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Linear and nonlinear compact modes in quasi-one-dimensional flatband systems
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We examine analytically and numerically the spectral properties of three quasi-one-dimensional lattices,
namely, kagome, Lieb, and stub lattices, which are characterized for having flatbands in their spectrum. It is
observed that the degenerate eigenmodes modes of these flatbands form a Starklike ladder where each mode
is shifted by one lattice site. Their combination can give rise to compact modes that do not diffract due to a
geometrical phase cancellation. For all three cases we computed the stability of the fundamental band mode
against perturbation of their amplitude and phase, the effect of possible anisotropy of the couplings, and the
presence of small random perturbations of the coupling. For the Lieb and stub ribbon, the compact mode turns
out to be quite robust and the flatband survives, while for the kagome ribbon, the compact mode is destroyed and
the flatband is lost. When adding nonlinear effects, the compact mode turns out to be also a nonlinear eigenvector,
with a power curve that is proportional to the eigenvalue and exists for any eigenvalue, in marked contrast to the
usual case of discrete solitons, which can exist only outside the linear bands. These properties look promising
for a future design of a robust system for long-distance propagation of information.

DOI: 10.1103/PhysRevA.93.043847

I. INTRODUCTION

The problem of localization of excitations in periodic
systems is a topic that has maintained interest throughout the
years [1]. In general, the available mechanisms for achieving
a degree of localization had to rely on nonlinear effects, via
self-trapping, or on a breaking of the translational symmetry
of the lattice via, e.g., the presence of impurities, extended
defects, or a completely disordered medium. In the last case,
complete localization is achieved in one- and two-dimensional
lattices, termed Anderson localization.

Recently, however, another mechanism for achieving lo-
calization has gained increasing interest: flatbands. A flatband
lattice is a periodic system characterized by having one or more
flatbands in its spectrum. Since the group velocity of a state
belonging to one of these bands is zero, any flatband eigenstate
or a superposition of them will exhibit no mobility. Some
systems where flatbands have been studied and observed in-
clude optical [2,3] and photonic lattices [4–6], graphene [7,8],
superconductors [9–12], fractional quantum Hall systems
[13–15], and exciton-polariton condensates [16,17]. The pres-
ence of a flatband in the spectrum of a hermitian lattice implies
the existence of a set of entirely degenerate states, whose
superposition displays no dynamical evolution. This allows the
formation of compacton-like structures, which are completely
localized in space, constituting a new form of localized state in
the continuum [18]. The origin of these compact states rely on
a precise geometrical interference condition. Such states have
been recently observed experimentally in an optical waveguide
array forming a Lieb lattice in the transversal direction [5,6].
This raises the possibility that a judicious superposition of
these compacton-like states can be used to generate a whole
set of diffraction-free modes that can carry information for
long distances in an optical waveguide array. Since there are
no flatbands for pure one-dimensional lattices, it becomes
interesting to explore them in quasi-one-dimensional periodic
systems, i.e., ribbons. Such lattices could be easily fabricated
using the femtosecond laser-writing technique [19,20] and

are more economical than a full-blown two-dimensional
lattice.

In this work we study analytically and numerically the
spectrum and localization properties of three quasi-one-
dimensional optical lattices which possess flatbands, namely,
Lieb, kagome, and stub lattices, and how their spectra is
affected by the presence of perturbations that break the delicate
geometrical interference needed for a flatband to exist. This
is important in order to assess the real usefulness of flatband
systems as possible candidates for stable long-distance image
transmission systems.

II. THE MODEL

Let us consider a quasi-one-dimensional lattice (ribbon)
representing, for example, a cross section of a nonlinear (Kerr)
optical waveguide array (Fig. 1). In this context and in the
coupled-modes framework, the evolution of the electric field
on guide n is given by [21]

i
d

dz
Cn(z) +

∑

m

Vm,nCm(z) + γ |Cn(z)|2Cn(z) = 0, (1)

where Cn(z) is proportional to the amplitude of the electric
field at site n, z is the propagation coordinate (measured
in meters), and Vm,n is the coupling among waveguides
(measured in 1/meter), and the sum in Eq. (1) is restricted
to nearest-neighbor sites only. Parameter γ is the nonlinear
coefficient (in units of 1/watt× meter), and in this case
γ = ω0n2/cAeff, where ω0 is the angular frequency of the
light, n2 is the nonlinear coefficient of the guides, and Aeff is
the effective area of the linear modes.

