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1. Introduction

The interaction of electromagnetic fields with continua has
attracted the attention of different researchers for many years. The
interested reader can see, for example, the monograph by Maugin
(1988), the book by Eringen and Maugin (1990) (and the refer-
ences mentioned therein), Pao (1978), Hutter et al. (2006) and also
x3a of Bustamante and Rajagopal (2013) and x3 of Bustamante and
Rajagopal (2015) for short summaries of some older works on
electro- and magneto-elasticity.

Many new works on the mathematical modelling of some
classes of electro-active polymers1 have appeared in the literature
in the last 15 years, see, for example Dorfmann and Ogden (2005,
2006), Goulbourne et al. (2005), McMeeking and Landis (2005),
Vu et al. (2007) and Ogden and Steigmann (2011). Some of such
polymers can deform due to the application of an external electric
field, because of the presence of electro-active particles inside them
that are added during the curing process of the rubber-like material
(Bossis et al., 2001). Some polymers can deform due to the partic-
ular chemical composition of the polymer (see, for example Nam
et al. (2005)), and some other types of polymers deform due to
the electric forces that are produced between two very thin elec-
trodes paint on the surfaces of a (in general electrically neutral) slab
ante).
(2002), Carpi et al. (2008),
Varga et al. (2005), where

such electro-active polymers

served.
rubber-like material (Pelrine et al., 2000). If an electric field is
applied during the curing process of an electro-active polymer,
which is produced by mixing a rubber-like material with electro-
active particles, then the particles are aligned in the direction of
the field. It has been found experimentally that such elastomers
present a stronger electrosticion effect than in the case when the
particles are randomly distributed inside the rubber (Bossis et al.,
2001). A randomly-distributed-particle material can be consid-
ered isotropic in the absence of an electric field. However, if an
external electric field is applied, a preferred direction appears, and
from the point of view of the mathematical modelling the material
behaves in a similar way as a transversely isotropic body (Dorfmann
and Ogden, 2005, 2006). In the case of a material, where the
electro-active particles are aligned inside the rubber (after the
curing process) the body behaves as a transversely isotropic ma-
terial in the absence of an electric field. However if an electric field
is applied, where in general the electric field may not be aligned
with the particles, the electro-active material behaves very similar
to as a body with two (in general non-orthogonal) families of ‘fi-
bres’ (Bustamante, 2009b; Bustamante and Merodio, 2011).

Biological tissue can also react to the presence of an electric
field; an important example is the heart tissue (see G€oktepe and
Kuhl (2010), Wong et al. (2011), Dal et al. (2013) and some of the
references cited therein). In general such soft tissue can be
considered as a matrix material filled with two ‘families of fibres’.
Due to the scope of this paper, the reaction of the this matrix ma-
terial and/or the fibres to the presence of an electric field will not be
discussed here.

The purpose of the this work is to present some constitutive
equations considering some new sets of invariants for some of the
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materials discussed above. It is assumed that such materials behave
as elastic bodies,2 and that the stresses and one of the electric
variables can be obtained from a total energy function3 (Dorfmann
and Ogden, 2005, 2006). For a nonlinear elastic body with one or
two families of fibres interacting with an electric field, it is possible
to show that such total energy function may depend on a large
number of invariants. We note that many of the classical invariants
of Spencer and Rivlin (Spencer,1971; Zheng,1994) do not have clear
physical meanings; hence, they are not, in general, experimentally
friendly. Invariants that facilitate an experiment are, generally,
attractive. In view of this, in this communication set of experi-
mentally friendly spectral invariants that have clear physical in-
terpretations are proposed,4 to characterize the constitutive
equations of electro-elastic bodies. The work here is based on the
papers of Shariff and co-workers (Shariff, 2011, 2013; Shariff and
Bustamante, 2015; Bustamante and Shariff, 2015).

The paper is divided in the following sections: In x2 a short
summary is presented considering the main elements of the theory
of Dorfmann and Ogden (2005, 2006) for non-linear electro-elastic
bodies. In x3 sets of invariants are proposed to study problems of
nonlinear anisotropic elastic bodies, with one, two and three
preferred directions. In x4 we study the case of an electro-elastic
body with one family of ‘fibres’, presenting the full expressions
for the stresses and the electric displacement, and solving some
simple boundary value problems. In x5 and x6 a similar analysis is
presented for the case of an electro-elastic body with two families
of fibres, using the results presented in x3, where the families of
fibres can be orthogonal (see x5), or non-orthogonal (see x6). In x7
some final comments and remarks are given.
2. Basic equations

In this sections a summary is presented of the main elements
necessary for understanding the theory of nonlinear electro-elastic
bodies developed by Dorfmann and Ogden (2005, 2006), whichwill
be used as basis for our work.
2.1. Kinematics

LetB denotes the electro-elastic body; the position of a particle
X2B in the un-deformed and unstressed reference configuration
B r is denoted X, whereX ¼ krðXÞ. The position of the same particle
in the deformed current configuration B t at a time t is denoted x,
and we assume there exists a one-to-one mapping c such that
x ¼ c(X,t). The deformation gradient, and the right and the left
Cauchy-Green deformation tensors are defined, respectively, as:
2 Regarding the assumption that the electro-elastic rubber behaves as an elastic
body, it is necessary to point out that the presence of the electro-active particles
inside the rubber can be related with the appearance of some inelastic phenomena
(Coquelle and Bossis, 2006), but in this work we do not consider such problems.
The case of the modelling of soft tissue as an elastic body is more complicated, since
such tissue contains water, therefore it is expected the appearance of some dissi-
pative phenomena (see, for example Rubin and Bodner (2002), Pioletti and
Rakotomanana (2000), x10.1.1-x10.2.6 of Humphrey (2002) and some of the refer-
ences cited therein), but for the sake of simplicity in the present work we assume
that such material behaves approximately as an elastic body.

3 In the present paper we follow the traditional approach of assuming the
stresses as functions of the strains and other variables (Maugin, 1988; Toupin, 1956;
Dorfmann and Ogden, 2005, 2006), but it is necessary to indicate that more general
approaches have recently appeared in the literature, where the stresses and other
variables of interest are assumed to satisfy some implicit constitutive relations
(Bustamante and Rajagopal, 2013, 2015).

