.001 -0.022
( 0.0116) ( 0.0159) ( 0.0191) ( 0.0194)
N = 2544 N = 1243 N = 1931 N = 859

Note: In the case of FRD-Matching there are Nbt/2 students with their second
lowest score equal to 3.8 and Nbt/2 students with that score equal to 4.1.
Standard errors in parentheses.
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C.2 Other outcomes

Table 11: Effect of grade retention on future grade retention (sharp design and placebo)

Sharp Design Placebo

(1) (2) (3) (4)

Donut-Hole RD RD-Matching Donut-Hole RD RD-Matching
Sample

All -0.087 -0.060 0.006 -0.005
( 0.0129) ( 0.0151) ( 0.0205) ( 0.0212)
N = 8694 N = 4421 N = 7054 N = 3236

Low SES -0.058 -0.029 0.022 0.010
( 0.0190) ( 0.0221) ( 0.0321) ( 0.0326)
N = 4096 N = 2040 N = 3259 N = 1435

Males -0.120 -0.101 0.048 0.007
( 0.0191) ( 0.0227) ( 0.0346) ( 0.0334)
N = 3783 N = 1910 N = 2891 N = 1340

First repetition -0.078 -0.045 0.018 -0.020
( 0.0155) ( 0.0187) ( 0.0250) ( 0.0267)
N = 5934 N = 2878 N = 4782 N = 2103

Note: In the case of FRD-Matching there are Nbt/2 students with their second lowest
score equal to 3.8 and Nbt/2 students with that score equal to 4.1. Standard errors in
parentheses.
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Table 12: Effect of grade retention on dropping out (sharp design and placebo)

Sharp Design Placebo

(1) (2) (3) (4)

Donut-Hole RD RD-Matching Donut-Hole RD RD-Matching
Sample

All 0.017 0.020 -0.009 -0.013
( 0.0066) ( 0.0079) ( 0.0095) ( 0.0092)
N = 8694 N = 4421 N = 7054 N = 3236

Low SES 0.033 0.040 -0.016 -0.025
( 0.0121) ( 0.0146) ( 0.0185) ( 0.0181)
N = 4096 N = 2040 N = 3259 N = 1435

Males 0.010 0.020 0.001 -0.006
( 0.0100) ( 0.0117) ( 0.0169) ( 0.0161)
N = 3783 N = 1910 N = 2891 N = 1340

First repetition 0.006 0.008 0.001 -0.014
( 0.0065) ( 0.0077) ( 0.0085) ( 0.0081)
N = 5934 N = 2878 N = 4782 N = 2103

Note: In the case of FRD-Matching there are Nbt/2 students with their second lowest
score equal to 3.8 and Nbt/2 students with that score equal to 4.1. Standard errors in
parentheses.
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