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ASPECTS OF ANTIFERROMAGNETIC SPINTRONICS

La spintrónica se perfila como una de las corrientes mas atractivas y prometedoras dentro de
la materia condensada gracias a la diversidad de fenómenos presentes, como el efecto Hall
de spin, la magneto-resistencia gigante. En la spintrónica el estudio de materiales antifer-
romagnéticos es interesante pues dentro de sus propiedades se encuentran su abundancia
natural y la posibilidad de disminuir las escalas temporal y espacial de los fenómenos pre-
sentes en ellos. Un ejemplo es la utilización de estos materiales en memorias magnéticas,
pues gracias a la ausencia de magnetización neta en un material antiferromagnético es posi-
ble almacenar información en regiones de menor tamaño debido a la nula interacción dipolar
entre dominios magnéticos. Esta tesis está compuesta de tres trabajos teóricos orientados al
desarrollo de la spintrónica antiferromagnética.

En la primera parte se presenta la teoŕıa efectiva de un sistema antiferromagnético no
colineal. Para esto consideramos un sistema anisotrópico y con interacción de intercambio
entre spines vecinos. A través de un parámetro de orden perteneciente al grupo de rotaciones
estudiamos la dinámica de las excitaciones de baja enerǵıa del sistema obteniendo como
resultado una familia de solitones topológicos que están descritos por la ecuación de sine-
Gordon. Finalmente comparamos nuestros resultados con simulaciones numéricas de un
sistema de momentos magnéticos obteniendo resultados completamente concordantes.

La segunda parte corresponde al estudio de un cristal magnónico antiferromagnético. A
partir de una teoŕıa fenomenológica estudiamos la dinámica del campo de magnetización bajo
el efecto de interacción de intercambio, y anisotroṕıa uniaxial. A través de una modulación
periódica de la anisotroṕıa y del campo magnético caracterizamos el espectro de ondas de
sṕın y las estructura de bandas del sistema.

En la tercera y última parte se presenta el estudio de la generación de corrientes de spin
mediante deformaciones de una red antiferromagnética gracias a efectos cuánticos. Este
fenómeno, conocido como efecto piezospintrónico, es estudiado en dos modelos de interés:
grafeno antiferromagnético y zinc-blende antiferromagnético. Este efecto, en conjunto con el
efecto Hall de sṕın inverso pueden ser útiles para la detección de corrientes de sṕın puras.
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ASPECTS OF ANTIFERROMAGNETIC SPINTRONICS

Spintronics is one of the most attractive and promising areas in condensed matter due to the
diversity of phenomena present in it as the spin Hall effect and the giant magnetoresistance.
In spintronics the study of antiferromagnetic materials is interesting due to their natural
abundance and the possibility of decreasing the temporal and spatial scale of the phenomena
in which they are involved. One example of this is the use of antiferromagnetic materials
in magnetic memories, where due to the absence of net magnetization it is possible to store
information in smaller regions because of the null dipolar interaction between domains. This
thesis is made of three theoretical works focused in different aspects of antiferromagnetic
spintronics.

In the first chapter we present the effective theory of a non collinear antiferromagnet.
For this we consider an anisotropic system with exchange interaction among neighbor spins.
By making use of an order parameter in the rotation group we study the dynamics of low
energy excitations of the system obtaining as result a family of topological solitons which
are described by the sine-Gordon equation. Finally we compare our results with numerical
simulations of a system of magnetic moments obtaining totally concordant results.

The second chapter corresponds to the study of an antiferromagnetic magnonic crystal.
From a phenomenological theory we study the dynamics of the magnetization field under
the effect of exchange interaction and uniaxial anisotropy. Through a periodic modulation of
the anisotropy and of the magnetic field we characterize the spin wave spectra and the band
structure of the system.

In the third and last chapter we show the study of generation of spin currents by de-
formation of an antiferromagnetic lattice thanks to quantum mechanical effects. This phe-
nomenon, known as piezospintronic effect, is studied in two interesting models: antiferro-
magnetic graphene and antiferromagnetic zinc-blende. This effect together with the inverse
spin Hall effect could be useful for the detection of pure spin currents.

v



vi



None of them along the line know what any of it is worth. Bob Dylan.
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Chapter 1

Introduction

Spintronics is the area of condensed matter physics that studies the properties of the electron
spin with the aim of improving the efficiency of electronic devices and to enrich them with
new functionalities and phenomena that interlink the spin and charge degrees of freedom [1,
2, 3, 4]. Current spintronics applications are centered around magnetic storage of information
and sensing devices based on key advances in the field, such as tunneling magnetoresistance
(TMR), giant magneto resistance (GMR) and electrical spin injection. Nevertheless the
proper control of spin and magnetism in a wide family of materials and their nanostructures
has the potential for a much broader impact.

In particular, in this work we are involved into antiferromagnetic spintronics. Antiferro-
magnetic materials are internally magnetic, but the internal order of the microscopic magnetic
moments cancels the macroscopic magnetization. This makes magnetism in antiferromag-
netic materials invisible to their external environment. Because of this Louis Néel, Nobel prize
in Physics in 1970 for fundamental work and discoveries concerning antiferromagnetism and
ferrimagnetism which have led to important applications in solid state physics, said that an-
tiferromagnetic materials are extremely interesting from the theoretical viewpoint, but do not
seem to have any applications [5]. Since then, a lot of people have been working in order to
show that Néel was wrong. Some examples of these works are shown in the recent review by
Jungwirth et al [6].

Along this chapter we introduce some elementary concepts which are relevant to under-
stand the rest of the text.
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1.1 The spin and the electron

Electrons were discovered by J. J. Thompson in 1897, but they hid a fascinating property
until G. Uhlenbeck and S. Gouldsmit proposed the spin [7] to explain some properties of
the atomic spectra. Later W. Pauli and P. A. M. Dirac developed the relativistic quantum
theory of electrons in which the spin, as an intrinsic property, arises naturally[8, 9]. A wrong
but useful cartoon of the spin is the idea that electrons ’spins’ around one axis, just as the
earth rotates around herself. Of course this cartoon is wrong because electrons are point-like
particles so they can not rotate around themselves, but electrons still have intrinsic angular
momentum. In classical electrodynamics, a solid sphere rotating with charge q generates an
magnetic dipole µ proportional to the angular momentum of the sphere. In the quantum
mechanical picture, the electron will generate a magnetic moment proportional to its spin

µ = −γS, (1.1)

where γ = gµB/~ is known as the gyromagnetic ratio, g is the Landé factor, µB is the Bohr
magneton, and ~ is Planck constant. The spin of a free electron is a quantity which has a
magnitude |S| = ~/2 and, as it is a vector quantity, has three components.

S

Figure 1.1: Classical cartoon of the intrinsic angular momentum S of an electron. Because
of this intrinsic momenta an electron can be seen as a magnetic moment.

1.2 Magnetic ordering

Materials are made out of elements (atoms), which in their ground state have a finite number
of electrons depending on the number of protons they have in the nucleus. Electrons arrange
themselves in the allowed orbitals around the nucleus following Pauli exclusion principle and
Hund rules so they are often arranged in pairs spin up - spin down which cancel the magnetic
effect of the spins. Nevertheless there are some materials in which electrons are arranged
in such way that some of the electrons might be unpaired at the valence orbital, then the
total spin of these materials is non zero (typically transition metals, third to tenth column
of periodic table). These materials are called magnetic materials.
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There are several types of magnetic materials. In paramagnetic materials the electronic
spins align parallel to an external magnetic field and this enhances the magnetic field inside
the material. In diamagnetic materials the effect is exactly the opposite, the spins align
anti-parallel to the field and that diminishes the magnetic field inside the material. These
two families of magnetic materials share a particular property. Just as the external magnetic
field disappears the alignment of the spins is lost, so there is not a permanent effect. On the
other hand, ferromagnets and antiferromagnets have a strong magnetic ordering due to their
high exchange interaction.

Exchange interaction is a quantum mechanical effect such that spins align relatively par-
allel or antiparallel. This fact was pointed out independently by W. Heisenberg and P.A.M
Dirac in 1926 [10, 11]. The usual way to express this interaction is

Eex = JS1 · S2. (1.2)

Equation (1.2) explains why (anti)ferromagnetic materials exist and their order is robust.

FM AF

Figure 1.2: Cartoons of consequences of exchange interaction between two spins. If the
exchange constant J < 0, the energy is a minimum when spins align parallel. This is known
as ferromagnetic configuration. If the exchange constant J > 0, the minimum energy is find
when spins are anti-parallel. This is known as antiferromagnetic configuration.

The magnetic ordering of materials is lost when they are heated up over a certain temper-
ature. For ferromagnetic materials this critical temperature is known as Curie’s temperature
TC while for antiferromagnets is known as Néel temperature TN . In general most of ma-
terials become paramagnetic above the mentioned temperatures. Below TC ferromagnets

(a) (b) (c)

Figure 1.3: Cartoons of different kinds of magnetic order. (a) Ferromagnetic. (b) Paramag-
netic. (c) Antiferromagnetic.
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exhibit macroscopic magnetization and this property has been widely used along the human
history, from compasses to hard drives. On the other hand antiferromagnets do not exhibit
magnetization due to their particular magnetic order which cancels local magnetic moments,
making them invisible to external magnetic fields. Because of this they seemed to be useless
for practical purposes, but today many of us think that this remarkable property can be
turned into an advantage against ferromagnetic materials. Due to the absence of magnetiza-
tion the dipolar interaction between domains is totally negligible. This opens the possibility
of diminishing the spatial scale of the phenomena present in these materials.

x̂

(a)

(b)

Figure 1.4: Cartoon of two different magnetic phase of a chain of spins under the influence
of anisotropy along the x̂ axis. (a) Antiferromagnetic chain. (b) Ferromagnetic chain.

Another important discovery made by L. Néel was that the anisotropy effects have the
same consequences in ferromagnetic and antiferromagnetic materials. For example, lets con-
sider a chain of magnetic moments as in Fig 1.2. Néel figured out that independently of the
ferro/antiferromagnetic ordering, the energy associated with the anisotropy of the system to
lie along a certain axis x̂ has the form

Eani = −K(S · x̂)2. (1.3)

This means that spins prefer to be aligned along x̂ direction if K > 0. This effect adds
remarkable properties to magnetic systems, as we show along this thesis. Of course depending
on the sign of the value K the effect on the system can be the opposite. If K < 0 the x̂ axis
is not likely for the spins, in this case we call it hard axis anisotropy and the spins lie in a
plane perpendicular to x̂ (also called easy plane).

1.3 Antiferromagnetic order

The antiferromagnetic order is described through different roads. In particular in some
chapters of this thesis we focus in the long wavelength description of this order. Due to the
nature of the antiferromagnetic order is not possible to perform a direct gradient expansion of
the magnetization because it is not a soft function. Then is not trivial to obtain the continuum
approximation of an antiferromagnetic system directly in terms of the magnetization. One
way to perform this expansion was introduced by Haldane in 1983 [12] for a bipartite lattice
as follows,

Si = ηin(xi)

√
1−

∣∣∣∣
m(xi)

S

∣∣∣∣
2

+
m(xi)

S
, (1.4)
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where ηi = eiXi~π = (−1)i has opposite sign on the two sublattices. The field n is the
unimodular Neel field (also known as staggered magnetization),

|n(xi)| = 1. (1.5)

m is the transverse canting field (also known as magnetization field), which is chosen to obey

n(xi) ·m(xi) = 0. (1.6)

In equilibrium m(x) = 0 and n(x) 6= 0. Now the antiferromagnetic order can be described by
two fields whose are soft along the space and now is possible to perform a gradient expansion
of these fields to obtain the long wavelength limit of the system.
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1.4 Outline

With the previous sections the reader is in conditions to walk through this thesis with the ba-
sic concepts in his pocket. This will lead the reader at least to understand the phenomenology
of the physics involved in the three works which are the main body of this text.

In the second chapter we develop a theory of a non collinear antiferromagnet based in
a model for Mn3Ir. We characterize the low energy excitations of the magnetic system by
performing a gradient expansion of the order parameter which belongs to SO(3) (rotation
group). We find a family of topological solitons and we discuss their properties. This work
was published in Physical Review B on April 29th, 2016.

The third chapter consists of making use of the continuum theory of an antiferromagnetic
system to characterize the magnonic bands of a system which has an periodic anisotropy
or is under a periodic external magnetic field. This leads to an antiferromagnetic magnonic
crystal which can be engineered by modifying either the periodicity and the magnitude of
the anisotropy/magnetic field change. This work was published in Physical Review B on
December 17th, 2015.