4 See also Criscione (2003) about some criticism on the classical invariants by
Rivlin and Spencer.
F ¼ vc

vF
; C ¼ FTF ¼ U2; B ¼ FFT ¼ V2; (1)

where it is assumed that J¼ detF> 0, and U, V are the right and left
stretch tensors, respectively. More details about the kinematics of
deforming bodies can be found, for example, in Chadwick (1999)
and Truesdell and Toupin (1960). In the present work time effects
are not considered.
2.2. Equations of electrostatics

If there is no interaction with magnetic fields and there is no
distribution of free charges, then the simplified forms of the
Maxwell equations are (see, for example Kovetz (2000)):

curlE ¼ 0; divD ¼ 0; (2)

where E is the electric field and D is the electric displacement. In
vacuum E and D are related through Kovetz (2000)

D ¼ ε0E; (3)

where ε0 is the electric permittivity in vacuum. For condensed
matter an extra field is needed, which is called the electric polari-
zation P, where

D ¼ ε0Eþ P: (4)

In the absence of surface electric charges D, E must satisfy the
continuity conditions

n$EDF ¼ 0; n� EEF ¼ 0; (5)

where n is the unit normal outward to vB t (the surface of the body
in the current configuration) and for a vector field a we define
EaF ¼ ao � ai, where ao, ai correspond to the field a evaluated
outside and inside the body near vB t, respectively.
2.3. Equation of motion

In the literature on electromagnetic interactions with contin-
uum media, it is possible to see that there are different ways in
order to write the equation of motion, see, for example Pao (1978),
Hutter et al. (2006) and Bustamante et al. (2009). Different possible
definitions for the stresses inside a continuum media interacting
with electromagnetic fields have been defined as well (Bustamante
et al., 2009). As shown, for example, in Bustamante et al. (2009) and
Hutter et al. (2006), all these definitions and formulations are
equivalent, if the comparison is made in terms of quantities that can
be measured and that have physical meanings. In this work we use
the formulation by Dorfmann and Ogden (2005, 2006) due to its
clear mathematical simplicity. In that formulation the original
equilibrium equation (considering no time effects) of a body
interacting with electric fields is

divsþ fe ¼ 0; (6)

where s is a stress tensor field that in general is non-symmetric,
and fe¼ (gradE)TP is the electric body force (for simplicity, we
have assumed that there is no mechanical body force in the body).
In Dorfmann and Ogden (2005, 2006) this equilibrium equation is
rewritten as

divt ¼ 0; (7)

where t¼ sþ tm is known as the total stress tensor, and
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tm ¼ D5E� ε0

2
E$Eð ÞI (8)
is the Maxwell stress tensor. The tensor t is symmetric and must
satisfy the following continuity condition on vB t

tn ¼ tmnþ ta; (9)

where tm in this case is calculated in vacuum near vB t, and ta
corresponds to the mechanical (non-electric) external traction. A
detailed study on more realistic boundary conditions for problems
in electro-elasticity can be found in Bustamante (2009a).

2.4. Lagrangian counterparts of the electric variables and the total
stress tensor

Considering the global or integral forms of (2), it is possible to
define the electric field El and the electric displacement Dl in the
reference configuration as (for details, see, for example Dorfmann
and Ogden (2005, 2006))

El ¼ FTE; Dl ¼ JF�1D: (10)

In a similar manner it is possible to define the total nominal
stress tensor T as

T ¼ JF�1t: (11)

2.5. Constitutive equations

In the formulation of Dorfmann and Ogden (2005, 2006), it is
assumed that the total nominal stress tensor T is a function of F and
one of the electric variables5 (in their Lagrangian forms) El orDl, i.e.,
T ¼ FðF;ElÞ (or T ¼ GðF;DlÞ). In that formulation it is also assumed
the existence of a total energy function6 U ¼ U(F,El) such that:

T ¼ vU

vF
; Dl ¼ �vU

vEl
: (12)

Due to the requirement that Umust be Galilean frame invariant,
U must be a function of C instead of F.

3. Some new invariants for a transversely isotropic body, a
body with two-preferred-direction and a body with three-
preferred direction elasticity. Elastic deformations without
electric interactions

In the case of an electro sensitive (ES) body with a random
distribution of particles we have thatU¼U(C,El), whereas if there is
one preferred direction where the body behaves differently (a
transversely isotropic ES elastomer), we have (see Bustamante
(2009b)) U ¼ U(C,El,a0), where a0 is the preferred direction.
Finally, in the case of an ES body with two preferred directions a0,
b0, we have that U ¼ U(C,El,a0,b0). It is possible to observe that the
invariants for these cases would be similar to the case of elastic
bodies (purely elastic deformations with no electric interaction),
with one, two and three preferred direction elasticity, respectively
(taking note that an extra invariant will be needed since in general
jEljs1). Because of this, in the present section different sets of in-
variants are studied for such elastic bodies, with one, two and three
5 That electric variable is called the independent electric variable.
6 In this paper for simplicity we assume that El is the independent electric

variable.
preferred directions, in order to have a more general formulation
that can be used in any other similar problem.

An elastic energy of a body (without electric interactions) can be
written as

WCðCÞ ¼ WSðl1; l2; l3; e1; e2; e3Þ (13)

with the symmetrical property

WSðl1; l2; l3; e1; e2; e3Þ ¼ WSðl2; l1; l3; e2; e1; e3Þ
¼ WSðl3; l2; l1; e3; e2; e1Þ ¼ etc; (14)

where li and ei are the principal values and their respective prin-
cipal unitary directions of U. It is very important to know that WS
should be independent of ei and ej when li ¼ lj, is j in orderWS to
have a unique value, due to the non-unique values of ei and ej when
li ¼ lj. Similarly, WS should be independent of e1, e2 and e3 when
l1 ¼ l2 ¼ l3. We define this independent property, the P-property.
We note that all the strain energies given below satisfy the P-
property.

3.1. An isotropic body

Just as an illustration of the methodology developed by Shariff
(2008, 2011) to propose the new set of spectral invariants, we
start with the well known case of an isotropic body, and thereafter
we study the case of a transversely isotropic body.

WS is an isotropic invariant function of C if and only if

WSðl1; l2; l3; e1; e2; e3Þ ¼ WSðl1; l2; l3;Qe1;Qe2;Qe3Þ (15)

for all proper orthogonal tensors Q (Spencer, 1971). Since the vector
invariants ei$ej and ei$(ej� ek), (is js k) (Spencer, 1971) have zero
or unit values, we have, for isotropic elasticity that

WSðl1; l2; l3; e1; e2; e3Þ ¼ WIðl1; l2; l3Þ ¼ WIðl2; l1; l3Þ
¼ WIðl3; l2; l1Þ ¼ etc: (16)

3.2. A transversely isotropic body

In the case of a transversely isotropic elastic solid with the
preferred directionℶ, we canwrite the strain energy function in the
form

WT l1; l2; l3; e1; e2; e3;ℶð Þ (17)

with the symmetrical relations

WT l1; l2; l3; e1; e2; e3;ℶð Þ ¼ WT l2; l1; l3; e2; e1; e3;ℶð Þ
¼ WT l3; l2; l1; e3; e2; e1;ℶð Þ ¼ etc:

(18)

For a transversely isotropic elastic solid, WT is an isotropic
invariant of C and ℶ, hence it is required that

WT l1; l2; l3; e1; e2; e3;ℶð Þ ¼ WT l1; l2; l3;Qe1;Qe2;Qe3;Qℶð Þ
(19)

for all proper orthogonal tensors Q.
The vector invariants required for WS are7
7 In this communication all subscripts i, j and k take the values 1, 2 and 3, unless
stated otherwise.



