ELABORACIÓN Y CARACTERIZACIÓN DE PASTA FUNCIONAL
CON ADICIÓN DE HARINA DE BAGAZO DE UVA

MEMORIA PARA OPTAR AL TÍTULO DE INGENIERO EN ALIMENTOS
ALEJANDRA ANDREA NAVARRETE JARAMILLO

Santiago-Chile
2013
AGRADECIMIENTOS

En primer lugar, agradezco a Dios por su amor sin condición, por la dirección que me entrega cada día a través de Su Palabra y porque sólo en Él he podido descubrir mi propósito. Con Dios todo es posible.

A mis padres (Domingo y Lilian), simplemente por amarme. Gracias por su esfuerzo y dedicación durante todos estos años. A mi hermanita Daniela, por su amor y alegría ya que su compañía ha sido muy importante en este proceso.

En general a toda mi familia y amigos con quienes he compartido parte de este proceso, por su cariño, preocupación y apoyo.

A mi directora de tesis y profesora patrocinante, Andrea Bunger, por su apoyo, confianza y dedicación. Al Profesor Franco Pedreschi por su confianza y disposición.

Al Proyecto FONDEF AF10i1014 por el financiamiento otorgado para la realización de esta memoria y a todas aquellas personas de la Universidad Católica que me ayudaron de una u otra forma.

Finalmente, agradezco a la Empresa Carozzi (Planta de Pastas) por la oportunidad de desarrollar el producto, utilizando sus instalaciones. A cada una de las personas que me brindaron su apoyo y conocimientos.
ÍNDICE

RESUMEN .. viii
SUMMARY .. ix

1 INTRODUCCIÓN .. 1
 1.1 Concepto de alimentos funcionales ... 2
 1.2 Definición de antioxidante ... 3
 1.3 Definición de fibra dietética .. 3
 1.4 Reglamentación de las pastas ... 4
 1.5 Datos estadísticos .. 4
 1.6 Propiedades nutricionales ... 5
 1.7 Descripción de materias primas .. 6
 1.7.1 Harina de bagazo u orujo de uva ... 6
 1.7.2 Harina de trigo ... 9
 1.7.3 Agua ... 10
 1.7.4 Fibra de avena ... 11
 1.7.5 Carbonato de calcio ... 11
 1.8 Elaboración de las pastas ... 11
 1.9 Proceso de pasta a nivel industrial ... 12
 1.10 Estudio con consumidores .. 14

2 OBJETIVOS .. 15
 2.1 Objetivo general ... 15
 2.2 Objetivos específicos .. 15

3 HIPÓTESIS .. 15

4 METODOLOGÍA .. 16
 4.1 Descripción de las etapas del proceso de elaboración de harina de bagazo de uva (HBU) ... 16
 4.1.1 Preparación de HBU tinta .. 17
 4.1.2 Caracterización granulométrica de la harina de bagazo de uva y de la sémola AB ... 18
 4.2 Desarrollo y elaboración de pastas ... 18
 4.2.1 Formulaciones de pastas ... 18
 4.2.2 Diagrama de bloque: Elaboración general de pastas 20
4.3 Determinación de acidez .. 21
4.4 Determinación de tiempo de cocción aproximado... 21
4.5 Estudio con consumidores... 21
 4.5.1 Diseño de la encuesta .. 23
 4.5.2 Análisis de datos ... 24
4.6 Caracterización funcional.. 25
 4.6.1 Determinación de fibra.. 25
 4.6.2 Análisis proximal .. 25
 4.6.3 Determinación de capacidad antioxidante ... 26
 4.6.4 Determinación de polifenoles totales .. 26
 4.6.5 Determinación de antocianinas totales ... 27
4.7 Determinación de firmeza .. 27
4.8 Análisis microbiológico .. 28

5 RESULTADOS Y DISCUSIONES .. 29
 5.1 Caracterización granulométrica de HBU tinto y Sémola AB ... 29
 5.2 Fórmula para elaborar pastas con adición de harina de bagazo de uva tinto 29
 5.2.1 Diagrama de bloque: Elaboración de pastas ... 32
 5.2.2 Descripción de las etapas del proceso ... 33
 5.3 Tiempo de cocción aproximado .. 34
 5.4 Estudio con consumidores ... 34
 5.4.1 Caracterización de los encuestados .. 34
 5.4.2 Test de Aceptabilidad .. 36
 5.4.3 Evaluación de las respuestas espontáneas de agrado y desagrado 37
 5.4.4 Evaluación de la intención de compra ... 40
 5.5 Caracterización funcional ... 41
 5.5.1 Análisis de fibra .. 41
 5.5.2 Análisis proximal ... 42
 5.5.3 Determinación de capacidad antioxidante, polifenoles totales y antocianinas totales .. 43
 5.6 Determinación de firmeza ... 46
 5.7 Análisis microbiológico ... 47
6 CONCLUSIONES.. 48
7 BIBLIOGRAFÍA... 49
ANEXOS ... 52

Anexo 1: Proceso elaboración de vino y sus subproductos................................. 52
Anexo 2: Ficha de aceptabilidad - intención de compra y ficha descriptiva del producto... 54
Anexo 3: Resultados de la evaluación realizada por los consumidores.......... 57
Anexo 4: Detalle de la formulación de las pastas... 58
Anexo 5: Requisitos microbiológicos para pastas.. 58
Anexo 6: Contenido antioxidante de diferentes productos............................ 59
ÍNDICE DE TABLAS

<p>| Tabla N°1: Consumo de pastas alimenticias en el mundo (kg. per cápita) | 5 |
| Tabla N°2: Aporte nutricional en 100 g de pasta tradicional | 6 |
| Tabla N°3: Porcentajes de nutrientes en HBU de orujo tinto o blanco | 7 |
| Tabla N°4: Capacidad antioxidante en HBU de orujo tinto y blanco | 8 |
| Tabla N°5: Resultados de granulometría de HBU tinto y Sémola AB | 29 |
| Tabla N°6: Resultado de Análisis de Acidez (pastas sin adición de regulador de acidez) | 30 |
| Tabla N°7: Resultados de análisis de acidez en pastas con adición de regulador de acidez | 31 |
| Tabla N°8: Formulación final para pasta con 2,5% de HBU tinto | 32 |
| Tabla N°9: Agrupación de las respuestas espontáneas de agrado | 38 |
| Tabla N°10: Agrupación de las respuestas espontáneas de desagrado | 39 |
| Tabla N°11: Análisis de fibra de materia prima | 41 |
| Tabla N°12: Datos comparativos de fibra en distintas pastas | 41 |
| Tabla N°13: Aporte nutricional en 100 g de pasta | 42 |
| Tabla N°14: Capacidad antioxidante, polifenoles totales y antocianinas totales en la materia prima | 43 |
| Tabla N°15: Capacidad antioxidante, polifenoles totales y antocianinas totales en pastas crudas | 43 |
| Tabla N°16: Capacidad antioxidante, polifenoles totales y antocianinas totales en pastas cocidas | 44 |
| Tabla N°17: Determinación de firmeza en distintas muestras de pasta | 45 |
| Tabla N°18: Análisis microbiológico de pasta final | 47 |
| Tabla N°19: Subproductos en las etapas de elaboración del vino | 53 |
| Tabla N°20: Resultados de la evaluación realizada por los consumidores a la muestra de pasta con un 2,5% de HBU tinto | 57 |
| Tabla N°21: Formulación de las distintas pastas | 58 |
| Tabla N°22: Requisitos microbiológicos para fideos y pastas rellenas desecadas | 58 |
| Tabla N°23: Contenido antioxidante (ORAC) de diferentes productos | 59 |
| Tabla N°24: Contenido polifenoles totales de diferentes productos | 59 |</p>
<table>
<thead>
<tr>
<th>Figura</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pasta con adición de 2,5% de HBU</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>Rango de edad de los consumidores encuestados</td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td>Alimentos saludables que consumen los encuestados</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>Gráfico de porcentaje de Agrado y Desagrado por atributo</td>
<td>36</td>
</tr>
<tr>
<td>5</td>
<td>Porcentaje de intención de compra si el producto se encontrara en el comercio</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>Ficha informativa. Concepto del producto</td>
<td>56</td>
</tr>
</tbody>
</table>
RESUMEN

Elaboración y caracterización de pasta funcional con adición de harina de bagazo de uva

En nuestro país, existe un aumento de la prevalencia de obesidad y enfermedades asociadas lo que lleva a la industria de alimentos a desarrollar productos más saludables de consumo masivo con el fin de mejorar la salud de la población. En el proceso de elaboración del vino se estima que aproximadamente el 20% del peso total de la uva se pierde como residuo, el cual es rico en antioxidantes y fibra. El objetivo de este estudio fue elaborar y caracterizar una pasta funcional con adición de harina de bagazo de uva tinto que cumpla con la legislación y normas vigentes, como también con las exigencias de los consumidores, permitiendo innovar dentro de la industria de las pastas y mejorar la salud de la población al aumentar el aporte de antioxidantes y fibra. Para maximizar la adición de harina de bagazo de uva tinto (HBU tinto) a la pasta, se incorporó carbonato de calcio, como regulador de acidez. Además, fue necesario la adición de gluten para mejorar las características de la masa y fibra de avena para complementar la fibra entregada por la sémola de trigo y HBU tinto permitiendo que el producto sea alto en fibra. La formulación final contiene un 93,25% de sémola de trigo, 2,5% de HBU tinto, 2,0% de gluten de trigo, 1,25% de fibra de avena y un 1,0% de CaCO₃. El producto final contiene un 7,54% de fibra, por lo que puede ser declarado como un producto alto en fibra, el aporte energético es de 343 kcal/100 g y respecto a la capacidad antioxidante, la pasta cocida presenta 518,4 μmoles Trolox Equivalente lo cual corresponde al 10% de cantidad diaria, recomendada por la FDA. La formulación desarrollada fue evaluada a través de un estudio con consumidores, siendo el atributo mejor evaluado el sabor con un agrado sobre 70% y el peor evaluado la apariencia del producto cocido con un 59%. En base a las respuestas espontáneas de agrado y desagrado parece necesario probar otro formato de pasta, como un fideo corto, o mejorar la apariencia agregando algún colorante natural que permita asociar el producto con la uva y/o el vino tinto. La intención de compra fue altamente favorable, ya que el 80% de los encuestados compraría el producto. La firmeza del producto fue de 93,01±7,99 g-fuerza, lo cual es semejante a una pasta sin adición de HBU. Esto permite inferir que en el proceso industrial se comportará de manera adecuada. En cuanto al análisis microbiológico se comprobó que la pasta cumple con los requisitos establecidos por el Reglamento Sanitario de los Alimentos. En conclusión, es factible elaborar una pasta funcional con adición de 2,5% de harina de bagazo de uva tinto, siendo esta harina un componente activo que aporta fibra y antioxidantes.
SUMMARY

Development and characterization of functional pasta with addition of grape bagasse flour

In our country, there is an increased prevalence of obesity and associated diseases leading the food industry to develop healthier massive consumption products with the purpose of improve the health of the population. In the winemaking process approximately 20% of the total weight of the grape is lost as a residue which is rich in antioxidants and fiber. The aim of this study was to develop and characterize a functional pasta with addition of red grape bagasse flour that complies with legislation and regulations, as well as the demands of consumers, allowing innovate within the industry of pasta and improve health of the population increasing the supply of antioxidants and fiber. To maximize the addition of red grape bagasse flour (GBF red) to the pasta, calcium carbonate was incorporated, as an acidity regulator. Furthermore, it was necessary the addition of gluten to improve the characteristics of the dough and oat fiber to supplement fiber delivered by the wheat semolina and red GBF allowing the product to be high in fiber. The final formulation contains 93.25% wheat semolina, 2.5% red GBF, 2.0% wheat gluten, 1.25% oat fiber and 1.0% CaCO$_3$. The final product contains 7.54% of fiber, which can be stated as a high-fiber product, the energy contribution is 343 kcal/100 g. Regarding the antioxidants capacity, the cooked pasta has 518.4 μmol Trolox Equivalent, corresponding to 10% of daily amount intake by the FDA. The developed formulation was assessed through a consumer study, being the best evaluated attribute the flavor with an acceptance on 70% and the worst evaluated the appearance of the cooked product with 59%. Based on spontaneous liking and disliking responses, it seems necessary to try another pasta format, such as a short noodle, or improve appearance by adding some natural colorant that may associate the product with grape and/or red wine. Purchase intention was highly favorable, because 80% of respondents would buy the product. The firmness of the product was 93.01±7.99 g-force, which is similar to pasta without adding GBF. It can be inferred that it will be suitable for the manufacturing process. Regarding the microbiological analysis, the pasta meets the requirements of the Food Sanitary Regulations. In conclusion, it is feasible to develop functional pasta with addition of 2.5% of red grape bagasse flour, being this flour an active component which provides fiber and antioxidants.
INTRODUCCIÓN

En nuestro país, existe un aumento de la prevalencia de obesidad y enfermedades asociadas, y el ocultamiento de déficits de micronutrientes que se pueden traducir en talla baja, esto especialmente en poblaciones más afectadas social y económicamente (Minsal, 2012). Esto lleva a la comunidad científica a buscar nuevas formas de alimentación, más equilibradas y con un mayor aporte nutricional.

