DETECCIÓN Y AISLAMIENTO DEL VIRUS INFLUENZA A EN PORCINOS DE RECRÍA Y CRIANZA, PERTENECIENTES A SISTEMAS INTENSIVOS UBICADOS EN LA ZONA CENTRAL DE CHILE

RAÚL ANTONIO ARCE ROMÁN

Memoria para optar al Título Profesional de Médico Veterinario. Departamento de Medicina Preventiva Animal

Profesor Guía: Víctor Manuel Neira Ramírez

SANTIAGO, CHILE
2016
DETECCIÓN Y AISLAMIENTO DEL VIRUS INFLUENZA A EN PORCINOS DE RECRÍA Y CRIANZA, PERTENECIENTES A SISTEMAS INTENSIVOS UBICADOS EN LA ZONA CENTRAL DE CHILE

RAÚL ANTONIO ARCE ROMÁN

Memoria para optar al Título
Profesional de Médico Veterinario
Departamento de Medicina
Preventiva Animal

Nota Final
Firma

PROFESOR GUÍA: VÍCTOR MANUEL NEIRA RAMÍREZ

PROFESOR CORRECTOR: JOSÉ PIZARRO LUCERO

PROFESOR CORRECTOR: JAIME FIGUEROA HAMED

SANTIAGO, CHILE
2016
“Siempre va haber alguien mejor que tú, y alguien peor que tú, lo importante es que tú des lo mejor de ti”

Papá

“Nunca pierdas la humildad”

Mamá

“Libertad es cuando las cosas vienen a ti y tú no vas tras ellas”

Yogi Bhajan

“Ni una inteligencia sublime, ni una gran imaginación, ni las dos cosas juntas forman el genio; AMOR, eso es el alma del genio”

Wolfgang Amadeus Mozart

“Hay una fuerza motriz más poderosa que el vapor, la electricidad y la energía atómica: la voluntad” Querer es poder

Albert Einstein

La vida es muy corta… aprovechala cada instante y da lo mejor de ti…eres extraordinario

Carpe Diem...

Carpe Diem...

Carpe Diem!!!
Agradecimientos y dedicatorias

Agradezco a mi Mamá, por estar siempre conmigo, por darme todo en la vida, por estar en las buenas y en las malas, por querer que sus hijos sean lo mejor posible, por dar todo por nosotros incluso más, por las horas de trabajo y esfuerzo, por darnos lo mejor de ella. Te quiero mucho vieja linda, y esto te lo dedico a ti, gracias por ser la mejor, todos tenemos defectos, pero tu demostraste ser más fuerte, de verdad no conozco persona más grande que tú… con mucho cariño espero que te sientas orgullosa de mí… y claro esto es solo un paso…nos quedan muchas más cosas por celebrar…

Agradezco a mi Papá, que a pesar de la distancia, siempre ha estado junto a mí, dándome el apoyo necesario para cumplir mis metas, estoy muy agradecido, te quiero mucho viejo. A mi hermano, que nos criamos juntos, decirle que es una gran persona… te quiero hermanito.

A mi familia, todos mis tíos y primos que han sido un apoyo durante tantos años, y han estado siempre en las buenas y en las malas, en especial la tía Edith, el tío Leslie, Marlene y Paula, la familia Donoso y Román, los quiero mucho…

A mis amigos, quiero decirles que han sido los mejores años junto a ustedes, me gustaría poder nombrarlos a todos, pero los que siempre han estado conmigo desde el colegio, el Seba, el Chicuelo, los CDC, los amigos de la universidad; mi gran amigo Pastel, José, Marxelo, Oscar, Ropi, Diego, Feño, la Bea y la Maite, tantas personas que he tenido el gusto de conocer Mauro y Arturo, que me han entregado tanto y que han hecho que sea la persona que soy hoy, los quiero mucho amigos, y los extrañaré…