In the fourth chapter we study the generation of pure spin currents by deformations of a
lattice. We analyze two models of interest: antiferromagnetic graphene, and antiferromag-
netic zinc-blende. This effect is known as piezospintronic effect and could lead, in cooperation
with other known spintronic effects, to a robust generation (or detection) of pure spin cur-
rents.

In the several appendices we show some explicit calculations and advanced topics related
with the contents of this thesis. In Appendix A we show the path integral formulation of
a spin system. This is a natural way to introduce the the Berry phase in spin systems.
Appendix B introduces the Landau-Lifshitz-Gilbert equation. We also show two numerical
methods to solve this equation for a spin system. In Appendix C we show the explicit
calculation of the effective action of a non collinear antiferromagnet. Also we show explicit
calculations which lead to the spin wave spectra for two known solutions. In Appendix D we
analyze some solutions of the sine-Gordon equation by two different roads, by performing a
direct integration of the equation, and making use of Bäcklund transformations. This leads
to the solutions utilized in Chapter 2. In the last appendix we show the explicit calculation
that leads to the spin wave spectra of Chapter 3.
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Chapter 2

Soliton-like textures in non collinear
antiferromagnets

In this chapter we show that proper control of magnetization textures can be achieved in non-
collinear antiferromagnets. This opens up the versatile toolbox of domain wall manipulation
in the context of a new family of materials. In this way, we show that non-collinear antiferro-
magnets are a good prospect for applications in the context of antiferromagnetic spintronics.
As in many non-collinear antiferromagnets the order parameter field takes values in SO(3).
By performing a gradient expansion in the energy functional we derive an effective theory
that accounts for the physics of the magnetization of long wavelength excitations. We apply
our formalism to static and dynamic textures such as domain walls and localized oscillations,
and identify topologically protected textures that are spatially localized. Our results are
applicable to the exchange-bias materials Mn3X, with X = Ir, Rh, P t.

2.1 Introduction

In antiferromagnetic materials the exchange coupling among neighboring spins favor antipar-
allel arrangements as we have explained in Sec. 1.2. Because of this interaction the system is
led to an ordered magnetic state where the magnetization of different sublattices is oriented
in a way that the overall magnetization is cancelled. This order drives the system into a
robust collective behavior with soft modes that can be controlled with the aid of external
magnetic fields. Recently, the notion that spintronic effects analogous to the ones in fer-
romagnets can be exhibited by antiferromagnetic systems has received attention from the
theoretical [1, 2, 13, 14, 15, 16, 17] and experimental[18, 19, 20, 21, 22, 23] viewpoints. The
advantages of antiferromagnetic systems come from a variety of reasons. For example they
do not display stray fields, they display high frequency response (in the terahertz range), and
finally the fact that antiferromagnetism is observed more often and at much softer conditions
than ferromagnetism.

A promising development in the context of antiferromagnetic spintronics is the fact that
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it is possible to engineer magnetic textures, such as domain walls (DW), in antiferromagnetic
systems [24]. The problem of domain wall manipulation in antiferromagnetic systems has
been studied in some recent papers[25, 26, 27, 28, 29, 30] where, using the collective coordi-
nates approach, it was shown that the domain wall center obeys a Newton’s law of motion.
This opens the possibility of implementing domain wall control over antiferromagnets in the
same fashion as it is done in ferromagnets. In ferromagnetic systems, magnetization textures,
smooth modulations in the magnetization field, can be controlled in a diversity of manners,
for example through the action of external fields or currents. Research in the field of mag-
netic domain wall manipulation has been growing steadily[31]. The driving force behind this
research is the potential applications in the context of information technologies. An example
of these applications, is the racetrack[32] configuration where domain walls are driven across
a ferromagnetic wire by a current. Domain wall manipulation has also been shown as an
alternative to electronic logic circuits[33].

In this work we propose that magnetic textures can also be found and controlled in non-
collinear antiferromagnets. That is antiferromagnets whose underlying magnetic sub-lattices
are not oriented along the same magnetic axis. Our main result is the theoretical charac-
terization of the dynamics of domain walls in a non-collinear antiferromagnet. While our
qualitative results apply to a wide family of non-collinear antiferromagnets, we will focus
our attention to the magnetic degrees of freedom Mn3Ir. This material has been studied
extensively due to its importance as the pinning agent in exchange bias controlled spin-
valves devices. Mn3Ir is regarded as a crystal with fcc structure with Mn atoms lying of
the centers of the faces of each cube. The Mn sublattices are two-dimensional kagome lat-
tices lying in the planes perpendicular to the (111) direction. Due to the frustration within
each triangular plaquette, isolated isotropic kagome lattices are known examples of disor-
dered spin systems [34, 35, 36, 37]. On the contrary the Mn spins in Mn3Ir display a
quite strong three-sublattice triangular (T1) magnetic order up to a transition temperature
of ∼ 950 K[38, 39]. The stability of magnetic order is due primarily to the exchange inter-
action among the kagome planes and to anisotropy [40, 41, 42]. Following [43], we use as a
minimal model for the physics of the magnetization in Mn3Ir we start with a single nearest
neighbour antiferromagnetically coupled kagome lattice of classical spins with appropriately
tuned anisotropy terms.

2.2 Basic Model

The minimal model for magnetization dynamics of the Mn atoms in a (111) plane of Mn3Ir
starts from a system of classical spins located at the vertices of a kagome lattice. These
spins correspond to the magnetic degrees of freedom of the planes perpendicular to the (111)
direction. The Hamiltonian of the spin system contains two main contributions. On one side
we have the exchange interaction, characterized by an exchange constant J , between nearest
neighbors that favor antiparallel arrangements. On the other we have a strong anisotropy
energy that favors orientation in the axis towards the center of the triangles, this energy is
characterized by an anisotropy constant K, and an anisotropy that penalizes the out-of-plane
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orientations characterized by Kz. The resulting Hamiltonian becomes:

H = J
∑

〈r,r′〉

Sr · Sr′ −K
∑

r

(nr · Sr)
2 +Kz

∑

r

(ẑ · Sr)
2 , (2.1)

where the anisotropy axis, nr, are defined on each triangular element of the kagome lattice as
illustrated on Fig.(2.1), and ẑ is the perpendicular axis to the plane. As the antiferromagnetic
coupling favors configurations where all the moments in each triangle cancels one other,
then if we consider any solid rotation of the moments in one triangle this condition stills.
Following this idea we start from a given minimum (say, all spins pointing outward) and
parameterize the configuration on any point in the lattice by a rotation matrix[44, 45]: Sr =
R(r){nr + a [L− (L · nr)nr]}, where L is the canting field assumed to be small. Restricting
the description to the low energy structures we can assume the behavior of the rotation
matrix R to be smooth, varying only across long length scales. Following [44] we write the
Lagrangian of the system in terms of the variables L and R and express it within the smooth
gradient approximation. We then proceed to solve the Euler-Lagrange equations for the field
L finding:

TL = R−1∂tR,
where Tαβ = δαβ − 1

3

∑
i niαniβ. Replacing this solution into the action we are led to an

effective Lagrangian density involving only the R field:

L = − ~2

2
√

3Ja2
Tr[(R−1∂tR)2]− Eex(R)− Eani(R).

The anisotropy coupling favors two configurations, either all spins point toward the center of
each triangle or away from it. This state of affairs leave us with two ground states that are
degenerate and the main discussion that follow concerns mainly with magnetic textures that
connect those states smoothly. In particular we focus on states that can be obtained from
the uniform ground state by a smoothly varying rotation. It is a straightforward calculation
to show that a gradient approximation of the exchange energy functional give us:

Eex[R] =
Ja2

2
tr
(
gijLi Lj

)

where Li = R−1∂iR and gij
αβ = ei

1ej1n
3
αn

2
β + ei

2ej2n
1
αn

3
β + ei

3ej3n
2
αn

1
β. In the last expression the

vectors ei correspond to the ones defined in Fig. (2.1b). The anisotropy contribution to the
energy is:

Eani[R] = −K
∑

i

(
ni · Rni

)2
+Kz

∑

i

(
ẑ · Rni

)2
.

2.3 Spin wave spectra

Now we proceed to analyze the spin wave spectra of the system around the ordered phase
(Fig.2.2(a)). Here we call this phase just as homogeneous phase. To achieve this goal we
describe the state of the system assuming that R is a rotation matrix made of Euler angles,
R(φ, θ, ψ) = RZ′(ψ)RX(θ)RZ(φ). Calculating perturbations around the homogeneous phase

9



n̂1

n̂2n̂3

(a)

(b)

Figure 2.1: (a) Different configurations of a given triangle achieved through different rotations
around the out of plane axes. An arbitrary configuration is encoded by a smooth distributions
of such rotations. (b) Kagome lattice in the (111) plane in Mn3Ir where Mn atoms are at
each corner of a basis triangle. The basis vectors n1 = (0, 1, 0), n2 = (

√
3/2,−1/2, 0) and

n3 = (−
√

3/2,−1/2, 0) defined at every point in the lattice are shown. The vectors ei

point towards the nearest neighbours of each site. These vectors are used in the gradient
expansion in the continuum approximation and are defined as e1 = (cosπ/3, sin π/3, 0),
e2 = (cosπ/3,− sin π/3, 0), and e3 = (−1, 0, 0).
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we derive the effective action for the spin waves. As the perturbations are around the identity
matrix, we found that the variables φ and ψ correspond to the same rotation. Defining
χ = φ+ ψ the equations of motion are:

∂2
t χ−

3a2J2

~2
∇2χ+

12KJ

~2
χ = 0, (2.2)

∂2
t θ +

6J(K +Kz)

~2
θ = 0. (2.3)

The spin wave spectra is split in a dispersion-less flat band with frequency

ω2 =
6J(K +Kz)

~2

independent of the wave-vector and, a Klein-Gordon-like branch with frequency

ω2 =
3a2J2

~2
k2 +

12KJ

~2
,

as is shown in Fig.2.2(b). In absence of anisotropy the spin wave branches become ω = 0 and
ω = vk with v =

√
3aJ/~ in agreement with the results of [46, 47]. The presence of the flat

band is a direct consequence of the absence of interlayer couplings within our model. If we
consider interlayer exchange interaction including the terms outside the plane (111) in the
gradient expansion, the flat band is modified as is shown in [40, 23, 48].

2.4 Soliton-like structures

We continue our discussion on magnetic textures looking at possible DWs in the order pa-
rameter field. We parameterize the rotation at each point by an angle φ and a rotation axis
parallel to the z-axis (out of the plane). The Lagrangian density can be expressed in terms
of φ:

L =
~2

√
3Ja2

(∂tφ)2 −
√

3J (∇φ)2 +
4
√

3K

a2
cos2 φ.

This corresponds to the well known sine-Gordon model whose equation of motion is:

∂2
t φ− c2∇2φ+

m2c4

~2
sin(2φ) = 0

where we have defined the spin-wave velocity c2 = 3J2a2/~2 and the mass parameterm2c4/~2 =
6KJ/~2. The solutions of this equation have been extensively studied[49]. Among its most
celebrated solutions we can highlight stationary domain walls (where the angle travels all
the way from zero to π) that are characterized by a domain wall width W = a

√
J/K/2.

For Mn3Ir rough estimates of the parameters lead us to W ∼ 1-10a [41]. The profile of the
domain wall has a soliton-like form (Fig.2.3(b)):

φ = 2 tan−1(exp(x/W )).

To characterize the domain walls of we have solved numerically Landau-Lifshitz-Gilbert equa-
tion with an effective field derived from Eq.(2.1). By setting periodic boundary conditions
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Figure 2.2: (a) Homogenous state with all the spins pointing toward the center of the tri-
angles. This state is degenerated with the state with all the spins pointing away from the
center of each triangle. (b) Dispersion relations for the spin wave spectrum of the homoge-
neous state. Solid lines correspond to the case with anisotropy and describe two branches one
being a flat band with zero group velocity and another with a Klein-Gordon-like dispersion.
Dashed line represent the dispersion relations of the isotropic case.
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in the exchange field we have enforced a domain wall within our system and let the system
to relax. The domain wall profile is then optimized and its width determined by fitting to
a soliton like shape with adjustable width. The results are displayed in Fig.(2.3) and are in
remarkable agreement with the long wave-length description of the continuum model.

Figure 2.3: (a) Typical shape of a domain wall in kagome lattice. (b) Numerical fit of the
soliton solution, black dots are the result of numerical simulation, red line corresponds to
fitted solution φ = 2 tan−1(exp(x/W )). (c) Width dependence on anisotropy. Black dots are
numerical results while red dashed line is the fitted curve which has a slope equal to 1/2.

