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a b s t r a c t 

In this work we propose a numerical strategy to solve a family of partial differential equations arising 

from the water-wave theory. These problems may contain four terms; a source which is an algebraic 

function of the solution, a convective part involving first order spatial derivatives of the solution, a dif- 

fusive part involving second order spatial derivatives and the transient part. Unlike partial differential 

equations of hyperbolic or parabolic type, where the transient part is the time derivative of the solution, 

here the transient part can contain mixed time and space derivatives. 

In [Zambra et al. International Journal for Numerical Methods in Engineering 89(2):227-240, 2012], 

the authors proposed a globally implicit strategy to solve the Richards equation. In that case, transient 

terms consisted of algebraic expressions of the solution. Motivated by this work, we propose a one-step 

finite volume method to deal with problems in which transient terms are differential operators. Here, a 

locally implicit formulation is investigated, which is based on the ADER philosophy. The scheme is di- 

vided in three steps: i) a polynomial reconstruction of the data; ii) solutions to Generalized Riemann 

Problems (GRP); iii) the solution of differential problems. Note that steps i) and ii), are those of conven- 

tional ADER schemes for conservation laws. Advantages of the present approach include the possibility 

to construct high-order approximations in both space and time, for which existing methodologies for 

hyperbolic problems can be applied. The differential problems associated to the transient term can be 

non-linear and numerical strategies can be adopted to deal wit it. Convergence of the scheme is proved 

rigorously and an empirical convergence rates assessment is carried out in order to illustrate the high 

space and time accuracy of the present scheme. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The water-wave theory describes the motion of the free surface

and the velocity field of an ideal, incompressible and irrotational

fluid under the influence of gravity. The force acting on the free

surface is expressed in terms of the Bernoulli equation for irro-

tational flows, in this form the pressure is included in terms of

dynamical boundary conditions, [42,43] . The phenomena are gov-

erned by a strongly non-linear system of partial differential equa-

tions in a time dependent domain formed by a parametrized free

surface profile and a bottom surface or topography. However, im-

portant simplifications can be achieved by neglecting some am-

plitude scales associated with the depth, topography and free sur-

face. So, for example for large amplitude, the Green–Naghdi model
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34] is derived. Similarly for small topography variations see [6] ,

or medium amplitude topography variations see model in [53] .

hese problems may contain four terms; a source which is an al-

ebraic function of the solution, a convective part involving first

rder spatial derivatives of the solution, a diffusive part involving

econd order spatial derivatives and the transient part. Unlike par-

ial differential equations of hyperbolic or parabolic type, where

he transient part is the time derivative of the solution, here the

ransient part can contain mixed time and space derivatives. 

Numerical methods to solve equations derived from the wa-

er waves theory, include the splitting methods of Chazel et al.

20] and Bonneton et al. [14] , where the Green–Naghdi equations

ave been solved. Due to the splitting nature these methods are

t most second order of accuracy and the stability is governed by

 condition on Courant–Friedrich–Levy (CFL) coefficient. The accu-

acy has been improved by using standard Galerkin-finite element

ethod for spatial discretization and fourth-order explicit Runge–

utta schemes for marching in time, in [1–3] , Boussinesq equations

http://dx.doi.org/10.1016/j.compfluid.2016.04.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2016.04.012&domain=pdf
mailto:gmontecinos@dim.uchile.cl
http://dx.doi.org/10.1016/j.compfluid.2016.04.012
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ave been solved with that strategy. Some variants are proposed in

32,52,56] , where KdV equations have been solved through finite

ifference schemes, whose stability is also governed by a CFL type

onstraint, these schemes are of second-order of accuracy in space.

pline functions for spatial discretization and implicit Runge–Kutta

ethods for marching in time have been proposed in [10–13] . Re-

arding accuracy, it is well known that the finite volume method

rovides accurate, efficient and robust schemes to approximate

onservation laws. Due to that, of special interest for us is the work

n [30] , where the finite volume framework for conservation laws

as been extended to approximate solutions of dispersive wave

quations, in particular for the classical Boussinesq system. Numer-

cal fluxes are employed to discretize the convective part, whereas

ispersive terms are discretized by using centred finite differences,

or marching in time a TVD Runge–Kutta method is used; the

ethod is reported to be of third-order of accuracy. To our knowl-

dge, recent contributions for solving this type of problems are

30,31,41,44,54] . A different strategy for the Green–Naghdi model is

roposed in [45] and [47] , the authors have introduced a new vari-

ble, which accounts for terms containing mixed time and spatial

erivatives. It allows to reformulate the problem as a coupled sys-

em between a parabolic conservation law and an elliptic equation.

n [45] a Godunov type scheme is employed to solve the parabolic

onservation law, whereas, an ordinary differential equation is con-

tructed to get sought solutions from the elliptic equation. In [47] a

entral discontinuous Galerkin method is used to solve the conser-

ation laws, whereas, a continuous finite element method solves

he parabolic equation. As wee will see later, this strategy can be

xtended and formulated in a high order finite volume framework.

In this paper we propose a one-step finite volume evolution of

ifferential operators as those in [30] , here based on Zambra et al.

70] . Here, a unified framework to discretize convective and dis-

ersive terms will be presented. In [70] , a numerical scheme to

olve the Richards equation was proposed. An ADER type method

as used to evolve the water content as function of the hydraulic

ressure in a porous media. The ADER (arbitrary Accuracy DERiva-

ive Riemann problems) method was first put forward by Toro

t al. [64] , in the finite volume framework, for solving linear hyper-

olic equations in one and multiple space dimensions on Cartesian

eshes; see also Schwartzkopff, Munz and Toro [55] . The exten-

ion of ADER finite volume (ADER-FV) to non-linear equations, due

o Titarev and Toro [58] , is based on a semi-analytical, explicit so-

ution of the generalized Riemann problem put forward by Toro

nd Titarev [62] . Since then, ADER has also been extended to the

iscontinuous Galerkin finite element framework by Dumbser [22] ,

iving rise to ADER-DG schemes. For an elementary introduction to

DER schemes and the generalised Riemann problem, the reader

s referred to chapters 19 and 20 of the textbook by Toro [65] .

urther generalisations were put forward by Dumbser et al. [22] ,

etting ADER-FV and ADER-DG in a generalised framework. The

DER approach has undergone numerous extensions and applica-

ions, examples include [4,5,15–17,19,21–24,26–29,38–40,48–51,57–

0,62,63] . 

In general ADER are high-order finite volume methods, which

ontain two building blocks, a) a reconstruction procedure which

s non-linear, and b) the solution of generalized Riemann prob-

ems. The ADER finite volume scheme in [70] required a predic-

or, which was obtained through a globally implicit space-time DG

cheme proposed by van der Vegt and van der Ven [66,67] . In [70] ,

he finite volume scheme evolved an algebraic equation of the un-

nown, hydraulic pressure. Therefore, motivated by this approach

e propose a finite volume formulation for the time evolution of

ifferential terms. In the present paper, an extension of the ADER-

ype scheme of Dumbser et al. [25] , is used; predictors are ob-

ained by solving a local weak formulation within cells. The dis-

ontinuous Galerkin approach is also used to compute the weak
olutions. Then the (Harten–Engquist–Osher–Chakravarthy) HEOC 

pproach, (see [18] for an extension to high order approach of the

riginal Harten et al. method [37] ), allows us to interact the pre-

ictors, evaluated at both sides of cell interfaces. To solve classical

iemann problems, required for the HEOC approach, a HLL type

olver has been developed. This provides a high order approxima-

ions to the numerical flux, and a similar procedure is carried out

or numerical source terms. Notice that this is a locally implicit

ethod to obtain a prediction, which is distinct to the globally im-

licit strategy in [70] . Advantages of the present method include;

he use of a CFL type condition, which ensures the high-order of

ccuracy in both space and time; the use of the Dumbser et al.

25] strategy, provides a suitable treatment of balance laws with

tiff source terms, reconciling accuracy and stability. Furthermore,

n this paper we prove analytically that the present algorithm con-

erges and we carried out a systematic convergence rate assess-

ent in order to illustrate that the present methodology reaches

igh-order of accuracy. 

The paper is organized as follows. In Section 2 the governing

quation and the numerical scheme are presented. In Section 3 a

heoretical result regarding the convergence of the numerical

cheme for the scalar and linear case is presented. In Section 4 ,

uitable tests are solved. Finally, in Section 5 the conclusions are

rawn. 

. The model system and the numerical scheme 

In this work we are interested in systems of time-dependent

artial differential equations in the form 

 t L (Q (x, t)) + ∂ x F (Q (x, t)) = S (Q (x, t)) , x ∈ [ x L , x R ] , t ∈ [0 , T ] , (1) 

here Q ∈ R 

m is the vector of unknown, F ( Q ) is the physical flux,

 ( Q ) is the source term, L (Q ) is a differential operator which only

ontains spatial-derivatives, so we can assume 

 (Q ) =: G(Q ) + B(Q ) , (2) 

ith 

(Q ) = 

r ∑ 

k =1 

a k ∂ 
(k ) 
x Q , (3) 

here G(Q ) may be a non-linear algebraic function, a ′ 
k 
s are con-

tant values and r is the maximum order of the spatial derivatives,

hich in this work is assumed to be r = 2 . Additionally, we assume

hat given a regular enough function W , the problem 

L (Q ) = W (x ) , 

Q (x L ) = W (x L ) , Q (x R ) = W (x R ) , 

} 

(4) 

as an exact solution Q ( x ), where boundary conditions are given in

erms of some prescribed functions W ( x L ) and W ( x R ). 

In this work, to solve (1) we propose a numerical scheme based

n the finite volume method. So we divide [ x L , x R ] into N uni-

orm cells I i = [ x 
i − 1 

2 
, x 

i + 1 
2 

] . Then, we integrate (1) on the space-

ime control volume I n 
i 

= [ x 
i − 1 

2 
, x 

i + 1 
2 

] × [ t n , t n +1 ] , which provides

he following one-step finite volume formula: 

W 

n +1 
i 

= W 

n 
i 

− �t 
�x 

[ 
F i + 1 2 

− F i − 1 
2 

] 
+ �tS i , (5) 

ith 
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W 

n 
i 

= 

1 
�x 

∫ x i + 1 
2 

x 
i − 1 

2 

L (Q (x, t n )) dx , 

F i + 1 2 
= 

1 
�t 

∫ t n +1 

t n F (Q (x i + 1 2 
, t)) dt , 

S i = 

1 
�t 

1 
�x 

∫ x i + 1 
2 

x 
i − 1 

2 

∫ t n +1 

t n S (Q (x, t )) dt dx . 

