Effects of Habitat and Social Complexity on Brain Size, Brain Asymmetry and Dentate Gyrus Morphology in Two Octodontid Rodents

Raúl Sobrero a, b, Pedro Fernández-Aburto b, Álvaro Ly-Prieto c, Scarlett E. Delgado b, Jorge Mpodozis b, Luis A. Ebensperger c

a Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) – Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Argentina; b Departamento de Biología, Facultad de Ciencias, Universidad de Chile, and c Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile

Key Words
Brain asymmetry · Dentate gyrus anatomy · Habitat complexity · Octodon · Sexual dimorphisms · Social brain · Sociality

Abstract
Navigational and social challenges due to habitat conditions and sociality are known to influence dentate gyrus (DG) morphology, yet the relative importance of these factors remains unclear. Thus, we studied three natural populations of O. lunatus (Los Molles) and Octodon degus (El Salitre and Rinconada), two caviomorph species that differ in the extent of sociality and with contrasting vegetation cover of habitat used. The brains and DG of male and female breeding degus with simultaneous information on their physical and social environments were examined. The extent of sociality was quantified from total group size and range area overlap. O. degus at El Salitre was more social than at Rinconada and than O. lunatus from Los Molles. The use of transects to quantify cover of vegetation (and other physical objects in the habitat) and measures of the spatial behavior of animals indicated animal navigation based on unique cues or global landmarks is more cognitively challenging to O. lunatus. During lactation, female O. lunatus had larger brains than males. Relative DG volume was similar across sexes and populations. The right hemisphere of male and female O. lunatus had more cells than the left hemisphere, with DG directional asymmetry not found in O. degus. Degu population differences in brain size and DG cell number seemed more responsive to differences in habitat than to differences in sociality. Yet, large-sized O. degus (but not O. lunatus) that ranged over larger areas and were members of larger social groups had more DG cells per hemisphere. Thus, within-population variation in DG cell number by hemisphere was consistent with a joint influence of habitat and sociality in O. degus at El Salitre.

Introduction
Environmental complexity is thought to be an important selective factor of cognitive abilities and associated neuroanatomical components [Kempermann et al., 1997; Nilsson et al., 1999; van Praag et al., 1999; Roth and Pravosudov, 2009]. Two major components of this complexity are especially relevant. First, individuals need to man-
age and process spatial and temporal information on resource availability during spatial navigation and to construct physical or cognitive topological reference maps [O’Keefe and Nadel, 1978; Jacobs, 2006]. Second, individuals need to keep track of social conditions and be able to respond appropriately during interactions with conspecifics [Dunbar, 1998].

Available evidence indicates that the same brain regions may be linked to both environmental inputs. In particular, the dentate gyrus (DG), a main region of the hippocampus, is known to be essential for integrating environmental sensory cues into a geometric coordinate system, i.e. the building of cognitive maps of physical and social space [Jacobs, 2003; Eichenbaum, 2015; Tavares et al., 2015]. For instance, adult laboratory rats (Rattus norvegicus) housed in larger boxes containing various toys, wooden blocks, climbing platforms, plastic tubes and small houses show an increase in newly generated cells in the DG and enhancement of recognition memory [Bruel-Jungerman et al., 2005]. Evidence from field studies shows how nonbreeding female meadow voles (Microtus pennsylvanicus) exhibit a higher rate of DG cell proliferation and cell death than breeding females, a difference presumably linked to differences in the size of female range areas [Galea and McEwen, 1999]. Nonbreeding male Richardson’s ground squirrels (Urocitellus richardsonii) exhibit significantly larger hippocampal volumes than breeding males or females from either season, a variation that was linked to the male-only food caching behavior during the nonbreeding season [Burger et al., 2013].

On the other hand, evidence also supports that the DG plays a role in integrating social cues. Animal subjects exposed to varying social group sizes [Fowler et al., 2002; Hoshaw et al., 2006; Gheusi et al., 2009], social isolation of adults from their mates [Fowler et al., 2002], social separation of offspring from their parents [Lu et al., 2003] and varying dominance relationships [Kozorovitskiy and Gould, 2004] exhibit changes in the structure and volume of the DG. In humans, changes in social relationships (linked to power and affiliation) predict adult hippocampal activity, implying this brain area is simultaneously involved in processing spatial and social information [Tavares et al., 2015]. Most importantly, social behavior may act as a potent stressor or can buffer the response to an external stressor [Silk, 2007; Beery and Kauffer, 2015], actions that in some wild social rodents (Octodon and Ctenomys) are linked to the density of oxytocin receptors in the forebrain, including areas of the hippocampus [Beery et al., 2016]. Thus, the processing of social cues derived from group living may be in part mediated by components of the stress response and the brain areas associated with it. Taken together, laboratory studies on traditional animal models and comparative approaches have independently been able to demonstrate a connection between habitat, social conditions and changes in the volume of the DG or structures associated with it. However, the few field studies focused on testing the effects of both sex and season on DG anatomy and they have yielded inconsistent results [Burger et al., 2013, 2014].