Along with the stationary domain walls just described the sine-Gordon model allows for
mobile textures. As it is well known the profile of a domain wall moving with velocity v is
contracted by the Lorentz factor leading to a solution

φ = 2 tan−1(exp[(x− vt)/W0

√
1− (v/c)2]).

We have verified this behavior using our simulations based on the Landau-Lifshitz equation.
The results are shown in Fig.2.4.

Among the other localized excitations that are associated with the sine-Gordon equation,
we have focused on the stationary breather solution [50],

φ = 2 tan−1
[√

1− ω2 cos(ωt/τ)/ω cosh(x
√

1− ω2/λ)
]
,

where τ = ~/mc2
√

2, and λ = ~/mc
√

2. This solution represents a localized oscillation of
the orientation of the local moments around the anisotropy axes. The numerical solution of
the Landau-Lifshitz equation that is consistent with this state is shown in Fig.2.5(a)-(b).
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Figure 2.4: (a) Contraction of the width W of a moving DW as function of speed v. The
simulations were performed setting the easy axis anisotropy by K = 0.025J , and the hard
axis anisotropy by Kz = 0.1J . The results of the Landau-Lifshitz equation shows perfect
agreement with the Lorentz contraction factor

√
1− (v/c)2, full line, that can be inferred

from the sine-Gordon equation.

2.5 Topological defects

The topology of the order parameter space (SO(3)) opens a variety of possible topologically
protected defects [51]. For example, the first homotopy group being π1(SO(3)) = Z2, then we
have two kinds of configurations. While textures which belong to class 0 can be continuously
deformed to the uniform state, textures which belong to class 1 cannot. The latter are known
as disgyrations in the context of 3He. The coalesence of two disgyrations generates a vortex-
like trivial texture (as consequence of 1 + 1 = 0). However, disgyrations have an energy that
grows with system size then are not localized.

The second homotopy group of π2(SO(3)) is trivial and skyrmions are not topologically
protected. Nevertheless there are trivial stable solutions as the lump solution [50]. In Fig.2.6
we show examples of textures related with the previous topological properties.

Finally, the third homotopy group of the order parameter space is given by π3(SO(3)) = Z
which opens up the possibility of topologically stable point like defects. Physical realizations
of this kind of topological defects have been studied in the context of superfluid 3He-A[52] and
topological insulators[53]. Our description of a single kagome lattice needs to be extended to
include interplane interactions in the gradient expansion. In this case the topological defect
is a three-dimensional structure characterized by covering all possible rotations as we move
away from its center. The winding number associated with the third homotopy group is given
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Figure 2.5: (a) Time evolution of the orientiation φ in the case of a breather state with
frequency ω = 0.25. The results correspond to the solution of the Landau-Lifshitz equation
with the same paremeters as in Fig.2.4. The color code is the same as the one used for the
DW. (b) Snapshot at time (1) and (2) showing the orientation of the local moments in the
texture.

by[54, 55, 56]:

Q =
1

24π2

∫
dr εµνλtr (LµLνLλ)

where ε stands for the fully antisymmetric tensor. One possible realization of this kind of
defects is the Shankar monopole[57]. The idea is to associate to each point of space ~r = rn̂
an operator that rotates around the n̂-axis an angle χ(r). If χ is chose to go all the way from
zero at the origin to 2π away from the monopole we can see that whole parameter space is
covered twice. The texture so generated is stable under perturbations and becomes a finite
energy topologically protected defect.

2.6 Conclusions

In this chapter we have addressed the behavior of textures in the order parameter field of
non-collinear antiferromagnets. By pursuing a continuum description of the textures we
have studied the spin-wave spectra around the homogeneous configuration and the behavior
of domain walls. The spin wave spectra consists of two branches. One correspond to the
usual Klein-Gordon-like dispersion relation while the other correspond to a flat band whose
frequency is independent of the wave-number. Domain wall structure behave in a similar
fashion than Bloch type domain walls in common ferromagnets with a characteristic with
scaling with the square root of J/K (exchange interaction compared with anisotropy). They
are described by an effective sine-Gordon equation that allows us to predict the existence,
along with stationary domain walls, of moving domain walls that travel undistorted across the
system. We have compared the predictions of our continuum theory with the results of exact
simulations of the Landau-Lifshitz-Gilbert equation and obtained a complete agreement.
Finally we have discussed the topological defects that are allowed by the topology of the
order parameter space.
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Figure 2.6: (a)Cartoon of a lump texture, given by the parameterization R(η, ẑ)nr, where
η(r) = 2 arctan[exp (r − R)/W ]. This is an example of a trivial 2D texture. While this
solution is stable, has no topological protection at all so it can be continuously deformed to
the homogeneous state. (b) Cartoon of a class 1 disgyration. This solution is topologically
protected because of the non-trivial homotopy π1(SO(3)), then is not possible to reach the
homogeneous state adiabatically. As this state is not localized, his energy grows with the
size of the system.
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Chapter 3

Antiferromagnetic magnonic crystal

In this chapter we describe the features of magnonic crystals based upon antiferromagnetic
elements. Our main results are that with a periodic modulation of either magnetic fields or
system characteristics, such as the anisotropy, it is possible to tailor the spin wave spectra
of antiferromagnetic systems into a band-like organization that displays a segregation of
allowed and forbidden bands. The main features of the band structure, such as bandwidths
and bandgaps, can be readily manipulated. Our results provide a natural link between two
steadily growing fields of spintronics: antiferromagnetic spintronics and magnonics. This
work was developed in collaboration with Roberto Troncoso, Felipe Pesce and Álvaro Núñez,
and it was published on December 17th of 2015 in Physical Review B.

3.1 Introduction

Small deviations of the local magnetization of a system can propagate coherently in the form
of spin waves (SWs), whose associated quantum fields are known as magnons. Due to the lack
of Joule heating associated with their transport they stand out as promising candidates for
its application in the context of information processing[58, 59]. The field of solid state physics
concerning the manipulation, detection and dynamics of the SWs in a magnetic system has
been dubbed magnonics[60, 61, 62]. The field of magnonics has grown into a well established
realm of magnetism and opened new paths in the understanding of magnetization dynamics
of complex structures.

Most of the research in magnetism has focused on spin waves propagating across systems
with an overall ferromagnetic order. For example, one of the most studied systems is Ytrium-
Iron-Garnet(YIG) that, being ferrimagnetic, displays a net magnetic moment on each unit
cell. A central theme in the field of magnonics is the implementation of magnonic crystals
(MCs), the spin wave analog of photonic and plasmonic crystals, structures with magnetic
properties spatially modulated in a periodic fashion. In a MC the spin wave spectra is
organized in the form of bands with associated bandgaps that can be tailored by proper
adjustment of the MC properties. A variety of magnonic devices have been proposed that
profit from the spin waves as information carriers[63, 64, 65], signal filters, phase shifters,

17



isolators, and signal processing elements[60, 61, 62].

In this work we propose to use antiferromagnets (AF) as the basic background mate-
rial in magnonics devices[1, 2]. To highlight the potential in the use of antiferromagnetic
materials we illustrate two examples of magnonic crystals that can be implemented using
antiferromagnetic elements. Among the main results we highlight the possibility of tailoring
the magnonic bands by the use of modulations in the magnetic field, the anisotropy of the
elements or simply by manipulating the geometry of the system. Our results point towards
an effective engineering of the magnonic bands.

Antiferromagnetic based spintronics is a rapidly developing new field by its promising and
unique properties for future spintronic devices in magnetism. Despite its lack of macroscopic
magnetization, antiferromagnets, interact with spin-polarized currents and can give rise to
spintronic effects such as magnetoresistance and spin transfer torques[13, 14, 15, 18, 19, 20,
21, 22, 66, 26, 27, 28, 30, 31], the piezo-spintronic effect[16] and skyrmion textures[67, 68]
There are a number of advantages that AF systems present over ferromagnetic ones regarding
potential applications. The lack of stray fields, rapid frequency switching in the terahertz
range and its diverse functionalities to be integrated with ferromagnets, are among of the
best qualities of antiferromagnets. The first one relates to the already mentioned lack of
net magnetization. Due to this, they do not create magnetic fields which renders local all
the interactions involved in its manipulation. Second, the typical time-scale associated with
changes in the magnetic structure is several orders of magnitude shorter than the associated
with ferromagnetic systems [69]. This opens a possibility to implement high-speed effects
operating in the terahertz range. Finally, antiferromagnetism is observed more often and at
much less demanding conditions than ferromagnetism, being found even in semiconductors at
room temperature [70]. This allows us to envision hybrid devices that display features of both
electronic and spintronic characteristics. Among the large assortment of antiferromagnetic
materials, we have in mind those antiferromagnetic insulators with uniaxial anisotropy such
as, for example, NiO[71], MnF2[72, 73], FeF2[74, 75]. Spin waves in AF have been studied
since the dawn of quantum mechanics. Both from the theoretical point of view[76] as from the
experimental one[77]. There is a great deal knowledge accumulated over decades involving
the spectra of spin waves in a variety of AF. This opens a window of opportunity for effective
control of the spin wave degrees of freedom. In this chapter, we work out, based on the
phenomenological theory of spin dynamics in antiferromagnets developed by Hals et al. (Refs.
[26, 27, 28, 30]), to account for the spin wave physics in spatially modulated antiferromagnets.

The structure of this chapter is the following. In Section 3.2, the phenomenological model
for antiferromagnets is presented and the basic physics of spin waves in AF is discussed.
The enquiry of AF magnonic bands, in Section 3.3, is considered in both scenarios either
modulating periodically the anisotropy and external magnetic field.

3.2 Phenomenological theory

We start off our discussion by stating the basic features of our model. We study the dynamics
of the staggered magnetization field in a spatially modulated antiferromagnet[26, 12, 78, 79].
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In terms of the microscopic exchange energy, J , lattice constant `, coordination number z and
the uniaxial anisotropy D, the free energy density, F , for this system can be expressed[26,
27, 28, 30] as a functional of the staggered magnetization and magnetization fields, n and m
respectively:

F =

[
a

2
m2 +

A

2

∑

i

(∂in)2 − Kz

2
(n · ẑ)2 −H ·m

]
, (3.1)

where a = 4zJS2/`3, the homogeneous exchange energy; A = zJS2/2`, the exchange stiffness;
Kz = 2DS2/`3 the anisotropy (easy axis); and H = gµBB/`3 the external magnetic field.
These parameters have spatial dependencies whose specific form will be specified later on.
In F the fields are further constrained to obey n ·m = 0 and n2 = 1 at every instant and
everywhere within the system. The equations of motion can be obtained from a variation of
the action where the constraints are enforced with the aid of suitable Lagrange’s multipliers.
The resulting dynamics is ruled by:

ṅ = γfm × n, (3.2)

ṁ = γ (fn × n + fm ×m) , (3.3)

where:
fm = −am + n× (H× n) ,

fn = An× (∇2n× n) +Kz(n · ẑ)n× (ẑ × n)− (n ·H) m,

and γ is the effective gyromagnetic ratio.

To determine the spin waves we will consider small variations around the staggered mag-
netization (or Néel) vector and the canting field. The canting field m is small with respect
to the local magnetic moment, which allows us to keep only first order term. Considering
n = n0 + δn(x, t) and m = m(x, t) we expand up to first order the equations of motion (Eqs.
(3.2) and (3.3)) as

δṅ

γ
= −am× n0 − (n0 ·H) δn× n0, (3.4)

ṁ

γ
= A∇2δn× n0 −Kz(n0 · ẑ)2δn× n0 − (n0 ·H) m× n0. (3.5)

To solve these equations let us look for monochromatic waves in the form:

δn(x, t) = (ε1n1 + ε2n2) eik·x−iωt, (3.6)

m(x, t) = (ε1m1 + ε2m2) eik·x−iωt. (3.7)

In this representation we have used the constraints to express both fluctuating fields in
the plane perpendicular to n0 that is spanned by the mutually orthogonal (but otherwise ar-
bitrary) vectors ε1 and ε2. In this expression n1,2 and m1,2 are complex coefficients. Starting
from Eqs. (3.4-3.7) in a direct way we can assess the problem of spin waves in a homoge-
neous antiferromagnet. The results are, naturally, consistent with the well-known dispersion
relation[79]

(ω ± γH)2 = aγ2(Ak2 +Kz). (3.8)
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As can be seen in Fig. 3.1 there are two independent solutions. One has a phase difference
between n1 and n2 equal to π/2, while the other has a phase difference equal to −π/2. These
solutions correspond, therefore, to spin waves circularly polarized to the left and to the right.
In the absence of magnetic field both branches are degenerated. This degeneracy is split by
the magnetic field that shifts the dispersion relation of the right-polarized waves upward and
the dispersion relation of the left-polarized waves downward by an equal amount γH. An
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Figure 3.1: (a) Spin wave dispersion relation for the homogeneous antiferromagnet. Without
anisotropy the relation is dispersionless (dashed line). Addition of anisotropy raises a gap
and changes the dispersion relation to the Klein-Gordon form (full line). In both cases
the dispersion relation is doubly degenerated reflecting the two possible polarizations of the
spin wave. (b) Addition of a homogeneous magnetic field splits the degeneracy and creates
different dispersion relations (ω	 and ω�) for the two opposite polarizations. (c) and (d)
Illustration of the two polarizations for the spin wave. The disturbance is perpendicular to
the equilibrium staggered magnetization vector (n0) and precesses in a clockwise or anti-
clockwise sense.

important aspect of the spin wave spectra that is encoded by Eqs. (3.4) and (3.5) is that
oscillations in the staggered magnetization order parameter δn are linked to oscillations in
the magnetization. In fact, a quick look at Eqs. (3.4) and (3.5) allows us to write:

m = −1

a

(
1

γ
n0 × δṅ + (n0 ·H)δn

)
. (3.9)

This simple result is of the great importance since it provides a way to excite and measure
antiferromagnetic spin waves by coupling them to the oscillation in the magnetization field
that they carry. This coupling to the magnetic degrees of freedom has been used for decades
to characterize the spin wave spectra of antiferromagnets[80, 81]. In this way it is possible to
use magnetization probes, such as Faraday’s and Kerr’s effects or Brillouin light scattering[60,
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61, 62], of widespread usage in the field of magnonics, to control and study antiferromanetic
spin waves.