Al Dr. Carlos Navarro, por ser un gran apoyo y por mostrarme su espíritu de ir siempre al frente, al Dr. Patricio Pérez, por ser un muy buen amigo, al Dr. Iñigo Díaz, que fue mi maestro y me enseñó el cariño por los cerdos y al Dr. Juan Lazo, una gran persona. La tía Elcira, por entregarme tanto cariño. A Don Shone, maestro y gurú, como un segundo padre y un ejemplo de vida. La maestra Okarjhot Kaur, por apoyarme y ayudarme a superar las dificultades. La jefa Su, por ser tan linda persona. A mi amada hija Martina, que es mi motor de vida, por la que lUCHO cada día y una de las razones porque intento ser mejor persona… A mis queridos abuelos, que los llevo siempre conmigo… a mi Poitoo hermosa, que está recién empezando esta bella carrera y le deseo lo mejor… a todos quiero decirles: ¡¡¡GRACIAS TOTALES!!! Se acaba una etapa y empieza otra…
<table>
<thead>
<tr>
<th>ÍNDICE DE CONTENIDOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESUMEN ... iii</td>
</tr>
<tr>
<td>SUMMARY ... iv</td>
</tr>
<tr>
<td>INTRODUCCIÓN ... 1</td>
</tr>
<tr>
<td>REVISIÓN BIBLIOGRÁFICA .. 2</td>
</tr>
<tr>
<td>- Etiología ... 2</td>
</tr>
<tr>
<td>- Evolución de Influenza .. 4</td>
</tr>
<tr>
<td>- Enfermedad ... 4</td>
</tr>
<tr>
<td>- Diagnóstico .. 5</td>
</tr>
<tr>
<td>- Bioseguridad .. 5</td>
</tr>
<tr>
<td>- Normativa SAG ... 6</td>
</tr>
<tr>
<td>- Justificación del estudio .. 7</td>
</tr>
<tr>
<td>OBJETIVO GENERAL ... 8</td>
</tr>
<tr>
<td>OBJETIVOS ESPECÍFICOS .. 8</td>
</tr>
<tr>
<td>MATERIALES Y MÉTODOS .. 9</td>
</tr>
<tr>
<td>- Ubicación geográfica de los planteles 9</td>
</tr>
<tr>
<td>- Unidad Muestral y Toma de Muestras 9</td>
</tr>
<tr>
<td>- Procesamiento de las muestras 10</td>
</tr>
<tr>
<td>- Extracción de ARN y RT-PCR en tiempo real 11</td>
</tr>
<tr>
<td>- Aislamiento viral en cultivos celulares 11</td>
</tr>
<tr>
<td>- Análisis Estadístico ... 12</td>
</tr>
<tr>
<td>RESULTADOS .. 14</td>
</tr>
<tr>
<td>- Resultados por plantel .. 14</td>
</tr>
<tr>
<td>- RT-PCR en tiempo real .. 15</td>
</tr>
<tr>
<td>- Aislamiento viral ... 17</td>
</tr>
<tr>
<td>- Concordancia entre técnicas ... 18</td>
</tr>
<tr>
<td>DISCUSIÓN ... 19</td>
</tr>
<tr>
<td>CONCLUSIONES .. 22</td>
</tr>
<tr>
<td>BIBLIOGRAFÍA .. 23</td>
</tr>
<tr>
<td>ANEXOS ... 27</td>
</tr>
</tbody>
</table>
INDICE DE TABLAS Y FIGURAS

TABLAS

Tabla 1: Número de muestras obtenidas por plantel ...14
Tabla 2: Muestras positivas por plantel, según técnica utilizada ..14
Tabla 3: RT-PCR en tiempo real ..15
Tabla 4: Tabla de Contingencia de Chi Cuadrado (RT-PCR en tiempo real)16
Tabla 5: Aislamiento viral en células MDCK ...17
Tabla 6: Tabla de Contingencia de Chi Cuadrado (Aislamiento viral)18
Tabla 7: Tabla de contingencia de 2 x 2 para análisis Kappa de Cohen18

FIGURAS

Figura 1: Ubicación Geográfica de los planteles muestreados ..9
Figura 2: Resultados de RT-PCR en tiempo real, según tipo de muestra.16
Figura 3: Resultados de aislamiento viral, según tipo de muestra. ...17
RESUMEN

El virus de la influenza porcina o SIV (Swine Influenza Virus), es un patógeno que afecta el sistema respiratorio y produce una de las enfermedades más prevalentes a nivel de industria porcina. Está distribuido en todo el mundo y genera importantes pérdidas económicas. Además, SIV se considera un patógeno zoonótico con potencial pandémico. A partir del brote de influenza humana A H1N1 ocurrida el año 2009, ha surgido la necesidad de conocer y entender las dinámicas de evolución y transmisión de este virus, para beneficio de la salud humana y animal.

Realizar un estudio en Chile adquiere especial relevancia, ya que se necesita conocer la realidad actual de SIV en los planteles de producción intensiva de cerdos. El presente estudio tiene como objetivo detectar y aislarse virus de Influenza A en la población de cerdos de la zona central de Chile, territorio en donde se concentra la gran mayoría de los planteles de producción intensiva. Para esto se obtuvieron muestras de hisopos nasales y fluidos orales desde 6 granjas ubicadas en esta zona (regiones V, RM, VI y VII) entre el año 2014-2015 en distintas épocas del año. Se utilizó RT-PCR en tiempo real para detectar el virus y se aisló mediante cultivo celular usando células MDCK.