R. Bustamante, M.H.B.M. Shariff / European Journal of Mechanics A/Solids 58 (2016) 42e53 45
qi ¼ ℶ$ei; i ¼ 1;2;3; (20)
taking note that invariants of the form u$(v�w) (u, v,w are vectors
representing ℶ and ei, i¼ 1,2,3) are single valued functions of ℶ$ei
and hence we can eliminate them in WT. Therefore, for a trans-
versely isotropic elastic solid we have

WT l1; l2; l3; e3; e2; e1;ℶð Þ ¼ Wt l1; l2; l3; q1; q2; q3ð Þ: (21)

Let us define the invariants zi as

zi ¼ ℶ$eið Þ2; i ¼ 1;2;3; (22)
we have z1þ z2þ z3¼1 and zi ¼ q2i , hence only five of the in-
variants li, qi, i¼ 1,2,3 are independent. If the strain energy function
is independent of the sign of ei and ℶ, then it can be written in the
form

Wtðl1; l2; l3; q1; q2; q3Þ ¼ cW tðl1; l2; l3; z1; z2; z3Þ (23)

with the symmetrical property

cW tðl1; l2; l3; z1; z2; z3Þ ¼ cW tðl2; l1; l3; z2; z1; z3Þ
¼ cW tðl3; l2; l1; z3; z2; z1Þ ¼ etc: (24)

A strain energy of the form Wt has been discussed in Shariff
(2008).
3.3. Two-preferred-direction elasticity

In this section a summary of some results shown in Shariff and
Bustamante (2015) is presented, where an analysis of a body with
two preferred direction elasticity is considered.

Let the two preferred directions be ℶ and n. The strain energy
function takes the form

WF l1; l2; l3; e1; e2; e3;ℶ; nð Þ (25)

with symmetrical relations similar to (18). Using a similar analysis
as in x3.2, the invariants required for the strain energy are li, qi and

ri ¼ n$ei; i ¼ 1;2;3; k1 ¼ ℶ$n: (26)

Let us define

xi ¼ n$eið Þ2; ci ¼ ℶ$nð Þ ℶ$eið Þ n$eið Þ ¼ k1qiri; no sum in i:

(27)We have that

X3
i¼1

zi ¼ 1;
X3
i¼1

xi ¼ 1;
X3
i¼1

qiri ¼ k1; (28)

where xi ¼ r2i . From the above relations only six of the strain in-
variants li, qi, ri, i¼ 1,2,3 are independent. One of the important
results presented in Shariff and Bustamante (2015) was to discover
that only 6 of the classical invariants listed (Spencer, 1971) for this
problem are independent, and this is illustrated below. The classical
invariants belonging to a minimal integrity basis (Spencer, 1971) for
a two-preferred-direction elastic solids are (see (22), (27)):

I1 ¼ trðCÞ ¼
X3
i¼1

l2i ; I2 ¼ I21 � tr
�
C2
�

2
¼ l21l

2
2 þ l21l

2
3 þ l22l

2
3;

(29)
I3 ¼ det Cð Þ ¼ l1l2l3ð Þ2; I4 ¼ℶ$ Cℶð Þ ¼
X3

l2i zi; I5 ¼ℶ$ C2ℶ
� �
i¼1

¼
X3
i¼1

l4i zi;

(30)

I6 ¼ n$ Cnð Þ ¼
X3
i¼1

l2i xi; I7 ¼ n$ C2n
� �

¼
X3
i¼1

l4i xi; I8

¼ ℶ$nð Þℶ$ Cnð Þ ¼
X3
i¼1

l2i ci; (31)

I9 ¼ ℶ$nð Þ2; I10 ¼ ℶ$nð Þℶ$ C2n
� �

¼
X3
i¼1

l4i ci: (32)

Since six of the strain invariants li, qi, ri, i¼ 1,2,3 are indepen-
dent, we conclude that only six of the nine strain invariants Ij,
j¼ 1,2,…,8 and I10 are independent. In fact, Shariff and Bustamante
(Shariff, 2008) have shown for a ¼ k21s0 without resorting to
spectral invariants that there are three syzygies (see Section 3 of
Shariff (2008)):

I28 � I9ð1� I9ÞI2 ¼ 2I1I8I9 � 2I9I10 þ I9I4I6 � I1I9ðI4 þ I6Þ
þ I9ðI5 þ I7Þ; (33)

4I213I
2
23I

2
12ðI4 þ I22Þ2 ¼n

ðI10 � I9I5Þ2 � ð1� I9ÞI9
h
I212ðI4 þ I22Þ2 þ I213I

2
23

io2
;

(34)

4I212I
2
13I

2
23 ¼

h
I3 þ I4

�
I223 � I22I33

�
þ I22I

2
13 þ I33I

2
12

i2
; (35)

where

I212 ¼ I28I
�1
9 � 2I8I4 þ I24I9

1� I9
; I22 ¼ I6 � 2I8 þ I9I4

1� I9
; (36)

I33 ¼ I1 � I4 �
I6 � 2I8 þ I9I4

1� I9
; (37)

I223 ¼ I7 � 2I10 þ I9I5
1� I9

�
�
I6 � 2I8 þ I9I4

1� I9

�2
� I28I

�1
9 � 2I8I4 þ I24I9

1� I9
;

(38)

I213 ¼ I5 � I24 � I28I
�1
9 � 2I8I4 þ I24 I9

1� I9
: (39)

This further validates that only six of the nine classical strain
invariants are independent.