3.3 Antiferromagnetic spin wave bands

Now we are ready to present the main result of the work, the study of different ways in which
these antiferromagnetic spin waves can be manipulated with the aid of periodic manipulation
of the system parameters. We will see how this manipulation gives rise to magnonic bands
that can be tailored with precision. There are basically two essentially different ways to
control the antiferromagnetic spin waves. Starting from Eqs. (3.2) and (3.3) we note the
possibilities of modulating the system parameters (exchange constants, anisotropy, etc) or
the magnetic field. Both parameters can be modulated to generate magnonic crystals and in
what follows we will study the peculiarities of each particular modulation.

Eliminating m from the equations of motion we are led to the following wave equation:

δn̈ = ∇2δn− κ δn + 2h δṅ× n0 + h2δn, (3.10)

where we have set τ = 1/
√
Kzaγ2 as the unit of time and λ =

√
A/Kz, the domain wall

width, as the unit of length. In the last equation κ and h, the dimensionless anisotropy
coefficient and h and dimensionless magnetic field (h = γτ(n0 ·H)) respectively, are regarded
as periodically modulated. For common antiferromagnets[72, 74, 82] the value of τ and λ lie
in the range of picoseconds and a few nanometers respectively.

The solutions to the wave equation under a periodic modulation can be expressed in the
form of Bloch wave functions δn(x, t) = eik·x−ωt(ε1n1(x) + ε1n2(x)) where n1(x) and n2(x)
are periodic functions with the same period as the spatial modulation. The equation of
motion, within the Bloch’s representation, unfolds into two coupled equations for n1(x) and
n2(x) that can only be fulfilled by choosing a ±π/2 phase-shift between them. The waves
are, therefore, circularly polarized as in the homogeneous case. Due to the magnetic field
there is a splitting between the two circular polarizations. For right polarized waves we have
δṅ × n0 = ωδn while for left polarized waves we have δṅ × n0 = −ωδn. The equation of
motion becomes:

− ω2δn = ∇2δn− κδn± 2ω hδn + h2 δn, (3.11)

where the ± sign is fixed by the polarization of the spin wave. This equation, with κ and
h regarded as periodic functions of space, is the main tool to describe a spin wave crystal
within an antiferromagnet. Let us give two examples of antiferromagnetic magnonic crystals
that use this equation as the starting point.

3.3.1 Periodically modulated anisotropy

We begin our discussion by considering the problem in absence of magnetic field. We will
focus on an one-dimensional array with spatially modulated anisotropy as illustrated in Fig.
(3.2). When modulating the spatial anisotropy one can expect that the exchange parameters,
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a and A, should also be modified. Our theory is capable to handle those modulations in
a straightforward manner. However, to avoid clumping our discussion with far too many
parameters we will focus in a model problem where only the anisotropy is modulated. We
have, then, a series of slabs of width β with different anisotropies are arranged with period
α. Spin waves that propagate along direction transverse to the slabs experience a periodic
modulation of the anisotropy parameter thereby giving rise to magnonic bands. This situation
can be modeled by the equation

δn̈ = ∇2δn− κ(y)δn, (3.12)

which shows complete degeneracy for the different polarizations. Searching for plane waves
along the x direction, with wave number kx, we find

(ω2 − k2
x)δn± = − d2

dy2
δn± + κ(y)δn±. (3.13)

In the physical problem at hand the anisotropy is modulated in a piece-wise constant
fashion. The background anisotropy of the system is chosen as the basis for the dimensionless
anisotropy κ. There are slabs of width b distributed uniformly with period a, and within
these the anisotropy is 1 + δκ. This problem is equivalent to a Schrödinger equation with
periodic piece-wise constant potential that lead us to the well-known Kronig-Penney model for
electrons. Solutions of this model can be found in textbooks[83] and consist of the matching
of solutions at each side of the structure and imposing Bloch-boundary conditions. In Fig.
3.2 we present the results for a variety of system parameters. A glance at Fig. 3.2 allows us to
state the main results that are (a) double degenerated band structure in account for different
polarizations; (b) the appearance of forbidden energies bands; and, (c) the appearance of
bands of allowed energies with characteristic bandwidths. As shown in the Fig. 3.2d those
features can be controlled by an appropriate selection of the parameters of the magnonic
crystal. The band structure can be further controlled by exposing the system to the effects
of a magnetic field that results in a splitting of the degeneracy of the bands. This is shown
in Fig. 3.2c.

3.3.2 Field mediated magnonic crystal

We now consider a magnonic crystal mediated by magnetic field. In this system a two
dimensional antiferromagnet is exposed to a periodically modulated external magnetic field.
While the details of the generation of this magnetic field are irrelevant for the conclusions we
are going to draw, we can picture the following arrangement: locate the antiferromagnetic
system underneath a periodic array of wires as depicted in Fig. 3.3a. The situation that we
propose consists on having a current propagating across the wires. The magnitude of the
current across each wire is constant while the direction of the current is changed between
consecutive wires. This type of arrangement has been proposed and studied experimentally
in Ref. [84] to the design of current-controlled magnonic crystals. In this way the Oersted
field generated by the array of wires acts on the antiferromagnet in the form of a spatially
periodic magnetic field that enters into the wave equation (Eqs. (3.4-3.5)). To fix ideas on
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Figure 3.2: (a) Model system for a magnonic crystal, a heterostructure with changing
anisotropy, illustrating the geometric features. (b) Simple effective potential that repre-
sents the effect of the modulated anisotropy. With the choice of units given in the text,
the potential is characterized by a reference anisotropy equal to unity and deviations from
it equal to δκ. (c) Left: Magnonic dispersion relation for α = 1.0, β = 0.5 and δκ = 10.
Bands are doubly degenerated in account for the different polarizations. Bands of forbidden
frequencies are highlighted. Right: Same situation under the action of a uniform magnetic
field h = 0.3. The degeneracy between the different polarization states is broken. (d) Some
features of the band structure are displayed as a function of β/α. Top: Bandwidth of the
first bands is displayed for different values of the crystal, full lines correspond to α = 1 and
dashed lines to α = 2. The black and blue lines correspond to δκ = −0.5 and δκ = 3.0
respectively. Bottom: With the same parameters we display the bandgap between the first
and second bands.
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Figure 3.3: (a) Arrangement of wires on top of a two-dimensional antiferromagnetic sample.
The magnetic field they generate form a magnonic crystal; (b) The system is characterized by
spatially modulated magnetic field that oscillates between two extrema ±h within a period α;
(c) Left: band structure for α = 1 , κ = 1 and h = 0.5. Right: Band structure for h = κ = 1.
The lowest band minimum reaches zero, signaling the spin-flop instability; (d) As a function
of the magnetic field strength we display the band structure parameters. Top: The band gap
for α = 2, 3, 4, and 5; Bottom: band width of the first band for the same parameters.
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the nature of this equation we approximate the field by a piece-wise constant behavior with
values ±h. Assuming a plane wave behavior along the x-direction we find

(ω2 − k2
x + κ+ h2)δn± = − d2

dy2
δn± ± 2hωδn±. (3.14)

This problem is solved following the standard procedure described in [83], in the same way as
our previous discussion. The main results are displayed in Fig. 3.3. The periodic magnetic
field gives rise to a band structure with characteristic bandgaps and bandwidths that are
characterized in Fig. 3.3d. As we increase the strength of the magnetic field, the lowest
point in the first band decreases continuously from the value at zero field. This trend leads
to an instability at h =

√
κ when the lowest band touches the bottom of the axis. For fields

greater than this critical value the ground state is distorted in what is known as the spin-flop
transition[80, 81].

3.4 Conclusions

We have discussed the possibility of implementing magnonic crystals in the context of anti-
ferromagnetic spintronics. We proposed two complementary methods to achieve control over
the magnonic degrees of freedom: first by controlling the anisotropy properties of the spin
wave system and second by exposing the antiferromagnet to a periodically modulated mag-
netic field. In both cases we discussed quantitatively the properties of the resulting spin wave
spectra and showed how it led to a band-like structure of allowed and forbidden bands whose
quantitative features can be tailored by proper adjustment of the parameters of the magnonic
crystal. This proposal bridges together the two rapidly developing fields of magnonics and
antiferromagnetic spintronics.
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Chapter 4

Piezospintronic effect

The generation and detection of pure spin currents has been one of the main goals of spintron-
ics. One of the most promising effects for this purpose is the inverse spin-Hall effect (ISHE).
In this chapter we propose a possible path to generate pure spin currents by applying strain
under a material with specific symmetry properties. This work is a direct application of the
theory developed by A. S. Núñez [16] for the piezospintronic effect. Along this chapter we
present a brief summary of the named theory and then show the piezospintronic response
of antiferromagnetic graphene and antiferromagnetic zinc-blende structures. This work has
been developed in collaboration with A. S. Núñez, and R. E. Troncoso and it is not published
yet.

4.1 Introduction

The intuitive notion of spin current is based on the idea of different spin species flowing at
different speeds. This notion, in the context of quantum mechanics, is a good notion only in
systems where the spin is a well behaved quantum number. If the spin is not conserved, such
as for example when one electron is under the effect of the spin orbit interaction, the problem
of the definition of a spin current is subtle. Along this chapter we will use the definition of
spin current given by [85]

JSi;j =
d
(
ŜiR̂j

)

dt
, (4.1)

where R̂ correspond to the electronic position operator. This definition has several advan-
tages, for example when the spin is a conserved quantity from Eq. (4.1) emerges naturally
the intuitive notion of spin current,

JSi;j = ~(v↑ − v↓)j, (4.2)

where v↑ (v↓ ) represents the velocity of the spin up (down) carriers. Additionally , this
definition relates the spin current to the time derivative of the spin dipolar moment PS

z;j,
which will be used in the following sections.
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4.2 Analysis of the direct and converse piezospintronic

effect

With the precise definition of a spin current we proceed to analyze the basic symmetry
requirements imposed on the system in order to have a no null piezospintronic effect. Let us
suppose that under strain a spin current is generated in a generic system. The spin dipole
moment should be expected to satisfy (in a linear regime) an equation

PS
i;j = λi;j,klukl. (4.3)

Equation (4.3) is a direct analogy with the piezoelectric effect and is the definition of the
piezospintronic tensor λ. In it ukl = (∂kul + ∂luk)/2 is the strain tensor[86], where u is the
deformation field, and PS

i;j is the spin dipole moment generated by the deformation of the
system. The element λi;j,kl must be understood as the relation of a spin current in direction
j of spins oriented in i, with a strain in direction kl. Since the spin dipole moment is a
pseudo-tensor λ must be a pseudo-tensor. Under an inversion transformation x → −x, λ
must change sign. It is important to say that time reversal symmetry breaking is required
for a crystal in order to show a piezospintronic effect.

Let us call by R and I the time reversal and the spatial inversion operations. Materials
which are invariant under the consecutive action of R and I can not have a piezoelectric
response under strain. This is because the current generated for the different spin species
cancel each other. Then, crystals with R and I broken symmetries but invariants under RI
(or IR) will generate a pure spin current under an external strain.