Physical and social environmental conditions may also result in differential effects on brain asymmetry, a condition reported in birds, rodents and primates [Valortigara and Rogers, 2005]. Research on these vertebrates indicates how brain asymmetry is linked to social recognition or social position relative to other group members, a phenomenon associated with right-hemispheric dominance [Rogers et al., 2013; Rogers and Vallortigara, 2015]. However, specialization of the right hemisphere may extend to other sensory modalities, including spatial novelty and intense emotions (i.e., fear or predator attack) [Rogers et al., 2013]. Again, the potential effects of spatial and social complexity on DG asymmetry in free-ranging adult rodents remain virtually unexplored.

Model Species and Hypothesis Predictions

The aim of this study was to examine two natural populations of Octodon degus and one population of O. lunatus, two phylogenetically related species of rodents that face contrasting conditions of physical complexity and differ in sociality (or group living). O. degus uses relatively open savannas or open scrub environments in central Chile, but more closed scrub patches and ravines in northern populations [Quispe et al., 2009; Ebensperger et al., 2012]. In these environments, O. degus excavate and use burrow systems connected aboveground by runways or trails used during foraging [Fulk, 1976; Lagos et al., 1995; Vásquez et al., 2002]. In contrast, O. lunatus is preferably associated with coastal shrubland, characterized by moist and high vegetative cover [Sobrero et al., 2014]. Compared with O. degus, O. lunatus seems to rely more on vegetation cover to hide from predators instead of building extensive burrow systems or using interconnected runways [Sobrero et al., 2014].

When navigating, small mammals employ global landmarks (e.g. forest edge or mountain outline), which serve as more distant cues, and local landmarks (e.g. shrub and rock cover, or logs), which are spatially closer to the goal [Jacobs and Schenk, 2003; Nesterova, 2007; Bruck and Mateo, 2010]. Global landmarks may provide more reliable indicators of a goal’s location because they are observ-
able from greater distances, stable and more likely to be unique [Biegler and Morris, 1996]. Instead, local landmarks are often not unique, where the presence of other similar and continuous objects (i.e. shrub cover or logs) may challenge animal navigation. Moreover, local landmarks such as vegetation cover may preclude the use of global landmarks. For instance, a study showed how the upper portion of the horizon or visible global landmarks is more important for orientation during food searching than local landmarks in Columbian ground squirrels (Spermophilus columbianus) [Vlasak, 2006]. Thus, if higher vegetation cover is associated with greater cognitive demands during navigation, we predicted (i) O. lunatus and O. degus from populations with higher vegetation cover to exhibit a larger DG volume and density of cells than O. degus from populations in habitats with less cover.

O. degus live in relatively large groups ranging from 1 to 12 adult individuals [Hayes et al., 2009], and females of this species exhibit communal care of offspring [Ebensperger et al., 2004]. These characteristics have been documented in at least four populations of this species [Ebensperger et al., 2004, 2012; Jesseau, 2004; Sobrero et al., unpubl. data], implying a high frequency of social interactions and probably a need for cognitive skills underlying these interactions. In contrast, the social behavior of O. lunatus is less well known, yet a recent study revealed how these rodents live in small social groups that range from 2 to 4 adults [Sobrero et al., 2014]. Therefore, if greater sociality is associated with greater cognitive demands to keep track of individual relationships, we predicted (ii) more social O. degus to exhibit a larger DG volume and density of cells than O. lunatus.

Finally, we tested the prediction that (iii) the factor with the strongest effect on brain size and DG morphology would be associated with the most asymmetrical DG volume and cell number. Given that social recognition and other aspects of social behavior are processed primarily in the right hemisphere [Rogers and Vallortigara, 2015], we further predicted (iv) population DG asymmetries or right-hemispheric dominance to be more frequent in the relatively more social O. degus.

Materials and Methods

The original research reported herein was performed under guidelines established by the Pontificia Universidad Católica de Chile Bioethics Committee (CBB-042/2011) and adhered to Chilean laws [permits 1-154.2010 (7989), 1-109.2011 (6749), 1-90.2011 (4731) and 1-95-2012 (4486) by the Servicio Agrícola y Ganadero and 013/2011 by the Corporación Nacional Forestal].

Study Populations, Degu Trapping and Marking

We contrasted the volume and total number of DG cells of two O. degus and one O. lunatus populations across north-central Chile. In particular, we examined O. degus from El Salitre (ES; 30°38′S, 71°35′W, altitude 275 m) and Rinconada (RI; 33°23′S, 70°31′W, altitude 495 m), and O. lunatus from Los Molles (LM; 32°13′S, 71°31′W, altitude 36 m). The study sites in these populations reached an area of ~3 ha. During 2010 and 2012, adult animals were captured using 14 × 14 × 40 cm Tomahawk traps (model 201; Tomahawk Live Trap Company, Hazelhurst, Wis., USA). Based on previous studies [Ebensperger et al., 2004, 2012], we placed traps near burrow openings and inside patches with high shrub cover and baited them with rolled oats, fruity cereals and sunflower seeds. During each capture, we recorded sex, body mass (to 0.1 g) and reproductive status (whether a female had a perforated vagina, was pregnant or lactating) of all degus, and each animal was marked with an ear tag (Monel 1005-1; National Band and Tag Co., Newport, Ky., USA). While we were not able to determine the exact age of the subjects, we could attain approximate estimates based on body mass and condition. Trapping of O. degus included females during early and late gestation (July to August 2012), and O. lunatus during lactation (November to December 2010, 2011) [Bauer et al., 2014; Sobrero et al., 2014]. Adult-aged degus were fitted with a radio collar weighing 7–9 g (RI-2D; Holohil Systems Limited, Carp, Ont., Canada; SOM-2190A, and BR radio collars; AVM Instrument Co., Colfax, Calif., USA). At the end of our study, all radio-collared animals were recaptured and radio collars were removed [Ebensperger et al., 2004, 2012].