⎫ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎭ 

(6)

These integrals are exact if Q ( x, t ) is available inside I n 
i 

. However,

due to cell average evolution we are only able to provide approx-

imations to F 
i + 1 

2 
and S i . In this paper an ADER type discretization

is proposed to approximate these terms. 

Once, { W 

n +1 
i 

} N 
i =1 

is available, { Q 

n +1 
i 

} N 
i =1 

is obtained from the

equation 

W (x, t n +1 ) = L (Q (x, t n +1 )) , x ∈ [ x L , x R ] . (7)

Here the solution is obtained numerically, so the discretization of

Eq. (7) involves the discrete values W 

n +1 
i 

and Q 

n +1 
i 

. Therefore, an

algebraic equation for { Q 

n +1 
i 

} N 
i =1 

has to be solved. 

In the following section we provide a succinct review of ADER

schemes and GRP solvers. 

2.1. ADER finite volume schemes and GRP solvers 

The ADER finite volume approach computes high-order approx-

imations to the integral averages (6) , to obtain an ADER numerical

flux and an ADER numerical source, if present. The ADER method-

ology is an extension of the second-order method of Ben-Artzi

and Falcoviz [7] . The extension concerns the Generalised Riemann

Problem (GRP) to evaluate the numerical flux, and is two-fold:

(a) the initial condition for the GRP is piece-wise polynomials of

any degree, and (b) the equations preserve their source terms, if

present originally. 

The ADER approach was first put forward by Toro et al. [64] , for

linear problems on Cartesian meshes, see also [55] . These methods

are one-step schemes, fully discrete, containing two main ingre-

dients to determine the numerical flux, namely (i) a high-order,

non-linear spatial reconstruction procedure and (ii) solution of a

generalised, or high order, Riemann problem (GRP) at each cell in-

terface. If source terms are present, an additional, analogous step is

required. Reconstructions should be non-linear, to circumvent Go-

dunov’s theorem [33,65] . 

The first practical solver for the GRP is due to Toro and Titarev

[62] . Here, the authors computed numerical fluxes by evaluating

the solution of GRP at fixed interface positions. In this solver, the

solution is proposed as a Taylor series in time, where the leading

term is computed as the solution to a possible non-linear classical

Riemann problem and time derivatives are expressed in terms of

spatial derivatives by using the well-known Cauchy–Kowalewkaya

procedure. A sequence of linearized classical Riemann problems,

provides the spatial derivatives. Later, Castro and Toro [18] have re-

interpreted the Harten et al. solver [37] in terms of GRP’s, which

they have called the HEOC solver. Extrapolated solution at the

interface position were interacted through a classical, and possi-

ble non-linear Riemann problem. Here, Taylor series expansions

in time were proposed to obtain these extrapolated values. The

Cauchy–Kowalewskaya procedure was again used to obtain extrap-

olations, and spatial derivatives were obtained from the derivatives

of the reconstruction polynomials. Subsequently, Dumbser, Enaux

and Toro [25] proposed to use the discontinuous Galerkin method

to obtain a local polynomial predictor of the solution within cells.

So extrapolation at the interface were computed by evaluating

these predictors at both sides of the interface. Notice that this

method is an alternative to the Harten et al. re-interpretation pro-

vided by Castro and Toro, which avoid the use of the Cauchy–

Kowalewskaya procedure. A more recent GRP solver due to Toro

and Montecinos, [61] , regards an implicit re-interpretations of the
xisting solvers of Toro-Titarev and the HEOC solver of Castro and

oro. 

In particular in this paper, the HEOC solver provided by Cas-

ro and Toro [18] is adopted. Therefore, the numerical flux and the

ource term are computed as 

F i + 1 2 
= 

1 
�t 

∫ t n +1 

t n F h (Q i (x i + 1 2 
, t) , Q i +1 (x i + 1 2 

, t)) dt , 

S i = 

1 
�t�x 

∫ t n +1 

t n 

∫ x i + 1 
2 

x 
i − 1 

2 

S (Q i (x, t)) d xd t , 
(8)

ith F h ( Q L , Q R ) a function of two arguments Q L and Q R , which

tands for a numerical flux (classical Riemann solver), as we will

ee in Section 2.3 , it is a HLL type solver. Here, Q i ( x, t ) is a

rediction of the solution within I n 
i 

. Therefore, Q i (x 
i + 1 

2 
, t) and

 i +1 (x 
i + 1 

2 
, t) are the boundary extrapolated solutions on the left

nd right side of the cell interface x = x 
i + 1 

2 
at a given time t . The

trategy to compute Q i ( x, t ) in I n 
i 

is presented in the next section.

his is motivated by the approach due to Dumbser, Enaux and Toro

DET), see [25] . 

.2. The Dumbser–Enaux–Toro (DET) solver to compute the predictor 

In this section we present the strategy to solve Q i ( x, t ) in I n 
i 

.

his is found by solving 

∂ t L (Q (x, t)) + ∂ x F (Q (x, t)) = S (Q (x, t)) , 

Q (x, 0) = P i (x ) , 

⎫ ⎬ 

⎭ 

(9)

ere P i ( x ) is the polynomial resulting from the reconstruction pro-

edure. For the sake of simplicity, we may consider problem (9) in

erms of variables 0 ≤ ξ ≤ 1 and 0 ≤ τ ≤ 1, which are related with

 and t by x (ξ ) = x 
i − 1 

2 
+ ξ�x and t(τ ) = t n + τ�t . So, (9) takes the

orm 

∂ τL 

∗( ̄Q (ξ , τ )) + ∂ ξ F ∗( ̄Q (ξ , τ )) = S ∗(Q (x, t)) , 

Q̄ (ξ , 0) = P i (x (ξ )) , 

⎫ ⎬ 

⎭ 

(10)

ith F ∗( ̄Q ) = 

�t 
�x 

F ( ̄Q ) , S ∗( ̄Q ) = �tS ( ̄Q ) and 

 

∗( ̄Q ) = �( ̄Q , �x −1 ∂ ξ Q̄ , ..., �x −r ∂ (r) 
ξ

Q̄ ) . 

t will be convenient to introduce the differential operator 

 

∗( ̄Q ) := 

r ∑ 

k =1 

a k 
�x k 

∂ (k ) 
ξ

Q̄ . (11)

roblem (10) is solved in a weak sense. To this end we set a La-

rangian polynomial basis in [0, 1] × [0, 1], which is denoted by 

 = span { φ1 (ξ , τ ) , ..., φMD (ξ , τ ) } , 
here MD = M 

2 are the degrees of freedom of this polynomial

pace. Here M + 1 is the order of accuracy of the approximation.

dditionally, let us assume that reconstruction procedure, is sup-

orted by a polynomial space spanned by the Legendre polynomi-

ls in [0, 1] denoted by ψ 1 ( ξ ), ..., ψ M 

( ξ ), hence, 

 

∗
i (ξ ) := P i (x (ξ )) = 

M ∑ 

k =1 

ψ k (ξ ) ̂  w k . 

herefore, multiplying by a test function, we have 

 1 

0 

∫ 1 

0 

∂ τ L̄ φ j (ξ , τ ) dξdτ + 

∫ 1 

0 

∫ 1 

0 

∂ ξ F ∗φ j (ξ , τ ) dξdτ

= 

∫ 1 ∫ 1 

∂ ξ S ∗k φ j (ξ , τ ) dξ . (12)

0 0 
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Fig. 1. Sketch of the wave model for HLL type flux. 
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ow, we propose a solution in V , given by 

¯
 i (ξ , τ ) = 

MD ∑ 

l=1 

φl (ξ , τ ) ̂  Q 

i 
l . 

s the basis is nodal we consider the following approximations: 

G(Q ) = 

MD ∑ 

l=1 

φl (ξ , τ ) G( ̂  Q 

i 
l ) , 

 

∗(Q ) = 

MD ∑ 

l=1 

B 

∗(φl (ξ , τ )) ̂  Q 

i 
l , 

F ∗(Q ) = 

MD ∑ 

l=1 

φl (ξ , τ ) F ∗( ̂  Q 

i 
l ) , S 

∗(Q ) = 

MD ∑ 

l=1 

φl (ξ , τ ) S ∗( ̂  Q 

i 
l ) . (13) 

or a friendly notation, let us define the operators 

 f, g} τ = 

∫ 1 

0 

f (ξ , τ ) g(ξ ) dξ , [ f, g] τ = 

∫ 1 

0 

f (ξ , τ ) g(ξ , τ ) dξ , 〈 f, g

= 

∫ 1 

0 

∫ 1 

0 

f (ξ , τ ) g(ξ , τ ) d ξd τ . (14

hen the weak formulation for this problem provides 

 φk , L 

∗( ̄Q i )] 1 − 〈 ∂ τ φk , L 

∗( ̄Q i ) 〉 + 〈 φk , ∂ ξ F ∗( ̄Q i ) 〉 
= 〈 φk , S 

∗( ̄Q i ) 〉 + { φk , L 

∗(P 

∗
i ) } 0 . (15) 

e propose an iterative process, which converges linearly to ap-

roximations of (15) . It is based on a decomposition of the govern-

ng equations in two sub-problems 

Problem A : ∂ τ ( ̄Q (ξ , τ ) + B 

∗( ̄Q (ξ , τ ))) + ∂ ξ F ∗( ̄Q (ξ , τ )) 

= S ∗( ̄Q (ξ , τ )) , 

Problem B : ∂ τ (G( ̄Q (ξ , τ )) − Q̄ (ξ , τ )) = 0 . (16) 

n order to introduce the strategy let us define the following ma-

rices: 

K 

1 
k,l 

= [ φk , φl ] 1 − < ∂ τ φk , φl > , K 

τ
k,l 

= < φk , ∂ τB 

∗(φl ) > , 

K 

ξ
k,l 

= < φk , ∂ ξφl > , M k,l = < φk , φl > , 

K 

0 
k,l 

= [ φk , φl ] 0 , F 0 
k,l 

= { φk , ψ l } 0 , 
Q l = 

ˆ Q 

i 
l 
, G (Q ) l = G ( ̂  Q 

i 
l 
) , 

F(Q ) l = F ∗( ̂  Q 

i 
l 
) , S(Q ) l = S ∗( ̂  Q 

i 
l 
) , 

W l = 

ˆ w 

i 
l 
, G (W) l = G ( ̂  w 

i 
l 
) . 