The thermodynamic conjugate of the spin current, a spin force, was identified in [85]. The
relationship between the spin current and the spin force allows us to state that a converse
piezospintronic effect is manifested in a system that already manifests a direct piezospintronic
response. From Onsager’s relations[87] a stress is expected in response to a spin current
injected into the system:

σij = λ̃l;m,ijJ
S
l;m, (4.4)

where σ stands as the stress tensor in response to the spin current JS. This converse effect
might lead to novel mechanism to detect pure spin currents.

4.3 Microscopic theory of the piezospintronic effect

With the symmetry requirements that are necessary for a system to display the piezospin-
tronic effect we proceed to explain how the piezospintronic response might be calculated.
A convenient interpretation of Eq. (4.1) arises from the Berry phase theory of polarization
[88, 89, 90, 91, 92, 93]. Instead of calculate the spin current directly, we evaluate it in terms
of changes of spin current associated with an adiabatic deformation and then use the whole
toolbox for adiabatic processes of quantum mechanics. We parametrize the elastic strain by
some parameters Q. Then we consider the strain tensor as function of Q, ukl = ukl(Q), as
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well the Hamiltonian H = H(Q). The change in spin dipolar moment density in response to
an adiabatic change in the external parameters Q→ Q+ dQ, is

dPS
i;j = Aµ

i;jdQµ, (4.5)

where

Aµ
i;j = −

∑

ν

∫
ddk

(2π)d
nν(k)Im

〈
∂φν
∂kj

∣∣∣∣ ~σi

∣∣∣∣
∂φν
∂Qµ

〉
. (4.6)

These equations are analogous to the ones used in the theory of polarization [93]. The
main difference is the presence of the Pauli matrix in between the brackets. This difference
make the set of Eqs. (4.6) appropriate to evaluate changes in spin dipolar moments instead
of changes in polarization. Eqs. (4.5) and (4.6) allows us to calculate the piezospintronic
response of any material. Then the piezospintronic response is calculated by performin an
integration of Eq. (4.5) over a path Γ in parameter space (Q) which the system is swept
under the application of an external strain

δPS
i;j =

∫

Γ

Aµ
i;jdQ

µ. (4.7)

The left hand side of Eq. (4.7) stands for the accumulated spin dipolar moment during the
process of distorting the system from a reference configuration. Changes in the configuration
are accompanied by pure spin currents as we have non-zero δPS. Following Eq. (4.1), the
rate of change of PS with time corresponds to the spin current JS = dPS/dt. The change in
the expectation value of the operator PS can be calculated using the Kubo formula

dAµ = Im

(
i~
∑

ν 6=µ

〈ψµ|PS |ψν〉 〈ψν | dH |ψµ〉
(Eµ − Eν)2

)
. (4.8)

Standart matrix manipulations [85] leads to Eqs. (4.5) and (4.6).

Now we proceed to illustrate these ideas calculating the piezospintronic response of two
interesting materials: antiferromagnetic graphene and antiferromagnetic zinc-blende.

4.4 Piezospintronic response of antiferromagnetic graphene

We consider an antiferromagnetic honey-comb lattice with staggered magnetization. Different
sub lattices have different spin species that are given by Ωi = ∆ẑ if site i belongs to one sub
lattice (let’s say A) and Ωi = −∆ẑ if site i belongs to the other sub lattice (B). Under
inversion around the center of the unit cell the role of sub lattices is reversed, it does not
have inversion symmetry. Also if we consider a spin inversion (time reversal) the role of sub
lattices is reversed again. Then after consecutive inversion R and time reversal I, the system
is unchanged, i.e. is invariant under RI. Therefore we expect a pure piezospintronic effect.

Besides the local exchange term we complement our model with the hopping amplitudes
to first nearest neighbours. These amplitudes are t1, t2, and t3 for the links ~δ1, ~δ2, and ~δ3

respectively (see Fig. 4.4).
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I

R

R

Figure 4.1: Symmetry analysis of honey-comb (graphene) lattice with two different sub lat-
tices which stand in this case for two different spin species, for instance red spheres represent
a spin up, and blue spheres a spin down. It is direct to see that spatial inversion (I), and time
reversal (T ) symmetries are broken, then the system is not allowed to present a piezoelectric
effect. T I (or IT ) symmetry instead is preserved instead, then we expect the system to
develop a pure piezospintronic effect.
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The net Hamiltonian is

H = −
∑

〈i,j〉,σ

tij

(
c†iσcjσ + h.c

)
+ ∆

∑

iσσ′

(−1)ic†iστ
z
σσ′ciσ′ , (4.9)

where c†iσ is the operator that creates an electron with spin σ on the site i, tij is the hopping
amplitude to go from site i to site j, ∆(−∆) is the local energy associated with spin up(down)
species. This Hamiltonian in momentum representation is

H↑↑ =

(
∆ γk
γ∗k −∆

)
; H↓↓ =

(
−∆ γk
γ∗k ∆

)
, (4.10)

where γk =
∑

i ti exp(i~k · ~δi).

~�1

~�2

~�3

Figure 4.2: First neighbours of a honey-comb lattice. The directions of the neighbours are
characterized by ~δ1 = a{1/2

√
3, 1/2, 0}, ~δ2 = a{−1/2

√
3, 1/2, 0}, and ~δ3 = a{0,−1, 0}, where

a is the interatomic distance. These vectors are used in the tight binding expansion of the
Hamiltonian.

This is the same model that is proposed for Boron-Nitride for each spin species, but with
the opposite role for each sub lattice.

Following the symmetry analysis of graphene lattice we can conclude that all components
of the piezospintronic tensor are zero except for

λz;y,yy = −λz;y,xx = λz;x,yx.

Then, our task is reduced to the evaluation of λz;y,yy. We evaluate the net spin dipolar
moment created by a deformation of the lattice along the y direction. The deformation of
the lattice leads to a change in the hopping amplitudes. This change, by a simple geometrical
analysis, is

dt1 = dt2 =
1

2
dt3 =

(
∂t

∂a

)
duyy,

where t is the hopping amplitude at an interatomic distance a. The net spin dipolar moment
is given by Eq. (4.5),

dPS
z,y = At1

z,ydt1 + At2
z,ydt2 + At3

z,ydt3, (4.11)
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where A
tµ
y,z is defined by the relation

Atµ
y,z =

∂PS
z,y

∂tµ

and it can be evaluated in term of spin Berry phases (Eq. (4.6)) as

A
tµ
i,j = −

∑

ν

∫

BZ

d2k

(2π)2
nν(k)Im

〈
∂φν
∂kj

∣∣∣∣σi

∣∣∣∣
∂φν
∂tµ

〉
. (4.12)

The symmetry of the honey-comb lattice establishes a relation among the different compo-
nents of A,

At1
z,y = At2

z,y = −1

2
At3
z,y. (4.13)

With all symmetry relations in consideration, the final expression of the piezospintronic
tensor is:

λz;y,yy = −1

2

(
∂t

∂a

)
At3
z,y. (4.14)

The eigenstates of this Hamiltonian might be written in the coherent state basis

~Ω =

(∑

i

ti cos(k · ~δi),
∑

i

ti sin(k · ~δi),∆

)
; (4.15)

Ω̂ =
~Ω

|~Ω|
= (sin θ cosφ, sin θ sinφ, cos θ) ; (4.16)

|Ω〉 =

(
eiφ cos θ/2

sin θ/2

)
. (4.17)

Then, with the following transformation The integrand in the expression for At3
z,y might be

written in terms of the Berry curvature:

F = ∇Q ×A = Im 〈∇QΩ| × |∇QΩ〉 ; Q = {t, kj}, (4.18)

then

At
z,j =

∫

BZ

1

(2π)2
F . (4.19)

As

|dΩ〉 =
1

2

(
eiφ sin θ/2
− cos θ/2

)
dθ + i

(
eiφ cos θ/2

0

)
dφ, (4.20)

a straightforward calculation lead us from Eq.4.19 to

At3
z,y =

∫

BZ

d2k

(2π)2

sin θ

4

(
∂θ

∂t3

∂φ

∂ky
− ∂θ

∂ky

∂φ

∂t3

)
. (4.21)

The integral is complicated and it must be calculated numerically and his result is shown in
Fig. 4.4
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Figure 4.3: Berry curvature along the first Brillouin zone. This is the integrand of Eq. 4.21.
The integral of this function will lead to the piezospintronic response of an antiferromagnetic
graphene layer.
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[

1
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]

Figure 4.4: Result of the numerical integration of At3
z,y for antiferromagnetic graphene as

function of local energy ∆. This result and the symmetry relations given for A in Eq. (4.13)
the whole piezospintronic response is described.

4.5 Dirac graphene

One interesting result which arises from the previous section is the piezospintronic response
of antiferromagnetic graphene in the long wavelength regime, known as Dirac graphene. We
again make use of the coherent state representation |Ω〉 (see Eqs. 4.15) but now we perform
a series expansion around one of the edges of the Brillouin zone (see 4.4). Let us consider
the point K+ = {4π/3

√
3a0, 0}. Expanding the coherent states around this point we obtain

~ΩK+ = {−3

2
a0tkx,−

3

2
a0tky,∆}.
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The piezospintronic response will be again,

At3
z,y = 2

∫

BZ

d2k

(2π)2

sin θ

4

(
∂θ

∂t3

∂φ

∂ky
− ∂θ

∂ky

∂φ

∂t3

)
, (4.22)

where the factor 2 comes from the two equivalent valleys in which the expansion is performed.
In this case

∂θ

∂t3
=

4∆(a0ky − kx)
|k|(9a2

0k
2t2 + 4∆2)

; (4.23)

∂θ

∂ky
=

6a0ky
|k|(9a2

0k
2t2 + 4∆2)

; (4.24)

∂φ

∂t3
=

2

3a0tk2
(ky + 2a0kxky); (4.25)

∂φ

∂ky
=
kx
k2
, (4.26)

from where arises

At3
z,y = −2

∫

BZ

d2k

(2π)2

3a0t∆

(9a2
0k

2t2 + 4∆2)3/2
= − 1

(2π)2

2π∆

3a0t|∆|
, (4.27)

so the piezospintronic response in the long wavelength limit just depends on the sign of ∆.
This solution is compared with the numerical calculation of the previous section and is shown
in Fig. 4.5.

� [t]

At3
z,y

(2⇡)2
[

1

a0t
]

Figure 4.5: Result of the direct integration of At3
z,y for in the long wavelength limit as function

of local energy ∆(red curve). The blue curve is the numerical solution shown in Fig. 4.4.
The maximum(minimum) values of the curves are equal to 2π/3 (−2π/3) as we expect from
Eq. 4.27.
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4.6 Piezospintronic response of anitiferromagnetic zinc-

blende

Now we discuss the piezospintronic response of antiferromagnetic zinc-blende. With the
calculations of the previous sections, the extension to 3D is straightforward. As it is possible

~�1
~�2

~�4 ~�3

Figure 4.6: Antiferromagnetic zinc-blende unit cell. Red(blue) spheres can be thought as
spin up(down) particles. As this structure has time reversal symmetry I and inversion sym-
metry R broken, but is invariant under T I, we expect the system to develop a pure spin
current under a strain as the piezoelectric effect is not suitable due to symmetry proper-
ties. The vectors pointing to the first neighbours, used in the tight binding expansion are
defined as ~δ1 = −a{1/4, 1/4, 1/4}, ~δ2 = a{1/4, 1/4,−1/4}, ~δ3 = a{−1/4, 1/4, 1/4}, and
~δ4 = a{1/4,−1/4, 1/4}.

to see in Fig. 4.6, antiferromagnetic zinc-blende follows the same time reversal and inversion
properties as antiferromagnetic graphene. Then we expect the system to develop pure spin
currents by the piezospintronic effect due to the absence of piezoelectric effect. To calculate
the piezospintronic response we make use again of the coherent state representation following
Eqs.4.15 where the nearest neighbours vectors are defined in Fig. 4.6 and each one has a
hopping amplitude ti. The symmetry of the lattice lead us to the following expressions for
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the different components of A:

At
z ≡ At1

z,x = At1
z,y = At1

z,z

= −At2
z,x = −At2

z,y = At2
z,z

= At3
z,x = −At3

z,y = −At3
z,z (4.28)

= −At4
z,x = At4

z,y = −At4
z,z.