Habitat Complexity

We first quantified habitat complexity from the overall amount of vegetation cover in the habitat used by the degus. We used 5 randomly placed 50-meter transects to quantify habitat complexity in terms of the percentage of ground surface that included herbaceous cover, shrub cover, rocks or that had no cover [Sobrero et al., 2014]. We also inferred habitat complexity faced by degus from the spatial behavior of these animals. In particular, we quantified the size of range areas and attributes of spatial trajectories. To calculate range areas, we recorded locations of all radio-collared animals each hour during their activity period (i.e. between 09.00 and 17.00 h for O. degus, between 21.00 and 07.00 h and between 07.00 and 21.00 h for O. lunatus). We radio tracked O. degus during 5 days and O. lunatus during 3 days and 4 nights. The spatial location of animals during activity was determined using triangulation [Kenward, 2001]. To do so, we used 2 LA 12-Q receivers, each connected to a null-peak antenna system (AVM Instrument Co.). Every null-peak system had four 7-element Yagi antennas. The distance between antenna stations was about 120 m. To ensure independence of data points [Swihart and Slade, 1985; Kenward, 1987], intervals between fixes were approximately 1 h. Bearings from both antenna stations were then transformed into x-y locations with the software Locate II [Nams, 1990]. Data points for each degu were then mapped using the 95% minimum convex polygon algorithm of the software Ranges VI [Kenward et al., 2003].

We also quantified habitat complexity from the spatial behavior of animals. We used fluorescent pigments (Radiant Color Co., Richmond, Calif., USA) to trace the movement of O. degus at a smaller spatial scale. To do so, non-radio-collared adult-size degus were introduced into a plastic bag containing a unique powder color pigment, gently shaken during a few seconds and released.
Table 1. Body mass, brain size, volume and number of DG cells (means ± SE) in O. degus and O. lunatus from north-central Chile

<table>
<thead>
<tr>
<th>Species</th>
<th>Population</th>
<th>Sex</th>
<th>n</th>
<th>Body mass, g</th>
<th>Brain size, g</th>
<th>DG volume, mm³</th>
<th>Relative DG volume</th>
<th>DG cell number, ×10⁷</th>
</tr>
</thead>
<tbody>
<tr>
<td>O. degus</td>
<td>ES</td>
<td>F</td>
<td>4</td>
<td>203.35 ± 24.34</td>
<td>2.16 ± 0.06</td>
<td>5.639 ± 0.726</td>
<td>0.0028 ± 0.0003</td>
<td>1.58 ± 0.69</td>
</tr>
<tr>
<td>O. degus</td>
<td>ES</td>
<td>M</td>
<td>3</td>
<td>201.23 ± 4.57</td>
<td>2.39 ± 0.10</td>
<td>5.661 ± 0.022</td>
<td>0.0026 ± 0.0002</td>
<td>1.33 ± 0.37</td>
</tr>
<tr>
<td>O. degus</td>
<td>RI</td>
<td>F</td>
<td>2</td>
<td>209.50 ± 3.50</td>
<td>2.08 ± 0.03</td>
<td>4.073 ± 0.404</td>
<td>0.0027 ± 0.0002</td>
<td>0.91 ± 0.36</td>
</tr>
<tr>
<td>O. degus</td>
<td>RI</td>
<td>M</td>
<td>2</td>
<td>185.90 ± 23.10</td>
<td>2.43 ± 0.05</td>
<td>5.937 ± 1.439</td>
<td>0.0020 ± 0.0005</td>
<td>1.26 ± 0.56</td>
</tr>
<tr>
<td>O. lunatus</td>
<td>LM</td>
<td>F</td>
<td>3</td>
<td>156.87 ± 17.23</td>
<td>3.17 ± 0.07</td>
<td>6.890 ± 1.445</td>
<td>0.0024 ± 0.0006</td>
<td>1.84 ± 0.54</td>
</tr>
<tr>
<td>O. lunatus</td>
<td>LM</td>
<td>M</td>
<td>3</td>
<td>165.20 ± 18.71</td>
<td>2.68 ± 0.19</td>
<td>6.865 ± 0.359</td>
<td>0.0022 ± 0.0001</td>
<td>2.26 ± 1.17</td>
</tr>
</tbody>
</table>

Both left and right hemispheres were measured to estimate DG volume and number.