Stationary modes are obtained from the ansatz Cn(z) =
Cn exp(i�z), where the Cn amplitudes obey

−�Cn + V
∑

m

Cm + γ |Cn|2Cn = 0, (2)
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FIG. 1. Quasi-one-dimensional arrays. (a) Kagome ribbon, (b)
Lieb ribbon, (c) Stub ribbon. The lines between dots connect nearest
neighbor sites.

where � is the propagation constant of the mode. System (2)
represents a system of coupled nonlinear equations, whose so-
lutions can be found numerically by using a multidimensional
Newton-Raphson method, where one uses the weakly coupled
limit (high nonlinearity) as the initial condition. The families of
nonlinear solutions thus found are classified by the power con-
tent of the mode, P = ∑

n |Cn|2, and its propagation constant
�. It should be mentioned that P is also a constant of motion.

The linear stability of these nonlinear modes can be
computed as follows [22]: We introduce a weak perturbation
as Cn(z) = [Cn + un(z) + ivn(z)] exp(i�z) and obtain linear
evolution equations for the real functions un and vn that
we can express in compact form by defining real vectors
δU{un} and δV{vn}. With these definitions the combined linear
equations can be written in the form δÜ + BA δ U = 0 and
δV̈ + AB δV = 0, where the overdots stand for the derivative
in z. Therefore, the linear stability of nonlinear localized
modes is defined by the eigenvalue spectra of the matrices
AB and BA (they have same eigenvalues). If any of the real
eigenvalues is negative, the corresponding nonlinear stationary
solution is unstable; otherwise, the solution is stable. Let {ω2}
be the eigenvalue spectra of AB or BA, then we define the
instability gain as the largest imaginary part of the eigenvalues,
g = max{|Im[ω2]|}. Thus, a given solution is stable when
g = 0; otherwise it is unstable.

A. The kagome ribbon

1. Linear regime

The thinnest kagome ribbon is shown at the top of Fig. 1.
This geometry has been used in the past in studies of
magnetization in frustrated quantum lattices [23]. This ribbon
has five sites in its unit cell, which implies five bands, given by

� = −2 V,

� = ±
√

2[1 + cos(2k)] V,

� = [1 ±
√

3 + 2 cos(2k)] V. (3)

Thus, we have the flatband � = −2V . In Fig. 2 we show all
five bands.

2. Stationary modes

At the top of Fig. 3 we plot the eigenvalues of the whole
system in order of increasing value. The flatband at � = −2V

is clearly visible. We look now for the modes belonging to

FIG. 2. The five bands of the kagome ribbon, V = 1.

the five bands. For γ = 0 we solve linear equations (2) and
obtain all the linear modes of the ribbon. We then plot them
as a function of site number by “hanging” them in order of
increasing eigenvalue. The result is shown in the bottom panel
of Fig. 3, whose complexity is only apparent. The plot appears
divided into sectors because of the particular numbering
employed for the sites. For a total number of N = 150 sites,

FIG. 3. Top: Eigenvalues of the kagome ribbon, arranged in order
of increasing value. The flatband is clearly appreciable at � = −2V .
Bottom: Density plot of the eigenvectors of the kagome ribbon,
arranged in order of increasing eigenvalue (N = 150).
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FIG. 4. Top: Fundamental compact ring mode belonging to the
flatband. Every site on the ring possesses equal amplitude, but their
phases change by π when moving from site to site along the ring.
Bottom: Participation ratio R of the ring mode as a function of the
evolution coordinate z.

the first 22 lowest eigenvectors (belonging to the degenerate
eigenvalue � = −2V ), we see that the modes are quite
localized and form a Starklike ladder with each mode being
shifted by one lattice site. The rest of the modes belonging to
the dispersive bands show extended states as usual. It should
be noticed that these Starklike modes really occupy a band
of zero width, since they all have the same eigenvalue. The
bandlike distributions are an artifact of the plot.

Since the modes of the flatband are very localized, they can
be combined to give rise to a set of compact-like modes, like
the one shown in Fig. 4. It is straightforward [from (2)] to show
that this ring mode is indeed a stationary mode of the flatband.
Along the ring, there is a π phase difference between sites,
which leads to a phase cancellation on nearby sites, producing
in this manner absence of transversal diffraction. The spatial
extension of a mode can be computed from the participation
ratio R = (

∑
i |Ci |2)2/

∑
i |Ci |4. For a completely localized

mode, R = 1, while for a delocalized mode R = N . This
parameter gives an idea of the sites that are effectively excited
during the dynamical evolution. Figure 4 also shows R for the
ring mode as it evolves with z, and we see clearly that the
mode remains perfectly compact for long evolution distances.