Los resultados obtenidos demostraron la presencia del virus en todos los planteles muestreados. Hubo al menos dos muestras positivas a RT-PCR en tiempo real por granja. De las muestras sometidas a RT-PCR en tiempo real un 22,26% de ellas fueron positivas. Además se lograron aislar con éxito un total de 20 virus desde hisopos nasales y 2 desde fluidos orales, que corresponden a un 8,30% de las muestras obtenidas. Estos resultados indican que SIV es un patógeno frecuentemente encontrado en planteles de producción intensiva en Chile y altamente distribuido a nivel geográfico (desde la V a la VII región), por tanto podría considerarse endémico.

PALABRAS CLAVES: Aislamiento viral, fluidos orales, hisopos nasales, porcinos, RT-PCR en tiempo real, SIV (Swine Influenza Virus).
SUMMARY

Swine Influenza virus (SIV) is an important respiratory pathogen in intensive pig population, generating significant economic losses for the industry. Also, SIV is a zoonotic pathogen with pandemic potential. Since the 2009 human pandemic caused by a swine origin Influenza virus H1N1, the concern about this pathogen in pigs has been increased. Then, is urgent to understand the dynamics of evolution and transmission of this virus, for animal and public health.

The information about SIV in Chile is scarce; therefore any effort to understand or evidence SIV in the country is highly valuable. The aim of this study was the detection and isolation of SIV in intensive swine farms in central Chile, place where most of the pigs are raising. Nasal swabs and oral fluids were collected from six farms (V, RM, VI and VII Regions) during 2014-2015 at different seasons through the year. Samples were tested by real time RT-PCR and virus isolation was attempted in canine kidney cells (MDCK).

The results showed the presence of SIV in all farms tested. At least 2 samples per farm tested positive by real time RT-PCR. Overall results by real time RT-PCR have shown a 22.3% positive samples. Also, virus isolation was succeeding in 20 nasal swabs and 2 oral fluids, corresponding to 8.30% of the samples collected. Results indicate that SIV is widespread in pig population in the region can be considered endemic.

KEYWORDS: Nasal swabs, oral fluids, real time RT-PCR, SIV (Swine Influenza Virus), Swine, viral isolation.
INTRODUCCIÓN

El virus de la Influenza porcina (SIV, por sus siglas en inglés), es responsable de una de las enfermedades respiratorias más prevalentes en porcinos a nivel mundial (Brown, 2000) y una de las que causa mayores pérdidas económicas para la industria (Davies y Torremorell, 2009). La enfermedad se caracteriza por ser endémica en los planteles; es decir, está constantemente circulando entre los cerdos (Torremorell et al., 2012). Se presenta con una alta morbilidad y una baja mortalidad, por lo que las pérdidas económicas son debido principalmente a la disminución en la ganancia de peso diaria de los cerdos, que se traduce en un retardo en alcanzar los pesos de venta (OIE, 2010).

Hoy en día, la enfermedad se considera un riesgo para la salud pública, ya que el virus tiene la capacidad de transmitirse a otras especies incluyendo al humano (Torremorell et al., 2012). En esta situación el cerdo juega un rol fundamental al servir como “vaso mezclador”; ya que puede albergar virus de Influenza A de origen porcino, humano y aviar en su tracto respiratorio, producirse una infección múltiple y generar nuevas variantes por recombinación (Lekcharoensuk et al., 2006; Jo et al., 2007). Es así como una nueva variante del virus provocó el reciente brote pandémico de Influenza A H1N1 el año 2009 en la población humana, conocido inicialmente como la “Gripe Porcina”, causando miles de muertes alrededor del mundo (Chandra y Bisht, 2010; Vincent et al., 2010). Esto sugiere la importancia de desarrollar programas de bioseguridad dentro de las granjas y mantener un seguimiento del virus a través de vigilancia epidemiológica.

En Chile aún se desconoce el status sanitario de las granjas porcinas respecto al virus de Influenza, aunque algunos estudios puntuales han descrito evidencia genética y serológica que demuestra la presencia de SIV en el país (Pereda, 2013; Nelson et al., 2015).

En este estudio se logró identificar el virus Influenza A mediante la técnica de Reacción en Cadena de la Polimerasa con transcripción reversa en tiempo real (RT-PCR en tiempo real), además se pudo aislar el virus en células de riñón canino, Madin Darby Canine Kidney (MDCK) desde las mismas muestras. El objetivo era determinar la presencia del virus en los planteles de producción intensiva de cerdos en Chile, para posteriormente (como parte del proyecto) poder también evaluar la diversidad genética viral e identificar cepas con potencial zoonótico.
REVISIÓN BIBLIOGRÁFICA