(17) 

o weak formulations of sub-problems are used to compute the

egrees of freedom of the sought solution to (15) . It is carried out

n terms of the following iterative process: 

tep 1: Provide a starting guess Q 

0 . In this work it is given by

Q 

0 
(k −1) M+ l = ˆ w l , with l, k = 1 , ..., M. 
tep 2: Solve the weak formulation associated to the Problem A: 

(K 

ξ + K 

τ ) Q 

(k + 1 2 ) + K 

ξF 

∗(Q 

(k ) ) = M S ∗(Q 

(k + 1 2 ) ) + F 0 W . (1

tep 3 : Solve the weak formulation associated to Problem B, which

in matrix form reads 

K 

1 (G(Q 

(k +1) ) − Q 

(k +1) ) = K 

0 (G(Q 

(k + 1 2 ) ) − Q 

(k + 1 2 ) ) . (19) 

tep 4 : Stop if ||Q 

k +1 − Q 

k || l 1 < T ol, otherwise return to Step 2.

Here, we set T ol = 1 e −6 . 

At this point we remark that standard fixed point iteration pro-

edures may be applied to solve (15) . Notice that the source term

s included in this formulation and solved implicitly through a

xed point iteration procedure. This feature makes this solver able

o solve problems in which the source terms are stiff. 

.3. Derivation of an HLL type numerical flux 

Let us consider the Riemann problem given by 

∂ t L (Q ) + ∂ x F (Q ) = 0 , 

Q (x, 0) = 

{ 

Q L , x < 0 , 

Q R , x > 0 , 

⎫ ⎪ ⎬ 

⎪ ⎭ 

(20) 

here Q L and Q R are constant states. 

In this section we derive a numerical flux of HLL type for the

iemann problem (20) . Then let us construct a wave model as de-

icted in the Fig. 1 . Here x L ≤ TS L and x R ≥ TS R , where S L and S R 
re the faster waves speeds and T is a given time. Here, we are

nterested in the subsonic case, S L ≤ 0 ≤ S R . As we will see later,

he influence of T disappears. Let us start by approximating the cell

verage of the operator L 

∗, that means 

L 

∗ := 

1 
T (S R −S L ) 

∫ T S R 
T S L 

L (Q (x, T )) dx . 
(21) 

otice that this can be achieved by integrating Eq. (20) on [ TS L ,

S R ] × [0, T ] and by applying some algebraic manipulations, it

ields 

L 

∗ = 

S R L R −S L L L + F L −F R 
S R −S L 

, (22) 

here we have introduced the following notation: 

L R := L (Q R ) , L L := L (Q L ) , 

F R := F (Q R ) , F L := F (Q L ) . 
(23) 

n the other hand, if we integrate the governing equation on [0,

S R ] × [0, T ] and after some algebraic manipulations, we obtain 

1 
T 

∫ T S R 
0 L (Q (x, T )) dx − S R L R + F R − F ∗ = 0 , (24) 

here 

F ∗ := 

1 
∫ T 

F (Q (0 , t)) dt . (25) 
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Similarly, by integrating the governing equation on [ TS L , 0] × [0, T ]

and after some algebraic manipulations, we obtain 

1 
T 

∫ 0 
T S L 

L (Q (x, T )) dx + S L L L + F ∗ − F L = 0 , (26)

then by substituting the integrand in (24) and (26) by L 

∗ in

(22) and manipulating, we obtain 

S L (L L − L 

∗) + F ∗ − F L = 0 , 

S R (L 

∗ − L R ) + F R − F ∗ = 0 , 
(27)

from both equations we can remove L 

∗ and solve for F ∗, provid-

ing 

F ∗ = 

S R F L − S L F R + S L S R (L R − L L ) 

S R − S L 
. (28)

So, in virtue of (2) , it provides 

F ∗ = 

S R F L − S L F R + S L S R ((G R − G L ) + (B R − B L )) 

S R − S L 
, (29)

with G(Q L ) =: G L , G(Q R ) =: G R , B(Q L ) =: B L and B(Q R ) =: B R . 

Notice that, B(Q ) has only a jump discontinuity in x = 0 , whose

contribution is contained in L 

∗. However, L 

∗ does not influence the

numerical flux. Furthermore, because Q ( x , 0) takes constant values

at both sides of the interface x = 0 , we have ∂ (k ) 
x Q = 0 for x < 0

and x > 0. Therefore, due to (3) , B L = B R = 0 . So the HLL flux has

a similar form than for the hyperbolic case 

F ∗ = 

S R F L − S L F R + S L S R (G R − G L ) 
S R − S L 

. (30)

We remark that for −S L := S R = λmax = max {| λm 

|} , where | λm 

|

plays the role of eigenvalues in hyperbolic systems, we obtain an

equivalent Rusanov flux 

F ∗ = 

1 
2 
(F L + F R ) − λmax 

2 
(G R − G L ) . (31)

However, in this case λmax contains the eigenvalues of F with re-

spect to Q but also a measurement of the variation of L (Q ) with

respect to the variation of Q . Further, simplifications may be car-

ried out, if G(Q ) is a differentiable function, in such a case 

(G R − G L ) = G ′ (θ )(Q R − Q L ) , 

with θ j ∈ [ min ( Q R, j , Q L, j ), max ( Q R, j , Q L, j )], j = 1 , ..., m . So we pro-

pose 

F ∗ = 

1 
2 
(F L + F R ) − (λmax + G ′ max ) 

2 
(Q R − Q L ) , (32)

where G ′ max = max {|G ′ (Q L ) | , |G ′ (Q R ) |} . 

2.4. A strategy to provide λmax 

In this section we deal the issue of computing λmax to deter-

mine the HLL flux and for computing a stable time step. Let us

consider a discretization in space of the governing Eq. (1) as fol-

lows: 

L (Q ) ̇ Q = B (Q ) Q , (33)

where Q is the vector of N discretized values, the “ ·′′ symbol rep-

resents the derivative in time, L ( Q ) is the discretization matrix of

the diffusive operator L (Q ) and B ( Q ) the discretization matrix for

the advective part which also includes the source term, if present.

For the sake of simplicity, let us denote a matrix norm as well as

a vector norm, by the symbol || · ||. Additionally, let us assume the

following: 

• || ̇ Q (t) || > 0 for all t > 0 or || ̇ Q (t) || ≡ 0 for all t > 0. That means,

if the vector solution is a constant for some time, then it is a

constant vector for all times. 
• Bounded operators. We assume that there exist constant values
K L and K B such that, || L ( Q )|| ≤ K L and || B ( Q )|| ≤ K B . 
On the other hand, we note that a forward Euler integration

rovides 

 

n +1 = Q 

n + �tL −1 (Q 

n ) B (Q 

n ) Q 

n , 

o by taking norm 

|| Q 

n +1 || ≤ || Q 

n || + �t|| L −1 (Q 

n ) || · || B (Q 

n ) Q 

n || . (34)

rom (33) , we have 

|| B (Q ) Q || ≤ || L (Q ) || · || ̇ Q || . (35)

hus, we obtain 

|| Q 

n +1 || ≤ || Q 

n || + �t|| L −1 (Q 

n ) || · || L (Q ) || · || ̇ Q || . (36)

fter some manipulations 

|| Q n +1 ||−|| Q n || 
|| ̇ Q || ≤ �t|| L −1 (Q 

n ) || · || L (Q ) || , (37)

o by consistency of the Euler method we can assume that || L −1 || ·
| L || < ∞ , moreover, we may assume the quantity �t|| L −1 || · || L ||
o be small, thus we impose that 

�t|| L −1 || · || L || < (1 − C c f l )�x , (38)

here C cfl is the Courant–Friedrich–Levy coefficient and

ax || Q || =1 
|| L −1 (Q ) || 

|| Q || ≤ || L −1 || . On the other hand, from convec-

ion terms we have associated wave speeds, which correspond to

he eigenvalues of the Jacobian matrix A (Q ) = 

∂F (Q ) 
∂Q 

, denoted here

y λ1 ≤ ... ≤ λm 

. In addition, for hyperbolic problems we know

hat the stability constraint corresponds to 

�t ̄λ = C c f l �x . (39)

hus we have 

�t( ̄λ + || L −1 || · || L || ) < �x , (40)

here λ̄ = max {| λ j | j = 1 , ..., m } . Therefore, the time step is com-

uted as 

t = C c f l 

�x 

λmax 
, (41)

ith λmax = λ̄ + || L −1 || · || L || . In the following section we are go-

ng to deal the problem of convergence of the algorithm. 

. The L 1 
loc 

convergence of the numerical scheme 

In this section the convergence of the presented numerical

cheme is studied. The main result is presented in this sec-

ion, whereas, auxiliary lemmas and propositions are available in

ppendix A . Here, we consider the scalar case 

 t L (q (x, t)) + ∂ x f (q (x, t)) = s (q (x, t)) (42)

nd we will prove that the numerical scheme converges under reg-

lar conditions on L (q ) , f ( q ) and s ( q ). Let us assume that w (x, t) :=
 (q (x, t)) = q (x, t) + b(q (x, t)) , with b a linear operator. 

roposition 3.1. Let L (q ) be a linear operator, f ( q ) and s ( q ) contin-

ously differentiable functions of q. Then, the numerical scheme with

t chosen via CFL condition, converges in L 1 
loc 

(R ) for t ∈ [0, T ] . 

roof. Let us consider 

t = h 

�x 

λmax 
, (43)

ith h a proportionality constant between the wave speed and

esh velocity. It is associated with the CFL coefficient. On the

ther hand, we define the function w h ( x, t ) as w h (x, t) = w 

n 
i 

if

 ∈ [ x 
i − 1 

2 
, x 

i + 1 
2 

] and t ∈ [ t n , t n + �t] . Hence 

|| w h (t) || L 1 : = 

∑ 

i 

| w 

n 
i | �x , (44)
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Table 1 

Convergence rates for the linear model equation. We have used a C c f l = 0 . 3 , λ = 2 and t out = 1 . 