The invariants (27)2 ci, i¼ 1,2,3 play an important role in the
construction of the corresponding infinitesimal strain energy
function (Shariff and Bustamante, 2015), hence we include them in
the nonlinear strain energy function. Therefore, a two-preferred
direction strain energy, independent of the signs of ei, ℶ and n,
can be expressed in the form

cW f ðl1; l2; l3; q1; q2; q3; r1; r2; r3; k1Þ
¼ Wf

�
l1; l2; l3; z1; z2; z3; x1; x2; x3;c1;c2;c3; k

2
1

�
; (40)

where Wf has the symmetrical property similar to (24).
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When ℶ and n are orthogonal, k1 ¼ ℶ$n ¼ 0 the symmetrical
strain energy for an orthotropic elastic solid takes the form

Wpðl1; l2; l3; z1; z2; z3; x1; x2; x3Þ: (41)

The strain energy function of form (41) has been discussed in
Shariff (2011).
8 See for example Shariff and Bustamante (2015) on how to construct a complete
list for two-preferred direction elastic solids.
3.4. Three-preferred-direction elasticity

In this last subsection, some new results are presented for the
case of a body with three preferred directions. Let the three
preferred directions be ℶ, n and .א The strain energy function takes
the form

WR l1; l2; l3; e1; e2; e3;ℶ; n; ðא Þ (42)

with symmetrical relations similar to (18). Using a similar analysis
as presented in x3.2 and x3.3, the invariants required for the strain
energy are li, qi, ri, i¼ 1,2,3, k1 (see (26))

si ¼ ;ei$א i ¼ 1;2;3; k2 ¼ ℶ$א (43)

and

k3 ¼ n$א: (44)

Let us define

9i ¼ eið$א Þ2; wi ¼ ℶ$אð Þ ℶ$eið Þ eið$א Þ ¼ k2qisi; (45)

ii ¼ n$אð Þ n$eið Þ eið$א Þ ¼ k3risi; i ¼ 1;2;3: (46)

The following connections hold:

X3
i¼1

zi ¼ 1;
X3
i¼1

xi ¼ 1;
X3
i¼1

9i ¼ 1;
X3
i¼1

qiri ¼ k1;

X3
i¼1

qisi ¼ k2;
X3
i¼1

risi ¼ k3:

(47)

Hence only six of the twelve spectral strain invariants li, qi, ri si,
i¼ 1,2,3 are independent.

Twenty six classical invariants generated from the tensors C,
ℶ5ℶ, n5n and א5א (Spencer, 1971) are required to form a minimal
integrity basis. They are Ij, j¼ 1,2,…,10 given in (29)e(32) and
additionally

I11 ¼ $א Cאð Þ ¼
X3
i¼1

9il
2
i ; I12 ¼ $א C2א

� �
¼
X3
i¼1

9il
4
i ; (48)

I13 ¼ n$אð Þ n$ Cאð Þ½ � ¼ k3

X3
i¼1

risil
2
i ; I14 ¼ ℶ$אð Þ ℶ$ Cאð Þ½ �

¼ k2

X3
i¼1

qisil
2
i ; (49)

I15 ¼ n$אð Þ n$ C2א
� �h i

¼ k3

X3
i¼1

risil
4
i ; I16 ¼ ℶ$אð Þ ℶ$ C2א

� �h i

¼ k2

X3
i¼1

qisil
4
i ;

(50)
I17 ¼ ℶ$אð Þ ℶ$nð Þ n$ Cאð Þ½ � ¼ k1k2

X3
i¼1

risil
2
i ; (51)

I18 ¼ n$אð Þ ℶ$nð Þ ℶ$ Cאð Þ½ � ¼ k1k3

X3
i¼1

qisil
2
i ; (52)

I19 ¼ ℶ$אð Þ n$אð Þ ℶ$ Cnð Þ½ � ¼ k2k3

X3
i¼1

qiril
2
i ; (53)

I20 ¼ ℶ$אð Þ ℶ$nð Þ n$ C2א
� �h i

¼ k1k2

X3
i¼1

risil
4
i ; (54)

I21 ¼ n$אð Þ ℶ$nð Þ ℶ$ C2א
� �h i

¼ k1k3

X3
i¼1

qisil
4
i ; (55)

I22 ¼ ℶ$אð Þ n$אð Þ ℶ$ C2n
� �h i

¼ k2k3

X3
i¼1

qiril
4
i ; (56)

I23 ¼ ℶ$nð Þ ℶ$Cאð Þ n$ C2א
� �h i

¼ k1

X3
i¼1

qisil
2
i

 ! X3
i¼1

risil
4
i

 !
;

(57)

I24 ¼ ℶ$אð Þ2 ¼ k22; I25 ¼ n$אð Þ2 ¼ k23; I26 ¼ ℶ$nð Þ ℶ$אð Þ n$אð Þ
¼ k1k2k3:

(58)

We note that I9, I24, I25 and I26 are non-strain invariants. The
number of independent spectral invariants suggests that only six of
the twenty two classical strain invariants Ij, j¼ 1,2,…,8, Ik,
k¼ 10,11,…,23 are independent. Similar to the work of Shariff and
Bustamante (2015), we could construct sixteen independent re-
lations among the classical invariants, but we will not do it here,
because it is not the intention of this paper.

In (59) and (60), we give a list of spectral invariants that are
independent of the signs of ei, ℶ, n and ,א which are required to
characterise a three-preferred-direction strain energy function.
This list, may not be a complete list to describe the general infini-
tesimal strain energy function when specialised to infinitesimal
elasticity,8 but this list is sufficient for this paper. Additional set of
non-independent spectral invariants can be easily constructed if
required.

Strain invariants

li; zi; xi; 9i; ci; wi; ii; i ¼ 1;2;3: (59)

Non-strain invariants

k21; k22; k23: (60)
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Some non-independent invariants
Below there is a list of possible invariants which will not be

included in the strain energy function.

k1k2risi; k1k3qisi; k2k3qiri: (61)

In the case of a function that depends on 4 second order tensors
namely G, D, L and X, from Spencer (1971) the following invariant
is considered as well

trðGDLXÞ; (62)

and some permutations of the above such as trðDGLXÞ, trðGDXLÞ,
etc. In the special situation in which G ¼ ei5ei (no sum in i),
D ¼ ℶ5ℶ, L ¼ n5n and X ¼ א5א we have the same non-
independent invariants presented in (61).