El concepto de Dieta Mediterránea como modelo de alimentación saludable surgió de una investigación realizada en los años sesenta, denominado “Estudio de los siete países” en el cual se examinó la relación entre la alimentación y las enfermedades coronarias. Al analizar las diferentes dietas aparecieron elementos comunes entre las naciones mediterráneas, diferentes del modelo occidental de alimentación de los Estados Unidos. Las dietas mediterráneas se caracterizan por ser: bajas en grasas saturadas, altas en grasas monoinsaturadas, balanceadas en ácidos grasos poliinsaturados (Omega-3 y Omega-6), bajas en proteína animal, ricas en antioxidantes y abundantes en fibra. En la actualidad se denomina “dieta mediterránea” a aquella que tiene estas características, usando los productos de cada región. Los beneficios de esta dieta se basan en la interacción entre sus componentes nutricionales que, bien combinados, potencian al máximo sus propiedades. Algunos de estos beneficios son: reduce el colesterol LDL (“malo”) y eleva el colesterol HDL (“bueno”) en la sangre, aumenta la capacidad antioxidante de las células, reduce la presión arterial y mejora la reactividad vascular o función endotelial, estimula mecanismos que disminuyen el riesgo de cáncer, disminuye el riesgo de trombosis vascular, regula el sistema inmune y reduce la inflamación (Aliméntate sano, 2012).
En la elaboración del vino se genera residuo en forma de orujo o bagazo de uva (que incluye semillas y pieles). Con base de algunas estimaciones, aproximadamente el 20% del peso total de uva es residuo. La eliminación de éste es costoso, por lo cual, además de encontrar una aplicación para un producto de desecho, la adición de orujo de uva a los alimentos puede proporcionar beneficios adicionales a la salud (Hoye y Ross, 2011).

En el Anexo 1 se presentan los diagramas de bloque de la elaboración de vino blanco y tinto, el detalle de los subproductos del proceso y el diagrama de bloque del proceso de elaboración de la harina de bagazo de uva tinto.

El fruto de uva (Vitis vinífera L.) ha sido ampliamente estudiado por sus propiedades antioxidantes. La cáscara y semillas de la uva son consideradas fuentes importantes de compuestos fenólicos, a los que se les atribuyen la propiedad astringente y antioxidante de las uvas y sus productos (Molina y cols., 2010).

El presente estudio se desarrolla en el marco del proyecto FONDEF “Diseño y caracterización funcional de aditivos alimentarios saludables, ricos en antioxidantes y fibra, obtenidos de bagazo de Vitis Vinífera para la prevención de enfermedades crónicas” y está orientado al desarrollo de pasta funcional con adición de harina de bagazo de uva.

1.1 Concepto de alimentos funcionales

Se les otorga este nombre a aquellos alimentos que se consumen como parte de una dieta normal y contienen componentes biológicamente activos, que ofrecen beneficios para la salud y reducen el riesgo de sufrir enfermedades. Entre algunos ejemplos de alimentos funcionales, destacan: los alimentos que contienen determinados minerales, vitaminas, ácidos grasos o fibra dietética; los alimentos a los que se han añadido sustancias biológicamente activas (fotoquímicos u otros antioxidantes); y los probióticos (alimentos con cultivos vivos beneficiosos) (Touriño, 2009).
1.2 Definición de antioxidante

Un antioxidante es una molécula capaz de retardar o prevenir la oxidación de otras moléculas. Los antioxidantes (AH) actúan generalmente cediendo un electrón a los radicales libres (RL) transformándose a su vez en un radical libre de naturaleza no tóxica (A) y que en algunos casos puede ser regenerado por la acción de otros antioxidantes. De esta manera, los antioxidantes pueden detener reacciones de propagación e inhibir la oxidación de moléculas evitando la alteración en el funcionamiento normal de la célula (Touriño, 2009).

\[\text{AH} + \cdot \text{RL} \xrightarrow{} \cdot \text{A} + \text{RH} \]

Un compuesto es considerado antioxidante cuando cumple al menos una de las siguientes funciones: eliminar especies reactivas de oxígeno y/o otras especies reactivas, disminuir la disponibilidad de especies pro-oxidantes y proteger moléculas de la oxidación (Touriño, 2009).

1.3 Definición de fibra dietética

La definición propuesta por la AOAC define fibra dietética como los polisacáridos, lignina y sustancias asociadas presentes en las paredes celulares de los alimentos de origen vegetal que son resistentes a la digestión (hidrólisis) de las enzimas presentes en el cuerpo humano. En general consta de dos fracciones: fibra dietética soluble e insoluble en agua (Díaz, 2008).

La fibra dietética soluble (pectinas, gomas, mucílagos y algunas hemicelulosas) tiene elevada capacidad de retención de agua, forma soluciones viscosas y es fermentada en mayor proporción en el colon o intestino grueso por la flora intestinal (Díaz, 2008). Su efecto en la salud es que disminuye los niveles plasmáticos de colesterol (reduce el riesgo de enfermedades cardiovasculares) y regula el azúcar en la sangre.
La fibra dietética insoluble (lignina, celulosa, resto de hemicelulosas no solubles) es escasamente fermentada. Su efecto en el organismo es disminuir el tiempo de tránsito de los alimentos a través del tubo digestivo y como consecuencia al ingerirse diariamente previene estreñimiento, además, ayuda a prevenir el cáncer de colon al mantener un pH óptimo en el intestino (Díaz, 2008).

1.4 Reglamentación de las pastas

En el Artículo 361 del Reglamento Sanitario de los Alimentos, se define como fideos a los productos constituidos por mezclas de sémolas de trigo y/o harina con agua potable, no fermentadas, sin cocción y que han sido sometidos a un proceso de desecación (Reglamento Sanitario de los Alimentos, 2010).

Además, en el Artículo 362 se establece que deben cumplir con lo siguientes requisitos:

a) agua, máximo 13,5% y
b) acidez total no superior a 0,25%, expresada en ácido sulfúrico, sobre la base de 14,0% de humedad.

Las demás exigencias y características corresponderán a las de la materia prima de origen, sin considerar nutrientes u otras sustancias agregadas permitidas (Reglamento Sanitario de los Alimentos, 2010).

1.5 Datos estadísticos

Las pastas y/o fideos es uno de los alimentos a base de cereales más tradicionales y en la actualidad son tanto o más consumidos que el pan. Básicamente, se elaboran de sémolas de trigo y agua principalmente, y se comercializan frescas o, como es más común, secas (Vásquez, 2007).

El consumo de pastas a nivel mundial se encuentra liderado por Italia, seguido de Venezuela y Túnez. Chile es el segundo consumidor en Latinoamérica, ubicándose en la posición Nº8, con un consumo por habitante de 8,4 kilos al año (ProChile, 2011), tal como aparece en la Tabla Nº1.
La comercialización de pastas en Chile aumentó un 15% durante el año 2010, durante el cual se consumieron aproximadamente 119.200 toneladas de pastas (118.400 toneladas de pastas secas y 800 toneladas de pastas frescas) (ProChile, 2011).

Tabla Nº1: Consumo de pastas alimenticias en el mundo (kg. per cápita)

<table>
<thead>
<tr>
<th>Nº</th>
<th>País</th>
<th>Kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Italia</td>
<td>26,0</td>
</tr>
<tr>
<td>2</td>
<td>Venezuela</td>
<td>13,0</td>
</tr>
<tr>
<td>3</td>
<td>Túnez</td>
<td>11,9</td>
</tr>
<tr>
<td>4</td>
<td>Grecia</td>
<td>10,4</td>
</tr>
<tr>
<td>5</td>
<td>Suiza</td>
<td>9,7</td>
</tr>
<tr>
<td>6</td>
<td>Suecia</td>
<td>9,0</td>
</tr>
<tr>
<td>7</td>
<td>EEUU</td>
<td>8,8</td>
</tr>
<tr>
<td>8</td>
<td>Chile</td>
<td>8,4</td>
</tr>
<tr>
<td>9</td>
<td>Perú</td>
<td>8,3</td>
</tr>
<tr>
<td>10</td>
<td>Francia</td>
<td>8,0</td>
</tr>
<tr>
<td>11</td>
<td>Alemania</td>
<td>7,9</td>
</tr>
<tr>
<td>12</td>
<td>Hungría</td>
<td>7,4</td>
</tr>
<tr>
<td>13</td>
<td>Argentina</td>
<td>7,2</td>
</tr>
<tr>
<td>14</td>
<td>Austria</td>
<td>7,0</td>
</tr>
<tr>
<td>15</td>
<td>Eslovenia</td>
<td>7,0</td>
</tr>
</tbody>
</table>

1.6 Propiedades nutricionales

La pasta por ser un alimento elaborado a base de harina de trigo, tiene un elevado contenido en carbohidratos, 100 g de pasta contienen como máximo 75 g de hidratos de carbono. Estos carbohidratos proporcionan aproximadamente unas 370 kcal, lo que representa aproximadamente el 18,5% de las necesidades de una persona (Infoalimentación, 2013).

Los hidratos de carbono aportados son de absorción lenta si la pasta se cocina al dente con lo que libera la energía poco a poco manteniendo por más tiempo la sensación de saciedad. El aporte de grasas es muy bajo, además no contiene colesterol (Infoalimentación, 2013).
El aporte de vitaminas y minerales es relativamente bajo, excepto que éstas hayan sido enriquecidas. Además, aporta un porcentaje aceptable de fibra, lo que favorece el funcionamiento gastrointestinal y ayuda a metabolizar el colesterol (Infoalimentación, 2013). En la Tabla Nº2 se presenta el aporte nutricional en 100 g de pasta tradicional.

Tabla Nº2: Aporte nutricional en 100 g de pasta tradicional.

<table>
<thead>
<tr>
<th>Nutrientes</th>
<th>Aporte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energía (kcal)</td>
<td>342</td>
</tr>
<tr>
<td>Proteínas (g)</td>
<td>12,0</td>
</tr>
<tr>
<td>Grasa total (g)</td>
<td>2,0</td>
</tr>
<tr>
<td>Grasa saturada (g)</td>
<td>0,5</td>
</tr>
<tr>
<td>Colesterol (mg)</td>
<td>0,0</td>
</tr>
<tr>
<td>Carbohidratos disponibles (g)</td>
<td>69,0</td>
</tr>
<tr>
<td>Azúcares Totales (g)</td>
<td>0,0</td>
</tr>
<tr>
<td>Fibra dietética total (g)</td>
<td>3,9</td>
</tr>
<tr>
<td>Fibra soluble (g)</td>
<td>1,2</td>
</tr>
<tr>
<td>Fibra insoluble (g)</td>
<td>2,7</td>
</tr>
<tr>
<td>Sodio (mg)</td>
<td>10,0</td>
</tr>
</tbody>
</table>

1.7 Descripción de materias primas

1.7.1 Harina de bagazo u orujo de uva

El bagazo u orujo se produce en el curso de la vendimia. Para vinos blancos, es el resultado del prensado neumático de la uva que proviene de la despalilladora y ha sido previamente sometida a selección manual, proceso que antecede a la fermentación del mosto. Para vinos tintos, luego de seleccionar y despalillar la uva se prensa, se procede a fermentar y el orujo se obtiene luego del proceso inicial de fermentación, colectándose los orujos después de descubar y prensar. Los orujos se recogen, si es necesario se ayuda a su preservación con nieve carbónica y se envasan para ser conservados congelados y eventualmente para comenzar su procesamiento de inmediato. El procesamiento del bagazo proveniente de vinificación de blancos o de tintos, contempla varias etapas, principalmente secado, molienda, tamizado y envase.
1.7.1.1 Proceso de elaboración de harina de bagazo de uva (HBU)

Recolección de Bagazo Tinto y Blanco: El bagazo tinto se recolecta directamente de las cubas de fermentación del vino y el bagazo blanco se recolecta directamente de las prensas de uva; preservando la calidad microbiológica.