The existence of a flatband populated with compact, diffrac-
tionless modes implies also the existence of linear dynamical
self-trapping: If we take a single excited site as an initial
condition and examine its evolution, one will notice that while
most of the amplitude propagates away from the initial site, a
fraction will remain trapped at the initial site asymptotically.
The reason for this is that the initial localized excitation is
a superposition of all modes of the bands, including states
from the flatband. During evolution, the contributions from the

dispersive bands will diffract away while the portion coming
from the flatband will remain in place, giving rise to partial
self-trapping. This particular mode of self-trapping has been
observed before [24]. It should be mentioned that larger rings,
or judicious combinations of small rings, can also give rise to
diffractionless modes (not shown). The only requisite is the
geometrical phase cancellation. A large number of compact
modes can be thus generated in this way.

3. Dynamical stability

We begin our stability study by examining the robustness
of the kagome flatband against perturbations or errors in the
initial state of the fundamental ring shown in Fig. 4. Thus,
we define the initial state of the ring as Cj = Aj + δAj ,
where δAj ∈ [−w,w], where w is the width of the noise.
Around the ring the amplitudes Aj have the same absolute
value but alternate in sign. Outside the ring, Cj = 0. In an
optical setting, this is equivalent to altering the refraction
index of the wave guides, which can be done by controlling
the writing speed of the guides that are created with the
laser-writing technique[19,20]. Figure 5 shows the evolution
of the participation ratio of the ring mode at long propagation
distances, for several noise strengths. Clearly, the ring is robust
against this kind of perturbation.

Let us now investigate the effect of anisotropic couplings.
We define the anisotropy parameter δ = Vh/Vd where Vd

corresponds to the coupling between nearest neighbors along
the diagonal direction, and Vh corresponds to the coupling
between nearest neighbors along the horizontal direction [see
Fig. 1(a)].

A quick numerical inspection of all the eigenvalues reveals
that, as soon as the anisotropy parameter is different from zero,
the flatband is lost (Fig. 6). The participation ratio seems to
reach a high, constant value, but this is an artifact due to the
finite length of the ribbon, where the wave is reflected by the
ribbon boundaries.

The values of the participation ratio R as it evolves in z are
shown in Fig. 7 and confirm that the flatbands are destroyed
as soon as the anisotropy parameter is different from unity.
Even for small anisotropies R differs substantially from the
expected value of 6.

What this means is that it will be hard to experimentally
observe the flatbands in an optical setting, since the current
technology to produce the waveguide arrays is based on the
femtosecond laser-writing technique[19,20], which tends to
produce guides with high ellipticity and, thus, anisotropic
couplings.

Finally, let us study the inclusion of noise in the couplings:
V → V + δV , with δV ∈ [−w,w]. Figure 8 shows the eigen-
values and the participation ratio for different w values. We
can see that the flatband is destroyed, and the participation
ratio changes rapidly away from the initial value of six. The
oscillations in R are due to Anderson localization that produces
a localized profile with fluctuating boundaries.

4. Nonlinear regime

Here we examine the nonlinear properties of the kagome
ribbon focusing on some simple representative nonlinear
modes. Now we take γ �= 0 in Eq. (2). We begin by looking
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FIG. 5. Participation ratio R of the fundamental ring as a function
of z for a random perturbation of the initial conditions. The width of
the noise is w = 0.1 (top), w = 0.5 (middle), and w = 1.0 (bottom).

for modes that exist outside of the bands and located around
a single site. For γ > 0 we are above the band maximum
� = V [1 + √

2 + cos (π)] ∼ 3.2, while for γ < 0 we are
below the band minimum � = −2V . In the anticontinuum
limit and for modes centered around a single site, we will
examine two different initial sites (see inset in Figs. 9 and 11).