In some problems the preferred directions n and א are orthog-
onal, and in these cases we have a reduced number of invariants:

Strain invariants

li; zi; xi; 9i; ci; wi; i ¼ 1;2;3: (63)

Non-strain invariants

k21; k22: (64)

4. An electro-elastic body with one family of fibres

In this sectionwe propose a new set of spectral invariants for an
electro-elastic body with one family of ‘fibres’, and thereafter we
obtain the explicit expressions for the total stress t and the electric
displacement D. The fibres may or may not be electro-active. These
‘fibres’ could also be used to represent, for example, a family of
chains of particles in the case of a rubber-like material filled with
electro-active particles, which are aligned (in the undeformed
configuration) in a preferred direction (Bustamante, 2009b). In this
section we consider the most general case, where both the matrix
and the fibres can react to the presence of an electric field. Let a0
denote the direction of the fibres in the reference undeformed
configuration, in this problem we have (see (12)):

U ¼ UðC;El;a0Þ: (65)

4.1. Constitutive equation

Let us define the unit vector field f as

f ¼ 1
E
El; where E ¼ jEljs0: (66)

The relation (65) can be expressed as

U ¼ cW ðC; f;a0; EÞ: (67)

In view of (40) in x3.3 letting ℶ ¼ f and n ¼ a0, it follows that U
can be expressed as

U ¼ bUðl1; l2; l3; z1; z2; z3; x1; x2; x3;c1;c2;c3;a; EÞ; (68)

where in this case (see (22), (27))
zi ¼ ðf$eiÞ2; xi ¼ ða0$eiÞ2; a ¼ k21 ¼ ðf$a0Þ2;
ci ¼ ðf$a0Þðf$eiÞða0$eiÞ;

(69)

where there is no sum in i. For a compressible body from (12), (10)2,
(11) we have

t ¼ J�1F
vU

vF
¼ 2J�1F

vU

vC
FT; (70)

D ¼ �J�1F
vU

vEl
; (71)

whereas for an incompressible body from (70), (71) we have

t ¼ F
vU

vF
� pI ¼ 2F

vU

vC
FT � pI; (72)

D ¼ �F
vU

vEl
: (73)

The Lagrangian spectral component relations of C taking into
account (68), (69) (see, for example Ogden (1997)) are�
vU

vC

�
ii
¼ 1

2li

vbU
vli

; ði not summedÞ; (74)

and the shear components are�
vU

vC

�
ij
¼ 1�

l2i � l2j

�( vbU
vzi

� vbU
vzj

!
ei$
�
Hej
�þ vbU

vxi

� vbU
vxj

!
ei$
�
A0ej

�þ vbU
vci

� vbU
vcj

!�
ei$
�
HA0ej

�
þ ej$ðHA0eiÞ

	)
; isj; (75)

where we have defined the second order tensor

A0 ¼ a05a0; H ¼ f5f: (76)

In view of (70), the Eulerian spectral components of t for a
compressible solid are:

tii ¼
li

J
vbU
vli

; ði not summedÞ; (77)

tij ¼
2lilj

J
�
l2i � l2j

�" vbU
vzi

� vbU
vzj

!
ei$Hej þ

 
vbU
vxi

� vbU
vxj

!
ei$A0ej

þ
 
vbU
vci

� vbU
vcj

!�
ei$HA0ej þ ej$HA0ei

�#
$ isj:

(78)

For an incompressible body we have:

tii ¼ li
vbU
vli

� p ði not summedÞ; (79)

tij ¼
2lilj�

l2i � l2j

�" vbU
vzi

� vbU
vzj

!
ei$Hej þ

 
vbU
vxi

� vbU
vxj

!
ei$A0ej

þ
 
vbU
vci

� vbU
vcj

!�
ei$HA0ej þ ej$HA0ei

�#
; isj: (80)
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The spectral expression for the Lagrangian electric displacement
(12)2 Dl is:

Dl ¼ �vU

vEl
¼ �

X3
k¼1

Dkek; (81)

where (see (68), (69))

Dk ¼ ðf$ekÞ
"
vbU
vE

þ 2
E

 
vbU
vzk

�
X3
i¼1

vbU
vzi

zi �
X3
i¼1

vbU
vci

ci � a
vbU
va

!#

þ ða0$ekÞ
E

"X3
i¼1

ðf$eiÞða0$eiÞ
vbU
vci

þ ðf$a0Þ
vbU
vck

þ 2ðf$a0Þ
vbU
va

#
:

(82)

The electric displacement in the deformed configuration can
simply be expressed by

D ¼ �
X3
k¼1

lkDkvk; (83)

where vk is the principal direction of the left stretch tensor V.
4.2. Solutions of some boundary value problems

In this section, two simple problems, the uniform extension of a
cylinder and the shear of a slab are considered.
9 Regarding the continuity conditions (5), we assume that L[Ro such that such
conditions are considered (as an approximation) only for the surface R¼ Ro.
4.2.1. Uniform extension of a cylinder
In this first problem, we study the behaviour of a cylinder

described in the reference configuration as

0 � R � Ro; 0 � Q � 2p; 0 � Z � L; (84)

which deforms as

r ¼ lrR; q ¼ Q; z ¼ lzZ; (85)

where lr, lz are constants. We have

F ¼
0@ lr 0 0

0 lr 0
0 0 lz

1A: (86)

This simple problem is important since it is one of the simplest
experiments, which can be considered in order to obtain actual
expressions for the function U. The cylinder deforms under the
influence of an external mechanical force applied on the surface
z¼ L. On the surface R¼ Ro, the cylinder is in contact with vacuum.
It is assumed that a0¼ (0,0,1)T, i.e., the fibres or particles are aligned
in the axial direction (in the reference configuration). It is assumed
that El ¼ (0,0,E0)T, where E0 is a constant. Considering the above
assumptions, from (69), (10)1 we have

z1 ¼ z2 ¼ x1 ¼ x2 ¼ c1 ¼ c2 ¼ 0; z3 ¼ x3 ¼ c3 ¼ 1;

E ¼

0BBBB@
0

0

E0
lz

1CCCCA:
(87)
4.2.1.1. Compressible electro-elastic bodies. In this case J ¼ l2r lz,
identifying l1 ¼ lr, l2 ¼ lr and l3 ¼ lz from (77), (78), we have

trr ¼ lr

J
vbU
vl1

; tqq ¼ lr
J

vbU
vl2

; tzz ¼ lz
J

vbU
vl3

; (88)

where the rest of the components of the total stress tensor are zero.
From (8), (87) the non-zero components of the Maxwell stress in
vacuo are:

tmzz ¼
ε0E20
2l2z

¼ �tmrr ¼ �tmqq
: (89)

If no mechanical stress is applied on the cylindrical surface
R¼ Ro from (9) and (89) we have9

trr ¼ �ε0E20
2l2z

; (90)

which in view of (88) implies that

1
lrlz

vbU
vl1

¼ �ε0E20
2l2z

; R ¼ Ro: (91)

Eq. (91) can be used to obtain, for example, the value of lr in
terms of lz. Due to the symmetrical property we have

vbU
vl1

ðl1; l2; l3; z1; z2; z3; x1; x2; x3;c1;c2;c3;aÞ

¼ vbU
vl2

ðl2; l1; l3; z2; z1; z3; x2; x1; x3;c2;c1;c3;aÞ; (92)

and in view that l1 ¼ l2 ¼ lr, we have the relation

trr ¼ tqq: (93)

Finally, from (82) the spectral components for the electric field
are:

D1 ¼ D2 ¼ 0; D3 ¼ vbU
vE

þ 2
E0

 
vbU
vz3

� vbU
vx3

!
: (94)

Since t, D and El are constant, all the balance Eqs. (2) and (7) are
satisfied trivially.