Theoretical order : 2 

Mesh L ∞ - err L ∞ - ord L 1 - err L 1 - ord L 2 - err L 2 - ord 

64 0.00 6 . 69 e − 01 0.00 4 . 13 e − 01 0.00 4 . 64 e − 01 

71 2.53 5 . 28 e − 01 2.70 3 . 21 e − 01 2.67 3 . 61 e − 01 

78 2.65 4 . 20 e − 01 2.79 2 . 52 e − 01 2.77 2 . 84 e − 01 

85 2.66 3 . 40 e − 01 2.81 2 . 02 e − 01 2.79 2 . 28 e − 01 

92 2.69 2 . 79 e − 01 2.82 1 . 64 e − 01 2.80 1 . 86 e − 01 

Theoretical order : 3 

Mesh L ∞ - err L ∞ - ord L 1 - err L 1 - ord L 2 - err L 2 - ord 

64 0.00 8 . 81 e − 02 0.00 5 . 61 e − 02 0.00 6 . 23 e − 02 

71 3.15 6 . 55 e − 02 3.16 4 . 17 e − 02 3.16 4 . 63 e − 02 

78 3.15 5 . 00 e − 02 3.15 3 . 18 e − 02 3.16 3 . 53 e − 02 

85 3.15 3 . 89 e − 02 3.16 2 . 48 e − 02 3.15 2 . 75 e − 02 

92 3.15 3 . 09 e − 02 3.14 1 . 97 e − 02 3.14 2 . 19 e − 02 

Theoretical order : 4 

Mesh L ∞ - err L ∞ - ord L 1 - err L 1 - ord L 2 - err L 2 - ord 

64 0.00 1 . 90 e − 03 0.00 1 . 13 e − 03 0.00 1 . 26 e − 03 

71 4.76 1 . 21 e − 03 4.73 7 . 26 e − 04 4.75 8 . 09 e − 04 

78 4.39 8 . 32 e − 04 4.32 5 . 01 e − 04 4.34 5 . 57 e − 04 

85 3.83 6 . 15 e − 04 3.76 3 . 72 e − 04 3.77 4 . 13 e − 04 

92 2.93 4 . 96 e − 04 2.90 3 . 01 e − 04 2.90 3 . 34 e − 04 

Theoretical order : 5 

Mesh L ∞ - err L ∞ - ord L 1 - err L 1 - ord L 2 - err L 2 - ord 

64 0.00 1 . 70 e − 03 0.00 1 . 08 e − 03 0.00 1 . 20 e − 03 

71 9.33 7 . 07 e − 04 9.33 4 . 50 e − 04 9.33 5 . 00 e − 04 

78 10.27 2 . 93 e − 04 10.27 1 . 86 e − 04 10.27 2 . 07 e − 04 

85 5.78 1 . 85 e − 04 5.78 1 . 18 e − 04 5.78 1 . 31 e − 04 

92 7.88 1 . 04 e − 04 7.88 6 . 62 e − 05 7.88 7 . 35 e − 05 
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 V (w h (t)) : = 

∑ 

i 

| w 

n 
i − w 

n 
i −1 | . (44) 

rom Lemma A.10 and Proposition A.15 

|| w h (t) || + T V (w h (t)) ≤ C 2 , (45) 

ith C 2 = max { ̄C + || w 

0 || , (T V (w 

0 ) + DA δ|| w 

0 || ) } . 
On the other hand, given t n and t p , there exist integers n and

 , such that p�t < t p < (p + 1)�t and n �t < t n < (n + 1)�t . Then

rom Lemma A.16 

|| w h (t n ) − w h (t p ) || ≤ C 2 (t n − t p ) . (46) 

herefore, from Helly’s selection theorem, [8,46] , given a set

 τk } ∞ 

k 
⊂ [0 , T ] , which is dense in [0, T ] , we can extract a sequence

f h i → 0 such that { w h i 
(x, τk ) } ∞ 

i =1 
converges for all x in L 1 

loc 
(R ) , to

he limiting function w ( x, τ k ) . 

Let [ −X, X] ⊂ R be an arbitrary interval. Then, given ε > 0 ,

here exists an index I = I(ε) such that | t − τk | < ε for k > I . So,

or i, j > I ∫ X 

−X 

| w h i 
(x, t) − w h j 

(x, t) | dx 

≤
∫ X 

−X 

{| w h i 
(x, t) − w h i 

(x, τk ) | + | w h j 
(x, t) − w h j 

(x, τk ) | 
+ | w h i 

(x, τk ) − w h j 
(x, τk ) |} dx . (47) 

herefore 
∫ X 
−X | w h i 

(x, t) − w h j 
(x, t) | dx ≤ (2 C 2 + 1) ε and thus

 w h i 
(x, t) } ∞ 

i =1 
is a Cauchy sequence in [ −X, X] . Therefore it must

onverge to a limiting function w ( x, t ) in L 1 
loc 

(R ) . On the other

and ∫ X 

−X 

| w (x, t) − w (x, τk ) | dx 

≤
∫ X 

−X 

{| w (x, t) − w h i 
(x, t) | + | w (x, τk ) − w h i 

(x, τk ) | 
+ | w h i 

(x, t) − w h i 
(x, τk ) | 

}
dx ≤ (2 + C 2 ) ε. (48) 

ence, w (x, t) = lim τk → t w (x, τk ) . Therefore, the scheme converges

n L 1 
loc 

(R ) for all t ∈ [0, T ] . �
emark 1. In the proposition a qualitative analysis more than a

uantitative study, is carried out. Therefore, the range of values

or CFL coefficients cannot be set. Indeed, the proposition pro-

ides a theoretical justification of the convergence of the proposed

cheme, specially when h goes to zero. It ensures that a time-step

nd a mesh space related through a CFL coefficient (the role of pa-

ameter h ), must converge to the exact solution as expected. For

imulations presented in this paper, values for the CFL coefficient,

re heuristically chosen. 

On the other hand, notice that, the influence of the source term

 ( q ) is included in the coefficient C 2 . So, stiff source terms must

odify such a constant and so the range of values of h has to be

ccordingly updated. Therefore, the proposition remains valid also

or equations with stiff source terms. 

. Numerical results 

In this section three tests are solved, the first two, are scalar

roblems with exact solutions, whereas, the third test corresponds

o a Boussinesq type system. Exact solutions are not available for

he system, however a numerical solution of reference is used to

ompare the results of the present scheme. 

.1. A linear model equation 

In this section we deal with the simple model equation 

∂ t L (q ) + λ∂ x q = 0 , 

q (x, 0) = sin (2 πx ) , 
(49) 

ith λ a constant value, L (q ) = q − α∂ (2) 
x q and α = 

λ−1 
4 π2 , which

as the exact solution 

q (x, t) = sin (2 π(x − t)) . (50) 

able 1 , shows the result of the empirical convergence rate as-

essment for λ = 2 , t out = 1 and C c f l = 0 . 3 . We note that the con-

ergence rates are attained up to fifth-order of accuracy, even on

oarse meshes. Fig. 2 depicts a comparison between the exact so-

ution (full line) and numerical solutions of fifth (circles), fourth

squares) and third (stars) orders of accuracy computed on a mesh

f 64 cells. 
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Fig. 2. Linear problem. Exact solution (full line), fifth order solution (circles), fourth order solution (squares) and third order solution (stars). Numerical solutions with 64 

cells, C CFL = 0 . 3 , λ = 2 and t out = 1 . 

Table 2 

Convergence rates for the scalar model equation. We have used a C c f l = 0 . 01 and t out = 0 . 1 . 

Theoretical order : 2 

Mesh L ∞ - err L ∞ - ord L 1 - err L 1 - ord L 2 - err L 2 - ord 

80 0.00 4 . 83 e − 01 0.00 2 . 66 e − 01 0.00 3 . 06 e − 01 

85 2.26 4 . 25 e − 01 1.70 2 . 41 e − 01 2.08 2 . 72 e − 01 

90 2.72 3 . 67 e − 01 1.99 2 . 17 e − 01 2.32 2 . 40 e − 01 

95 2.67 3 . 20 e − 01 2.18 1 . 94 e − 01 2.45 2 . 11 e − 01 

100 2.88 2 . 78 e − 01 2.35 1 . 73 e − 01 2.58 1 . 86 e − 01 

Theoretical order : 3 

Mesh L ∞ - err L ∞ - ord L 1 - err L 1 - ord L 2 - err L 2 - ord 

70 0.00 5 . 78 e − 02 0.00 5 . 26 e − 02 0.00 5 . 27 e − 02 

75 3.20 4 . 70 e − 02 2.96 4 . 34 e − 02 2.97 4 . 35 e − 02 

80 3.23 3 . 87 e − 02 3.02 3 . 62 e − 02 3.03 3 . 62 e − 02 

85 3.19 3 . 22 e − 02 3.02 3 . 04 e − 02 3.02 3 . 05 e − 02 

90 3.20 2 . 71 e − 02 3.05 2 . 58 e − 02 3.06 2 . 58 e − 02 

Theoretical order : 4 

Mesh L ∞ - err L ∞ - ord L 1 - err L 1 - ord L 2 - err L 2 - ord 

70 0.00 4 . 70 e − 03 0.00 3 . 59 e − 03 0.00 3 . 64 e − 03 

75 4.61 3 . 49 e − 03 4.81 2 . 63 e − 03 4.80 2 . 67 e − 03 

80 4.72 2 . 62 e − 03 4.87 1 . 96 e − 03 4.86 1 . 99 e − 03 

85 4.54 2 . 02 e − 03 4.92 1 . 48 e − 03 4.89 1 . 50 e − 03 

90 4.73 1 . 57 e − 03 5.02 1 . 13 e − 03 4.98 1 . 15 e − 03 

Theoretical order : 5 

Mesh L ∞ - err L ∞ - ord L 1 - err L 1 - ord L 2 - err L 2 - ord 

22 0.00 1 . 39 e − 01 0.00 1 . 14 e − 01 0.00 1 . 15 e − 01 

27 5.83 5 . 16 e − 02 5.21 4 . 69 e − 02 5.28 4 . 70 e − 02 

32 5.83 2 . 21 e − 02 5.60 2 . 08 e − 02 5.61 2 . 08 e − 02 

37 5.74 1 . 07 e − 02 5.78 9 . 99 e − 03 5.77 1 . 00 e − 02 

42 5.74 5 . 60 e − 03 5.98 5 . 10 e − 03 5.97 5 . 11 e − 03 

47 5.64 3 . 17 e − 03 6.19 2 . 73 e − 03 6.15 2 . 74 e − 03 
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4.2. A non-linear scalar model equation 

Let us consider the equation 

∂ t L (q (x, t)) + ∂ x f (q (x, t)) = 0 , 

q (x, 0) = sin (2 πx ) cos (2 πx ) , 
(51)

with 

L (q ) = q 2 − 1 
16 π2 ∂ 

(2) 
x q , 

f (q ) = q (q + 1) . 
(52)
eriodic boundary conditions are considered. This problem has the

xact solution 

 (x, t) = sin (2 π(x − t)) cos (2 π(x − t)) . (53)

ue to the non-linearity of L (q ) , in this test we use only a 1% of

he theoretical CFL condition, so we take C c f l = 0 . 01 . Table 2 shows

he results of the convergence rate assessment, up to the output

ime t out = 0 . 1 for schemes of 2nd, 3rd, 4th and 5th orders of ac-

uracy. We observe that the orders of accuracy are attained even if

he differential operator is non-linear. 
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Fig. 3. Schematic representation of the physical phenomenon. 