1.7.1.2 Caracterización de los componentes bioactivos de HBU

El Centro de Nutrición Molecular y Enfermedades Crónicas de la Pontificia Universidad Católica de Chile realizó una caracterización completa de los micro y macro nutrientes a los 2 tipos de HBU (blanco y tinto), además de análisis de sus componentes bioactivos: antioxidantes y fibra, los cuales se presentan en las Tablas N° 3 y 4.

Análisis proximal

Tabla N°3: Porcentajes de nutrientes en HBU de orujo tinto o blanco.

<table>
<thead>
<tr>
<th>Nutrientes</th>
<th>Harina de bagazo de uva (HBU) Orujo Negro/tinto</th>
<th>Harina de bagazo de uva (HBU) Orujo blanco</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grasa total</td>
<td>7,75</td>
<td>4,26</td>
</tr>
<tr>
<td>Proteínas</td>
<td>11,71</td>
<td>7,50</td>
</tr>
<tr>
<td>Hidrato de Carbono(*)</td>
<td>16,96</td>
<td>45,97</td>
</tr>
<tr>
<td>Fibra Dietaria</td>
<td>47,70</td>
<td>27,20</td>
</tr>
<tr>
<td>Soluble</td>
<td>3,54</td>
<td>2,25</td>
</tr>
<tr>
<td>Insoluble</td>
<td>44,20</td>
<td>24,90</td>
</tr>
<tr>
<td>Cenizas</td>
<td>8,41</td>
<td>3,91</td>
</tr>
<tr>
<td>Humedad</td>
<td>7,47</td>
<td>11,16</td>
</tr>
</tbody>
</table>

(*): Cálculo por diferencia.
Análisis de capacidad antioxidante de HBU

Tabla Nº4: Capacidad antioxidante en HBU de orujo tinto y blanco.

<table>
<thead>
<tr>
<th></th>
<th>Unidades</th>
<th>HBU Tinto</th>
<th>HBU Blanco</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacidad Antioxidante</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>por Método ORAC</td>
<td>μmoles TE/g</td>
<td>362,9± 24,4</td>
<td>322,9 ± 29,1</td>
</tr>
<tr>
<td>(Capacidad de absorción de</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>radicales de oxígeno)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacidad Antioxidante</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>por Método DPPH</td>
<td>μmoles TE/g</td>
<td>172,2± 16,9</td>
<td>124,2 ± 10,9</td>
</tr>
<tr>
<td>(2,2-difenil-1-picril hidrazilo)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polifenoles Totales</td>
<td>mg Eq ácido</td>
<td>41,11± 3,01</td>
<td>33,77 ± 2,54</td>
</tr>
<tr>
<td>por Método Folin-Ciocalteu</td>
<td>gálico/ g muestra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antocianinas Totales</td>
<td></td>
<td>1,49 ± 0,18</td>
<td>n.d.(*)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(*): No detectado en la muestra.
Nota: La harina de bagazo de uva blanca no se utilizó debido a que el contenido de fibra es mucho menor que en el caso de la HBU tinta. Además, al momento de realizar la molienda para disminuir el tamaño de partícula el proceso se volvió complejo debido al alto contenido de azúcar presente, lo cual hizo que la harina se caramelizara en el molino.

En la Tabla Nº3 se puede destacar que la harina de bagazo de uva tinto contiene aproximadamente un 20% más de fibra dietaria y 29% menos de hidratos de carbono, comparada con la harina de bagazo de uva blanco.

En la Tabla Nº4 se observa que, tanto la HBU tinto y blanco poseen una capacidad antioxidante similar (determinada por el método ORAC), lo cual equivale aproximadamente a 300 μmoles Trolox Equivalente/g. Este valor posiciona a HBU tinto y blanco en el segundo y tercer lugar, detrás del orégano seco en el listado de contenido antioxidante de diferentes productos (Anexo 6).

Respecto a los polifenoles totales, se observa que, la HBU tinto posee un mayor contenido que HBU blanco. En el listado de contenido de polifenoles totales de diferentes productos, el HBU tinto y blanco, se sitúan en primer y segundo lugar, respectivamente (Anexo 6).
1.7.2 Harina de trigo

De acuerdo al Artículo 347, la harina, sin otro calificativo, es el producto pulverulento obtenido por la molienda gradual y sistemática de granos de trigo de la especie *Triticum aestivum* sp. vulgare, previa separación de las impurezas, hasta un grado de extracción determinado (Reglamento Sanitario de los Alimentos, 2010).

El trigo es un alimento que contiene carbohidratos, proteínas, grasas, minerales y vitaminas; junto con el maíz y el arroz representa la mitad del alimento que consume la humanidad. El trigo en Chile es muy importante para la alimentación humana, ya que su consumo representa aproximadamente el 34% de la ingesta total de calorías o energía y el 50% de las proteínas que consume en promedio cada habitante (Jara, 2006).

Es el principal cultivo en el mundo y uno de los componentes más importantes y estables en la dieta humana. Existen dos tipos de trigo, trigo harinero (*Triticum aestivum* L.) y trigo candeal (*Triticum turgidum var. Durum* L.). Del trigo harinero se extrae harina que se utiliza en la producción de pan, noodles y repostería. Mientras que la producción de pastas, mote, couscous y bulghur se hace a partir de sémola que se extrae de trigo candeal (SAP, 2012).

Después de cada etapa de reducción de tamaño, el material es derivado a la zona de tamices para efectuar la separación de las distintas fracciones, primeramente de acuerdo a su tamaño y luego según su densidad. La pureza de la harina de trigo, tradicionalmente expresada por el contenido de cenizas, es mayor en el centro del grano que en las capas exteriores. Un bajo contenido de cenizas en la harina indica un bajo nivel de contaminación con pericarpio o germen. La calidad de estas harinas se determina evaluando su absorción de agua, sus propiedades físicas y su comportamiento tecnológico en el proceso de producción (Jara, 2006).
1.7.2.1 Gluten de trigo

Corresponde a un producto comercial denominado “Gluten Vital de Trigo”, de calidad aprobada para alimentos.

Es un polvo ligeramente amarillento, que añadido a la sémola aumenta el contenido proteico de la misma.

Las proteínas del gluten representan entre un 80–85 % del total de las proteínas del trigo y pertenecen a la clase de prolaminas. Estas se encuentran en el endospermo del grano de trigo maduro donde forman una matriz continua alrededor de los gránulos de almidón. Las proteínas de gluten son en gran parte insolubles en agua o en soluciones de sales diluidas. Pueden distinguirse dos grupos funcionalmente distintos de proteínas de gluten: gliadinas que son monoméricas y gluteninas que son poliméricas y estas últimas se subclasifican en extraíbles y no extraíbles. Las gliadinas y gluteninas se encuentran normalmente en una relación 50/50 en el trigo. En la red de gluten, la elasticidad está determinada por los enlaces disulfuro intermoleculares entre las gluteninas, mientras que la viscosidad está determinada por la fracción monomérica de gliadinas, teniendo solamente enlaces disulfuro intramoleculares.

Las proteínas de la harina de trigo, específicamente las proteínas del gluten le confieren a la masa una funcionalidad única que la diferencia del resto de las harinas de otros cereales, la masa de harina de trigo se comporta desde el punto de vista reológico como un fluido viscoelástico. Esta propiedad hace que la masa sea elástica y extensible (De la Vega, 2009).

1.7.3 Agua

Es un agente tecnológico indispensable para formar la masa, ya que disuelve los ingredientes, permitiendo una total incorporación de ellos, dando consistencia a la masa de acuerdo al tipo de pan que se va a fabricar. Además ayuda a la hidratación de las proteínas y formación del gluten (Quezada, 2011).
1.7.4 Fibra de avena

Es un concentrado dietario fibroso que permite enriquecer el contenido de fibra de un alimento. El contenido de fibra en base seca es de un 93% (Sunopta, 2012).

1.7.5 Carbonato de calcio

El carbonato de calcio es una sal inorgánica e insoluble, con un alto contenido de calcio (40%) y se lo utiliza en los alimentos como un aditivo, porque se lo agrega intencionalmente con el objeto de provocar un cambio tecnológico. Al emplearse como neutralizante permite corregir el exceso de acidez natural o del proceso, su uso tiene como fin mejorar el color y sabor (Quiminet, 2013).

Además, existe la posibilidad de consumir alimentos comunes fortificados con calcio, como un valor agregado al producto. Esta creciente demanda lleva a los proveedores de sales cálcicas a ofrecer un producto de calidad con diferentes granulados según las necesidades industriales de aplicación (Quiminet, 2013).

1.8 Elaboración de las pastas

La elaboración de pastas alimenticias a base de trigo es una práctica antigua que se sigue tanto en países donde se cultiva este cereal como en aquellos en que se importa. Las grandes industrias de Fideos Nacionales obtienen la sémola de sus propios molinos manteniendo un stock que les permite trabajar con regularidad (Jara, 2006).

Los defectos más recurrentes en la elaboración industrial de pastas alimenticias secas son:

- Fideo agrietado: se debe a una deshidratación brusca en un corto período. Se caracteriza por la presencia de fisuras internas en la pasta seca.
- Contaminación por hongos, ácaros y polillas: causado por una humedad residual superior a un 12%. La salida muy lenta de agua en la etapa preliminar también conduce a aumentar la contaminación y la acidez.
- **Intensidad del color:** En parte el color depende de la cantidad de burbujas de aire presente. Si se aumenta la presión sobre la masa disminuye el número de burbujas, pero aumentan en tamaño y por ende la transmisión de la luz a través de ella, disminuyendo así la intensidad del color amarillo. Además, resiste mayor tiempo a la cocción.

 En el color también influye el tipo de trigo, si se elabora con harina integral se obtendrá un fideo oscuro de aspecto desagradable. Si se hace con trigo blando harinero se obtendrá un fideo blanquizco y que pierde fácilmente su forma durante la cocción. Si se elabora con semolina de trigo duro le traspasará su color ámbar, atrayente para el consumidor.

- **Formación de puntos blancos:** Ocurre en el interior del fideo cuando se seca bruscamente o tiene un corto período de reposo, impidiéndose así que la humedad se distribuya homogéneamente en toda la masa.

- **Grumos:** Causados por una mala distribución de los fideos en la bandeja durante el secado.

1.9 Proceso de pasta a nivel industrial

Las pastas secas de calidad, a diferencia de lo que a veces se cree popularmente, resultan más alimenticias que las pastas frescas. La diferencia radica en el hecho que las primeras son elaboradas exclusivamente con trigos candeales, distinguiéndose de las pastas frescas, que se fabrican con harinas panaderas de trigos blandos. Además, las pastas secas son enriquecidas con vitaminas y sales minerales, y a algunas se les incorpora huevo o espinacas (Zegers, 1988).

La pastificación se lleva a efecto en una línea continua y automática. Esta se compone de un silo de alimentación de sémola, una prensa al vacío, un túnel de secado y un silo de estabilización y reposo (Zegers, 1988).
Los puntos más críticos en la producción son el mezclado y el secado. El silo de alimentación entrega la sémola a la prensa. En ésta se junta con el agua y se amasa tomando una apariencia de arena mojada. Esta etapa del proceso debe realizarse de manera hermética lo cual inhibe las bacterias aeróbicas y previene la oxidación de los pigmentos (Mondardini, 2009).

La presencia de aire en la etapa de amasado perjudica las características físicas finales de la pasta. Los problemas principales con respecto a esto son que pueden quedar burbujas de aire atrapadas en la masa apareciendo en la masa extruida lo cual produce una pasta con aspecto opaco y que junto a la presencia de oxígeno del aire tienen un papel importante en reacciones de blanqueamiento que afectan los pigmentos de la sémola de trigo, produciendo una pasta de apariencia blanquecina (Hernández, 2006).