Then the whole piezospintronic tensor is determined by calculating just one of the components
of the above equation. In particular we can calculate

At1
z,z =

∫

BZ

d3k

(2π)3

sin θ

4

(
∂θ

∂t1

∂φ

∂kz
− ∂θ

∂kz

∂φ

∂t1

)
, (4.29)

where the Berry curvature F in this case is

F = − 1

(2π)3

t∆
(

cos
(
kx+ky

2

)
− cos

(
kx+kz

2

)
− cos

(
ky+kz

2

)
+ 1
)

16
(
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(4.30)

This integral is complicated an it has to be calculated numerically. The result of the numerical
integral is shown in Fig.4.6

� [t]

At1
z,z

(2⇡)3
[

1

a0t
]

Figure 4.7: Result of the numerical integration of At1
z,z for antiferromagnetic zinc-blende as

function of local energy ∆. With this result and the symmetry relations given in Eq. 4.28
the whole piezospintronic response is characterized.

4.7 Conclusions

Along this chapter we have introduced the piezospintronic effect and discussed the main
frame in which it is involved. We have calculated the piezospintronic response of two models
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whose, by symmetry principles, should have no piezoelectric response and then will develop
pure spin currents under a strain. We have calculated the piezospintronic response of antifer-
romagnetic graphene and antiferromagnetic zinc-blende numerically. Also we have performed
an analytic calculation of the piezospintronic response of antiferromagnetic graphene in the
long wavelength regime obtaining concordant results with the numerical solutions.
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General conclusions

Control of antiferromagnetism has been one of the main goals to achieve and has raised
a great attention in the last decades, either from a theoretical and experimental point of
view. Thanks to their particular ordering, antiferromagnetic materials could be particularly
useful for devices which are sensible under magnetic fields. Also, materials with this kind
of ordering could be used into a novel way to store and transmit information without being
affected by external magnetic fields, so preventing data losses. Another advantage of this
kind of materials for this purpose is the lack of Joule heating associated with the transport of
spin waves, and the absence of dipolar interactions among different domains. For these and
quite more reasons the antiferromagnetism is a promising area in condensed matter physics.

In this thesis we have studied antiferromagnetism in three different contexts. First in an
antiferromagnet with a non collinear ordering. We have developed an effective theory by
making use of an order parameter which belongs to the rotation group. We have based our
model in the exchange bias material Mn3Ir. As a particular result we found that the low
energy excitations behaves as sine-Gordon solitons, which opens up the control of this wide
family of topological soliton in this kind of systems. This work needs to be continued by
analyzing the effects of Dzyaloshinskii-Moriya interaction (DMI), and of course we need to
expand our model to understand the behavior of the system under the effect of electrical or
spin currents.

We have analyzed antiferromagnetic heterostructures with a modulated anisotropy or
magnetic field and opened the field of antiferromagnetic magnonic crystals. As main result
we have characterized the spin wave spectra of this systems and found that under the named
modulations it is possible to constraint the spectrum into a band-like structure. This spec-
trum also shows the properties of the chirality of the elemental excitations of the system.
This work could be expanded by including another kind of interactions, as DMI for example.

Finally we have studied the quantum effects on a spin system under strain and the spin
currents which this generates by the piezospintronic effect. We have focused our analysis in
two hypothetical models: antiferromagnetic graphene, and antiferromagnetic zinc-blende. By
making use of the theory proposed in [16] we have characterized the piezospintronic response
of the named models. This work could lead to control the generation and detection of pure
spin currents altogether with other phenomena as the inverse spin Hall effect for example.
For that could be suitable to understand the injection of this kind of currents between our
models and a ferromagnetic insulator.
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Appendix A

Spin path integral and Berry phase

In this appendix we derive from first principles an expression for the Euclidean action (i.e
in imaginary time) for the dynamics of a spin evolving by an arbitrary Hamiltonian H[Ω]
by the path integral formalism. Here emerges in a completely natural way the Berry phase
associated with the quantum effects. We also find a gauge independent expression for the
Berry phase.

A.1 Euclidean action from path integral

We start from the fact that a partition function can be written as a path integral in imaginary
time. The partition function in the canonical ensemble is defined as

Z = Tr
[
e−βH[Ŝ]

]
, (A.1)

where β = 1/kBT is the inverse thermal energy. The exponential in Eq.A.1 could be inter-
preted as an evolution operator in imaginary time, from τ = 0 to τ = ~β. We divide this
imaginary time interval into infinitesimal pieces ∆τ = ~β/N with N large. Then is possible
to split the exponential into a product of exponentials and expand them to first order in ∆τ

Z = Tr
[
e−

∑N−1
j=0 ∆τH[Ŝ]/~

]

= Tr

[(
1−∆τH[Ŝ]

)N]
. (A.2)

Now we need a proper set of states in order to translate the operators in last equation
into numbers. We are looking for something with the following property

〈Ω| Ŝ |Ω〉 = ~SΩ̂ (A.3)

with Ω a unit vector. It is possible to achieve this by the so-called spin coherent states which
are a family of spin states reached by applying the rotation operator R = eiSzφeiSyθeiSxχ to

45



the maximally polarized spin state |S, S〉

|Ω〉 = eiSzφeiSyθeiSxχ |S, S〉 , (A.4)

where Ω = (sin θ cosφ, sin θ sinφ, cos θ), parametrizes the spin coherent state. The angle χ
can be chosen arbitrarily (it is a gauge freedom so it can be fixed). The two independent
angles are defined such that

θ ∈ [0, π], φ ∈ [−π, π).

Without any proof we show here some properties of spin coherent states |Ω〉. An explicit
expression for these states is given (up to a phase factor) by

|Ω〉 =
ms=S∑

ms=−S

(
2S

S +ms

)1/2

e−i(ms−S)φ

(
cos

θ

2

)S+ms (
sin

θ

2

)S−ms
|S,ms〉 ,

then the overlap between two different states is given by

〈Ω′ |Ω〉 =

(
cos

θ

2
cos

θ′

2
+ sin

θ

2
sin

θ′

2
e−i(φ−φ′)

)2S

.

From this last result arises that the overlap between two infinitesimally separated states is
given by

〈Ω′ |Ω〉 = 1 + iS(φ′ − φ)(cos θ − 1). (A.5)

The closure relation which coherent spin states obey is

1 =
2S + 1

4π

∫
dΩ |Ω〉 〈Ω| ,

where
∫

dΩ =
∫ 1

−1
d(cos θ)

∫ 2π

0
dφ. In this representation the trace of an operator Ô is

Tr
[
Ô
]

=
2S + 1

4π

∫
dΩ 〈Ω| Ô |Ω〉 .

Now we are in conditions to continue the road for the spin path integral. Inserting the
closure relation in between the products in Eq. (A.2)

Z =

(
2S + 1

4π

)N (N−1∏

j=1

∫
dΩj

)
〈Ω0|

(
1−∆τH[Ŝ]/~

)
|ΩN−1〉

〈ΩN−1|
(

1−∆τH[Ŝ]/~
)
|ΩN−2〉 . . . 〈Ω1|

(
1−∆τH[Ŝ]/~

)
|Ω0〉 . (A.6)

Using the properties of the coherent spin states

〈Ωj+1|
(

1−∆τH[Ŝ]/~
)
|Ωj〉 ≈ (1−∆τH[~SΩj]/~ + iS(φj+1 − φj)(cos θj − 1)) +O(∆τ 2)

= e(1−∆τH[~SΩj ]/~+iS(φj+1−φj)(cos θj−1)), (A.7)
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so the partition function is written as

Z =

(
2S + 1

4π

)N (N−1∏

j=1

∫
dΩj

)

× exp

{
N−1∑

j=0

∆τ

[
iS

(
φj+1 − φj

∆τ

)
(cos θj − 1)− H[~SΩj]

~

]}
, (A.8)

were we have assumed periodic boundary conditions given by φ0 = φN and θ0 = θN . Finally
we take the continuum limit N →∞, ∆τ → 0, and N∆τ = ~β. Then we identify

τ → j∆τ ;

φj → φ(τ);

θj → θ(τ);

∆τ → dτ ;

φj+1 − φj
∆τ

→ dφ

dτ
= φ̇(τ);

(
2S + 1

4π

)N (N−1∏

j=1

∫
dΩj

)
→ DΩ(τ).

So we find that the partition function is given as a path integral over all periodic paths Ω(τ)
on the unit sphere,

Z =

∫

Ω(0)=Ω(~β)

DΩ(τ) exp

{
−1

~
AE[Ω]

}
. (A.9)

In the last expression the Euclidean action is given by the functional

AE[Ω] =

∫ ~β

0

dτ
{

i~Sφ̇(τ)[1− cos θ(τ)] +H[~SΩ(τ)]
}
. (A.10)

A.2 Berry phase

If we keep an eye on the Euclidean action we notice that the usual term involving the
Hamiltonian is present, but also there is a phase factor given by

exp

(
−iS

∫ ~β

0

dτ φ̇(τ)[1− cos θ(τ)]

)
. (A.11)

It is direct that

ω =

∫ ~β

0

dτ φ̇(τ)[1− cos θ(τ)] =

∮
dφ(1− cos θφ), (A.12)

then the nature of this phase is completely geometric, that means, it depends only in the
trajectory along the unit sphere and not on the time dependence. This functional is also
known as Berry phase, since it describes the phase acquired by a spin in an adiabatically
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Figure A.1: Cartoon of the Berry phase ω. The area enclosed by the path followed by Ω in
a cycle is proportional to the flux of magnetic field generated by a magnetic monopole. By
Stokes theorem this area is proportional to the line integral of the vector potential A along
the boundary Γ.
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rotating magnetic field parallel to Ω(τ). The Berry phase measures the area which the path
of Ω(τ) encloses on the unit sphere.

It is completely useful to express the Berry phase ω in a gauge invariant form, that is
without specifying a parametrization of the sphere as we have done with the angles θ and φ.
Let’s consider a magnetic monopole which generates a magnetic field B, the flux of the field
across a patch SΓ of an unit sphere will be given by

ω =

∫

SΓ

B · dS,

as B = ∇×A, and by Stokes theorem, the flux, corresponding to the area enclosed by the
path of the vector Ω, will follow

ω =

∮

Γ

dτA(Ω) · Ω̇ =

∮

Γ

dΩ ·A(Ω).

The vector potential of a magnetic monopole has several representations. Every function
such that ∇Ω ×A = Ω is suitable.
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Appendix B

Landau-Lifshitz-Gilbert equation

In this chapter we introduce the Landau-Lifshitz-Gilbert (LLG) equation, which is the newest
way to model magnetization dynamics in absence of electrical or spin currents. We show two
ways to solve LLG equation. The first is an extremely simple Euler integration, and the
second is by making use of the rotation operators as in quantum mechanics.

B.1 The equation

Following [94], the LLG equation in absence of external current is

Ṡ = −γS×Beff + αS× Ṡ, (B.1)

where γ is the gyromagnetic ratio. The second term denotes the Gilbert damping, where
α is the tendency of the magnetization to stop the precession around the effective field
Beff = −(1/~γ)(∂H/∂S). Along this section we will consider that the magnitude of each
local magnetic moment is |S| = 1. Replacing the expression for Ṡ in the right side of
Eq.(B.1) it is straightforward that

Ṡ =
−γS×Beff − αγS× (S×Beff)

1 + α2
. (B.2)

This equation can be written as
Ṡ = H× S, (B.3)

where
H =

γ

1 + α2
(Beff + αS×Beff) .

Equation (B.3) can be easily integrated by a long list of methods. For our numerical simu-
lations we have performed an integration by Euler’s method,

S(t+ dt) = S(t) + dtH× S. (B.4)

Of course as this method does not preserve the norm of the vector it is imperative to normalize
the resulting vector in each step.
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A more elegant way to solve Eq. B.3 comes from the angular momentum generators of
quantum mechanics. As their components follow

Ṡi = εijkHjSk = L ·H Sk,

the solution of this equation has the form

S(t) = exp

(∫ t

0

L ·H
)

S(0),

which is nothing but an evolution operator spanned by the generators

Lx =




0 0 0
0 0 −1
0 1 0


 ; Ly =




0 0 1
0 0 0
−1 0 0


 ; Lz =




0 −1 0
1 0 0
0 0 0


 . (B.5)

Assuming that t is infintesimal, t→ dt, then

S(dt) = exp (L ·H dt) S(0) =
exp (L ·H dt/2)

exp (−L ·H dt/2)
S(0) ≈ I + L ·H dt/2

I− L ·H dt/2
S(0)

⇒
[
I− L ·H dt

2

]
S(dt) =

[
I + L ·H dt

2

]
S(0). (B.6)

Equation B.6 is analogous to the linear algebra problem Ax = b, where we identify A =
[I− L ·H dt/2], and b = [I + L ·H dt/2] S(0). This method is much faster because the norm
is automatically conserved in the evolution, so the temporal step might be bigger without
increasing the error.