If Ro≪L then from (5), (87) we have that Eo (the external field in

vacuum) must be of the form Eo ¼

0BBB@
0

0
E0
lz

1CCCA.
4.2.1.2. Incompressible electro-elastic bodies. In this case, lr ¼ 1ffiffiffiffi
lz

p
and the non-zero spectral components of the total stress tensor
(79), (80) become

trr ¼ lr
vbU
vl1

� p; tqq ¼ lr
vbU
vl2

� p; tzz ¼ lz
vbU
vl3

� p: (95)

Using the same continuity condition for the surface R¼ Ro as in
the previous case, we have
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p ¼ lr
vbU þ ε0E20

2 : (96)

vl1 2lz

The spectral components of the electric field is given by (94).
4.2.2. Simple shear of a slab
In this problem we only study the case of an incompressible

body. Let us consider the slab defined in the reference configuration
as

�Li
2
� Xi �

Li
2
; i ¼ 1;2;3; (97)

which deforms as

x1 ¼ X1 þ gX2; x2 ¼ X2; x3 ¼ X3; (98)

where 0 � g is commonly called the amount of shear. Let q denote
the orientation (in the anticlockwise sense relative to the X1 axis) of
the in plane Lagrangean principal axes. The angle q is restricted as

p

4
� q<

p

2
: (99)

The deformation tensor F is given by

F ¼
0@1 g 0

0 1 0
0 0 1

1A: (100)

The principal directions ei, i¼ 1,2,3 are:

e1 ¼
0@ c

s
0

1A; e2 ¼
0@�s

c
0

1A; e3 ¼
0@0

0
1

1A; (101)

where c¼ cos(q) and s¼ sin(q). It can be easily shown that the
principal stretches are

l1 ¼ gþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ 4

p
2

� 1; l2 ¼ 1
l1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ 4

p
� g

2
� 1; l3 ¼ 1;

(102)

where we have the connections

c ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l21

q ; s ¼ l1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l21

q ; c2 � s2 ¼ �gcs: (103)

Without loss of generality, we consider t33¼ 0 since incom-
pressibility allows the superposition of an arbitrary spherical stress
without effecting the deformation. In this section we assume a0 ¼0@ c

s
0

1A and El ¼
0@ 0

E0
0

1A, where c ¼ cosj, s ¼ sinj and E0 is constant.

Following the work of Shariff and Bustamante (2015), from (80) we
have

t11 ¼ 2
h
l1c

2 þ l2s
2 � 2l4csþ 2g

�
ðl1 � l2Þcsþ l4

�
c2 � s2

��
þ g2

�
l1s

2 þ l2c
2 þ 2l4cs

�
� l3

i
;

(104)

t22 ¼ 2
�
l1s

2 þ l2c
2 þ 2l4cs� l3

�
; t13 ¼ t23 ¼ 0; (105)
t12 ¼ 2
n
ðl1 � l2Þcsþ l4

�
c2 � s2

�
þ g

�
l1s

2 þ l2c
2 þ 2l4cs

�o
;

(106)

where

lk ¼
1
2lk

vbU
vlk

; no sum in k; (107)

and

l4 ¼
�
vU

vC

�
12

¼

1�
l21 � l22

�( vbU
vz1

� vbU
vz1

!
scþ

 
vbU
vx1

� vbU
vx2

!
ðccþ ssÞðcs� scÞ

þ
 
vbU
vc1

� vbU
vc2

!�
2css2 � csgcs

�)
,

(108)

The spectral invariants (69) have the values

z1 ¼ s2; z2 ¼ c2; z3 ¼ 0; x1 ¼ ðccþ ssÞ2;
x2 ¼ ðcs� scÞ2; x3 ¼ 0;

(109)

c1 ¼ ssðccþ ssÞ; c2 ¼ ðcs� scÞ; c3 ¼ 0; a ¼ s2: (110)

The spectral components of the electric displacement (82) are:

D1 ¼ s

(
vbU
vE

þ 2
E0

 
vbU
vz1

� vbU
vz1

z1 �
vbU
vz2

z2 �
vbU
vc1

c1 �
vbU
vc2

c2

� a
vbU
va

!)
þ ðccþ ssÞ

E0

(
sðccþ ssÞ v

bU
vc1

þ cðcs� scÞ v
bU

vc2

þ s
vbU
vc1

þ 2s
vbU
va

)
;

(111)

D2 ¼ c

(
vbU
vE

þ 2
E0

 
vbU
vz2

� vbU
vz1

z1 �
vbU
vz2

z2 �
vbU
vc1

c1 �
vbU
vc2

c2

� a
vbU
va

!)
þ ðcs� scÞ

E0

(
sðccþ ssÞ v

bU
vc1

þ cðcs� scÞ v
bU

vc2

þ s
vbU
vc2

þ 2s
vbU
va

)
;

(112)

and D3¼ 0.
Regarding the continuity conditions, if we assume, for example

that L2≪L1, L2≪L3, as an approximation, such conditions can be
analyzed only on the surfaces X2 ¼ ±L2/2. From (111), (112) and (5)1,
we have that if Do is the electric displacement in vacuum, then it is
of the form Do

2 ¼ D2 where D2 is given in (112). About the continuity
condition (5)2, from (10)1, (100) and considering the expression for

El assumed in this section, it is easy to show that E ¼
0@ 0

E0
0

1A, and

from (5)2 the conclusion is that there would be no particular direct
restriction on Eo; however from (3) and the previous results we
have that Eo2 ¼ D2

ε0
. The external traction can be easily obtained from

(9) considering the above results for the components of the total
stress tensor, and for brevity such results are not presented here.
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5. An electroelastic body with two orthogonal families of
fibres

In this second problem we study a situation that (as mentioned
in the Introduction) could be interesting in biomechanics, where
we have an electro-elastic body with two orthogonal families of
fibres. The matrix and the fibres can react to electric fields. As
pointed out in the Introduction, such a model could be useful in the
modelling of the behaviour of heart tissue (Dal et al., 2013; Wong
et al., 2011). Considering the same definition for f and a0 pre-
sented in x4 and adding the unitarian field b0 for the direction of
the additional family of fibres, we have

U ¼ UðC;El; a0;b0Þ: (113)