Luego la masa se prensa y se extruye a través de un molde que da la forma a los fideos. Estos pasan automáticamente al túnel de secado, donde dependiendo del tamaño y características de las pastas, se secan bajando gradualmente su humedad inicial de 28 – 30% a 12 – 12,5%, que es la humedad final del fideo elaborado. Este proceso es una sucesión de secados y reposos, pasando por zonas de altas y bajas temperaturas. Más tarde, los fideos son enfriados y estabilizados en silos de reposo. Finalmente se envasan en films termosellables (Zegers, 1988).

El secado en la superficie de la pasta se logra más rápido que en el interior, desarrollándose un gradiente de humedad desde la superficie al interior de la pasta. Si el proceso de secado se hace rápido, la pasta tiende a romperse o cuartearse dando al producto una apariencia de baja fuerza mecánica. El rompimiento puede ocurrir durante el proceso de secado o unas semanas después. Si el ciclo de secado se ha llevado a cabo apropiadamente, la pasta obtenida es firme y suficientemente flexible (Hernández, 2006).
Al momento de cocinar, la cualidad más importante de las pastas elaboradas con trigo candeal es su resistencia a la sobrecocción: no se pega, no se deshacen, mantienen su forma y consistencia, y con una cocción adecuada se sienten al masticarlos, lo que los italianos llaman al dente (Zegers, 1988).

1.10 Estudio con consumidores

El estudio con consumidores implica probar el producto con potenciales consumidores, por lo cual la preparación, manipulación y presentación deben estar estandarizadas. Las muestras deben presentarse en forma aleatoria. Se usan consumidores representativos del segmento al cual va dirigido el producto: edad, género, grupo socioeconómico y filtro de consumo (Bunger, 2011).

El método afectivo accede directamente a la opinión (preferencia y/o aceptabilidad) del consumidor, o el potencial de un producto, sobre características específicas o ideales sobre el mismo. El objetivo de este método es la manutención de la calidad del producto, verificación de posicionamiento del producto en el mercado, optimización de la formulación del producto y desarrollo de nuevos productos (Puntel y Gava, 2010).

Los principales motivos para realizar pruebas con consumidores se agrupan en una de las siguientes categorías:

- Mantenimiento de productos en el mercado.
- Mejora de productos.
- Desarrollo de nuevos productos.
- Evaluación del potencial mercado.

(Meilgaard y cols., 2000).

La prueba de aceptación evalúa el grado en que los consumidores gustan o no del producto, buscando una medida de la disposición del consumidor de comprar el producto (Puntel y Gava, 2010).
2 OBJETIVOS

2.1 Objetivo general

-Elaborar y caracterizar una pasta funcional con adición de harina de bagazo de uva tinto que cumpla con la legislación y normas vigentes, como también con las exigencias de los consumidores, permitiendo innovar dentro de la industria de las pastas y mejorar la salud de la población al aumentar el aporte de antioxidantes y fibra.

2.2 Objetivos específicos

-Determinar a través de pruebas preliminares el nivel máximo de HBU tinto a incluir en la pasta y a partir de eso definir la cantidad y proporción de los ingredientes en la formulación.

-Determinar la aceptabilidad del producto formulado en la población objetivo a través de un test con consumidores.

-Caracterizar el producto respecto de su funcionalidad a través de la determinación de la capacidad antioxidante y el contenido de fibra.

-Determinar la firmeza y calidad microbiológica del producto.

3 HIPÓTESIS

Es posible desarrollar una pasta potencialmente funcional con adición de harina de bagazo de uva, aumentando el aporte de antioxidantes y fibra en la alimentación, obteniendo un producto atractivo y aceptable para el consumidor.
4 METODOLOGÍA

4.1 Descripción de las etapas del proceso de elaboración de harina de bagazo de uva (HBU)

Durante la vendimia 2011 fue recolectado el bagazo de uva tinto (variedad Cabernet Sauvignon) en la Bodega de Puente Alto de Viña Concha y Toro.

El bagazo fue dispuesto en gamelas plásticas e ingresado inmediatamente a un camión refrigerado, el que posteriormente trasladó el orujo a bodegas a -20ºC, donde fue almacenado hasta el procesamiento.

El proceso de elaboración consideró 2 etapas: deshidratación o secado, y molienda.

Las condiciones de secado para preservar los componentes bioactivos, fueron definidas por el equipo especializado del Centro de Nutrición Molecular y Enfermedades Crónicas de la Pontificia Universidad Católica de Chile, estableciendo una temperatura máxima de 40ºC y humedad final de 12%.

Secado

El secado fue realizado por la Empresa Deshidratadora de Frutas Codehua. Se extendió el bagazo en bandejas de malla que se montaron en un carro que ingresa al túnel de secado. El túnel se alimentó con aire forzado a una temperatura de 40ºC (controlada mediante termómetro).

El secado fue realizado durante 36 horas, hasta que el bagazo alcanza una humedad no mayor a 13%. Una vez seco, el bagazo deshidratado se envasó en bolsas plásticas de 50 kilos.
Molienda

La molienda fue realizada por la Empresa Comercial Santa Bárbara Ltda. Para el proceso se utilizó un molino de martillo.

El bagazo tinto se dividió en dos grupos; el primero con doble pasada por molino de martillo y el segundo con una pasada por el molino de martillo para una molienda más gruesa.

La HBU tinto fue envasada en sacos plásticos dobles de 20 kilos para protegerlos de la humedad ambiental. Los sacos se trasladaron a la Bodega de Puente Alto de Viña Concha y Toro para ser almacenados.

4.1.1 Preparación de HBU tinta

La granulometría de la harina debe ser bajo 350 µm para poder realizar una mezcla homogénea. Para tal efecto, se realizó una nueva molienda y posterior tamización de la harina de bagazo de uva.

Molienda

Se utilizó un molino mixto martillo/cuchillo, Marca Retsch GMbH 5657-West-Germany, el cual tenía un haz de luz de 60 mesh.

Tamizado

Se utilizó un tamiz de apertura de malla de 355 µm facilitado por empresa Carozzi, con el cual se procedió a tamizar la harina previamente molida.
4.1.2 Caracterización granulométrica de la harina de bagazo de uva y de la sémola AB

La caracterización se realizó en el laboratorio de calidad de la Empresa Carozzi, utilizando un set de 4 tamices de apertura de malla de 425, 355, 250 y 150 µm. El ensayo se realizó sin repetición.

Se pesaron 100 g de harina y se dispusieron en el tamiz de apertura de malla de 425 µm, en una tamizadora vibratoria (Marca: Tropeninsolation; Tipo: Kbf/sn) y se procedió a tamizar durante 5 minutos. Luego, se procedió a pesar el contenido de harina retenido en cada tamiz.

4.2 Desarrollo y elaboración de pastas

El desarrollo de la formulación y elaboración de las pastas se realizó en colaboración con la Empresa Carozzi Chile S.A., en instalaciones de la Planta de Pastas en Nos.

4.2.1 Formulaciones de pastas

Con el objetivo de maximizar el contenido de harina de bagazo de uva tinto sin que se vean afectadas las normativas vigentes y características sensoriales del producto se desarrollaron distintas formulaciones.

La formulación base se elaboró con un 100% de Sémola de trigo AB.

En las siguientes formulaciones se realizó la sustitución de Sémola de trigo AB por harina de bagazo de uva tinto en distintos porcentajes (desde 1 a 10%) a las cuales se les midió la acidez.
Para maximizar la cantidad de harina de bagazo de uva tinto se realizaron fórmulas incorporando reguladores de acidez, con el objetivo de ajustar la acidez en las formulaciones a la normativa vigente.

Los equipos utilizados para desarrollar las pastas fueron:

- Pasta Matic 700. SIMAC Spa.
- Balanza granataria. Mettler PC 440.
- Horno convector. Opera, Made in Italy.
Diagrama de bloque: Elaboración general de pastas

Mezcla de Sémolas, Vitaminas y Minerales

Acumulación de mezclas en silos

Pre-Mezclado

Agua

Amasado

Prensado por extrusión

Moldeo y corte

Pre-secado

Secado

Enfriado

Estabilización en silo

Liberación de producto por control de calidad

Envasado

Almacenamiento y distribución

Adición de ingredientes caracterizantes:
- Huevo líquido
- Concentrado de tomate
- Espinaca disuelta en agua
- Concentrado de zapallo
- Concentrado de zanahoria
- Salvado de trigo
- Mezcla multigrano
Mezcla multicereal con legumbres

4.3 Determinación de acidez

Se utilizó el método descrito en la NCh1379.Of78. La medición se realizó en el Laboratorio de Calidad de Pastas en la Planta de Nos de Carozzi.

Se determinó la acidez en duplicado de cada una de las formulaciones realizadas, para observar el efecto producido al adicionar la harina de bagazo de uva tinta.

Con el resultado de la acidez para las distintas formulaciones, se determinó la formulación final.

4.4 Determinación de tiempo de cocción aproximado

Se determinó el tiempo de cocción aproximado de las pastas cocinándolas de acuerdo a la metodología empleada en la empresa Carozzi:

1. Se pesan 100 g de pasta y 10 g de sal.
2. Se vierte la sal sobre una olla con un litro de agua y cuando comienza a hervir se agrega la pasta.
3. Se toma el tiempo de cocción en el momento en que el agua comienza a hervir nuevamente.
4. Se determina el tiempo de cocción colocando una muestra de la pasta cocida entre dos vidrios esmerilados, los cuales se oprimen y se colocan a trasluz. La pasta debe quedar completamente traslúcida (sin una franja blanca) para considerarla cocida.
5. Se escurre en un colador la pasta cocida.
6. Se deposita la pasta en un plato blanco cuando se realice la evaluación sensorial.

4.5 Estudio con consumidores

La evaluación se desarrolló a través de una encuesta autocompletada con 41 consumidores de la Planta Nos de la Empresa Carozzi y el rango de edad fue de 18 a 65 años.
El test se realizó en el laboratorio de desarrollo de la Planta de Pastas para la formulación final de la pasta con adición de harina de bagazo de uva tinto.

Cada juez tuvo que evaluar aproximadamente 30 g de la muestra recién cocida y caliente, la cual se presentó en un plato blanco de 18 cm de diámetro (Figura 1).

La cocción de las pastas se realizó de acuerdo a la metodología empleada por Carozzi descrita en el punto 4.4.

Las pastas fueron cocinadas en agua con sal (10 g de sal por litro de agua), para que se pudiera evaluar de mejor forma la intensidad y presencia de la harina de bagazo de uva tinta.

Figura 1: Pasta con adición de 2,5% de HBU.
4.5.1 Diseño de la encuesta

La primera parte se diseñó para caracterizar a los encuestados, para lo cual, se preguntó nombre, rango de edad y se les preguntó si consumían alimentos saludables; si la respuesta era positiva debían marcar dentro de una lista que tipo de alimentos consumían. Si dentro de los alimentos saludables marcaban la opción de pasta saludable debían indicar con qué frecuencia la consumían.

A los jueces se les presentó el concepto del producto para que se familiarizaran y tuvieran conocimiento de las características y los efectos beneficiosos de la pasta antes de evaluar (Anexo 2).

La segunda parte se diseñó para que los consumidores pudieran evaluar el producto, para lo cual se les presentó aproximadamente 30 g de una muestra de pasta con HBU. La evaluación se realizó a los siguientes atributos de agrado: apariencia crudo, apariencia cocido, aroma, sabor, textura y aceptabilidad general. Se utilizó la siguiente escala hedónica de 7 puntos.

1: Me disgusta mucho.
2: Me disgusta.
3: Me disgusta levemente.
4: No me gusta ni me disgusta.
5: Me gusta levemente.
6: Me gusta.
7: Me gusta mucho.

Luego se realizaron las siguientes preguntas abiertas:
- ¿Hay aspectos que le gustaron especialmente de la muestra? Si contesto “Sí”, ¿Cuál(es)?
- ¿Hubo algo que le disgustó de la muestra? Si contesto “Sí”, ¿Cuál(es)?
Finalmente, debían indicar la intención de compra evaluada en una escala de 5 puntos, donde 1 correspondía a “definitivamente no lo compraría” y 5 a “definitivamente lo compraría”.

En el Anexo 2 se encuentra el cuestionario para la evaluación de la pasta con adición de 2,5% de HBU tinto.

4.5.2 Análisis de resultados

4.5.2.1 Test de aceptabilidad

Se promediaron los puntajes obtenidos en la evaluación para cada atributo y se presentaron en un gráfico.