Fig. 4. Initial configuration. 

Fig. 5. Profile of the free surface ζ ( x, t out ) for b = b(x ) and t out = 37 . Comparison of schemes of 3rd (circles), 4th (squares) and 5th (diamonds) orders of accuracy with 100 

cells against a reference solution and the solution of the globally implicit method with 100 cells (stars). 
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Fig. 6. Profile of the free surface ζ ( x, t out ) and bottom surface b = b(x, t) for t out = 30 . Top : zoom of free surface. Bottom : general profile. Comparison of schemes of 3rd 

(circles), 4th (squares) and 5th (diamonds) orders of accuracy with 100 cells against a reference solution. 
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4.3. An asymptotic model in water-waves equations 

Here, we are interested in the simulation of the motion of a

layer of water in a domain delimited below by a solid moving bot-

tom and above by a free surface, more precisely, we are consid-

ering an approximation model within the shallow water regime,

in which only the length and depth are relevant. Fig. 3 shows

a representation of the phenomenon. The length and depth are

parametrized by the variables x and y , respectively. Model vari-

ables are; ζ ( x, t ) the free surface, b ( x, t ) the bottom surface and

u ( x, t ) the velocity of a column of water in x at a given time t .

On the other hand, model parameters are; H 0 > 0 a constant ref-

erence depth (note that y = 0 corresponds to the still water level),

L the characteristic horizontal scale in the longitudinal direction,

a the order of the free surface amplitude, B the order of bottom

topography variation. The following dimensionless parameters are

formed from these four scales; μ := H 

2 
0 
/L 2 the shallowness param-
ter, ε := 

a 
H 0 

the wave amplitude parameter and β := 

B 
H 0 

the to-

ography parameter. The behaviour of water is governed by a di-

ensionless Boussinesq type model, [53] , which has the form 

∂ t ζ (x, t) + ∂ x (h (x, t) u (x, t)) = 

β

ε 
∂ t b(x, t) , 

∂ t u (x, t) + ∂ x ζ (x, t) + εu (x, t) ∂ x u (x, t) − μ

3 

∂ txx u (x, t) 

= −μβ

2 ε 
∂ t t x b(x, t) , } (54)

ith h (x, t) = εζ (x, t) + 1 − βb(x, t) . We define the differential op-

rator 

 (u ) := u − μ
∂ xx u . (55)
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Fig. 7. Initial configuration for the dam break type problem. 
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o, we observe that (54) can be written as 

∂ t ζ (x, t) + ∂ x (h (x, t) u (x, t)) = 

β
ε ∂ t b(x, t) , 

∂ t L (u (x, t)) + ∂ x ζ (x, t) + εu (x, t) ∂ x u (x, t) 

= −μβ
2 ε ∂ t t x b(x, t) . 

⎫ ⎬ 

⎭ 

(56) 

o, in a matrix form (56) takes the form (5) with 

Q (x, t) = 

[
ζ (x, t) 
u (x, t) 

]
, 

 (Q (x, t)) = 

[
ζ (x, t) 

u (x, t) − μ
3 
∂ xx u (x, t) 

]
, 

F (Q (x, t)) = 

[
h (x, t) ζ (x, t) 

ζ (x, t) + ε u (x,t) 2 

2 

]
, 

S (Q (x, t) , x, t) = 

[
β
ε ∂ t b(x, t) 

−μβ
2 ε ∂ t t x b(x, t) 

]
. (57) 

he model requires μ  1 and O (ε) = O (μ) = O (β) . In order to

ssess the performance of the present method, we compute refer-

nce solutions through a globally implicit finite difference scheme,

hich is reported in Appendix B . A fine mesh of 500 cells has been

sed. 

.3.1. Bottom surface varying in space 

Here, we simulate the case in which b(x, t) = b(x ) on the com-

utational domain [ −10 0 , 20 0] . In particular we take 

(x ) = 

{ −1 , x < 0 , 

−1 + 0 . 65 e −33 . 75(x/ 100 . −. 5) 2 , 0 ≤ x ≤ 100 , 

−1 , x > 100 . 

(58) 

e consider the parameters μ = ε = β = 0 . 1 , initial condition

(x, 0) = 0 and u (x, 0) = 1 . 2 , which are shown in Fig. 4 . Addition-

lly, we apply transmissive boundary conditions. Fig. 5 , shows a

omparison of the reference solution against the solution obtained

ith the present scheme for 3rd, 4th and 5th orders of accuracy

nd the scheme presented in Appendix B . The numerical solutions

re compared at the output time t out = 37 and using 100 cells. We
bserve a very good agreement of the high-order schemes with re-

pect to a conventional globally implicit method. The linearity of

 (Q ) allows the use of C CF L = 0 . 1 . 

.4. Bottom surface varying in space and time 

Now, we simulate the case in which the bottom surface is given

y 

b(x, t) 

= 

{ −1 , x < 0 , 

−1 + 0 . 1 sin (4 π(x/ 100 − t)) e −33 . 75(x/ 100 . −. 5) 2 , 0 ≤x ≤100 , 

−1 , x > 100 . 

(59) 

n important feature of this test, is that a variation in time, could

ause stiffness in the source term. However, the ability of the

resent scheme to solve problems with stiff source term, should

vercome this difficulty. Here, we use the same parameters seen

n the previous test. Fig. 6 shows the results up to a time t out = 30 .

e observe a very good agreement of the high-order schemes with

espect to a conventional globally implicit method. 

.5. A dam-break type problem with a discontinuous bottom surface 

In this test we explore the phenomenon consisting of a dam-

reak in a horizontal channel. The water is assumed to contain two

ifferent water contents at both sides of the breakpoint. The evo-

ution of the free surface and velocity profile can be modelled by

ystem (56) . These problems are well known for hyperbolic prob-

ems, where the ADER schemes have proved to provide very good

esults, see [9,19,68,69] to mention but a few. 

As we will see below, the present methodology allows to solve

his problem with discontinuous bottom profiles. So, in this sub-

ection, we solve the system (56) on a channel parametrized in

he computational domain [ −10 0 , 20 0] , the breakpoint originally

s assumed to be at x = 

1 and the bottom surface is given by 
2 
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Fig. 8. Dam-break type problem. Profile of the free surface ζ ( x, t out ) for t out = 40 , C CFL = 0 . 1 . Comparison of novel ADER schemes with 100 cells against reference solution 

(continuous line). Top: ADER of 3rd (circles) and 4th (squares) orders of accuracy against the reference solution with 100 cells (stars). Bottom: ADER of 5th (diamond) order 

of accuracy against the reference solution with 100 cells (stars). 
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b(x ) = 

⎧ ⎨ 

⎩ 

−1 , x < 0 , 

− 1 
2 

, 0 ≤ x ≤ 100 , 

−1 , x > 100 . 

(60)

As we have assumed that the break point is located at x = 

1 
2 , the

initial condition is given by 

ζ (x, 0) = 

{
1 , x < 

1 
2 

, 

1 
2 

, x ≥ 1 
2 

, 
(61)

additionally, the fluid is assumed to be at rest so the initial ve-

locity is given by u (x, 0) = 0 . Fig. 7 shows the initial configuration.

Fig. 8 shows the result for the free surface ζ ( x, t out ), at t out = 40 ,

parameters in this test are C CF L = 0 . 1 and μ = ε = β = 0 . 1 . 

In Fig. 8 is shown a comparison of the reference solution, pre-

sented in Appendix B , against the solutions obtained with the
resent scheme for 3rd, 4th and 5th orders of accuracy, all of the-

es solutions have been computed using 100 cells. We note that

fth order of accuracy shows small oscillations (see Fig. 8 , bottom).

e observe in general a very good agreement between the com-

uted solutions and the reference solution with a very fine mesh.

imilarly, we observe that there is an improvement in the degree

f resolution by using high order schemes, which is evident when

ompared with the reference solution with the same number of

ells. 

. Conclusions 

Here we have extended the well known ADER finite volume

chemes for solving a class of partial differential equations aris-

ng from the water wave equations. These equations are character-
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zed by transient terms, which may contain mixed space and time

erivatives. The present numerical scheme is based on the HEOC

olution strategy of generalized Riemann problems at the inter-

aces of computational cells, similar to ADER methods for hyper-

olic problems. To this end, we have derived an HLL type Riemann

olver, which is used in the solution of the GRP and we have pro-

ided a strategy to estimate the maximum wave speeds in order

o reconcile stability and accuracy. Stability constraint depends on

he wave speeds associated to convective parts and the discretiza-

ion of differential transient terms. We have proved for a linear and

calar case that the present scheme converge in L 1 
loc 

as usual for

odunov-type schemes applied to hyperbolic problems. We have

olved four tests and empirical convergence rate assessment has

een carried out for two of them, illustrating in this form that

he expected theoretical order of accuracy is attained. Addition-

lly, when an exact solution was not available we have compared

he numerical solution of the present schemes with reference solu-

ions obtained with a globally implicit scheme on a fine mesh. We

ave observed that the degree of resolution with respect to the

eference solution is very satisfactory, specially because high order

omputations were carried out on coarse meshes. Weakness of the

resent scheme are; i) the differential problems have been solved

y using centred finite differences in a context of fixed-point itera-

ion procedures, ii) the influence of the differential operator on the

tability constraint is not well understood. Improvements regarding

he solution of the differential part and how it affects the stability,

ill be the aim of future works. 
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ppendix A. Auxiliary results 

In this appendix we deal with the proof of Proposition 3.1 .

he aim is to provide technical results to ensure the applicabil-

ty of the Helly selection theorem [8] . In order to prove the con-

ergence of the present scheme, the results will be presented in

he following order; Lemma A.1 and Proposition A.2 will ensure

he convergence of the discontinuous Galerkin method, which al-

ows to compute local predictors at each cell of the computational

omain. Lemma A.4 will relate the degrees of freedom of polyno-

ials obtained through the discontinuous Galerkin method with

he approximate solutions at time level t n , { q n 
i 
} . Lemma A.5 to

emma A.7 will provide the relationship between the discrete so-

ution of the differential operator { w 

n 
i 
} and the approximate so-

utions at time level t n , { q n 
i 
} , it will prove the continuity of w

ith respect to q . Lemma A.9 to Lemma A.11 will provide inequal-

ties which take into account numerical approximations of the

ifferential operator for successive time steps, { w 

n +1 
i 

} and { w 

n 
i 
} .

emma A.12 to Lemma A.16 will provide the inequalities for the

otal-Variation-Diminishing (TVD) operator and L 1 norm of { w 

n 
i 
} .

t is required for Helly’s selection theorem, see (44) for a defini-

ion of TVD and L 1 norm. 