The relation (113) can be expressed as

U ¼ cW ðC; f; a0;b0; EÞ: (114)

In view of (63) and (64) of x3.4 and taking ℶ ¼ f, n ¼ a0, א ¼ b0
and a0$b0¼ 0, it follows that U can be expressed as

U ¼ bUðl1; l2; l3; z1; z2; z3; x1; x2; x3; 91; 92; 93;c1;c2;c3;
w1;w2;w3;a; b; EÞ;

(115)

where zi, xi, ci, i¼ 1,2,3 have been defined in (69), where from
(45)1,2 and (43), we have

9i ¼ ðb0$eiÞ2; b ¼ k22 ¼ ðf$b0Þ; wi ¼ ðf$b0Þðf$eiÞðb0$eiÞ;
i ¼ 1;2;3:

(116)

The Lagrangian spectral components
�
vU
vC

�
ii
(no sum in i) are the

same as in (74) (see (115) and the definitions above), whereas the
shear components are given by

�
vU

vC

�
ij
¼ 1�

l2i � l2j

�( vbU
vzi

� vbU
vzj

!
ei$Hej

þ
 
vbU
vxi

� vbU
vxj

!
ei$A0ej þ

 
vbU
v9i

� vbU
v9j

!
ei$B0ej

þ
 
vbU
vci

� vbU
vcj

!�
ei$HA0ej þ ej$HA0ei

�
þ
 
vbU
vwi

� vbU
vwj

!�
ei$HB0ej þ ej$HB0ei

�)
; isj;

(117)

where we have defined the second order tensor

B0 ¼ b05b0: (118)

The Eulerian components of total Cauchy stress for an incom-
pressible body can be obtained from the above expressions using
(72), which for brevity, are not shown here.

The spectral components for the electric displacement are given
by (81) where
Dk ¼ ðf$ekÞ
vbU þ 2 vbU �

X3 vbU
zi �

X3 vbU
ci �

X3 vbU
wi
"
vE E

 
vzk i¼1

vzi i¼1
vci i¼1

vwi

� a
vbU
va

� b
vbU
vb

!#
þ ða0$ekÞ

E

"X3
i¼1

ðf$eiÞða0$eiÞ
vbU
vci

þ ðf$a0Þ
vbU
vck

þ 2ðf$a0Þ
vbU
va

#
þ ðb0$ekÞ

E

"X3
i¼1

ðf$eiÞðb0$eiÞ
vbU
vwi

þ ðf$b0Þ
vbU
vwk

þ 2ðf$b0Þ
vbU
vb

#
;

(119)

The magnetic field in the deformed configuration can simply be
expressed by (83).

We do not solve boundary value problems for this case, which is
done in the following section, where a more general case with two,
in general non-orthogonal families of ‘fibres’, is considered.

6. An electroelastic body with two in general non-orthogonal
families of fibres

In this last problem, we study the case of an electroelastic body
with two (in general non-orthogonal) families of fibres. These fibres
and the matrix can react to the presence of electric fields. We use
the same notation as in x5 assuming now a0$b0s0, in general.

6.1. Constitutive equation

In view of (59) and (60) of x3.4 and taking ℶ ¼ f, n ¼ a0 and
א ¼ b0, it follows that U can be expressed as

U ¼ bUðl1; l2; l3; z1; z2; z3; x1; x2; x3; 91; 92; 93;c1;c2;c3;
w1;w2;w3; i1; i2; i3;a; b;g; EÞ;

(120)

where we recall the expressions (69), (116) and from (44) and (45)3
we have

k3 ¼ ða0$b0Þ2; g ¼ k23; ii ¼ ða0$b0Þða0$eiÞðb0$eiÞ;
i ¼ 1;2;3:

(121)

The Lagrangian spectral component relations
�
vU
vC

�
ii
, i¼ 1,2,3 are

the same as in (74) and the shear components are�
vU

vC

�
ij
¼ 1�

l2i � l2j

�( vbU
vzi

� vbU
vzj

!
ei$Hej þ

 
vbU
vxi

� vbU
vxj

!
ei$A0ej

þ
 
vbU
v9i

� vbU
v9j

!
ei$B0ej þ

 
vbU
vci

� vbU
vcj

!�
ei$HA0ej

þ ej$HA0ei
�þ vbU

vwi
� vbU
vwj

!�
ei$HB0ej þ ej$HB0ei

�
þ
 
vbU
vii

� vbU
vij

!�
ei$A0B0ej þ ej$A0B0ei

�)
; isj:

(122)
The expression for Di, i¼ 1,2,3 are the same as in (119).

6.2. Boundary value problems

6.2.1. Simple shear of a slab
In this section we study the problem of the simple shear of a

slab, where the reference configuration is the same as that is
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described in (97). Let us assume that it deforms as (98) and that

a0 ¼
c
s
0

0@ 1A, b0 ¼
0@bcbs

0

1A and El ¼
0
E0
0

0@ 1A, where bc ¼ cosð4Þ,

bs ¼ sinð4Þ and E0 is constant.
Using the results presented in x4.2.2, we have10:

t13 ¼ t23 ¼ 0;

t12 ¼ 2
n
ðl1 � l2Þcsþ l4

�
c2 � s2

�
þ g

�
l1s

2 þ l2c
2 þ 2l4cs

�o
;

(123)

where

l1 ¼ 1
2l1

vbU
vl1

; l2 ¼ 1
2l2

vbU
vl2

(124)

and

l4 ¼ 1�
l21 � l22

�( vbU
vz1

� vbU
vz1

!
scþ

 
vbU
vx1

� vbU
vx2

!
ðccþ ssÞðcs� scÞ

þ
 
vbU
v9i

� vbU
v9j

!
ðcbc þ sbsÞðcbs � sbcÞ þ vbU

vc1
� vbU
vc2

!�
2css2

� csgcs
�
þ
 
vbU
vwi

� vbU
vwj

!�
2scbs2 � bsbcgcs�þ vbU

vii
� vbU

vij

!
ðcbc

þ sbsÞ½2csðsbs � cbcÞ � gcsðcbs þ bcsÞ�):
(125)

The spectral invariants (69), (116) and (121) have the values

z1 ¼ s2; z2 ¼ c2; z3 ¼ 0; x1 ¼ ðccþ ssÞ2;
x2 ¼ ðcs� scÞ2; x3 ¼ 0;

(126)

c1 ¼ ssðccþ ssÞ; c2 ¼ ðcs� scÞ; c3 ¼ 0; a ¼ s2; (127)