Figure 9 shows the power versus propagation constant
curve, for a nonlinear mode centered on an edge site. The curve
resembles the one for a two-dimensional lattice. We observe
a minimum power value for the mode (also termed a discrete
soliton) to exist. To the left of this critical value the mode is
linearly unstable. In Fig. 10 we show the participation ratio of
this mode as a function of its power content and its instability
gain as a function of the mode propagation constant. We see
that in the unstable regime the mode tends to expand, while in
the other branch it tends to decrease, signaling a tendency to

FIG. 6. Eigenvalues � for a large (N = 120) kagome ribbon for
different values of the anisotropy parameter δ. The eigenvalues are
plotted in order of increasing value and just the flatband region is
shown.

FIG. 7. Kagome ribbon. Evolution of the participation ratio R for
different values of the anisotropy parameter δ in the couplings.

FIG. 8. Kagome ribbon with coupling disorder. Top: Eigenvalues
of the kagome ribbon, ordered according to increasing value. Bottom:
Evolution of the participation ratio of the compact mode, for different
disorder widths.
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FIG. 9. Power vs propagation constant diagram for the funda-
mental compact kagome mode. Continuous (dashed) line denotes
stable (unstable) behavior.

FIG. 10. Kagome ribbon. Top: Participation ratio as a function of
the power content of the nonlinear mode depicted in Fig. 9. Bottom:
Stability gain vs the nonlinear mode propagation constant. The onset
of instability is clearly visible around � ∼ 4.6.

FIG. 11. Kagome ribbon. Power vs propagation constant diagram
for the fundamental compact kagome mode. Continuous (dashed) line
denotes stable (unstable) behavior.

localization. Also the instability gain tends to increase rapidly,
the closer we are to the outermost band edge. In the case of
a nonlinear mode centered on an “inner site” of the ribbon,
the power versus propagation constant is different from its
previous “surface” counterpart. Now, the power curve (not
shown) reaches all the way to the edge of the band, and it is
stable everywhere. The shape of the curve resembles the one
found in pure one-dimensional chains.

What about the compact kagome ring mode? It turns out
that this mode is also an eigenmode of the linear system. From
Eq. (2), one obtains the power curve in closed form

P = 6

γ
(� + 2V ), (4)

and, thus, it does not require a minimum power to exist. Its sta-
bility diagram, shown in Fig. 11, shows the existence of a criti-
cal power (P ∼ 1.1) above which the mode becomes unstable,
although its computed participation ratio remains at a value of
six, indicating that this mode does not lose its ring shape.

B. The Lieb ribbon

1. Linear regime

The Lieb ribbon is shown in Fig. 1(b). It consists essentially
of a depleted square lattice ribbon. Its unitary cell contains five
units, which implies five bands:

� = 0,

� = ±
√

2[1 + cos(2k)]V, (5)

� = ±
√

4 + 2 cos(2k)V.
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FIG. 12. Top: The five bands of the Lieb ribbon. Bottom: Density
plot of the eigenvectors of the Lieb ribbon, arranged in order of
increasing eigenvalue.

Thus, as Fig. 12 (top) shows, out of the five bands, we have the
flatband � = 0. The modes belonging to this band have zero
group velocity, which leads to a sharp transverse localization.
These compacton-like modes are able to propagate along the
guide without diffraction. As mentioned earlier, the reason
for this localization is a geometric phase cancellation among
nearby sites. Also, as in the kagome ribbon, one can have larger
ring structures, or a judicious combination of small rings, and
create other diffractionless modes (not shown).

2. Stationary modes

As was done for the kagome lattice, we set γ = 0 and solve
the linear equation (2). Next we “hang” the eigenvectors in
order of increasing eigenvalue, generating the density plot
shown at the bottom of Fig. 12. Again, we note that for
eigenvalue � = 0, the degenerate eigenstates form a Stark
ladder, while all the other modes belonging to the dispersive
bands are extended. As was mentioned before, all of these
Starklike modes really occupy a band of zero width, since they
all have the same eigenvalue. The bandlike distribution is an
artifact of the plot.

FIG. 13. Evolution of the participation ratio of the fundamental
compact ring of the Lieb ribbon.

As in the kagome ribbon, the Lieb system has an compact
eigenstate in the form of a square ring, which can evolve for
long times without experiencing any diffraction (Fig. 13).

As we did for the Kagome case, let us also perturb this
square compact ring, by introducing small random errors to the
value of the ring amplitudes, Aj → Aj + δAj where δAj ∈
[−w,w]. The evolution of the participation ratio of the ring
mode (not shown) shows that R is constant for all distances,
even for large δ values. This is also observed for the kagome
ribbon (Fig. 5).