For the sake of simplicity we are going to assume that the re-

onstruction polynomial p i can be defined as 

p i (x ) = p̄ (x i − 1 
2 

+ ξ�x ) = 

M ∑ 

m =1 

ψ m 

(ξ ) γm 

, (A.1) 
here { ψ m 

( ξ )} is a reconstruction polynomial basis. From the con-

ervation property of reconstruction polynomials, [35] , we have 

 

n 
i + j = 

M ∑ 

m =1 

∫ i + j+1 

i + j 
ψ m 

(ξ ) γm 

, (A.2) 

ith j = −k L , ..., k R . Therefore, coefficients γ m 

can be found by

olving the linear system 

˜ 
 

i = B ̃

 �i , (A.3) 

here 

 j,m 

= 

∫ i + j+1 

i + j 
ψ m 

(ξ ) , ̃  q 

i 
j = q n i + j , ˜ �

i 
m 

= γ i 
m 

. (A.4) 

e define the matrices 

K 

1 
k,l = [ θk , θl ] τ − 〈 θk , ∂ τ θl 〉 , 

M k,l = 〈 θk , θl 〉 , 
K 

ξ
k,l 

= 〈 ∂ ξ θk , θl 〉 , 
K 

b 
k,l = 〈 ∂ τ b(θk ) , θl 〉 , 

(F 0 ) k,m 

= 

∫ 1 

0 

θk (ξ , 0) ψ m 

(ξ ) dξ , 

F(Q ) k = f (q i k ) , 

S(Q ) k = s (q i k ) . (A.5) 

dditionally, in this section we consider the L 1 -norm, which for

implicity is denoted by || · || . 

emma A.1. If f ( q ) and s ( q ) are differentiable functions of q. The op-

rator 

 (Q ) := F 0 ̃  �i − R (Q ) , (A.6) 

ith 

 (Q ) := �t(K 

1 + K 

b ) −1 
(

1 

�x 
K 

ξF(Q ) − M S(Q ) 
)

, (A.7) 

s Lipschitz, with constant 

 := �t|| (K 

1 + K 

b ) || 
(

1 

�x 
|| K 

ξ || · ||A F || + || M || · ||A S || 
)

. (A.8) 

here A F is the Jacobian of F(Q ) with respect to Q and A S is the

acobian of S(Q ) with respect to Q . 

roof. 

T (Q 1 ) − T (Q 2 ) = (K 

1 + K 

b ) −1 
(

�t 

�x 
K 

ξ
(
F(Q 1 ) − F(Q 2 ) 

))
−�tM 

(
S(Q 1 ) − S(Q 2 ) 

))
. (A.9) 

e note that Q 1 = [(q 1 ) 1 , ..., (q 1 ) MD ] 
T and Q 2 =

(q 2 ) 1 , ..., (q 2 ) MD ] 
T . As f ( q ) and s ( q ) are differentiable functions of

 . Then, there exist constants θ k and ηk such that 

f ((q 1 ) k ) − f ((q 2 ) k ) = λ(θk )((q 1 ) k − (q 2 ) k ) , 
s ((q 1 ) k ) − s ((q 2 ) k ) = β(θk )((q 1 ) k − (q 2 ) k ) , 

(A.10) 

ith λ = df (q ) /dq and β = d s (q ) /d q . Therefore, 

F(Q 1 ) − F(Q 2 ) = A F (θ )(Q 1 − Q 2 ) , 
S(Q 1 ) − S(Q 2 ) = A S (η)(Q 1 − Q 2 ) , 

(A.11) 

here A F (θ ) and A S (β) are diagonal matrices defined by

 F (θ ) k,k = λ(θk ) and A S (η) k,k = β(ηk ) , respectively. Taking the

orm of (A.9) and after some simple manipulations, the sought re-

ult is obtained. �

roposition A.2. If L (q ) is a linear operator, f ( q ) and s ( q ) continu-

usly differentiable functions. Then the problem (15) contains a local

olution. 
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Proof. We note that a solution of (15) , Q 

∗, satisfies 

Q 

∗ = T ( Q 

∗) . (A.12)

From the Lemma A.1 T (Q ) is a Lipschitzian operator, now given r

> 0 and B r = {Q : || F 0 ̃  �i − Q|| < r} . Then there exists a δ > 0 such

that �t < δ and T : B r → B r . Indeed, given a Q ∈ B r 

sup|| T (Q ) − F 0 ̃  �i || = K . 

Therefore, if we take �t < δ

|| T (Q ) − F 0 ̃  �i || < δM , 

with M = (K 

1 + K 

b ) −1 
(

1 
�x 

K 

ξF(Q ) − M S(Q ) 
)

. Hence, δ can be

chosen in order to obtain δM < r. Finally, if we take Q 1 , Q 2 ∈ B r ,

then 

|| T (Q 1 ) − T (Q 2 ) || < K(Q 1 − Q 2 ) < δM (Q 1 − Q 2 ) , 

so, δ can be chosen in order to obtain δ< min (r, 1) . Therefore, T is

a contraction in B r and thus T has a unique fixed point. Therefore,

the result holds. �

Definition A.3. A scheme is said to be of Total-Variation-

Diminishing (TVD) if 

T V (q n +1 ) ≤ T V (q n ) , ∀ n , (A.13)

where 

T V (q n ) = 

∞ ∑ 

i = −∞ 

| q n i − q n i −1 | . (A.14)

On the other hand, the finite volume schemes have the form 

w 

n +1 
i 

= w 

n 
i −

�t 

�x 
[ f i + 1 2 

− f i − 1 
2 
] + �ts i , (A.15)

where f 
i + 1 

2 
is the flux defined by 

f i + 1 2 
= 

1 

�t 

∫ �t 

0 

f (q (x i + 1 2 
, t)) dt , 

s i = 

1 

�t�x 

∫ �t 

0 

∫ x 
i + 1 

2 

x 
i − 1 

2 

s (q (x, t)) d xd t . (A.16)

We use a quadrature rule in [0, 1] , which is defined by n G pairs

( ηl , ω l ) and thus 

f i + 1 2 
= 

n G ∑ 

l=0 

f (q (x i + 1 2 
, ηl �t)) ω l , 

s i = 

n G ∑ 

l=0 

n G ∑ 

k =0 

s (q (x i − 1 
2 

+ ηl �x, ηk �t)) ω l ω k . (A.17)

We will adopt here the Harten philosophy, see [18,36,37] and ref-

erences therein for further details. So the numerical flux (A.17) is

computed, without loss of generality, using the Rusanov flux 

f (q (x i + 1 2 
, τ�t)) = 

1 
2 
( f (q i (1 −, τ ) + f (q i +1 (0 + , τ )) 

−
λ

i + 1 
2 

2 
(q i +1 (0 + , τ ) − q i (1 −, τ )) , 

(A.18)

where λ
i + 1 

2 
is the maximum wave speed inside the interval 

[ x i − 1 
2 
, x i + 1 2 

] ∪ [ x i + 1 2 
, x i + 3 2 

] . 

However, we can choose these values as λ
i + 1 

2 
= λ∞ 

= c �x 
�t 

, where

c is the Courant number. Therefore, we have 

q n +1 
i 

= q n i −
�t 

�x 

n G ∑ 

k =0 

1 

2 

(
f (q i (1 −, ηk )) − f (q i −1 (1 −, ηk )) 

)
ω k 

− �t 

�x 

n G ∑ 

k =0 

1 

2 

(
f (q i +1 (0 + , ηk )) − f (q i (0 + , ηk )) 

)
ω k 
+ 

�t 

�x 

n G ∑ 

k =0 

λ∞ 

2 

(
q i +1 (0 + , ηk ) − q i (0 + , ηk ) 

)
ω k 

− �t 

�x 

n G ∑ 

k =0 

λ∞ 

2 

(
q i (1 −, ηk ) − q i −1 (1 −, ηk ) 

)
ω k 

+�t 

n G ∑ 

l=0 

n G ∑ 

k =0 

s (q i (ηl , ηk )) ω l ω k . (A.19)

n the other hand, q k ( ξ , τ ), with k = i − 1 , i, i + 1 are polynomi-

ls defined in terms of local variables ( ξ , τ ) corresponding to in-

ervals [ x 
i − 3 

2 
, x 

i − 1 
2 

] , [ x 
i − 1 

2 
, x 

i + 1 
2 

] and [ x 
i + 1 

2 
, x 

i + 3 
2 

] , respectively. From

ection 2.2 , these polynomials have the form 

 r (ξ , τ ) = 

MD ∑ 

k =0 

φk (ξ , τ ) ̂  q r k . (A.20)

s seen in previous sections, coefficients ˆ q r 
k 

are obtained from the

olution to the algebraic problem 

(K 

1 + K 

b ) Q 

r + 

�t 

�x 
K 

ξF(Q 

r ) − �tM S(Q 

r ) = F 0 ̃  �r . (A.21)

ere, K 

1 , K 

ξ and F 0 are finite element matrices and; Q 

r 
j 
= ˆ q r 

j 
and

˜ r 
j 
= γ r 

j 
. With these observations we note that 

q i +1 (0 + , τ ) − q i (0 + , τ ) = 

MD ∑ 

k =0 

φk (0 + , τ )( ̂  q i +1 
k 

− ˆ q i k ) , 

 i (1 −, τ ) − q i −1 (1 −, τ ) = 

MD ∑ 

k =0 

φk (1 −, τ )( ̂  q i k − ˆ q i −1 
k 

) . (A.22)

emma A.4. If L (q ) is a linear operator, f ( q ) and s ( q ) are continu-

usly differentiable functions of q. Then 

a) there exist constant vectors ˜ λ = [ ̃ λr 
1 
, ..., ̃  λr 

M 

2 ] 
T and ˜ β =

[ ̃  βr 
1 , ..., 

˜ βr 
M 

2 ] 
T such that ˜ βr 

k 
, ̃  λr 

k 
∈ [ min { q r 

k 
, q r+1 

k 
} , max { q r 

k 
, q r+1 

k 
} ] . 