91 ¼ ðcbc þ sbsÞ2; 92 ¼ ðcbs � sbcÞ2; 93 ¼ 0; (128)

i1 ¼ ðcbc þ sbsÞðccþ ssÞðcbc þ sbsÞ;
i2 ¼ ðcbc þ sbsÞðsc� csÞðbsc� bcsÞ; i3 ¼ 0;

(129)

w1 ¼ bssðcbc þ sbsÞ; w2 ¼ ðcbs � sbcÞ; w3 ¼ 0 b ¼ bs2: (130)

The spectral components for the electric field (119) are:
10 The normal components of the stress are the same as in (104) and (105).
D1 ¼ s

(
vbU
vE

þ 2
E0

 
vbU
vz1

� vbU
vz1

z1 �
vbU
vz2

z2 �
vbU
vc1

c1 �
vbU
vc2

c2

� vbU
vw1

w1 �
vbU
vw2

w2 � a
vbU
va

� b
vbU
vb

!)
þ ðccþ ssÞ

E0

(
sðcc

þ ssÞ v
bU

vc1
cðcs� scÞ v

bU
vc2

þ s
vbU
vc1

þ 2s
vbU
va

)
þ ðcbc þ sbsÞ

E0

(
sðcbc

þ sbsÞ vbU
vw1

þ cðcbs þ sbcÞ vbU
vw1

þ bs vbU
vw1

þ 2bs vbU
vb

)
;
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D2 ¼ c

(
vbU
vE

þ 2
E0

 
vbU
vz2

� vbU
vz1

z1 �
vbU
vz2

z2 �
vbU
vc1

c1 �
vbU
vc2

c2

� vbU
vw1

w1 �
vbU
vw2

w2 � a
vbU
va

� b
vbU
vb

!)
þ ðcs� scÞ

E0

(
sðcc

� ssÞ v
bU

vc1
þ cðcs� scÞ v

bU
vc2

þ s
vbU
vc2

þ 2s
vbU
va

)

þ ðcbs � sbcÞ
E0

(
sðcbc þ sbsÞ vbU

vw1
þ cðcbs � sbcÞ vbU

vw2
þ bs vbU

vw2

þ 2bs vbU
vb

)
;

(132)

and D3¼0.
6.2.2. Extension and inflation of cylindrical tube with two families
of fibres

The behaviour of the cylindrical tube is defined in the reference
configuration as

0<Ri � R � Ro; 0 � Q � 2p; 0 � Z � L; (133)

where we assume it deforms as

r2 � r2i ¼ l�1
z

�
R2 � R2i

�
; q ¼ Q; z ¼ lzZ; (134)

and lz> 0 is a constant. In this case the deformation gradient has
the form

F ¼

0BBBB@
1
llz

0 0

0 l 0

0 0 lz

1CCCCA; (135)

where we have defined l ¼ r/R (see, for example, x5.3.3 of Ogden
(1997)). With respect to the reference cylindrical coordinate sys-

tem, we consider a0 ¼
0@0

c
s

1A, b0 ¼
0@0bcbs

1A and EL ¼
0@ 0

0
E0

1A. In this

type of deformation, we have

e1 ¼ Er ; e2 ¼ Eq; e3 ¼ Ez: (136)

The spectral invariants (69), (116) and (121) have the forms:
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z1 ¼ z2 ¼ x1 ¼ 91 ¼ c1 ¼ c2 ¼ w1 ¼ w2 ¼ i1 ¼ 0; z3 ¼ 1;
2
x3 ¼ c3 ¼ s ;

(137)

93 ¼ w3 ¼ bs2; x2 ¼ c2; 92 ¼ bs2; i2 ¼ ðcbc þ sbsÞcbc;
i3 ¼ ðcbc þ sbsÞsbs:

(138)

The non-shear spectral components of stress are:

trr ¼ 1
llz

vbU
vl1

� p; tqq ¼ l
vbU
vl2

� p; tzz ¼ lz
vbU
vl3

� p: (139)

If there is no mechanical stress applied on the cylindrical sur-
face, then

p ¼ 1
llz

vbU
vl1

þ ε0E20
2l2z

: (140)

The shear spectral components are

trz ¼ trq ¼ 0; (141)

tqz ¼ 2llz�
l2 � l2z

�( vbU
vx2

� vbU
vx3

!
csþ

 
vbU
v92

� vbU
v93

!bcbs þ vbU
vc2

� vbU
vc3

!
csþ

 
vbU
vw2

� vbU
vw3

!bcbs þ vbU
vi2

� vbU
vi3

!
ðcbc þ sbsÞðcbs

þ sbcÞ);
(142)

The spectral components for the electric field take the forms:

D1 ¼ 0;

D2 ¼ cs
E0

 
vbU
vc2

þ vbU
vc3

þ 2
vbU
va

!
þ bcbs

E0

 
vbU
vw2

þ vbU
vw3

þ 2
vbU
vb

!
;

(143)

D3 ¼
(
vbU
vE

� 2
E0

 
vbU
vc3
bs2 þ vbU

vw3
bs2 þ a

vbU
va

þ b
vbU
vb

!)
þ 2s2

E0

 
vbU
vc3

þ vbU
va

!
þ 2bs2

E0

 
vbU
vw3

þ vbU
vb

!
:

(144)
7. Further remarks

In the present communication, we have defined a new set of
spectral invariants for electro-active bodies with one and two
families of ‘fibres’, where the host material and the fibres can react
to the presence of electric fields. When using the classical in-
variants of Rivlin and Spencer (Spencer, 1971) for the same prob-
lems, not only it is necessary to consider some invariants that may
not be independent (see, for example Shariff and Bustamante
(2015)), but also several of the classical invariants lack clear phys-
ical meanings. Due to the large number of classical invariants
associated with the modelling of anisotropic electro-elastic bodies,
different researchers modelled these materials using subsets of the
full set of classical invariants (see, for example Bustamante (2010),
for the equivalent problem of modelling anisotropic magneto active
elastomers). In the present paper, not only we have proposed in-
variants that have clearer physical meanings, but also from the
results presented in (77)e(82), (119), (122), we can see that in
general it is not possible to neglect some invariants from the
formulation, because all of them have effects on the stresses that
can be seen clearly from the different boundary value problems
presented in the previous sections.

Regarding some other possible applications of the invariant
theory presented in the presentwork, newmodels have appeared in
the literaturewhereboth electric andmagneticfields are considered
(Santapuri et al., 2013), and also implicit theories where relations
that candependonboth the stresses, strainsandelectric ormagnetic
fields (Bustamante and Rajagopal, 2013, 2015) have been proposed.
In suchworks, it would bemore convenient to use invariants similar
to the sets presented here, tomodel the different couplings between
the electromagnetic fields and the stresses and straints.
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