Se contabilizó el porcentaje de agrado y desagrado por la muestra. Los puntajes 6 y 7 se consideraron de agrado, los puntajes de 1 a 4 se consideraron de desagrado y los puntajes equivalentes a 5 no se usaron por considerarse neutros.

4.5.2.2 Respuestas espontáneas de agrado y desagrado

Se recopilaron las respuestas positivas y negativas y se expresan como porcentaje del total de encuestados.

4.5.2.3 Intención de compra

Se contabilizó el porcentaje de intención de compra para la muestra.

Los puntajes 1, 2 y 3 se contabilizan como intención de compra negativa y los puntajes 4 y 5 se contabilizaron como intención de compra positivos.
4.6 Caracterización funcional

La caracterización funcional del producto se realizó en el Centro de Nutrición Molecular y Enfermedades Crónicas de la Pontificia Universidad Católica de Chile, a través de los siguientes análisis:

4.6.1 Determinación de fibra

La determinación de fibra se realizó en duplicado mediante el Método Enzimático – Gravimétrico (Official Methods of Analysis A.O.A.C.) cuyo objetivo es determinar la fibra dietética total en diversos tipos de alimentos por método enzimático-gravimétrico (ISP, 2012).

Consiste en someter muestras en duplicado de alimentos secos y desgrasados a gelatinización con α - amilasa térmicamente estable y luego digerirlas enzimáticamente con proteasa y amiloglucosidasa para remover la proteína y el almidón. La fibra dietética soluble es precipitada por la adición de etanol, el residuo total se filtra, se lava, se seca y se pesa. En el residuo en duplicado se determina proteína, y en el otro cenizas.

Por lo tanto,
Fibra dietética total = Peso del residuo - Peso (proteína + cenizas).
(ISP, 2012).

4.6.2 Análisis proximal

Se determinó en duplicado la materia grasa según lo descrito en NCh1370/III.Of77, la proteína total por el método de Kjeldahl, humedad según lo descrito en NCh841.Of78, cenizas según lo descrito en NCh842Of78 y los elementos no nitrogenados por diferencia (incluye carbohidratos, azúcares disponibles y fibra dietaria).

Los análisis se encuentran expresados en g por 100 g de muestra fresca.
4.6.3 Determinación de capacidad antioxidante

La capacidad antioxidante se determinó en duplicado mediante el método ORAC, sigla correspondiente a Oxigen Radical Absorbance Capacity (Prior y cols., 2005) de acuerdo a lo establecido por Ou y cols., 2001 y Huang y cols., 2002.

Se basa en la inhibición del radical peroxil oxidativo inducido por composición térmica de compuestos azo como el 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH). Así, el ensayo ORAC combina tiempo y disminución de la inhibición (Almajano, 2009).

El mecanismo de la reacción se basa en la transferencia de un átomo de hidrógeno (Hidrogen Atom Transfer, HAT) del antioxidante al radical libre. Por esto, se utiliza el radical iniciador, el AAPH, para generar el radical peroxil. Un mol de AAPH, pierde un mol de nitrógeno, para generar dos moles de radical AAPH.

En una solución saturada de aire, el radical AAPH reacciona rápidamente con el oxígeno para dar un radical peroxil más estable. La pérdida de fluorescencia es el indicador de la extensión de la oxidación con el radical peroxil. En presencia de un antioxidante, éste capta, preferiblemente, un átomo de hidrógeno del antioxidante estable. Como consecuencia, la disminución de la fluorescencia por acción del radical peroxil es disminuida o inhibida (Almajano, 2009). Los resultados se expresan como micromoles equivalentes trolox (unidad ORAC) por gramo de muestra (μmoles TE/g). En la Tabla Nº23 del Anexo 6 se presenta una Tabla con datos de contenido antioxidante (ORAC) en diferentes productos.

4.6.4 Determinación de polifenoles totales

Los polifenoles totales se determinaron en duplicado mediante el método de Folin-Ciocalteu (F-C).

Se fundamenta en una reacción de oxidación / reducción que es el mecanismo básico; gracias al carácter reductor del reactivo F-C.
Se utiliza como reactivo una mezcla de ácidos fosfowolfrámico y fosfomolíbdico en medio básico, que se reducen al oxidar los compuestos fenólicos, originando óxidos azules de wolframio \((W_8O_{23})\) y molibdeno \((Mo_8O_{23})\). La absorbancia del color azul desarrollado se mide a una longitud de onda de 765 nm (Portal antioxidante, 2013).

Los resultados se expresan en mg de Ácido Gálico equivalente por gramos de muestra. En la Tabla Nº24 del Anexo 6 se presenta una Tabla con datos de contenido de polifenoles totales en diferentes productos.

4.6.5 **Determinación de antocianinas totales**

La determinación de antocianinas totales se realizó en duplicado mediante el método descrito por Lee y cols., 2005.

Los pigmentos de antocianinas monoméricas reversibles cambian de color con el cambio de pH; la forma coloreada del oxonio existe a pH 1,0 y la forma incolora del hemicetal predomina a pH 4,5. La diferencia en la absorbancia de los pigmentos a 520 nm es proporcional a la concentración del pigmento. Las antocianinas degradadas en la forma polimérica son resistentes al cambio de color, independientemente del pH y no se incluyen en las mediciones, ya que absorben tanto a pH 4,5 como a pH 1,0 (Lee y cols., 2005).

Los resultados se expresan en mg de cianidina-3-glucosido equivalente por gramos de muestra (mg Eq Cian 3-Gluc/ g muestra).

4.7 **Determinación de firmeza**

La determinación de firmeza se realizó en el laboratorio de desarrollo de pastas de Carozzi en la planta de Nos. Se determinó en triplicado siguiendo el método estándar AACC 16-50 (AACC, 1983).
La firmeza se define en este método como el trabajo en gramos-centímetro requerida para cizallar una pieza de pasta.

Esta prueba se realizó a pastas con distintas concentraciones de gluten para observar cómo afecta la adición de éste en la estructura.

Se utilizó un texturómetro modelo TA.XT Plus Texture Analyser (Stable Micro Systems).

4.8 Análisis microbiológico

5 RESULTADOS Y DISCUSIONES

5.1 Caracterización granulométrica de HBU tinto y Sémola AB

De acuerdo a lo descrito en el punto 4.1.1 se realizó la caracterización de las harinas después de la última molienda. En la Tabla Nº 5 se presentan los resultados del análisis granulométrico.

Tabla Nº 5: Resultados de granulometría de HBU tinto y Sémola AB.

<table>
<thead>
<tr>
<th>Malla</th>
<th>%Sémola AB</th>
<th>% HBU Tinto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sobre 425 μm</td>
<td>0,23</td>
<td>17,68</td>
</tr>
<tr>
<td>Entre 425 – 355 μm</td>
<td>0,94</td>
<td>13,96</td>
</tr>
<tr>
<td>Entre 355 – 250 μm</td>
<td>15,18</td>
<td>21,68</td>
</tr>
<tr>
<td>Entre 250 – 150 μm</td>
<td>41,05</td>
<td>15,56</td>
</tr>
<tr>
<td>Bajo 150 μm</td>
<td>42,6</td>
<td>26,87</td>
</tr>
</tbody>
</table>

Para la elaboración de las pastas las materias primas deben tener un tamaño de partícula menor a 355 μm ya que en el proceso debe formarse una mezcla homogénea y la velocidad de transporte de las partículas debe ser la misma. De acuerdo a los resultados obtenidos en el análisis granulométrico el rendimiento para la Sémola AB y para la HBU tinto es 98,83 y 64,11%, respectivamente.

5.2 Fórmula para elaborar pastas con adición de harina de bagazo de uva tinto

El tema limitante para el uso de HBU tinto es la acidez total del producto final que de acuerdo a lo establecido por el Reglamento Sanitario de los Alimentos debe ser no superior a 0,25%, expresada en ácido sulfúrico, sobre la base de 14,0% de humedad.

En la Tabla Nº 6 se presentan los resultados de acidez obtenidos con distintas cantidades de HBU tinto.
Tabla Nº6: Resultado de Análisis de Acidez (pastas sin adición de regulador de acidez)

<table>
<thead>
<tr>
<th>% HBU tinto</th>
<th>% Sémola AB</th>
<th>% ACIDEZ (Expresada en H$_2$SO$_4$, sobre base de 14% de humedad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00</td>
<td>100,00</td>
<td>0,13</td>
</tr>
<tr>
<td>1,00</td>
<td>99,00</td>
<td>0,23</td>
</tr>
<tr>
<td>1,25</td>
<td>98,75</td>
<td>0,24</td>
</tr>
<tr>
<td>1,50</td>
<td>98,50</td>
<td>0,28</td>
</tr>
<tr>
<td>2,00</td>
<td>98,00</td>
<td>0,31</td>
</tr>
<tr>
<td>3,00</td>
<td>97,00</td>
<td>0,40</td>
</tr>
<tr>
<td>5,00</td>
<td>95,00</td>
<td>0,59</td>
</tr>
<tr>
<td>10,00</td>
<td>90,00</td>
<td>0,79</td>
</tr>
</tbody>
</table>

Nota: las formulaciones de las pastas sólo contienen Sémola AB y harina de bagazo de uva tinto.

En los resultados obtenidos se observa que al incorporar un 1,50% de HBU tinto a la formulación se excede el límite de acidez establecido, por lo cual si no se incorpora un regulador de acidez el máximo de HBU tinto que se podría adicionar es 1,25%. Se realizaron pruebas preliminares con distintos reguladores de acidez, tales como hidróxido de sodio (NaOH), carbonato de calcio (CaCO$_3$), bicarbonato de sodio (NaHCO$_3$) y fosfato de calcio (Ca$_3$(PO$_4$)$_2$). Finalmente, se determinó utilizar carbonato de calcio (CaCO$_3$) en forma tal que el producto cumpla con un contenido alto en calcio (160 mg/porción), lo cual implicó agregar como mínimo un 0,5% de carbonato en la formulación. A las pastas con adición de CaCO$_3$ se les determinó la acidez.

En la Tabla Nº7 se presentan los resultados del análisis de acidez. La HBU tinto es un componente activo ya que aporta fibra y antioxidantes. Sin embargo, presenta la limitante, que es la acidez que otorga al producto.
Tabla Nº7: Resultados de análisis de acidez en pastas con adición de regulador de acidez.

<table>
<thead>
<tr>
<th>% HBU tinto</th>
<th>% CaCO$_3$</th>
<th>% ACIDEZ (Expresada en H$_2$SO$_4$, sobre base de 14% de humedad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,00</td>
<td>1,0</td>
<td>0,210</td>
</tr>
<tr>
<td>2,20</td>
<td>1,0</td>
<td>0,235</td>
</tr>
<tr>
<td>2,40</td>
<td>1,0</td>
<td>0,235</td>
</tr>
<tr>
<td>2,50</td>
<td>1,0</td>
<td>0,244</td>
</tr>
<tr>
<td>3,00</td>
<td>1,50</td>
<td>0,236</td>
</tr>
<tr>
<td>3,00</td>
<td>1,75</td>
<td>0,210</td>
</tr>
</tbody>
</table>

Nota: las formulaciones de las pastas contienen un 2,0% de gluten y la cantidad de fibra de avena necesaria para lograr un contenido total de fibra aproximado de 6,0%. Además, sémola de trigo para completar el 100% de la formulación.

En los resultados obtenidos se observa que con un 1,0% CaCO$_3$ la máxima cantidad de HBU tinto que se puede adicionar es de 2,5%. Al realizar la degustación de la pasta cocida se estimó que al adicionar más de un 1,0% de CaCO$_3$ el producto presentaba un sabor extraño, lo cual se asoció al aditivo y en seco el color se asociaba más a una tonalidad mineral.

Al adicionar la HBU tinto a la formulación inicial de 100% Sémola AB, las características de la masa se modificaron, por lo que fue necesario adicionar gluten de trigo. Se estimó que con un 2,0% la pasta tendría un 11% de gluten teórico, lo cual es lo que se requiere para que la pasta tenga la elasticidad y resistencia suficiente para ser procesada (Carozzi, 2012). Además, para la formulación final se decidió agregar fibra de avena en un 1,25%, la cual complementa la fibra entregada por la Sémola AB y HBU tinto permitiendo que el producto sea alto en fibra. En la Tabla Nº8 se presenta la formulación final de pasta.
Tabla Nº8: Formulación final para pasta con 2,5% de HBU tinto.