Social Complexity
We quantified social complexity from the extent of sociality. Differences in sociality were based mainly on group size, an estimate of social tolerance and potential for social interactions [Rubenstein, 2011]. Group size in turn was quantified from (i) the number of male and female adults sharing nesting sites and from (ii) the extent to which range areas of these adults overlap (a measure of social cohesion during activity). A previous study indicated that degus from the same social group (based on the sharing of nesting sites) also share their foraging areas [Ebensperger et al., 2004]. Thus, populations where a larger number of adults shared the same resting locations with an LA 12-Q receiver (for radio collars tuned to 150.000–151.999 MHz frequency; AVM Instrument Co., Colfax, Calif., USA). The precision of GPS readings was always within 5 m. The determination of group size and composition required the compilation of a symmetric similarity matrix of pairwise association of the resting locations of all adult degus during trapping and telemetry [Whitehead, 2008]. We determined the association (overlap) between any 2 individuals by dividing the number of nights (O. degus) or evenings (O. lunatus) that these individuals were captured at or tracked with telemetry to the same

nesting area by the number of nights (O. degus) or evenings (O. lunatus) that both individuals were trapped or tracked with telemetry on the same night (O. degus) or evening (O. lunatus) [Ebensperger et al., 2004; Sobrero et al., 2014]. To determine social group composition, we conducted hierarchical cluster analysis of the association matrix in SOCPROG software [Whitehead, 2009]. To determine whether individuals assigned to a same resting location were also socially cohesive when active, we quantified the percent spatial overlap of range areas between individuals assigned to the same resting locations. Pairwise estimates of the percent overlap between polygons for different females were also calculated using Ranges VI.

Brain Preparation
A sample of radio-collared degu subjects from each population was transported to the laboratory and euthanized (table 1). All animals were anesthetized (0.5 ml ketamine and 0.1 ml xylazine) and perfused transcardially with 0.1% saline followed by 4% buffered paraformaldehyde. Brains were postfixed, weighed (a measure of absolute brain size), kept at 4°C and then cryoprotected in a 30% sucrose solution for 72 h. Tissue was cut into 60-μm coronal sections on a Leica CM 3050S cryostat at –20°C. Free-floating sections were collected in 0.1 M phosphate-buffered saline, and every 3rd section was mounted and stained with cresyl violet (Fluka: 61123, 0.2% solution, pH 4.3) and coverslipped with Permount.

Histological Measures
Measurements of DG volume and cell number were estimated on cresyl violet-stained sections with the use of StereoInvestigator 8.0 (MBF Bioscience, Williston, Vt., USA) and a Nikon microscope (eclipse E400). Stereotaxic reference data were retrieved from the studies by Wright and Kern [1992] and Kumazawa-Manita et al. [2013] (fig. 1a–c). All sampling schemes were optimized by us (R.S. and S.E.D.) and collaborators (S. Fernández, Pontificia Universidad Católica de Chile, and T. Roth II, Franklin and Marshall College) based on strategies in StereoInvestigator 8.0. The DG of each subject was examined on every 12th section on a Leica CM 3050S cryostat at –20°C. Free-floating sections were collected in 0.1 M phosphate-buffered saline, and every 3rd section was stained and mounted with cresyl violet (Fluka: 61123, 0.2% solution, pH 4.3) and coverslipped with Permount.

Histological Measures
Measurements of DG volume and cell number were estimated on cresyl violet-stained sections with the use of StereoInvestigator 8.0 (MBF Bioscience, Williston, Vt., USA) and a Nikon microscope (eclipse E400). Stereotaxic reference data were retrieved from the studies by Wright and Kern [1992] and Kumazawa-Manita et al. [2013] (fig. 1a–c). All sampling schemes were optimized by us (R.S. and S.E.D.) and collaborators (S. Fernández, Pontificia Universidad Católica de Chile, and T. Roth II, Franklin and Marshall College) based on strategies in StereoInvestigator 8.0. The DG of each subject was examined on every 12th section with the use of an optical fractionator workflow and a Cavalieri estimator [Gundersen and Jensen, 1987]. DG volume was measured with a 40-μm square grid on a x40 lens. Cell counts were performed using an optical fractionator procedure [West et al., 1991] using a ×100 oil immersion lens (fig. 1d). A 200-μm sampling grid was used and all 40 × 40 μm frames were counted with...
a dissector height of 5 μm and 2-μm guard zones. We calculated coefficients of error to estimate precision of estimates [West et al., 1991]. These figures [mean coefficients of error (SE)] were 0.02 (0.001) at LM, 0.03 (0.001) at ES and 0.03 (0.002) at RI. Together, these procedures allowed us to quantify absolute and relative brain sizes, DG total and relative volumes, and the total number of DG cells in the right and left hemispheres.

Statistical Analyses

We first ran χ² tests to examine the null hypothesis of equal habitat complexity in terms of vegetation cover among all three populations [Zar, 1999]. To further examine habitat complexity in terms of the spatial behavior of degus, we used ANOVA to compare the percentage of degu trajectories that were recorded in patches with different types of vegetation cover in ES and RI. Given that animal trajectories differed in total length, we examined the number of turns/linear meters of trajectory. This comparison was restricted to the more abundant *O. degus* from ES and RI. Differences in degu range areas across all three populations and sex (males vs. females) were compared with ANCOVA, and where degu subjects’ body mass was entered as a covariate. We distinguished males and females in the analyses based on the frequent sex differences in spatial navigation ability reported in other mammalian species, including humans [Jones et al., 2003; Popović et al., 2010]. Range area values were log₁₀ transformed to meet normality and homogeneity of variance assumptions. Student-Newman-Keuls post hoc tests were used to detect significant pairwise differences.

We examined population differences in sociality with generalized linear/nonlinear models. In particular, we assessed the main effect of population on total group size. Total group size was fitted to a Poisson distribution with a log link function. Population differences in the percentage of range area overlap were examined with a general linear model (GLM). Range area overlap values were arcsine squared root transformed to meet normality and homogeneity of variance assumptions.