We apply these methods to solve the LLG equation in our model for Mn3Ir along Chapter 2.
We consider exchange interaction among nearest neighbours (NN), easy axis anisotropy along
nr directions, and hard axis anisotropy along ẑ direction, the Hamiltonian which describes
this interactions is given by

H = J
∑

<i,j>

Si · Sj −K
∑

i

(Si · ni)
2 +Kz

∑

i

(Si · ẑi)
2, (B.7)

from where arises an effective field at the position of Si,

Beff = J
∑

j∈NN(Si)

Sj − 2K
∑

i

(Si · ni)ni + 2Kz

∑

i

(Si · ẑi)ẑi. (B.8)
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S(t)

Be↵

↵S ⇥ Ṡ

Figure B.1: Time resolved dynamics of a single magnetic moment S(t) described by the
LLG equation. The direction of the magnetic moment is represented by the black arrow.
The green arrow correspond to the effective field Beff which arises from the contributions to
the Hamiltonian. The blue arrow represents the Gilbert damping direction which induces
the magnetic moment to align with the effective field. In absence of damping the magnetic
moment just precesses around the effective field and never aligns along the effective field.
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Appendix C

Action of the kagome lattice

Our approach to find an effective theory for the kagome lattice will take the following path
[44]. Let’s consider a magnetic kagome lattice as in Fig.C.1. The action of the system consists
of three terms

S =
∑

k

∫
dt ~A[Sk]·∂tSk−J

∑

<k,m>

∫
dt Sk ·Sm+K

∑

k

∫
dt (Sk ·n̂k)2−Kz

∑

k

∫
dt (Sk ·ẑ)2,

(C.1)
where each in k sum is taken over all sites of the system. The first term is the kinetic term
related with the Berry phase, where A is the vector potential of a magnetic monopole with
4π flux such that

∫
A(Ω)dΩ is the solid angle reached by Ω on the sphere S2 as we have

shown in Appendix A. The second term is the Heisenberg interaction among first neighbours
in the lattice and the last two terms are an anisotropic interaction defined on each site of
the lattice. We choose the antiferromagnetic regime by setting J > 0. We also set K > 0
to induce the spins to be aligned along the in-plane anisotropy directions, and Kz < 0 as a
hard anisotropy axis out of plane.

C.1 A new order parameter

The exchange interaction favors a non-collinear configuration as is possible to deduce from
the analysis of an isolated equilateral triangle. All these states are related by a continuous
rotation and as this does not change the energy of the system there is an infinite degenera-
tion in energy of the ground state. The anisotropy field on the system breaks the rotational
symmetry of the ground states favoring two ordered states, Fig.C.1 shows one of these con-
figurations (the other corresponds to opposite direction of the red arrows). To write the
effective Lagrangian of the system we propose to analyze a rotation of the triad of vectors n̂
defined before separating the hole system into triangular plaquettes, and study the dynamics
of the system in terms of the equations of motion of this rotation R. Our approach also
consists into add a small unstaggered quantity L defined on each triangular plaquette. This
quantity is analogous to the canting field in collinear AF.
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Figure C.1: Cartoon of the vectors utilized in the continuum expansion. In black are the
vectors ê, these vectors are used in the expansion of the value of S in the continuum approx-
imation. ê1 = (cos π/3, sin π/3, 0), ê2 = (cos π/3,− sin π/3, 0), ê3 = (−1, 0, 0). The distance
between triangles is 2a.

We represent each spin in a triangular plaquette as a rotation of the corresponding vector
n̂ plus the canting field L

Sp =
SR(n̂p + aL)√

1 + 2an̂p · L+ a2L2
, (C.2)

with p = {1, 2, 3}. In the later sections we will assume S = 1. Up to first order in L in C.2

Sp = R (n̂p + a [L− (L · n̂p)n̂p]) , (C.3)
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Then, the sum of three spins in a plaquette is

S1 + S2 + S3 = R[

= 0︷ ︸︸ ︷
n̂1 + n̂2 + n̂3−3aL− a

∑

i

(Li · n̂i)n̂i]

= 3aR[L− 1

3

∑

i

(L · n̂i)n̂i]

⇒ S1 + S2 + S3 = 3aRTL. (C.4)

T is a symmetric tensor defined as

Tij = δij −
1

3

∑

k

nki n
k
j . (C.5)

C.2 Effective action

C.2.1 Kinetic term

As Sp = Rn̂p + aR∆p, with ∆p = L− (L · n̂p)n̂p, then expanding into series the first term in
Eq. (C.1) (in this section the square brackets means that the function is evaluated at that
argument)

Aα[S](∂tS)α = Aα[Rn̂]∂t(Rn̂)α + Aα[Rn̂]∂t(aR∆)α +
∂Aα
∂Ωk

(aR∆)k∂t(Rn̂)α
︸ ︷︷ ︸

ℵ

, (C.6)

where

ℵ
a

=
∂Aα[Rn̂]

∂Ωk

(R∆)k∂t(Rn̂)α + Aα[Rn̂]∂t(R∆)α

=
∂Aα[Rn̂]

∂Ωk

(R∆)k∂t(Rn̂)α −
∂Ak[Rn̂]

∂Ωα

(R∆)k∂t(Rn̂)α

=

(
∂Aα[Rn̂]

∂Ωk

− ∂Ak[Rn̂]

∂Ωα

)
(R∆)k∂t(Rn̂)α, (C.7)

but by the definition of the vector potential

Ωα = εαβγ
∂Aβ
∂Ωγ

,

⇒ εαρσΩα = (δβρδγσ − δβσδγρ)
∂Aβ
∂Ωγ

=
∂Aρ
∂Ωσ

− ∂Aσ
∂Ωρ

. (C.8)
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So ℵ becomes

ℵ
a

= εγαβΩγ(R∆)β∂t(Rn̂)α

= εγαβ(Rn̂)γ(R∆)β∂t(Rn̂)α

= εγαβRγµn̂µRβν∆ν∂t(Rαεn̂ε)

= εγαβRγµRβν δαα′︸︷︷︸
RασR

−1
σα′

∂t(Rα′εn̂ε)n̂µ∆ν

= εµσν(R
−1∂tR)σεn̂εn̂µ∆ν . (C.9)

With this previous result we are able to write the first term in Eq. (C.1) as
∑

k

A[Sk] · ∂tSk =
∑

k

A[Rn̂k] · ∂tRn̂k + a
∑

k

εµσν(R
−1∂tR)σεn̂

k
ε n̂

k
µ∆p

ν

︸ ︷︷ ︸
Λ

. (C.10)

Now we move the sum on the p index (which runs in the sites of one plaquette) to the
right of R and assume that R and L take their values at the same site,

Λ

a
= εµσν(R

−1∂tR)σε
∑

p

∆p
νn̂

p
εn̂

p
µ. (C.11)

As R ∈ SO(3) the term (R−1∂tR)σε is antisymmetric. That is demonstrated now:

(R−1R)αγ = R−1
αβRβγ = δαγ /∂t

⇒ ∂tR
−1
αβRβγ = −R−1

αβ∂tRβγ

R−1
γβ∂tRβα = −R−1

αβ∂tRβγ

⇒ (R−1∂tR)γα = −(R−1∂tR)αγ. (C.12)

Due to the antisymmetry of (R−1∂tR)γα we can write (R−1∂tR)γα = −ελγαVλ. Using this
property, then Equation C.11 can be written as,

Λ

a
= −εµσνελσεVλ

∑

p

∆p
νn̂

p
εn̂

p
µ

= Vλ
∑

p

∆p
λ n̂

p
µn̂

p
µ︸ ︷︷ ︸

=1

−Vλ
∑

p

∆p
νn̂

p
νn̂

p
λ

= Vλ

(∑

p

∆p
λ −

∑

p

∆p
νn̂

p
νn̂

p
λ

)
. (C.13)

If we keep an eye on the last parenthesis
∑

p

∆p
λ =

∑

p

Lλ − (L · n̂p)n̂pλ =
∑

M
3(TL)λ, (C.14)

and also, ∑

k

(∆k · n̂k)n̂kλ =
∑

k

[L · n̂k − (L · n̂k)n̂kλn̂kλ] = 0. (C.15)
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Finally the second term of Equation (C.10) can be written as,

Λ =
∑

M
3aTL ·V. (C.16)

It is important to notice that the sum in M is taken around triplets of spins, as we have
utilized the identity given by (C.4); while the sum in k is taken around each site.

With all the calculations made just before we are able to write the kinetic term of the
action defined in (C.1) as,

K =

∫
dt ~

(∑

k

A[Rn̂p] · ∂tRn̂p +
∑

M
3aTL ·V

)
. (C.17)

In a variation of K just survives his second term because the first term is a topological
invariant [44].

C.2.2 Exchange term

For the calculation of the exchange term we use a Taylor expansion up to second order in
derivatives of S`+ê

i around S`i , where ` is the position of spin of species i = 1, 2, 3 in the lattice
, then,

S`+ê
i = S`i + a(ê · ∇)S`i +

a2

2
(ê · ∇)2S`i , (C.18)

where a is the lattice constant. The vectors êi are shown in Fig. C.1, and they allow us
to write the interaction among first neighbours of the whole system in terms of only three
products. The interaction energy depends on the different position ` of the spins in the
different plaquettes M, so,

H = J
∑

M
S`1 · (S`−ê1

3 + S`+ê1
3 ) + S`2 · (S`−ê2

1 + S`+ê2
1 ) + S`3 · (S`−ê3

2 + S`+ê3
2 ). (C.19)

Expanding as in Eq.C.18 we get (we omit the superscript ` because is the same for each
term in the expression),

H = J
∑

M
2(S1 · S3 + S2 · S1 + S3 · S2)

+ a2[S1 · (ê1 · ∇)2S3 + S2 · (ê2 · ∇)2S1 + S3 · (ê3 · ∇)2S2]︸ ︷︷ ︸
Υ

, (C.20)

The first term is just (S1 + S2 + S3)2 plus a constant as we have shown before, and by the
result of Sec.C.1 this term is just 9a2(TL)2. Recalling that Sp = Rn̂p + aR∆p, we get,

Υ = a2Rαβ∂i∂jR
αγΓij

βγ +O(a3), (C.21)

where the tensor Γ is defined as,

Γij
βγ = êi

1êj1n
β
1n

γ
3 + êi

2êj2n
β
2n

γ
1 + êi

3êj3n
β
3n

γ
2 . (C.22)
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As ∂i(R
−1∂jR)αγ = (R−1∂i∂jR)αγ − [(R−1∂iR)(R−1∂jR)]αγ, then the exchange interaction is

reduced (up of a total derivative) to,

H = J
∑

M
9a2(TL)2 + a2[(R−1∂iR)(R−1∂jR)]βγΓij

βγ. (C.23)

C.2.3 Anisotropy term

We can write the anisotropy term depending of n̂ instead of ρ̂ because they are anti-parallel.
So we have,

A = K
∑

M
(S1 · n̂1)2 + (S2 · n̂2)2 + (S3 · n̂3)2, (C.24)

then,

⇒ A = K
∑

M

3∑

p

(n̂p ·Rn̂p)2 + 2a(n̂p ·Rn̂p)(n̂p ·R∆p) + a2(n̂p · L)(n̂p ·RL). (C.25)

Nevertheless, we have considered that the field R changes smoothly along the lattice, so the
projection of each rotated n̂ on the original is nearly the same for each site in a plaquette.
Then it is possible to approximate the easy axis anisotropy term as just the first term of Eq.
C.25,

A =K
∑

M

3∑

p

(n̂p ·Rn̂p)2 + a2(n̂p ·Rn̂p)2L2 + a2
[
(n̂p ·RL)2 − 2(n̂p · L)(n̂p ·RL)

]

≈K
∑

M

3∑

p

(n̂p ·Rn̂p)2. (C.26)

The hard anisotropy axis in ẑ is simply

Az = −Kz

∑

M

3∑

p

(ẑ ·Rn̂p)2. (C.27)

C.2.4 The Lagrangian

With the previous sections, we are now in conditions to write the action of the system in
terms of the new parameter R and his derivatives,

S =

∫
dt
∑

k

~A[Rn̂k] · ∂tRn̂k +
∑

M
3~a(TL) ·V − 9Ja2(TL)2

− Ja2[(R−1∂iR)(R−1∂jR)]βγ Γij
βγ +K

3∑

p

(n̂p ·Rn̂p)2 −Kz

3∑

p

(ẑ ·Rn̂p)2. (C.28)
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As the first term disappears in the variation of S, we write the Lagrangian density as,

L =
∑

M
3~a(TL) ·V − 9Ja2(TL)2 − Ja2[(R−1∂iR)(R−1∂jR)]βγ Γij

βγ

+K
3∑

p

(n̂p ·Rn̂p)2 −Kz

3∑

p

(z ·Rn̂p)2. (C.29)