F(Q 

r+1 ) − F(Q 

r ) = A F ( ̃ λ
r )(Q 

r+1 − Q 

r ) , 

S(Q 

r+1 ) − S(Q 

r ) = A S ( ̃  β r )(Q 

r+1 − Q 

r ) , 
(A.23)

with A F and A S the jacobians of F(Q ) and S(Q ) with respect to

Q , respectively. 

b) The following identity is satisfied: 

Q 

r+1 − Q 

r = C 

r ( ̃  q 

r+1 − ˜ q 

r ) , (A.24)

with 

C 

r = (K 

1 + K 

b + 

�t 

�x 
K 

ξ A F ( ̃ λ
r ) −�tMA s ( ̃  β r )) −1 (F 0 B 

−1 ) . (A.25)

roof. Point a) is a consequence of the mean value theorem ap-

lied to f ( q ) and s ( q ). To prove point b), we note that, from

A.3) we have 

K 

1 (Q 

r+1 − Q 

r ) + K 

ξ (F(Q 

r+1 ) − F(Q 

r )) − �tM (S(Q 

r+1 ) 

−S(Q 

r )) = F 0 B 

−1 ( ̃  q r+1 − ˜ q r ) . (A.26)

o, from point a) we obtain 

(K 

1 + K 

b + 

�t 

�x 
K 

ξ A F ( ̃ λ
r ) − �tMA s ( ̃  β r ))(Q 

r+1 − Q 

r ) 

= F 0 B 

−1 ( ̃  q 

r+1 − ˜ q 

r ) . (A.27)

fter some algebraic manipulation, the result holds. �

Let us assume that the problem (4) is solved numerically. As L
s assumed to be linear, then there exists a matrix A L such that 

 

r = A L q 

r . (A.28)
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emma A.5. If L (q ) is a linear operator. Then, the following is satis-

ed: 

 V (w 

n ) ≤ D L || q n || . (A.29) 

roof. 

 

n 
i − w 

n 
i −1 = 

∑ 

j 

((A L ) i, j − (A L ) i −1 , j ) q 
n 
j . (A.30) 

hen, we have 

 w 

n 
i − w 

n 
i −1 | ≤ αi 

∑ 

j 

| q n j | �x , (A.31) 

ith max j 
| (A L ) i, j −(A L ) i −1 , j | 

�x 
= αi . Therefore the result holds with 

 L = 

∑ 

i 

αi . (A.32) 

�

emma A.6. If L (q ) is a linear operator, f ( q ) and s ( q ) are continu-

usly differentiable functions of q. The following identity is satisfied: 

 i (ξ , τ ) − q i −1 (ξ , τ ) = 

k R ∑ 

j= −k L 

ψ 

i 
j (ξ , τ )(q n i + j − q n i + j−1 ) , (A.33) 

ith 

 

i 
j (ξ , τ ) = 

M D ∑ 

k =0 

φk (ξ , η) C 

i 
k, j . (A.34) 

roof. Note that 

 i (ξ , τ ) − q i −1 (ξ , τ ) = 

M D ∑ 

k =0 

φk (ξ , η)( ̂  q i k − ˆ q i −1 
k 

) . (A.35) 

o, by using the point b) of Lemma A.4 , the result holds. �

emma A.7. If L (q ) is a linear operator, f ( q ) and s ( q ) are continu-

usly differentiable functions of q. Then, the numerical scheme can be

ritten as 

 

n +1 
i 

= w 

n 
i 

− �t 

�x 

k R ∑ 

j= −k L 

(−D 

i +1 , + 
j 

) q n i + j+1 

− �t 

�x 

k R ∑ 

j= −k L 

(D 

i, −
j 

− D 

i +1 , + 
j 

) q n i + j 

− �t 

�x 

k R ∑ 

j= −k L 

(−D 

i, −
j 

) q n i + j−1 

+�t 

n G ∑ 

l=0 

n G ∑ 

k =0 

s (q i (ηl , ηk )) ω l ω k , (A.36) 

ith 

 

i +1 , + 
j 

= 

n G ∑ 

k =0 

( 
λ∞ 

+ λ( ̃ λi +1 
k 

) 

2 

) ψ 

i +1 
j 

(0 + , ηk ) ω k 

nd 

 

i, −
j 

= 

n G ∑ 

k =0 

( 
λ∞ 

+ λ( ̃ λi 
k 
) 

2 

) ψ 

i 
j (1 −, ηk ) ω k , 

here ψ 

i 
j 
(ξ , τ ) is defined in Lemma A.6 . 
roof. The numerical scheme has the form 

w 

n +1 
i 

= w 

n 
i 

− �t 
�x 

∑ n G 
k =0 

1 
2 

(
f (q i (1 −, ηk )) − f (q i −1 (1 −, ηk )) 

)
ω k 

+ 

�t 
�x 

∑ n G 
k =0 

1 
2 

(
f (q i +1 (0 + , ηk )) − f (q i (0 + , ηk )) 

)
ω k 

+ 

�t 
�x 

∑ n G 
k =0 

λ∞ 
2 

(
q i +1 (0 + , ηk ) − q i (0 + , ηk ) 

)
ω k 

− �t 
�x 

∑ n G 
k =0 

λ∞ 
2 

(
q i (1 −, ηk ) − q i −1 (1 −, ηk ) 

)
ω k 

+�t 
∑ n G 

l=0 

∑ n G 
k =0 

s (q i (ηl , ηk )) ω l ω k . 

(A.37) 

hen, if f ( q ) is a continuously differentiable function, from

emma A.4 there exist values ˜ λi 
k 

such that 

 

n +1 
i 

= w 

n 
i −

�t 

�x 

n G ∑ 

k =0 

( 
λ∞ 

+ λ( ̃ λi 
k 
) 

2 

) 
(

q i (1 −, ηk ) − q i −1 (1 −, ηk ) 
)
ω k 

+ 

�t 

�x 

n G ∑ 

k =0 

( 
λ∞ 

+ λ( ̃ λi +1 
k 

) 

2 

) 
(

q i +1 (0 + , ηk ) − q i (0 + , ηk ) 
)
ω k 

+�t 

n G ∑ 

l=0 

n G ∑ 

k =0 

s (q i (ηl , ηk )) ω l ω k . (A.38) 

dditionally, from Lemma A.6 

 i (ξ , τ ) − q i −1 (ξ , τ ) = 

k R ∑ 

j= −k L 

ψ 

i 
j (ξ , τ )(q n i + j − q n i + j−1 ) (A.39) 

nd thus, we obtain 

 

n +1 
i 

= w 

n 
i 

− �t 

�x 

n G ∑ 

k =0 

( 
λ∞ 

+ λ( ̃ λi 
k 
) 

2 

) 

k R ∑ 

j= −k L 

ψ 

i 
j (1 −, ηk ) 

(
q n i + j − q n i + j−1 

)
ω k 

+ 

�t 

�x 

n G ∑ 

k =0 

( 
λ∞ 

+ λ( ̃ λi +1 
k 

) 

2 

) 

k R ∑ 

j= −k L 

ψ 

i +1 
j 

(0 + , ηk ) 
(

q n i + j+1 − q n i + j 

)
ω k 

+�t 

n G ∑ 

l=0 

n G ∑ 

k =0 

s (q i (ηl , ηk )) ω l ω k . (A.40) 

anipulating the last expression, we obtain 

 

n +1 
i 

= w 

n 
i −

�t 

�x 

k R ∑ 

j= −k L 

D 

i, −
j 

(
q n i + j − q n i + j−1 

)

+ 

�t 

�x 

k R ∑ 

j= −k L 

D 

i +1 , + 
j 

(
q n i + j+1 − q n i + j 

)

+�t 

n G ∑ 

l=0 

n G ∑ 

k =0 

s (q i (ηl , ηk )) ω l ω k (A.41) 

nd so the result follows. �

emma A.8. If L (q ) is a linear operator, f ( q ) and s ( q ) are continu-

usly differentiable functions of q. The following identity is obtained:
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κ

L  

v  
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T

κ

P  

c  

t  

θ  

c  

T

<

w

<

N  

a

q  

T

w 

n +1 
i 

− w 

n +1 
i −1 

= w 

n 
i − w 

n 
i −1 

− �t 

�x 

k R ∑ 

j= −k L 

D 

i, −
j 

(
q n i + j − q n i + j−1 

)

+ 

�t 

�x 

k R ∑ 

j= −k L 

D 

i −1 , −
j 

(
q n i + j−1 − q n i + j−2 

)

+ 

�t 

�x 

k R ∑ 

j= −k L 

D 

i +1 , + 
j 

(
q n i + j+1 − q n i + j 

)

− �t 

�x 

k R ∑ 

j= −k L 

D 

i, + 
j 

(
q n i + j − q n i + j−1 

)

+�t 

k R ∑ 

j= −k L 

D̄ 

i 
j (q n i + j − q n i + j−1 ) , (A.42)

with 

D̄ 

i 
j = 

n G ∑ 

l=0 

n G ∑ 

k =0 

β( ˜ β i 
k 
) ψ 

i 
j (ηl , ηk ) ω l ω k , (A.43)

where ψ 

i 
j 
(ξ , τ ) is given in Lemma A.6 . D 

i, −
j 

and D 

i +1 , + 
j 

are given in

Lemma A.7 . 