<table>
<thead>
<tr>
<th>Ingrediente</th>
<th>Cantidad (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sémola AB</td>
<td>93,25</td>
</tr>
<tr>
<td>HBU tinto</td>
<td>2,50</td>
</tr>
<tr>
<td>Gluten de trigo</td>
<td>2,00</td>
</tr>
<tr>
<td>Fibra de avena</td>
<td>1,25</td>
</tr>
<tr>
<td>CaCO₃</td>
<td>1,00</td>
</tr>
</tbody>
</table>

Nota: La cantidad de agua que se incorpora a la formulación es la necesaria para lograr un 30% de humedad en la mezcla durante el amasado (Carozzi, 2012). Lo cual teóricamente equivale a un 23% de la cantidad total por formulación.

5.2.1 Diagrama de bloque: Elaboración de pastas

- Recepción de HBU tinto
- Nueva molienda
- Tamizado (355 μm)
- Pre-Mezclado (Ingredientes en seco)
- Amasado manual
- Prensado por extrusión (presión atmosférica)
- Moldeo y Corte
- Secado (1 h, 70ºC)
- Enfriado
- Envasado
- Almacenamiento (T° ambiente)

- Sémola, fibra de avena, gluten de trigo y CaCO₃

- Caracterización granulométrica y funcional.
- Agua

- Determinación de acidez, tiempo de cocción y firmeza.
- Evaluación sensorial.
- Caracterización funcional.
- Análisis microbiológico.
5.2.2 Descripción de las etapas del proceso

Recepción de HBU tinto: Se recepciona la HBU tinto proveniente de CNMEC-UC.

Nueva molienda: Se realiza una nueva molienda utilizando un molino mixto martillo/cuchillo.

Tamizado: Se realiza el tamizado para conseguir harina con tamaño de partícula menor a 355 µm.

Análisis HBU tinto: Se realiza la caracterización granulométrica y funcional de acuerdo a la metodología descrita en 4.1.2 y 4.6, respectivamente.

Pre-Mezclado: Se realiza la mezcla de la Sémola AB con los ingredientes caracterizantes (HBU tinto, gluten de trigo, fibra de avena y CaCO₃), previamente pesados de acuerdo a la formulación, con el objetivo de alcanzar una mezcla homogénea durante el amasado.

Amasado: Se realiza el amasado de la mezcla incorporando agua con el objetivo de homogeneizar la mezcla de ingredientes que forman parte del producto formando una masa húmeda homogénea de aproximadamente 30% de humedad.

Prensado por extrusión: La masa húmeda es prensada mediante un sinfín de compresión siendo transportada hasta el molde donde adquiere la forma.

Moldeo y corte: Se realiza el moldeo por extrusión de la masa húmeda y se corta manualmente en función del largo requerido.

Secado: las pastas se disponen en bandejas y se llevan a un horno para que alcancen la humedad objetivo de la pasta cuidando la estructura del producto. El tiempo de secado es de 1 hora a 70º C.

Enfriado: La pasta requiere un enfriamiento tan pronto como finaliza el secado.

Envasado: las pastas se envasan en bolsas plásticas una vez que se encuentren a temperatura ambiente.

Almacenamiento: el almacenamiento se realiza en un lugar seco a temperatura ambiente.

5.3 Tiempo de cocción aproximado

Luego de varias cocciones se determinó el tiempo de cocción aproximado de las pastas en 3 min 30 seg.

Este tiempo es más bajo comparado con el tiempo de cocción de las pastas tradicionales que es de 10 minutos. La determinación del tiempo de cocción está vinculado al proceso de gelificación del almidón de la pasta (Muñoz, 2013). La pastificación a nivel industrial se realiza prensando la masa desde presión atmosférica en el mezclado hasta 100 kg/cm² (aproximadamente 100 bar) (Muñoz, 2013).

En la pasta elaborada a nivel de laboratorio la extrusión se realiza a presión atmosférica, por lo cual los gránulos de almidón se encuentran más relajados que en la pasta industrial la cual presenta una estructura comprimida (Muñoz, 2013).

5.4 Estudio con consumidores

5.4.1 Caracterización de los encuestados

Se encuestó a 41 personas pertenecientes a la Empresa Carozzi que debían cumplir con el requisito de ser consumidores de alimentos saludables.

En la Figura 2 se indica el rango de edad de los consumidores encuestados.
Según indica la Figura 2, las edades de los consumidores se encuentran repartidas entre los 18 y 65 años, con una frecuencia mayor entre 26 y 35 años.

En la Figura 3 se indican los porcentajes de los alimentos saludables que consumen los encuestados.
Según indica la figura el 100% de los consumidores declaró consumir frutas, el 98% verduras, yogurt un 78% y el resto de los alimentos bajo un 68% de los consumidores declaró consumirlos. Sólo el 24% de los consumidores indicó que consumía pasta saludable.

Dentro de otros alimentos destacó la chía, quínoa y frutos secos.

5.4.2 Test de Aceptabilidad

En la Figura 4 se presenta el gráfico de porcentaje de agradable y desagradable por cada atributo para la muestra de pasta con adición de 2,5% de HBU (en la Tabla Nº20 del Anexo 3 se encuentran los resultados individuales de la evaluación realizada por los consumidores a la muestra de pasta con adición de HBU).

![Figura 4: Gráfico de porcentaje de Agradable y Desagradable por atributo. Nota 1: los números sobre las barras corresponden a los promedios obtenidos en la evaluación para cada atributo. Nota 2: La escala utilizada corresponde a 1. Me disgusta mucho; 2. Me disgusta; 3. Me disgusta levemente; 4. No me gusta ni me disgusta; 5. Me gusta levemente; 6. Me gusta; 7. Me gusta mucho. Los puntajes se agrupan de 1 a 4 como desagradable y 6 a 7 como agradable.](image-url)
Para establecer si una muestra será aceptada y consumida por las personas debe presentar un porcentaje de agrado mínimo de 70% y un porcentaje de desagrado máximo de 15% (Bunger, 2011). De acuerdo a esto y analizando la muestra se observa que presenta un porcentaje de agrado sobre 70% en el atributo de sabor y cercano al mínimo requerido con un 66% los atributos de textura y aceptabilidad general.

Cabe destacar, que el porcentaje de agrado de la aceptabilidad general (66%) indica que es recomendable realizar las modificaciones necesarias para que el producto sea mejor aceptado por los consumidores.

En los atributos de apariencia, aroma y textura, la formulación presenta porcentajes de desagrado mayor al 15%, siendo los peor evaluados la apariencia crudo y cocido con un 37 y 59% de desagrado, respectivamente.

Estos resultados permiten establecer un criterio para definir los atributos en los cuales no se da en el gusto al consumidor, causando un rechazo hacia el producto. Específicamente, en la pasta el desagrado está enfocado en la apariencia.

5.4.3 Evaluación de las respuestas espontáneas de agrado y desagrado

Luego de evaluar la muestra, los consumidores debieron responder las preguntas abiertas indicando si algo les gustaba o disgustaba de las muestras y mencionar específicamente las razones.

En la Tablas Nº9 y 10 se presentan las respuestas espontáneas de los consumidores, donde se detallan los porcentajes de agrado y de desagrado, las razones y frecuencia de opiniones positivas y negativas para la muestra.

El porcentaje de consumidores a los cuales hubo algún aspecto que les agradó de la muestra fue un 80% (33 personas) y a los cuales les desagradó algo en particular fue un 56% (23 personas).
Tabla Nº9: Agrupación de las respuestas espontáneas de agrado.

<table>
<thead>
<tr>
<th>Atributo</th>
<th>Aspecto</th>
<th>Frecuencia*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color/</td>
<td>Gusta el color cocido</td>
<td>15%</td>
</tr>
<tr>
<td>Apariencia</td>
<td>Gusta la apariencia</td>
<td>7%</td>
</tr>
<tr>
<td></td>
<td>Los puntos negros</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>Gusta el color crudo</td>
<td>2%</td>
</tr>
<tr>
<td>Sabor</td>
<td>Gusta el sabor</td>
<td>39%</td>
</tr>
<tr>
<td></td>
<td>No hay diferencia con sabor</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>normal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sabor diferente al normal</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>Sabor no pasoso a uva.</td>
<td>2%</td>
</tr>
<tr>
<td>Textura</td>
<td>Gusta la textura</td>
<td>27%</td>
</tr>
<tr>
<td></td>
<td>Tiene partículas</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>No tiene gránulos</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>Dureza</td>
<td>2%</td>
</tr>
<tr>
<td>Apreciación</td>
<td>Parece orgánico</td>
<td>2%</td>
</tr>
<tr>
<td>general</td>
<td>Contiene fibra y antioxidante</td>
<td>2%</td>
</tr>
<tr>
<td>No expresaron</td>
<td></td>
<td></td>
</tr>
<tr>
<td>agrado</td>
<td></td>
<td>20%</td>
</tr>
</tbody>
</table>

* La frecuencia fue calculada en base al total de consumidores.
Nota: destacados se encuentran los aspectos que superan el 10% de frecuencia.
Tabla Nº10: Agrupación de las respuestas espontáneas de desagrado.

<table>
<thead>
<tr>
<th>Atributo</th>
<th>Aspecto</th>
<th>Frecuencia*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color/Apariencia</td>
<td>Disgusta apariencia cocido</td>
<td>27%</td>
</tr>
<tr>
<td></td>
<td>Disgusta el color</td>
<td>15%</td>
</tr>
<tr>
<td></td>
<td>Disgusta apariencia crudo</td>
<td>2%</td>
</tr>
<tr>
<td>Aroma</td>
<td>Disgusta el aroma</td>
<td>2%</td>
</tr>
<tr>
<td>Textura</td>
<td>Disgusta la textura</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>Se siente gelatinoso</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>Falta cocido</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>Se siente pegote</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>Tiene partículas</td>
<td>2%</td>
</tr>
<tr>
<td>No expresaron desagrado</td>
<td></td>
<td>44%</td>
</tr>
</tbody>
</table>

* La frecuencia fue calculada en base al total de consumidores. Nota: destacados se encuentran los aspectos que superan el 10% de frecuencia.

Las respuestas de agrado estuvieron enfocadas a los atributos de color, apariencia, sabor, textura y apreciación general. En su mayoría resaltó el agrado por la textura (27%), el sabor (39%) y el color cocido (15%). En cambio, en las respuestas de desagrado al 27% le disgustó la apariencia cocido, al 15% le disgustó el color y al 10% de los consumidores les disgustó la textura.

Varios comentarios coincidían en que sería una buena opción cambiar el formato de las pastas, de espaguetis a un fideo corto, debido a que al ser una pasta larga la mayoría de las personas dijeron que cocidos tenían la apariencia como de “gusanos”. Para mejorar esto, se podría realizar en el futuro una investigación que permita encontrar algún colorante natural que entregue a la pasta una coloración típica a vino tinto para que se pueda asociar el producto con la materia prima utilizada (harina de bagazo de uva).
5.4.4 Evaluación de la intención de compra

En la Figura 5 se indican los porcentajes de la intención de compra si el producto se encontrara en los lugares en donde habitualmente se comercializan las pastas.

Figura 5: Porcentaje de intención de compra si el producto se encontrara en el comercio.

Nota: los puntajes se agrupan de 1 a 3 como intención de compra negativa y 4 a 5 como positiva.

De acuerdo a los resultados se observa que agrupando los puntajes 4 y 5, el 80% de los consumidores comprarian el producto, lo cual es bastante alto. Por el contrario, el 20% de los consumidores presenta intención de compra negativa.
5.5 Caracterización funcional

5.5.1 Análisis de fibra

Tabla N°11: Análisis de fibra de materia prima.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>% Fibra Insoluble</th>
<th>% Fibra Soluble</th>
<th>% Fibra Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sémola AB</td>
<td>3,33</td>
<td>1,34</td>
<td>4,67</td>
</tr>
<tr>
<td>HBU tinto tamizada a 335 µm</td>
<td>41,87</td>
<td>4,64</td>
<td>46,51</td>
</tr>
<tr>
<td>HBU tinto sin tamizar</td>
<td>49,58</td>
<td>4,06</td>
<td>53,64</td>
</tr>
</tbody>
</table>

La operación de tamizado lleva consigo una disminución de la fibra insoluble y un aumento de la soluble, debido en parte al efecto de la molienda, que aumenta la digestión de las fibras, arrojando valores mayores de fibra soluble; y debido también a que parte de la fibra insoluble no ha pasado el tamiz, por lo que la composición cuantitativa del producto tamizado es distinta respecto a la harina sin tamizar (CNMEC-UC, 2012).