We also used GLM to examine how population and degu sex explained variation in brain size and DG cell number. In the case...
of brain size, body mass was added to the effects of population and degu sex. Given that data transformation failed to normalize relative DG volume, we used the Kruskal-Wallis test with the Scheirer-Ray-Hare extension (a nonparametric equivalent of two-way ANOVA) [Sokal and Rohlf, 1995] to determine the effects of population, sex and a population-by-sex interactive effect on relative DG volume. We used repeated-measure ANOVA followed by Student-Newman-Keuls post hoc tests to examine the effects of brain hemispheres (right vs. left), population, sex and factor interactions on DG cell number.

We used GLM followed by best-fit and supported model approaches to examine how degu sex, body mass, total group size and range area within a population predicted variation in brain size, DG cell number and relative volumes of the DG by brain hemisphere.

All data are reported as means ± SE. Analyses were conducted with Statistica 9.0 (StatSoft Inc., Tulsa, Okla., USA), SigmaPlot (Systat Software Inc., San Jose, Calif., USA, www.sigmaplot.com) and the R software 3.0.1 (The R Foundation for Statistical Computing, http://www.rproject.org/foundation/).

Results

Habitat Conditions in Terms of Vegetation Cover

Based on 5 transects per population, we recorded that vegetation cover did vary across populations (contingency table analysis, $\chi^2 = 124.4$, d.f. = 6; $p < 0.0001$; fig. 2). A subsequent subdivision of contingency tables [Zar, 1999] revealed that habitat based on cover was different in all three populations ($\chi^2 = 16.66$, d.f. = 3; $p = 0.0008$). In particular, habitat at LM had more shrubs, followed by bare ground and rock cover (fig. 2). Instead, ES was characterized by higher grass cover, followed by shrubs, bare ground and rock cover (fig. 2). The habitat used by degus at RI was characterized mostly by grass cover and bare ground (fig. 2). Thus, a decreasing gradient of habitat complexity in terms of vegetation cover observed was LM > ES > RI.

Habitat Conditions in Terms of the Spatial Behavior of Animals

Our standardized trajectories ($\bar{X} \pm SE = 35 \pm 15$ m) were based on fluorescent marks recorded for 28 adult O. degus from RI (1 male, $n = 8$) and ES (10 males, $n = 20$). These data indicated that degus from ES moved through a more diverse array of habitat cover compared with RI (ANOVA, $F_{5,162} = 25.41$, $p = 0.0001$; fig. 3). After controlling for this effect, we found that habitat complexity in terms of the spatial behavior of degus did vary across populations (contingency table analysis, $\chi^2 = 10.43$, d.f. = 2; $p = 0.0054$). Trajectories of degus intersected more patches with shrubs and grass, but less patches with bare ground at ES compared with RI.

Information on range areas was available for 45 radio-collared O. degus ($n = 15$ from RI, $n = 30$ from ES) and 20 radio-collared O. lunatus. The size of range areas (ha) estimated from telemetry was greater at LM than ES (ANCOVA, $F_{2,56} = 3.72$, $p = 0.030$) when sex and degu body mass were included in the analysis (fig. 4). In contrast, the size of range areas of degus at RI was not different from ES and LM (unequal sample HSD post hoc test, $p > 0.05$). Across populations, males had larger range areas than...
females (ANCOVA, $F_{1,56} = 9.29, p = 0.004$). Thus, a decreasing gradient of habitat complexity in terms of spatial behavior of degus was $LM > ES \geq RI$.

Variation in Sociality

The numbers of social groups identified at RI, ES and LM were 11, 8 and 5, respectively. Our examination of social conditions based on total group size (fig. 5) revealed statistically significant differences across populations ($Wald = 9.73, p = 0.008$) and where social groups from ES were larger than social groups from RI and LM. Instead, range area overlap was similar across populations (GLM, $F_{2,9} = 0.90, p = 0.439$) and sex (GLM, $F_{1,9} = 0.47, p = 0.510$) of degus (fig. 6). Thus, a decreasing gradient of social complexity in terms of group size was $ES > RI = LM$.

Population and Species Differences in Brain Size, DG Volume and Cell Number

The brains of 11 adult-sized *O. degus* (6 females and 5 males) and 6 *O. lunatus* (3 females and 3 males) were examined during this study (table 1). We found a statistically significant population by sex interaction effect on brain size ($F_{2,10} = 7.92, p = 0.009$), where female *O. lunatus* from LM had larger brains than males, but not so in *O. degus* from RI or ES (fig. 7). Body mass of degus did not influence brain size ($F_{1,10} = 1.82, p = 0.207$). Our examination of the relative volume of DG indicated no effects of population ($H_{2,11} = 3.20, p = 0.074$) or a population by sex interaction ($H_{2,11} = 3.20, p = 0.202$).