Proof. From Lemma A.6 , we have 

w 

n +1 
i 

− w 

n +1 
i −1 

= w 

n 
i − w 

n 
i −1 

− �t 

�x 

k R ∑ 

j= −k L 

D 

i, −
j 

(
q n i + j − q n i + j−1 

)

+ 

�t 

�x 

k R ∑ 

j= −k L 

D 

i −1 , −
j 

(
q n i + j−1 − q n i + j−2 

)

+ 

�t 

�x 

k R ∑ 

j= −k L 

D 

i +1 , + 
j 

(
q n i + j+1 − q n i + j 

)

− �t 

�x 

k R ∑ 

j= −k L 

D 

i, + 
j 

(
q n i + j − q n i + j−1 

)

+�t 

n G ∑ 

l=0 

n G ∑ 

k =0 

(s (q i (ηl , ηk )) 

−s (q i −1 (ηl , ηk ))) ω l ω k . (A.44)

From Lemma A.4 there exist coefficients 

˜ β i 
l,k ∈ [ min (q i (ηl , ηk ) , q i −1 (ηl , ηk )) , max (q i (ηl , ηk ) , q i −1 (ηl , ηk ))] ,

such that 

s (q i (ηl , ηk )) − s (q i −1 (ηl , ηk )) 

= β( ̃  β i 
l,k )(q i (ηl , ηk ) − q i −1 (ηl , ηk )) , (A.45)

where β(q ) = 

ds (q ) 
dq 

. Thus the result holds. �

Lemma A.9. If L (q ) is a linear operator, f ( q ) and s ( q ) are continu-

ously differentiable functions of q. Then, there exist matrices of size N

× N; E , M and A b such that 

w 

n +1 = (I − �t(E − M ) A b ) w 

n , (A.46)

where 

w 

n = [ w 

n 
1 , ..., w 

n 
N ] , (A.47)

with N the number of cells. 

Proof. From Lemma A.7 , we have 

w 

n +1 = w 

n − �tEq 

n + �ts n , (A.48)
ith 

E i,k L −1 = 

D 

i, −
k L 

�x 
, 

E i, j = 

(−D 

i +1 , + 
j−1 

) + (D 

i, −
j 

− D 

i +1 , + 
j 

) + (−D 

i, −
j+1 

) 

�x 
, j = −k L , ..., k R , 

 i,k R +1 = 

D 

i +1 , + 
k R 

�x 
(A.49)

nd s n = [ s n 
1 
, ..., s n 

N 
] T , where s n 

i 
= 

∑ n G 
l=0 

∑ n G 
k =0 

s (q i (ηl , ηk )) ω l ω k . 

As s ( q ) is continuously differentiable, there exist constant val-

es θ l, k such that s (q i (ηl , ηk )) = β(θl,k ) q i (ηl , ηk ) . Therefore, after

ome manipulations we obtain 

 i = 

k R ∑ 

j= −K L 

M i, j q 
n 
i + j , (A.50)

ith 

 i, j = 

n G ∑ 

l=0 

n G ∑ 

k =0 

β(θl,k ) ψ 

i 
j (ηl , ηk ) ω l ω k . (A.51)

herefore, if we take A b = A 

−1 
L 

, with A 

−1 
L 

in (A.28) the result

olds. �

emark 2. The matrices E , M and A b are square matrices. It is as-

umed that boundary conditions modify the entries of these matri-

es, but the structure of a k R + k L + 1 -diagonal matrix is assumed

o be held. 

emma A.10. If L (q ) is a linear operator, f ( q ) and s ( q ) are continu-

usly differentiable functions of q. Then 

|| w 

n +1 || ≤ || w 

n || κ(�t) , (A.52)

ith κ(�t) = || I − �t(E − M ) A b || . 
roof. It is a consequence of Lemma A.9 . �

We note that there exists a range of values of �t such that

( �t ) < 1. It is proved in the next. 

emma A.11. If L (q ) = a 0 q + a 1 b(q ) , with a 0 > 0 and a 1 constant

alues, b ( q ) a linear operator containing only spatial derivatives, f

nd s are continuously differentiable functions with ds (q ) 
dq 

= β(q ) ≤ 0 .

hen, there exists a range of values of �t such that 

(�t) < 1 . 

roof. As the result is independent of the initial condition, let us

onsider an initial condition given by q (x, 0) = k 0 a constant. On

he other hand, by the mean value theorem, there exists a constant

0 such that s ∗(q ) = β0 q , with �tβ(θ0 ) = β0 . Additionally, let us

onsider that the solution at time t n is given by w 

n 
i 

= k 0 e 
β0 
a 0 

t n 
.

hus, the weak formulation yields 

 θk , ∂ τL ( ̄q ) > + < θk , ∂ ξ f ∗( ̄q ) > = < θk , s 
∗( ̄q ) > , 

hich results into 

 θk , ∂ τ θl > a 0 w 

n 
i ˆ q l = < θk , θl > β0 w 

n 
i ˆ q l . 

ote that the solution of this problem is q̄ i (ξ , τ ) ≡ β0 
a 0 

w 

n 
i 

. The ex-

ct solution of the generalized Riemann problem provides 

 i (τ ) = w 

n 
i e 

β0 
a 0 

τ
. (A.53)

herefore, the numerical flux and the numerical source are 
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f i + 1 2 
= 

∑ n GP 

k =0 

w 

n 
i 

�t 
(e 

β0 
a 0 

τk �t − 1) ω k , 

s i = 

∑ n GP 

k =0 

w 

n 
i 

�t 
(e 

β0 
a 0 

τk �t − 1) ω k . 

(A.54) 

o, the numerical scheme produces the result 

w 

n +1 
i 

= w 

n 
i 

∑ n GP 

k =0 
e 

β0 
a 0 

τk �t 
ω k , 

(A.55) 

hich finally gives 

|| w 

n +1 || ≤ || w 

0 || κ(�t) , (A.56) 

ith || w 

0 || = k 0 and κ(�t) = 

∑ n GP 

k =0 
e 

β0 
a 0 

((n + τk )�t) 
ω k . Thus, the re-

ult holds. �

emma A.12. If L (q ) is a linear operator. Then, there exists a con-

tant A such that 

 V (q 

n ) ≤ A|| w 

n || . (A.57) 

roof. By taking A = || A 

−1 
L 

|| , with A L in (A.28) the result holds. �

emma A.13. If L (q ) is a linear operator, f ( q ) and s ( q ) are continu-

usly differentiable functions of q. Then the following identity is satis-

ed: 

 V (w 

n +1 ) ≤ T V (w 

n ) + �tDT V (q 

n ) , (A.58) 

ith 

 = 

∑ 

i 

k R ∑ 

j= −k L 

{ 

| D 

i, −
j 

| 
�x 

+ 

| D 

i −1 , −
j 

| 
�x 

+ 

| D 

i +1 , + 
j 

| 
�x 

+ 

| D 

i, + 
j 

| 
�x 

+ | ̄D 

i 
j | 
} 

. (A.59) 

roof. The result follows directly from Lemma A.8 . After applying

he absolute value and summation on index i. �

emma A.14. There exists a constant A such that 

 V (w 

n +1 ) ≤ T V (w 

n ) + �tDA|| w 

n || . (A.60) 

roof. The proof follows directly from Lemmas A .12 and A .13 . �

roposition A.15. If L (q ) is a linear operator, f ( q ) and s ( q ) are con-

inuously differentiable functions of q. There exists a constant C̄ such

hat 

 V (w 

n +1 ) ≤ C̄ , (A.61) 

ith 

¯
 = T V (w 

0 ) + �tDA δ|| w 

0 || (A.62) 

nd 

= 

1 

1 − κ(�t) 
. (A.63) 

roof. A successive application of Lemma A.14 , provides 

 V (w 

n +1 ) ≤ T V (w 

0 ) + �tDA 

n ∑ 

r=0 

|| w 

r || . (A.64) 

rom Lemma A.10 , we have 

n 
 

r=0 

|| w 

r || ≤ || w || 
n ∑ 

r=0 

κ(�t) r . (A.65) 

rom Lemma A.11 , there exists a range of values �t such that

( �t ) < 1 and thus the result holds. �

emma A.16. Let L (q ) be a linear operator, f ( q ) and s ( q ) continu-

usly differentiable functions of q. Then, given n and p two integers,

he following identity is satisfied: 

 w 

n 
i − w 

p 
i 
| ≤ C 1 | t n − t p | , (A.66) 

ith C = (T V (w 

0 ) + DA δ|| w 

0 || ) , t n = n �t and t p = p�t. 
1 
roof. From Lemmas A.6 and A.10 , 

 w 

n +1 
i 

− w 

n 
i | ≤ �tC 0 , 

ith 

C 0 = 

∑ 

i 

∑ k R 
j= −k L 

{ | D i, −
j 

| 
�x 

+ 

| D i +1 , + 
j 

| 
�x 

+ | ̄D 

i 
j 
| 
} 

A δ|| w 

0 || 
≤ �tDA δ|| w 

0 || . 
(A.67) 

n the other hand, without loss of generality, if we assume n > p ,

hen 

 w 

n 
i − w 

p 
i 
| ≤ | w 

n 
i − w 

n −1 
i 

| + | w 

n −1 
i 

− w 

n −2 
i 

| + ... + | w 

p+1 
i 

− w 

p 
i 
| . 

hus, multiplying by �x and taking summation on i , we obtain 

| w 

n − w 

p || ≤ �tC 0 (n − p) ≤ (T V (w 

0 ) + DA δ|| w 

0 || )(t n − t p ) . 

�

ppendix B. A globally implicit method. A numerical solution 

f reference 

In order to assess the proposed methodology, we compare its

umerical solutions against numerical solutions obtained through

 conventional method on a very fine mesh. In this appendix we

resent the conventional scheme, which corresponds to a globally

mplicit finite difference scheme, given by 

ζ n +1 
i 

−ζ n 
i 

�t 
+ D 

(1) 
i 

(h 

n +1 u 

n +1 ) = 

β
ε ∂ t b(x i , t 

n + 1 2 ) , 
u n +1 

i 
−u n 

i 

�t 
− μ

3 

D (2) 
i 

(u n +1 ) −D (2) 
i 

(u n ) 

�t 
u 

n +1 
i 

D 

(1) 
i 

(u 

n +1 ) 

= −μβ
2 ε ∂ t t x b(x i , t 

n + 1 2 ) , 

+ D 

(1) 
i 

(ζ n +1 ) + εu 

n +1 
i 

D 

(1) 
i 

(u 

n +1 ) 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

(B.1) 

here 

D 

(2) 
i 

(u 

n +1 ) = 

u n +1 
i +1 

−2 u n +1 
i 

+ u n +1 
i −1 

�x 2 
, 

D 

(1) 
i 

(u 

n +1 ) = 

u n +1 
i +1 

−u n +1 
i −1 

2�x 
, 

D 

(1) 
i 

(h 

n +1 u 

n +1 ) = 

h n +1 
i +1 

u n +1 
i +1 

−h n +1 
i −1 

u n +1 
i −1 

2�x 
. 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

(B.2) 

ystem (B.2) is an algebraic system for variables { ζ n +1 
i 

} N 
i =1 

and

 u n +1 
i 

} N 
i =1 

. 
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