Tabla N°12: Datos comparativos de fibra en distintas pastas.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>% Fibra Insoluble</th>
<th>% Fibra Soluble</th>
<th>% Fibra Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fideo 2,5% HBU</td>
<td>5,48</td>
<td>2,06</td>
<td>7,54</td>
</tr>
<tr>
<td>Fideo 0% HBU*</td>
<td>3,24</td>
<td>1,68</td>
<td>4,92</td>
</tr>
<tr>
<td>Fideo Carozzi*</td>
<td>3,30</td>
<td>1,61</td>
<td>4,91</td>
</tr>
<tr>
<td>Fideo Artesanal*</td>
<td>3,74</td>
<td>1,47</td>
<td>5,21</td>
</tr>
</tbody>
</table>

De acuerdo a los resultados se observa que el fideo con adición de 2,5% de HBU posee un 7,54% de fibra dietética, lo cual respecto a lo indicado en el RSA corresponde a un producto alto en fibra ya que la porción de consumo habitual (80 g) posee más de un 20% de la dosis diaria de referencia (25 g diarios).

El resto de las muestras se encuentran en el rango de buena fuente de fibra ya que el contenido se encuentra entre un 10 y 19% de la dosis diaria de referencia por porción de consumo habitual.
5.5.2 Análisis proximal

En la Tabla N°13 se observa el análisis proximal de la pasta con adición de 2,5% de HBU.

Tabla N°13: Aporte nutricional en 100 g de pasta.

<table>
<thead>
<tr>
<th>Nutrientes</th>
<th>Pasta con adición de 2,5% de HBU tinto</th>
<th>Pasta tradicional**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energía (kcal)</td>
<td>343</td>
<td>342</td>
</tr>
<tr>
<td>Proteínas (g)</td>
<td>12,0</td>
<td>12,0</td>
</tr>
<tr>
<td>Cenizas (g)</td>
<td>2,0</td>
<td>-</td>
</tr>
<tr>
<td>Fibra dietética total (g)</td>
<td>7,5</td>
<td>3,9</td>
</tr>
<tr>
<td>Fibra soluble (g)</td>
<td>2,1</td>
<td>1,2</td>
</tr>
<tr>
<td>Fibra insoluble (g)</td>
<td>5,5</td>
<td>2,7</td>
</tr>
<tr>
<td>Humedad (g)</td>
<td>8,3</td>
<td>-</td>
</tr>
<tr>
<td>ENN* (g)</td>
<td>67,2</td>
<td>-</td>
</tr>
</tbody>
</table>

*Extracto no nitrogenado.
** Fuente: Carozzi, 2012.

Como se puede observar en la Tabla N°13, tanto el aporte de energía, proteínas y carbohidratos son similares a los valores rotulados en el producto tradicional.

El aporte de fibra tal como se mencionó en el punto 5.5.1 corresponde a un producto alto en fibra.
5.5.3 Determinación de capacidad antioxidante, polifenoles totales y antocianinas totales

Tabla Nº14: Capacidad antioxidante, polifenoles totales y antocianinas totales en la materia prima.

<table>
<thead>
<tr>
<th></th>
<th>Unidades</th>
<th>HBU tinto tamizado a 355 μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacidad antioxidante por Método ORAC</td>
<td>μmoles TE/g</td>
<td>317,8 ± 31,2</td>
</tr>
<tr>
<td>Polifenoles Totales por Método Folin-Ciocalteu</td>
<td>mg Eq ácido gálico/ g muestra</td>
<td>43,77 ± 2,29</td>
</tr>
<tr>
<td>Antocianinas Totales</td>
<td>mg Eq Cian 3-Gluc / g muestra</td>
<td>1,46 ± 0,05</td>
</tr>
</tbody>
</table>

Nota: Resultados promedios de análisis en duplicado y la dispersión corresponde a desviación estándar.

Luego de la nueva molienda y posterior tamizado de la harina de bagazo de uva tinto se observa una disminución en la capacidad antioxidante de 362,9 μmoles TE/g (Tabla Nº4) a 317,8 μmoles TE/g. Sin embargo, el contenido de polifenoles totales y antocianinas totales se encuentran dentro del rango obtenido en la HBU sin tamizar.

Tabla Nº15: Capacidad antioxidante, polifenoles totales y antocianinas totales en las pastas crudas.

<table>
<thead>
<tr>
<th></th>
<th>Fideo 2,5% HBU</th>
<th>Fideo 0% HBU*</th>
<th>Fideo Carozzi*</th>
<th>Fideo Artesanal*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacidad antioxidante por Método ORAC</td>
<td>μmoles TE/g</td>
<td>21,57 ± 0,29</td>
<td>13,90 ± 1,52</td>
<td>7,02 ± 0,32</td>
</tr>
<tr>
<td>Polifenoles Totales por Método Folin-Ciocalteu</td>
<td>mg Eq ácido gálico/ gr muestra</td>
<td>1,89 ± 0,17</td>
<td>1,29 ± 0,07</td>
<td>1,03 ± 0,17</td>
</tr>
<tr>
<td>Antocianinas Totales</td>
<td>mg Eq Cian 3-Gluc / gr muestra</td>
<td>0,04 ± 0,01</td>
<td>n.d.(*)</td>
<td>n.d.(*)</td>
</tr>
</tbody>
</table>

*En el Anexo 4 se describen las formulaciones de las muestras.
(*): No detectado en la muestra.
Nota: Resultados promedios de análisis en duplicado y la dispersión corresponde a desviación estándar.
De acuerdo a los resultados se observa que la pasta con adición de HBU tiene mayor capacidad antioxidante y un contenido de polifenoles totales más alto en comparación con la pasta sin HBU, además de contener antocianinas.

Los resultados del fideo comercial Carozzi en comparación con el fideo artesanal muestran que el proceso industrial influye tanto en la capacidad antioxidante como en el contenido de polifenoles totales, siendo los valores más bajos en el fideo comercial. En la capacidad antioxidante se observa una disminución (a la mitad) desde un 14,16 a 7,02 μmoles TE/g, respectivamente.

Tabla N°16: Capacidad antioxidante, polifenoles totales y antocianinas totales en pastas cocidas.

<table>
<thead>
<tr>
<th>Unidades</th>
<th>Fideo 2,5% HBU</th>
<th>Fideo 0% HBU*</th>
<th>Fideo Carozzi*</th>
<th>Fideo Artesanal*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacidad Antioxidante por Método ORAC</td>
<td>μmoles TE/g</td>
<td>6,48 ± 0,33</td>
<td>2,82 ± 0,16</td>
<td>3,80 ± 0,28</td>
</tr>
<tr>
<td>Polifenoles Totales por Método Folin-Ciocalteu</td>
<td>mg Eq ácido gálico/ gr muestra</td>
<td>0,54 ± 0,07</td>
<td>0,33 ± 0,08</td>
<td>0,39 ± 0,09</td>
</tr>
<tr>
<td>Antocianinas Totales</td>
<td>mg Eq Cian 3-Gluc/ gr muestra</td>
<td>0,01 ± 0,00</td>
<td>n.d.(*)</td>
<td>n.d.(*)</td>
</tr>
</tbody>
</table>

*En el Anexo 4 se describen las formulaciones de las muestras.
(*): No detectado en la muestra.
Nota: Resultados promedios de análisis en duplicado y la dispersión corresponde a desviación estándar.

De acuerdo a los resultados obtenidos de las pastas cocidas, se puede observar que existe una considerable pérdida de capacidad antioxidante, polifenoles totales y antocianinas.

Considerando que la porción de consumo habitual de fideos es de 80 g, la capacidad antioxidante presente es de 518,4 μmoles Trolox Equivalente, lo cual corresponde al 10% de la cantidad diaria recomendada por la FDA que es de 5000 μmoles (Díaz, 2008).
Al comparar con los resultados obtenidos en las pastas secas (Tabla Nº18) se observa que la pasta comercial Carozzi fue la que tuvo menor pérdida en cuanto a capacidad antioxidante ya que fue de un 45%, comparado con la pastas con adición de HBU que tuvo un 70% de pérdida.

Respecto a los polifenoles totales todas las muestras presentaron una pérdida similar después de cocidas la cual fue aproximadamente de un 70%.

En un estudio realizado por Rosales y cols. (2012), que midió la actividad antioxidante en pastas con adición de 20% de harina de semillas de uva Cabernet Sauvignon se observó una disminución de la capacidad antioxidante (desde antes a después de cocer) de 15%, obteniéndose valores de 12,69 a 10,79 μmol trolox equivalente/g, respectivamente. Cabe destacar que la formulación de estas pastas incluye huevo, aceite de oliva y agua; la elaboración fue artesanal y el producto se secó durante la noche (se infiere que a temperatura ambiente).

Una forma de proteger los antioxidantes incorporados en los alimentos es a través de la técnica de microencapsulación que se puede definir como la técnica por la cual gotas líquidas, partículas sólidas o gaseosas, son cubiertas con una película polimérica porosa conteniendo una sustancia activa, esta membrana, barrera o película está generalmente hecha de componentes con cadenas para crear una red con propiedades hidrofóbicas y/o hidrofílicas. Las microcápsulas, ayudan a que los materiales alimenticios empleados resistan las condiciones de procesamiento y empacado mejorando sabor, aroma, estabilidad, valor nutritivo y apariencia de sus productos. Las principales ventajas de la microencapsulación son proteger el material activo de la degradación producida por el medio ambiente (calor, aire, luz, humedad) y que el compuesto encapsulado se libera gradualmente del compuesto que lo ha englobado o atrapado en un punto determinado (Parra, 2012). En el caso de la pasta con adición de HBU los factores que pueden atribuirse a la disminución de la capacidad antioxidante son la temperatura y alta presión (en la etapa de extrusión). Por lo cual, para mejorar esto, se podría realizar en el futuro una investigación que permita determinar si la microencapsulación es viable a partir del bagazo de uva.
5.6 Determinación de firmeza

En la Tabla N°17 se observan los resultados de la determinación de firmeza en pastas con distinta concentración de gluten, de la pasta control y la comercial.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Firmeza (g-fuerza)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pasta 2,5% HBU tinto sin gluten</td>
<td>74,80 ± 5,90</td>
</tr>
<tr>
<td>Pasta 2,5% HBU tinto con 2,0% gluten</td>
<td>93,01 ± 7,99</td>
</tr>
<tr>
<td>Pasta 0% HBU tinto</td>
<td>93,57 ± 0,83</td>
</tr>
<tr>
<td>Pasta comercial (Spaghetti 5 Carozzi)</td>
<td>168,42 ± 7,00</td>
</tr>
</tbody>
</table>

Nota: Resultados promedios de análisis en duplicado y la dispersión corresponde a desviación estándar.

De acuerdo a los resultados obtenidos se observa que al adicionar 2,0% de gluten en la formulación, la pasta resultó ser más firme, similar a la pasta sin adición de HBU tinto (93,01±7,99 y 93,57±0,83 g-fuerza, respectivamente) lo cual permite inferir que en el proceso industrial se comportará de manera adecuado. De acuerdo a lo descrito por Hernández (2006), una pasta con mala calidad de cocción, puede atribuirse a que el almidón no puede ser retenido por la red proteica, lo cual provoca una superficie pegajosa.