When potential differences between hemispheres were considered, we found a statistically significant population by hemisphere interaction ($F_{2,11} = 4.27, p = 0.042$), where the right hemisphere of male and female DG had more cells than the left hemisphere, but only in *O. lunatus* at LM (Student-Newman-Keuls post hoc test, $p = 0.030$; fig. 8).
Table 2. Akaike’s information criterion (AIC) values associated with five possible best-fit models explaining differences in brain size, DG cell number and relative DG volume per brain hemisphere in *O. lunatus* at LM

<table>
<thead>
<tr>
<th>Variable examined and model</th>
<th>Parameters, (n)</th>
<th>AIC</th>
<th>(\Delta \text{AIC})</th>
<th>Akaike weight</th>
<th>Evidence ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additive</td>
<td>3</td>
<td>-7.511</td>
<td>0.000</td>
<td>0.000</td>
<td>0.001</td>
</tr>
<tr>
<td>Sex</td>
<td>1</td>
<td>4.157</td>
<td>11.668</td>
<td>0.222</td>
<td>0.187</td>
</tr>
<tr>
<td>Total group size</td>
<td>1</td>
<td>5.568</td>
<td>13.079</td>
<td>0.320</td>
<td>0.379</td>
</tr>
<tr>
<td>Range area</td>
<td>1</td>
<td>6.225</td>
<td>13.736</td>
<td>0.494</td>
<td>0.526</td>
</tr>
<tr>
<td>Body mass</td>
<td>1</td>
<td>6.558</td>
<td>14.069</td>
<td>1.000</td>
<td>0.621</td>
</tr>
<tr>
<td>Relative DG volume/hemisphere</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td>1</td>
<td>-138.022</td>
<td>0.000</td>
<td>0.579</td>
<td>1.000</td>
</tr>
<tr>
<td>Total group size</td>
<td>1</td>
<td>-137.070</td>
<td>0.952</td>
<td>0.853</td>
<td>1.610</td>
</tr>
<tr>
<td>Range area</td>
<td>1</td>
<td>-132.719</td>
<td>5.303</td>
<td>0.658</td>
<td>14.175</td>
</tr>
<tr>
<td>Body mass</td>
<td>1</td>
<td>-131.410</td>
<td>6.612</td>
<td>1.000</td>
<td>27.276</td>
</tr>
<tr>
<td>Additive</td>
<td>3</td>
<td>-78.40</td>
<td>59.282</td>
<td>1.000</td>
<td>7.46e+15</td>
</tr>
<tr>
<td>DG cell number/hemisphere</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td>1</td>
<td>-137.247</td>
<td>0.000</td>
<td>0.644</td>
<td>1.000</td>
</tr>
<tr>
<td>Total group size</td>
<td>1</td>
<td>-135.443</td>
<td>1.804</td>
<td>0.734</td>
<td>2.465</td>
</tr>
<tr>
<td>Range area</td>
<td>1</td>
<td>-132.796</td>
<td>4.451</td>
<td>0.735</td>
<td>9.258</td>
</tr>
<tr>
<td>Body mass</td>
<td>1</td>
<td>-130.751</td>
<td>6.496</td>
<td>1.000</td>
<td>25.739</td>
</tr>
<tr>
<td>Additive</td>
<td>3</td>
<td>-76.374</td>
<td>60.873</td>
<td>1.000</td>
<td>1.65e+16</td>
</tr>
</tbody>
</table>

Predictors in these models were sex, body mass, range area and total group size. Values in italics indicate the best-fit, yet not well-supported model for each variable. A best-fit model that was well supported had the lowest AIC value, \(\Delta \text{AIC} < 2 \), Akaike weight approaching 0.90 or higher and evidence ratios close to 1 [Burnham and Anderson, 2002; Symonds and Moussalli, 2011].

Fig. 7. Female and male relative (to body mass) brain size across populations of *O. lunatus* (LM) and *O. degus* (ES and RI). Means ± SE. *p < 0.001.

Fig. 8. Female and male total number of DG cells in each brain hemisphere across populations of *O. lunatus* (LM) and *O. degus* (ES and RI). Means ± SE. *p < 0.001.
Within-Population Predictors of Neuroanatomical Variables

The examination of how sex, body mass, range area and total group size predicted brain size of *O. lunatus* revealed that the best-fit model at LM was not well supported (table 2). Similarly, the best-fit model at ES was not well supported, implying that brain size of *O. lunatus* and *O. degu* was not well predicted by any of the factors examined (table 3).

Regarding DG cell number by hemisphere, the best-fit model at LM was not well supported, implying that DG cell number of *O. lunatus* was not well predicted by sex, body mass, range area or total group size. In contrast, the best-fit and well-supported model at ES was the full additive model (table 3). Thus, large-sized *O. degus* that ranged over larger areas and were members of larger social groups exhibited a higher number of cells per hemisphere. Instead, the best-fit model explaining relative DG volumes per hemisphere of *O. lunatus* at LM (table 2) and *O. degus* at ES (table 3) were not well supported, implying that there was no association between relative DG volumes per hemisphere and any of the predictors examined.