C.2.5 Effective action and non-linear σ model

In the long wavelength limit approximate our discrete system by a continuous one. This
means that we make the following replacement

∑

M
→
∫

dx dy
4√
3a2

, (C.30)

where the numerical factor is nothing but the area of a triangle with side 2a. In this limit
the effective Lagrangian density for the system becomes,

L =
4
√

3

a
~TL ·V − 12

√
3J(TL)2 − 4J√

3
[(R−1∂iR)(R−1∂jR)]βγ Γij

βγ +
4K√
3a2

3∑

i

(n̂i ·Rn̂i)
2

− 4Kz√
3a2

3∑

i

(ẑ ·Rn̂i)
2. (C.31)

Now we proceed to solve the Euler-Lagrange equations for the field TL to get a Lagrangian
density only depending on the field R. As the action is quadratic in TL, this is analogous to
perform a Gaussian integral in the action to integrate the high energy modes in the action.
We proceed then calculating the equation of motion of the field TL,

∂L
∂(TL)

=
4
√

3~
a

V − 24
√

3J(TL) = 0

⇒ TL =
~V

6Ja
. (C.32)

We utilize this result in equation (C.31) to get

L =
~2

√
3Ja2

V ·V − 4J√
3

[(R−1∂iR)(R−1∂jR)]βγΓij
βγ +

4K√
3a2

∑

i

(n̂i ·Rn̂i)
2

− 4Kz√
3a2

∑

i

(ẑ ·Rn̂i)
2. (C.33)

Recalling that Vλ = −1
2
ελµν(R

−1∂tR)µν , then V ·V = −1
2
Tr[(R−1∂tR)2], so the Lagrangian

can be finally written as,

L = − ~2

2
√

3Ja2
Tr[(R−1∂tR)2]− 4J√

3
[(R−1∂iR)(R−1∂jR)]βγΓij

βγ +
4K√
3a2

∑

i

(n̂i ·Rn̂i)
2

− 4Kz√
3a2

∑

i

(ẑ ·Rn̂i)
2. (C.34)
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This last equation is also known as the non-linear σ model of SO(3).

C.3 Spin wave spectra

In this section we briefly show the calculation of the spin wave spectra starting from our
effective theory for Mn3Ir. For this we parameterize the small deviations from equilibrium
by making use of Euler’s rotation matrix R(φ, θ, ψ) = RZ(ψ)RX(θ)Rz(φ). The resulting
Lagrangian is awful and is too difficult to write it down here, but it is possible to calculate
first order perturbations around these angles.

C.3.1 Euler angles

We name Euler’s angles by the triplet (φ, θ, ψ). Figure C.2 shows the definition of each angle.
Then the rotation matrix

R(φ, θ, ψ) = RZ(ψ)RX(θ)Rz(φ)

=




cosψ cosφ− cos θ sinψ sinφ − cos θ sinψ cosφ− cosψ sinφ sin θ sinψ
cos θ cosψ sinφ+ sinψ cosφ cos θ cosψ cosφ− sinψ sinφ − sin θ cosψ

sin θ sinφ sin θ cosφ cos θ


 .

(C.35)

� �

✓

 

Figure C.2: Cartoon of the definition of Euler angles. This angles are used in the calculation
of the spin wave spectra of the system.

C.3.2 Perturbation of homogeneous state

Now we calculate perturbations around the homogeneous state

(φ, θ, ψ) = (0 + δφ, 0 + δθ, 0 + δψ),
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obtaining the following Lagrangian up to second order in δ (here δχ = δφ+ δψ),

L2nd =
~2

√
3a2J

[
δ̇θ

2
+ ˙δχ

2
]
− 2
√

3

a2
(K + Kz)δθ

2 − 4
√

3K

a2
δχ2 − 3Jδχ′2 (C.36)

The equations of motion of this Lagrangian are,

δ̈χ+
3Ja2

~2
δχ′′ − 12JK

~2
δχ = 0, (C.37)

δ̈θ +
6J(K +Kz)

~2
δθ = 0. (C.38)

From here it is straightforward to obtain the spin wave spectra shown in Sec. 2.3
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Appendix D

Sine-Gordon solitons

Solitons are a particular solution of the SGE and are present in a lot of different contexts, as
Josephson junctions, coupled pendula, dislocations, and a wide list of physical phenomena
[50]. Here we show how they arise from the effective theory for the magnetization field of a
non collinear antiferromagnet.

D.1 Sine-Gordon equation from effective theory

In Appendix C we have shown explicitly that the effective Lagrangian of an antiferromagnetic
spin system with the named anisotropies in a kagome lattice is given by Eq.C.34. If we make
the assumption that R is a rotation around ẑ direction (perpendicular to the plane) defined
at each point of the space by the angle φ(x), i .e

R = R(φ, ẑ) =




cosφ − sinφ 0
sinφ cosφ 0

0 0 1


 ,

the Lagrangian of Eq.C.34 becomes,

L =
~2

√
3a2J

(∂tφ)2 −
√

3J [(∂xφ)2 + (∂yφ)2] +
4
√

3K

a2
cos2 φ. (D.1)

The equations of motion for φ are computed using the Euler-Lagrange equation,

∂ttφ−
3J2a2

~2
∇2φ+

6JK

~2
sin(2φ) = 0. (D.2)

The last equation is nothing but a sine-Gordon equation for the field φ, which in a general
form is written as

∂ttφ− c2∇2φ+
m2c4

~2
sin(2φ) = 0, (D.3)

so there is possible to identify the speed c2 = 3J2a2/~2 and the mass termm2c4/~2 = 6JK/~2.
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D.2 Solutions of sine-Gordon equation and Bäcklund

transformations

The sine-Gordon equation might be written as

∂ttϕ−∇2ϕ+ sinϕ = 0. (D.4)

This equation is related with the ’physical’ equation by the transformation

t→ ~√
2mc2

t; x→ ~√
2mc

x; ϕ→ 2φ. (D.5)

In order to find a solution of this equation we can do an straightforward integration . Also
there is possible to use a more elegant method called Bäcklund transformations which allows
to find additional solutions of a partial differential equation (PDE) if one particular solution
is known. Here we show both roads, beginning by a brute force integration.

D.2.1 Brute force solution

If we set u = x− vt, then ∂ttϕ(x, t) = v2ϕ(u)′′ and ∇2ϕ(x, t) = ϕ(u)′′, so Eq. (D.4) becomes

ϕ′′ =
sinϕ

1− v2
. (D.6)

We notice that there is a conserved quantity. This can be seen by multiplying Eq.(D.6) by
2ϕ′, then

2ϕ′
(
ϕ′′ − sinϕ

1− v2

)
=
∂

∂u

(
ϕ′2 +

2 cosϕ

1− v2

)
= 0⇒ ϕ′2 +

2 cosϕ

1− v2
= K = constant. (D.7)

This constant is fixed by boundary conditions. If we set ϕ′(u→ ±∞) = 0, ϕ(u→ −∞) = 0
and ϕ(u→∞) = 2π, then

K =
2

1− v2
.

So the Eq.(D.7) might be written as

ϕ′2 =
2

1− v2
(1− cosϕ).

By elementary trigonometry identities as cosx/2 = cos2 x/4− sin2 x/4,

ϕ′2 =
2

1− v2
sin2 ϕ

2
.

Integrating we get ∫ u

u0

du = ±
√

1− v2

2

∫ ϕ(u)

ϕ(u0)

dϕ

sin(ϕ/2)
. (D.8)
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Without losing generality we set u0 = 0, then

∫ ϕ(u)

π/2

dϕ

sin(ϕ/2)
= log

∣∣∣∣
cos(ϕ(u)/2)− 1

cos(ϕ(u)/2) + 1

∣∣∣∣+ C

⇒ u√
1− v2

= ±1

2
log

∣∣∣∣
cos(ϕ(u)/2)− 1

cos(ϕ(u)/2) + 1

∣∣∣∣+ C = ± log |tan(ϕ/4)|+ C.

Is straight forward to find the solution for ϕ, as u = x− vt,

ϕ(x, t) = 4 arctan

[
C exp

(
x− vt√
1− v2

)]
, (D.9)

C is an integration constant fixed by the boundary conditions. This solution is known as the
kink solution.

D.3 Bäcklund transformation

Another way to find a family of solutions it is standard to use the method called Bäcklund
transformations. The main idea behind this method is that if we know a solution of a PDE,
even if is trivial, then exist a transformation which transforms one solution into another
solution. To be more specific consider that we want to solve the PDE E(φ) = 0 where E is
a differential operator. Now consider another PDE D(ϕ) = 0. Then is possible to find two
relations between φ and ϕ which we call Ri,

R1(φ, ϕ, . . . ;x, t) = 0,

R2(φ, ϕ, . . . ;x, t) = 0.

We say that Ri is a Bäcklund transformation if:

(1) The relations Ri are integrable for ϕ when E(φ) = 0.

(2) The resulting ϕ must be a solution of D(ϕ).

(3) Vice-versa also must be true.

In order to clarify this method we show an example which is of interest for the development
of this work.

D.3.1 Bäcklund transformation for SG-E

The Bäcklund transformations for the sine-Gordon equation are shown here as an example
of the method showed before. First we define the variables ρ = x + t and τ = x − t. This
coordinates are called ’light cone’ coordinates. Then the D‘alembertian operator in this
coordinates might be written as

(∂tt −∇2) = (∂t + ∂x)(∂t − ∂x) = ∂ρ∂τ ,
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so the sine-Gordon equation is reduced to

∂ρ∂τφ = sinφ. (D.10)

We propose the following transformations (which correspond to the Ri relations named be-
fore) for two fields φ and ϕ following the sine-Gordon equation,

∂ρ
(φ+ ϕ)

2
= a sin

(
φ− ϕ

2

)
, (D.11)

∂τ
(φ− ϕ)

2
=

1

a
sin

(
φ+ ϕ

2

)
, (D.12)

To show that those relations lead to the sine-Gordon equation, let’s differentiate in τ the
Eq.(D.11), and in ρ the Eq.(D.12)

∂τ∂ρ

(
1

2
(φ+ ϕ)

)
= a

1

2
∂τ (φ− ϕ) cos

(
φ− ϕ

2

)
= sin

(
φ+ ϕ

2

)
cos

(
φ− ϕ

2

)
,

∂ρ∂τ

(
1

2
(φ− ϕ)

)
=

1

a
∂ρ

(φ+ ϕ)

2
cos

(
φ+ ϕ

2

)
= cos

(
φ+ ϕ

2

)
sin

(
φ− ϕ

2

)
,

where the last equality in each equation is achieved by using Eqs.(D.11) and (D.12). Then
by adding and subtracting these last equation we find that

∂ρ∂τφ = sinφ; ∂ρ∂τϕ = sinϕ.

So in summary what we have done is basically take a solution ϕ of the sine-Gordon equation,
generate another function φ which fulfills (D.11) and (D.12), and show that this new function
φ is also a solution of sine-Gordon equation. It is impressive but it works.

With all those results in the pocket, let’s consider a function ϕ = 0, which of course is a
solution of sine-Gordon equation. Then by (D.11) and (D.12)

∂ρφ = 2a sin

(
φ

2

)
; ∂τφ =

2

a
sin

(
φ

2

)
.

A straightforward integration lead us to the kink solution

ϕ(x, t) = 4 arctan

[
C exp

(
x− vt√
1− v2

)]
, (D.13)

where we have identified the velocity of the soliton as v = (1− a2)/(1 + a2). It can be shown
that starting from the kink solution it is possible to find the breather solution.
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Appendix E

Spin waves of magnonic crystal

In this appendix we show how to solve numerically the spin wave spectra of the antiferro-
magnetic magnonic crystal of Chapter 3.

E.1 Spin wave spectra from equations of motion

We start from Eqs. (3.4) and (3.5). By setting

n0 = ẑ;

δn = {δnx(x) cos(ωt), δny(x) sin(ωt), 0};
m = {mx(x) cos(ωt),my(x) sin(ωt), 0},

we find that the equations of motion for δn and m are

δnx
ω

γ
= amy +Hδny; (E.1)

δny
ω

γ
= amx +Hδnx; (E.2)

mx
ω

γ
= −A∇2δny −Kzδny +Hmy; (E.3)

my
ω

γ
= −A∇2δnx +Kzδnx +Hmx. (E.4)

This system of equations can be written as

ω

γ




δnx
δny
mx

my


 =




0 H 0 a
H 0 a 0
0 −Kz − A∇2 0 H

Kz − A∇2 0 H 0







δnx
δny
mx

my


 , (E.5)

which is just an eigenvalue problem for the above matrix. This problem is solved my making
use of LAPACK routines in C++.
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