Al comparar la pasta con adición de 2,5% de HBU y 2,0% de gluten con el producto comercial la diferencia puede radicar en que la etapa de extrusión realizada en el laboratorio fue a presión atmosférica, en cambio, en el proceso industrial se realiza a alta presión lo cual otorga mayor estabilidad y firmeza al producto. Mora (2012), desarrolló pastas elaboradas a partir de mezclas de sémola de trigo y quínoa. En la pasta con adición de 10% de quínoa y 90% de sémola de trigo, obtuvo una firmeza de la pasta cocida de 74, 8 g-fuerza, lo cual equivale al valor obtenido en la formulación de pasta con 2,5% de HBU tinto sin gluten. Es decir, luego de la cocción de la pasta se obtiene una mejor firmeza en el caso de sustituir la sémola de trigo con 10% de quínoa que en el caso de adicionar 2,5% de HBU tinto.
5.7 Análisis microbiológico

En la Tabla Nº18 se observan los resultados del análisis microbiológico realizado al producto final en duplicado.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>R.A.M (ufc/g)</th>
<th>Coliformes (ufc/g)</th>
<th>\textit{E. coli} (ufc/g)</th>
<th>\textit{S. Aureus} (ufc/g)</th>
<th>Mohos (ufc/g)</th>
<th>Levaduras (ufc/g)</th>
<th>\textit{Salmonella} (Ausencia/Presencia)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pasta 2,5%</td>
<td>(6.9 \times 10^2)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>Ausencia</td>
</tr>
</tbody>
</table>

De acuerdo a lo especificado en el RSA (Anexo 5) se observa que el producto cumple con los requisitos microbiológicos.
6 CONCLUSIONES

-Dado que las características físicas de la pasta se vieron modificadas al incorporar la HBU tinto, fue necesario incorporar a la formulación gluten para mejorar las propiedades de la masa y fibra de avena para complementar el aporte de fibra entregada por la sémola de trigo y la HBU tinto. Además, para regular la acidez del producto fue necesario incorporar carbonato de calcio.

-El test con consumidores mostró que la pasta presenta una aceptabilidad general y de sabor adecuados para un producto que se quiere lanzar en forma comercial. Sin embargo, no fue bien evaluada en los atributos de apariencia, aroma y textura. Las razones de desagrado indican que el principal defecto es la apariencia cocido, lo cual se considerará para realizar futuras mejoras en el producto, tal como incorporar algún colorante natural que brinde una mejor apariencia al producto y producir la pasta en otro formato.

-Respecto a la caracterización funcional se obtuvo un producto con alto contenido de fibra dietética (7,5%) y que contiene más antioxidantes que una pasta comercial, lo cual permite comprobar la hipótesis planteada. El aporte de nutrientes entregados por la pasta con adición de HBU tinto es similar a una pasta comercial de spaghetti 5 Carozzi, siendo además alto en fibra dietética y rico en antioxidantes.

- La firmeza del producto (93,01±7,99 g-fuerza) permite inferir que en el proceso industrial se comportará de manera adecuada. Además, en cuanto al análisis microbiológico se comprobó que la pasta cumple con los requisitos establecidos por el RSA.

-Es factible elaborar a nivel de laboratorio una pasta funcional con adición de 2,5% de harina de bagazo de uva tinto y un 1% de carbonato de calcio, la cual cumple con la legislación y normas establecidas.
7 BIBLIOGRAFÍA

- Muñoz, G. Consultas [en línea] < gonzalo.munoz@carozzi.cl> [consulta: 15 marzo 2013].
- NCh841.Of78. Determinación de humedad.
- NCh842.Of78. Determinación de Cenizas.
- NCh1370/III.Of77. Determinación del contenido de grasa total.
Anexo 1: Proceso elaboración de vino, sus subproductos y proceso de obtención de HBU tinto.

- Diagrama de bloques

Proceso elaboración vino blanco

- Recepción de uva
- Despalillado/Prensado
- Fermentación alcohólica
- Trasiegos
- Clarificación/filtrado
- Estabilización por frío
- Almacenamiento

Proceso elaboración vino tinto

- Recepción de uva
- Despalillado/Prensado
- Fermentación alcohólica/maceración
- Descube/prensado
- Fermentación maloláctica
- Trasiegos
- Clarificación/filtrado
- Estabilización por frío
- Almacenamiento
- Raspones y Bagazo

Subproductos del vino por etapa
Tabla Nº19: Subproductos en las etapas de elaboración del vino.

<table>
<thead>
<tr>
<th>Etapa</th>
<th>Subproductos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recepción y selección de uvas</td>
<td>Restos de uva en malas condiciones, restos de hojas.</td>
</tr>
<tr>
<td>Despalillado</td>
<td>Raspon o escobajo.</td>
</tr>
<tr>
<td>Fermentación alcohólica</td>
<td>Trasiegos</td>
</tr>
<tr>
<td>Hidrólisis</td>
<td>Restos de aditivos, SO₂.</td>
</tr>
<tr>
<td>Prensado</td>
<td>Orujos, alcohol, tartrato de calcio, pepitas secas.</td>
</tr>
<tr>
<td>Fermentación maloláctica</td>
<td>SO₂.</td>
</tr>
<tr>
<td>Adición de clarificantes</td>
<td>Subproductos de clarificante.</td>
</tr>
<tr>
<td>Filtración</td>
<td>Cristales de bitartrato de potasio.</td>
</tr>
<tr>
<td>Estabilización por frío</td>
<td>Lías o turbios de vinificación.</td>
</tr>
<tr>
<td>Llenado de barricas</td>
<td>SO₂.</td>
</tr>
<tr>
<td>Trasiego de barricas</td>
<td></td>
</tr>
</tbody>
</table>

Diagrama de bloques de proceso de elaboración de harina de bagazo de uva tinto

```
Recolección de bagazo

Secado (40 °C, 36 h)

Molienda fina (Doble pasada por molino)  Molienda gruesa (Una pasada por molino)

Envasado (Bolsas 20 Kg)
```
Anexo 2: Cuestionario para consumidores y ficha de concepto.

EVALUACIÓN DE PASTA CON HARINA DE BAGAZO DE UVA

Nombre: ...Fecha:..............................

Rango de edad:
18-25........... 26-35........... 36-45........... 45-55.......... 54-65..........

¿Usted consume alimentos saludables? Si........ No.........
Si contesto SI, ¿Cuál(es)? (Marque la(s) opción(es) con una cruz)

....Frutas
....Verduras
....Avena
....Pasta saludable (integral, otros)
....Otros alimentos altos en fibra (integrales)
....Aceite de oliva
....Pescado (no frito)
....Yogur
....Yogur con probióticos
....Otros (indicar cuáles):....................

Si marcó pasta saludable ¿Con qué frecuencia la consume?
Todos los días...... 2-3 veces por semana....... 1 vez por semana.......
1 vez cada dos semanas........

1. Por favor evalúe la muestra que se presenta y señale con una cruz su reacción frente al producto para cada atributo según la escala adjunta:
a) ¿Hay aspectos que le gustaron especialmente de la muestra? Si..... No..
Si contesto “Sí”, ¿Cuál(es)?

b) ¿Hubo algo que le disgustó de la muestra? Si....... No......
Si contesto “Sí”, ¿Cuál(es)?

c) Si este producto se encontrara en los lugares donde Ud. habitualmente compra pastas, ¿qué frase refleja mejor lo que haría? (marque una opción):

........ Definitivamente sí lo compraría
........ Probablemente sí lo compraría
........ Tal vez sí, tal vez no lo compraría
........ Probablemente no lo compraría
........ Definitivamente no lo compraría

¡MUCHAS GRACIAS!
Ficha informativa. Concepto del producto.

Figura 6: Ficha informativa. Concepto del producto.

Descripción del producto: Pasta seca elaborada a base de Sémola de trigo y harina de bagazo de uva.

Principales características:
- Alto aporte en fibra.
- Contiene antioxidantes aportados por el bagazo de uva.

Beneficios de la fibra:
- Protege contra el cáncer de colon.
- Retarda la absorción de glucosa.
- Evita el estreñimiento.
- Reduce el riesgo de enfermedades cardiovasculares.

Beneficios de los antioxidantes:
- Disminuye el riesgo de enfermedades cardiovasculares, tumorales y neurodegenerativas.
Anexo 3: Resultados de la evaluación realizada por los consumidores.

Tabla N°20: Resultados de la evaluación realizada por los consumidores a la muestra de pasta con un 2,5% de HBU tinto.

<table>
<thead>
<tr>
<th>Consumidor</th>
<th>Apariencia crudo</th>
<th>Apariencia cocido</th>
<th>Aroma</th>
<th>Sabor</th>
<th>Textura</th>
<th>Aceptabilidad general</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>II</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>III</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>IV</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>V</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>VI</td>
<td>6</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>VII</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>VIII</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>IX</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>X</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>XI</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>XII</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>XIII</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>XIV</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>XV</td>
<td>6</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>XVI</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>XVII</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>XVIII</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>XIX</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>XX</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>XXI</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>XXII</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>XXIII</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>XXIV</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>XXV</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>XXVI</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>XXVII</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>XXVIII</td>
<td>7</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>XXIX</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>XXX</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>XXXI</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>XXXII</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>XXXIII</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>XXXIV</td>
<td>6</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>XXXV</td>
<td>6</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>XXXVI</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>XXXVII</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>XXXVIII</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>XXXIX</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>XL</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>XLI</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

PROMEDIO 5,00 4,10 5,17 5,90 5,54 5,63
Anexo 4: Detalle de la formulación de las pastas.

Tabla Nº21: Formulación de las distintas pastas

<table>
<thead>
<tr>
<th>Ingrediente</th>
<th>Cantidad (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fideo 0% HBU</td>
</tr>
<tr>
<td>Sémola AB</td>
<td>100</td>
</tr>
<tr>
<td>Fideo molido</td>
<td>0</td>
</tr>
</tbody>
</table>

El fideo Carozzi es el producto obtenido del proceso industrial. En cambio, el fideo artesanal fue realizado a nivel de laboratorio y en cuanto a composición se asemeja al fideo comercial.

Anexo 5: Requisitos microbiológicos para pastas.

Tabla Nº22: Requisitos microbiológicos para fideos y pastas rellenas desecadas.

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Plan de muestreo</th>
<th>Limite por gramo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Categoría Clases</td>
<td>n</td>
</tr>
<tr>
<td>Coliformes</td>
<td>5 3</td>
<td>5</td>
</tr>
<tr>
<td>S. aureus</td>
<td>8 3</td>
<td>5</td>
</tr>
<tr>
<td>Mohos</td>
<td>3 3</td>
<td>5</td>
</tr>
<tr>
<td>Salmonella en 50 g</td>
<td>10 2</td>
<td>5</td>
</tr>
</tbody>
</table>

Anexo 6: Contenido antioxidante de diferentes productos.

Tabla Nº23: Contenido antioxidante (ORAC) de diferentes productos.

<table>
<thead>
<tr>
<th>Alimento</th>
<th>ORAC (μmoles TE/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orégano seco</td>
<td>2001,0</td>
</tr>
<tr>
<td>HBU tinto</td>
<td>362,9</td>
</tr>
<tr>
<td>HBU blanco</td>
<td>322,9</td>
</tr>
<tr>
<td>Pimienta negra</td>
<td>276,0</td>
</tr>
<tr>
<td>Maqui</td>
<td>258,4</td>
</tr>
<tr>
<td>Goji berries</td>
<td>253,0</td>
</tr>
<tr>
<td>Sauco</td>
<td>145,2</td>
</tr>
<tr>
<td>Mora</td>
<td>136,4</td>
</tr>
<tr>
<td>Cranberries</td>
<td>96,0</td>
</tr>
<tr>
<td>Frutilla</td>
<td>49,6</td>
</tr>
<tr>
<td>Frambuesa</td>
<td>48,5</td>
</tr>
<tr>
<td>Pomelo</td>
<td>43,6</td>
</tr>
<tr>
<td>Vino tinto</td>
<td>30 a 40</td>
</tr>
<tr>
<td>Ciruela</td>
<td>34,1</td>
</tr>
<tr>
<td>Granada</td>
<td>19,1</td>
</tr>
</tbody>
</table>

Tabla Nº24: Contenido polifenoles totales de diferentes productos.

<table>
<thead>
<tr>
<th>Alimento</th>
<th>Polifenoles totales (mg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBU tinto</td>
<td>41,11</td>
</tr>
<tr>
<td>HBU blanco</td>
<td>33,77</td>
</tr>
<tr>
<td>Frutilla</td>
<td>4,24</td>
</tr>
<tr>
<td>Vino</td>
<td>1 a 4</td>
</tr>
<tr>
<td>Mora</td>
<td>2,94</td>
</tr>
<tr>
<td>Arándano</td>
<td>2,80</td>
</tr>
<tr>
<td>Ciruela</td>
<td>2,11</td>
</tr>
<tr>
<td>Kiwi</td>
<td>0,54</td>
</tr>
<tr>
<td>Plátano</td>
<td>0,21</td>
</tr>
</tbody>
</table>