Discussion

Habitat conditions relevant to animal movements differed across all three populations. Shrub cover was greater at LM, intermediate at ES and minimal at RI. Rock cover was relatively lower at LM and RI compared with ES. Cover of herbaceous vegetation was higher at RI compared with LM and RI. When habitat conditions were examined in terms of the spatial behavior of animals, we found degus from LM to range over larger areas compared with degus at ES. The tracking of fluorescent marks further indicated movement of *O. degus* intersected more patches with shrubs and grass at ES compared with RI. *O. degus* trajectories at RI intersected patches with more bare ground than trajectories at ES. These findings suggest...
that greater overhead or total shrub cover at LM makes the use of distant visual cues or global landmarks more difficult to see, implying that this habitat is more cognitively challenging for individual spatial use compared with RI. The relatively intermediate shrub and grass cover at ES would make the use of local and global landmarks less difficult to see compared with LM. The complete absence of shrub and grass cover at RI would make the use of global landmarks an easier task compared with LM and ES. In contrast to vegetation cover of habitat, the social environment was more cognitively challenging at ES compared with LM and RI, as revealed by differences in total group size (a measure of social tolerance and the potential for social interactions), but not total range area overlap (a measure of social cohesion during activity). These differences in habitat and social conditions did co-vary with differences and similarities in brain size and hemisphere DG morphology to different extents. In particular, female O. lunatus had larger brains than males from LM, a sex-linked difference not recorded in O. degus from RI or ES. Males and females degus from all three populations had similarly sized DG in terms of relative volume. Alternatively, absolute differences in brain size may represent size-scaled, allometric differences. This is supported by the observation that relative brain size was not different among the populations. Mammalian brain evolution has often been studied with the implicit assumption of common scaling rules. However, the relationship between brain size and the number of neurons varies between individuals, among species and among neuroanatomical structures [Herculano-Houzel et al., 2015]. Subsequent studies are needed to determine how this absolute differences associate with brain structures other than DG.

The right hemisphere of male and female O. lunatus from LM had more cells than the left hemisphere, a DG asymmetry not found in O. degus from ES or RI. Thus, the larger brain size of females and higher DG cell number in male and female O. lunatus were associated with the use of habitat with greater shrub cover. Instead, similarly sized right- and left-hemisphere DG of O. degus were associated with differences in social conditions based on total group size. Taken together, population differences in brain size and DG cell number seemed more responsive to differences in habitat complexity than to differences in social complexity.

Effects of Habitat

Our population and species comparisons confirmed an association between physical conditions of habitat and DG cell number and brain size. Brain size and DG cell number in O. degus from ES were associated to within-population variation in habitat conditions. Individuals need to manage and process spatial information on physical environment during spatial navigation [Clutton-Brock and Harvey, 1980; Sherry et al., 1992]. As predicted by Dukas [1998] and Shettleworth [1998], we confirmed an influence of cognitive constraints derived from physical conditions of habitat on DG organization.

Habitat conditions influence navigation of scatter hoarding birds and small mammals, and species exposed to seasonal variation in terrestrial or aerial cover in space and/or time exhibit greater hippocampal volume and spatial recall accuracy [Clayton and Krebs, 1994; Jacobs, 1995, 1996; Barkley and Jacobs, 1998]. We lack information on handling, transport and storage of food in O. lunatus. However, these rodents exhibit high fidelity to their resting locations despite roaming over extensive range areas [Sobrero et al., 2014], implying that O. lunatus has the ability to search and locate resting sites despite habitat conditions that make the use of distant landmarks more challenging. Recently, Vega-Zuniga et al. [2013] showed that O. lunatus has a small number of retinal ganglion cells and, therefore, low visual acuity, a condition that matches the partially nocturnal activity of these rodents [Sobrero et al., 2014]. More importantly, a greater number of brain cells is linked to greater computational capacity or cognitive ability in rodents and other mammals [Herculano-Houzel et al., 2006, 2007]. Thus, the higher DG cell number recorded in O. lunatus compared with O. degus may reflect the greater challenges faced by O. lunatus in terms of more difficult use of long-range landmarks. Intriguingly, navigation based on local landmarks may be similarly limited as these rodents do not burrow or use runways actively [Sobrero et al., 2014].

The observation that female O. lunatus from LM had larger brains than males remained puzzling. These findings might reflect greater cognitive difficulties in the females for spatial learning and navigation compared with males [Cimadevilla, 2001; Jacobs and Schenk, 2003; Barkley and Jacobs, 2007]. Males can generate cognitive maps and navigate efficiently based on the use of global references exclusively [Langley, 1994]. In contrast, females rely more on local references [Langley, 1994; Sandstrom et al., 1998; MacFadden et al., 2003]. Popović et al. [2010] demonstrated gender dimorphism in O. degus spatial navigation. O. degus males subjected to spatial navigation challenges tend to explore (or look for alternative navigation strategies) the environment earlier and more widely than females. In contrast, the females exhibit initially longer fixation duration, a condition necessary for encoding
specific landmarks [Popović et al., 2010]. While all three degu populations were examined during the breeding season, female subjects were mostly pregnant in O. degus populations and lactating in the O. lunatus population. Thus, we cannot rule out that differences in the breeding stage within the breeding season further contributed to brain size differences between female and male O. lunatus or between species differences. Seasonal and sex differences in overall brain size remain poorly understood, but likely include hippocampal dendritic morphology, cell sizes, numbers of cells and water content [Pucek, 1965; Pyter, 2005; Workman et al., 2009].

Female O. lunatus of this study included lactating individuals, a condition characterized by important changes in circulating hormones, hippocampal anatomy and cognition [Roes and Galea, 2016]. Previous studies revealed how low estradiol and high progesterone levels increase spatial ability in pregnant rats [Galea et al., 2000], and Hamilton et al. [1977] demonstrated that lactating rats had increased cortical thickness compared with non-breeding rats. Thus, potential hormonal differences associated with these different breeding stages may have translated into various volumes in neuroanatomical structures linked to the construction of cognitive maps for navigation [McEwen, 2002]. Subsequent studies are needed to examine how seasonal changes in spatial behavior are linked to variation in hormone levels and brain structure in free-ranging adult degus and other rodents.