Let us now investigate the effect of (nonrandom) anisotropic
couplings. We define the anisotropy parameter δ = Vh/Vv

where Vv corresponds to the coupling between nearest
neighbors along the vertical direction, and Vh corresponds to
the coupling between nearest neighbors along the horizontal
direction [see horizontal and vertical lines in Fig. 1(b)]. At the
top of Fig. 14 we show the eigenvalues and the participation
ratio obtained for two different values of the anisotropy
parameter δ = Vh/Vv . As we can see, the flatband persists
for these two δ values, even for δ � 1. The dispersive bands
show the onset of energy gaps for certain large δ values. For
small δ values R remain pinned to its value of 4, while for
larger δ it shows some oscillations around 4. The source of
these oscillations seem to originate from an amplitude transfer
among the four sites that occurs at high δ and is visible in
the insets.

Finally, let us complete the dynamical stability analysis,
by examining the effect of random perturbations of the cou-
plings, V → V + δV , where δV ∈ [−w,w], in the absence of
anisotropy. As can be seen in the bottom panels of Fig. 14, the
existence of noise in the couplings does not destroy the flatband
and only introduces some oscillations in the participation ratio,
coming from irregular amplitude transfer among the four sites
of the fundamental ring. The situation is rather similar to the
case of anisotropic couplings.
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FIG. 14. The first four upper plots show the eigenvalue (�) and
the participation ratio of the Lieb ribbon for two different anisotropies
δ and zero disorder (w = 0), while the lower four plots show � and
R for two different disorder widths w and zero anisotropy (δ = 0).

3. Nonlinear regime

As in the previous kagome case, the fundamental Lieb
mode, composed of four sites, is also a nonlinear mode of
Eq. (2). It is straightforward to obtain the power curve for this
mode:

P = 4

γ

�

V
. (6)

From the numerical stability analysis (Fig. 15), we obtain that
the mode is unstable at low powers up to a critical � value,
beyond which it becomes stable.

By computing the participation ratio as a function of the
power, we observe (not shown here) that the shape of the
square ring does not change throughout the increase in power.

Now, let us consider a mode centered on a single site in the
middle of the ribbon. As we can see in Fig. 16, the power versus
propagation constant shows a region of bistability, where two
stable regimes are separated by an unstable one. The stable
power curve extends all the way to zero power, where the
mode reaches the exterior edge of the bands. In this case, the
mode ceases to exists as soon as it reaches the bands, in marked
contrast to the square ring mode, which exists for any amount
of power and any value of the propagation constant.

FIG. 15. Power vs propagation constant diagram for the funda-
mental compact Lieb mode. Continuous (dashed) line denotes stable
(unstable) behavior.

FIG. 16. Power vs propagation constant diagram for a mode
centered on a single site in the middle of the Lieb ribbon. Continuous
(dashed) line denote stable (unstable) behavior.
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FIG. 17. The three bands of the stub ribbon.

4. The stub ribbon

The stub ribbon is shown at the bottom row of Fig. 1. Its
geometry has been used in the past in studies on boson and
fermion dynamics [3]. Its unitary cell has three sites, leading
to three real bands:

� = 0,

� = ±
√

3 + 2 cos(2k) V,

(7)

where, as in the Lieb case, we have a flatband at � = 0.
Figure 17 shows the shape of the three bands

5. Linear regime

As we observed for the kagome and Lieb ribbon, we see
that for � = 0, the degenerate eigenstates form a Stark ladder,
while all the other modes belonging to the dispersive bands
are extended (Fig. 18). Again we note that the band of these
Stark modes is of zero width, since they are all degenerate.
The bandlike distribution in Fig. 18 being an artifact of
the plot.

The modes of the Stark ladder can be expressed as
superpositions of compact modes, such as the fundamental
one shown in Fig. 18. In addition to this mode, one can
superpose two or more of them and create difractionless modes
of different sizes (not shown). This fundamental compact mode
is composed of three sites: two of them with given value A and
one with value −A. All the rest of the ribbon sites are zero. This
geometrical array prevents nearby sites from evolving, and thus
difraction is completely arrested. Let us briefly comment on
the stability properties of the fundamental stub mode. First,
the mode is robust against noise on the initial amplitudes. This
was also observed for the kagome and Lieb ribbons. The mode
is also robust against the presence of anisotropic couplings,
even for large anisotropy values. Finally, the mode is also
robust against noise in the couplings. At large noise values, we
observed some transfer of amplitudes among the three sites,
producing a small oscillation of the participation ratio of the
mode. The shape of the mode did not change though.

6. Nonlinear regime

As with the previous ribbons, the fundamental compact
mode is also a nonlinear eigenstate. From Eq. (2), one obtains

FIG. 18. Stub ribbon. Top: Evolution of the participation ratio
of the fundamental stub compact mode, at long evolution distances.
Inset shows the geometrical disposition of the fundamental compact
mode. Bottom: Density plot of the eigenvectors of the stub ribbon,
arranged in order of increasing eigenvalue.

after replacing the amplitudes and phases of the compact mode,
a closed expression for the power curve

P = 3

γ
�. (8)

This relation is valid for any amount of power below and
beyond the position of the bands. To be sure, at low powers
the mode is unstable, becoming stable beyond a critical
value of power (∼15.5). The shape of this compact mode
does not change, as evidenced by the constant value of the
participation ratio (R = 3). This nonlinear mode bifurcates
from the flatband � = 0, as Fig. 19 shows. On the other
hand, for a nonlinear mode stemming from a single-site initial
condition, the power curve (not shown) resembles the one
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FIG. 19. Power P vs propagation constant � for the nonlinear
fundamental mode for the stub ribbon. Solid (dashed) line denotes
stable (unstable) portions.

for the Lieb ribbon, with little variations. In general for this
case, the power curve is stable at large powers, and there is a
minimum power for this nonlinear mode to exist. To the left
of this critical propagation constant, the power raises but is
linearly unstable.

III. CONCLUSIONS

We have examined the spectral characteristics of three
quasi-one-dimensional lattices: the kagome, Lieb and stub

thin ribbons. They are all characterized for having a flatband
with degenerate eigenvectors that form a Stark ladder. These
states can give rise to completely compact modes which do
not diffract. This property is due to a precise geometrical
combination of amplitude and phases that prevent the transfer
of amplitude to nearby sites. Next, we focused on the simplest
compact mode for each ribbon and examined its dynamical
stability against noise in the initial conditions of the rings,
anisotropy of the couplings, and random variations of the
couplings. The results vary from ribbon to ribbon. In general
for all three of them, it was found that they are stable against
random changes in the initial values of the the ring sites.
The stub and Lieb ribbons are stable against (nonrandom)
anisotropies of the couplings, while the kagome ribbon is
unstable. For randomness of the couplings both the Stub and
Lieb systems are stable, while the kagome ribbon is unstable.
When nonlinear effects are added to the picture, it was found
that the fundamental compact mode of each ribbon is also an
eigenvector of the nonlinear eigenvalue problem. In this case,
the power versus propagation constant curve can be obtained
in closed form. Moreover, this stationary nonlinear compact
mode has a power curve that exists for all propagation constant
values, even inside and across the linear bands. This is in
marked contrast to the usual discrete soliton phenomenology,
where a nonlinear mode can only exist outside the linear
bands.

The robustness of the Lieb and stub ribbons give us hope
that the goal of using flatband systems as possible candidates
for stable robust long-distance image transmission systems
could be at hand.
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[11] S. Deng, A. Simon, and J. Köhler, J. Solid State Chem. 176, 412
(2003).

[12] M. Imada and M. Kohno, Phys. Rev. Lett. 84, 143 (2000).
[13] E. Tang, J.-W. Mei, and X.-G. Wen, Phys. Rev. Lett. 106, 236802

(2011).
[14] T. Neupert, L. Santos, C. Chamon, and C. Mudry, Phys. Rev.

Lett. 106, 236804 (2011).
[15] S. Yang, Z.-C. Gu, K. Sun, and S. Das Sarma, Phys. Rev. B 86,

241112(R) (2012).
[16] T. Jacqmin, I. Carusotto, I. Sagnes, M. Abbarchi, D. D.

Solnyshkov, G. Malpuech, E. Galopin, A. Lemaitre, J. Bloch,
and A. Amo, Phys. Rev. Lett. 112, 116402 (2014).

[17] F. Baboux, L. Ge, T. Jacqmin, M. Biondi, A. Lematre, L. Le
Gratiet, I. Sagnes, S. Schmidt, H. E. Türeci, A. Amo, and
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