Our study also revealed directional asymmetry at the population or species level [Rogers et al., 2013], and where the DG cell number of the right hemisphere was consistently higher than the DG cell number of the left hemisphere of O. lunatus. Brain asymmetry has been linked to a greater ability for information processing and cognition in several ecological contexts, including escape from predators and foraging [Rogers et al., 2013]. The right hemisphere of domestic chickens, rats and humans is involved in short-term memory of object location [LaMendola and Bever, 1997; Vallortigara et al., 2004; Maguire et al., 2006]. Thus, asymmetry in the DG cell number of O. lunatus is further consistent with more challenging conditions of habitat in terms of navigation ability.

Effects of Sociality
Population differences in sociality were not associated with neuroanatomical differences in degus. Relatively more social degus from ES did not have greater brain size, relative DG volume or DG cell number. On the other hand, O. lunatus was less social than O. degus from ES yet exhibited greater brain size (females) and DG cell number. Moreover, at least three observations suggest reduced opportunities for cooperative behavior in O. lunatus, an additional and relevant aspect of sociality. In particular, O. lunatus exhibit locomotor activity during daytime and nighttime, associated with high shrub cover [Sobrero et al., 2014]. The use of closed habitat conditions coupled to a partially nocturnal activity in O. lunatus would reduce opportunities to decrease the predation risk through social vigilance or its potential benefit as suggested by species comparisons across caviomorph rodents [Ebensperger and Cófrè, 2001; Ebensperger and Blumstein, 2006]. Second, an absence of burrow digging may prevent cooperation in terms of communal burrowing as recorded in O. degus [Ebensperger and Bozinovic, 2000]. Third, the observation that female O. lunatus from the same social groups were not simultaneously lactating [Sobrero et al., unpubl. data] further indicates reduced (if any) opportunities for communally rearing their offspring. Altogether, these considerations suggest a more challenging environment in terms of sociality in O. degus compared with O. lunatus. Therefore, population differences in brain size and DG cell number seem more closely associated with cognitive demands from the physical environment and navigation rather than to social demands in these rodents.

Interestingly, neuroanatomical variation was associated with differences in total group size within populations of O. lunatus and O. degus, suggesting neuroanatomical plasticity to social conditions. Previous laboratory studies have shown how experimental changes in the composition of social groups influence DG cell proliferation in adult female prairie voles (Microtus ochrogaster) [Fowler et al., 2002]. Changes in group composition (i.e. a form of social instability) may disrupt adult partnerships reflecting social bonds and potentially affect social interactions, including communal rearing [Champagne and Curley, 2009; Cirulli et al., 2010]. Since permanent changes in group composition are known to occur in O. degus during the breeding season [Ebensperger et al., 2009], these animals represent a natural model to determine how changes in brain asymmetry and DG morphology underlie the effect of varying social conditions on social interactions among individuals.

Overall, results from this study suggest a greater influence of habitat complexity on population differences in DG anatomy compared with social conditions, but a joint effect of habitat and social environments within populations. Our findings highlight how degus and other non-traditional study species [Burger et al., 2013; Amrein et al., 2014; Burger et al., 2014] are important for a better understanding of adult hippocampal plasticity in an eco-
logically relevant context. Our study also shows how records of habitat, and social and neuroanatomical measures to the same wild study subjects are important to place firmer conclusions on these associations. Yet, statements from this study remain constrained by the relatively small number of subjects studied, an unavoidable compromise between sufficient statistical power and the numbers of animals that could be sacrificed to quantify neuroanatomical measures [Sikes et al., 2011]. This was a particularly important concern in *O. lunatus*, a wild and hardly known species [Sobrero et al., 2014].

Acknowledgements

We are very thankful to our colleagues Verónica Lahoz, Juan Monárdez, Macarena Palma, Cecilia León, Juan Carlos Ramírez, Daniela Rivera, Francisco Vargas, Rachel Chock, Morgan Elfelt, Tina Wey, Valentina Bunster, Nickolas Ulloa and Loren Hayes for field assistance. We are indebted to Roman Andrade (Fundó El Salitre, IV Región) and Marcelo Orellana Reyes (Estación Experimental G. Greve Silva, Región Metropolitana) for providing all necessary facilities to access the field sites. Our thanks go to our colleagues Timothy C. Roth II, Sara Fernández, Elisa Sentis and Alfonso Detchler for advice and assistance in obtaining histological data. Timothy C. Roth II provided constructive and useful comments that improved an earlier version of this article. We also thank Loreto Correa for her insightful suggestions during the discussion of results. Valeria Campos kindly helped with analyses in R. This study was partially supported by FONDECYT (grant 3150306 to R.S. and grant 1090302 to L.A.E.) and Program I of the Centro de Estudios Avanzados en Ecología y Biodiversidad (FONDAP 1501-001).

References

Herculano-Houzel S, Messeder DJ, Fonseca-Azevedo K, Pantoja NA (2015): When larger brains do not have more neurons: increased numbers of cells are compensated by decreased average cell size across mouse individuals. Front. Neuroanat 9:64.

doi:10.1159/000444741
Activity, overlap of range areas, and sharing of resting locations in the moon-toothed degu, Octodon lunatus. J Mammal 95:91–98.