La Influenza es una enfermedad viral altamente contagiosa que afecta el sistema respiratorio de los cerdos (OIE, 2010). Es producida por distintos subtipos del virus Influenza tipo A, que además de afectar al cerdo puede transmitirse a aves y humanos (Gramer, 2005). La severidad de los cuadros depende de algunos factores como: la edad del cerdo, la salud, el estado inmunológico y la presencia de co-infecciones (Schaefer et al., 2008). El virus de la influenza porcina se presenta de dos formas en los planteles industriales: a) Enzoótica con presencia de brotes intermitentes, en donde se observan signos clínicos como tos, descarga nasal y respiración abdominal, afectando generalmente a cerdos de recría (Gramer, 2007; Song et al., 2007), b) Epizoótica cuando el brote se propaga a todas las unidades del plantel (maternidad, recría, crianza y engorda) observándose los mismos signos clínicos pero con mayor gravedad (OIE, 2010). La enfermedad puede presentarse como entidad individual o como parte del complejo respiratorio porcino (conocida por sus siglas en inglés PRDC), en el que también participan el virus PRRS (Virus del Síndrome Respiratorio y Reproductivo Porcino), Mycoplasma hyopneumoniae y el Circovirus Porcino tipo 2 (PCV2) entre otros agentes, que complican los cuadros y generan mayores pérdidas económicas para la industria (Janke, 2000; Dykhuis et al., 2012).

Etiología

El virus influenza que pertenece a la Familia Orthomyxoviridae, se caracteriza por ser un virus ARN, envuelto, de genoma segmentado, de hebra simple y sentido negativo (Gramer, 2005). La familia viral está compuesta por 5 géneros; Influenza A, B, C, Isavirus y Thogotovirus (Correa et al., 2011). La Influenza A infecta a animales vertebrados, principalmente a cerdos, aves y humanos (Zhou et al., 1999), aunque también suele encontrarse en equinos y ha sido descrita en mamíferos marinos (Brown, 2000). La Influenza B y C afectan solo al hombre, pero ocasionalmente pueden transferirse a los perros y a los cerdos (Vincent et al., 2008). Isavirus se transmite entre salmones y el Thogotovirus se asocia a la infección de mamíferos por medio de garrapatas (Li et al., 2008; Correa et al., 2011).
Los virus Influenza A miden alrededor de 80-120 nm (Treanor, 2010) y poseen 8 segmentos que codifican para 10-11 proteínas (Vincent et al., 2008). La Hemaglutinina (H) y la Neuraminidasa (N) son los principales antígenos virales y están ubicadas en la superficie viral. Estas proteínas son consideradas importantes, ya que definen los subtipos, el rango de hospederos y su patogenicidad (Vincent et al., 2009). Se conocen 18 tipos de H (H1-H18) y 11 tipos de N (N1-N11) (Gramer, 2005; Tong et al., 2013), y en los cerdos los subtipos más frecuentes son: H1N1, H3N2 y H1N2 (Ma et al., 2006; Jo et al., 2007; Allerson et al., 2008).

Para identificar los virus Influenza se utiliza la nomenclatura que primero identifica el Género o tipo (Influenza A, B o C), luego la especie hospedera si no es humano, lugar de aislamiento (país o estado), número de laboratorio, año en el que fue aislado y finalmente el subtipo, ejemplo: A/Swine/Iowa/15/1930 (H1N1), que corresponde a un virus Influenza A, aislado en cerdos, en Iowa Estados Unidos, en el año 1930 y subtipificado como H1N1. Este virus es considerado un virus tipo para el cerdo, conocido hoy como H1N1 clásico (Gramer, 2005).

Debido a las características del virus (genoma ARN de hebra simple y segmentado) tienen una gran capacidad para mutar. Esto se ve reflejado principalmente en cambios a nivel de sus antígenos H y N (Canals, 2010). Existen dos mecanismos por los que el virus muta: deriva antigénica y recombinación genética. La deriva antigénica (Antigenic Drift) es la acumulación gradual de mutaciones puntuales que ocurren de forma natural y espontánea en las proteínas virales, en respuesta a una presión de selección en la población, dado generalmente por la acción del sistema inmune o la utilización de vacunas. Este fenómeno es muy común en el virus de la gripe humana, por lo que periódicamente se deben reemplazar las vacunas con cepas más contemporáneas (Olsen, 2002). Por otra parte, la recombinación genética (Antigenic Shift) ocurre cuando un animal sufre una infección múltiple, en donde los virus infectantes recombinan sus segmentos, pudiendo generar un nuevo virus con proteínas superficiales (H y N) o antígenos, que pueden no ser reconocidos por el sistema inmune del hospedero, y generar potencialmente brotes pandémicos (Stine et al., 2002).
Evolución del SIV

Los primeros brotes de SIV, coincidieron con la primera pandemia de la era moderna, conocida como “La Gripe Española”, en el año 1918, donde murieron más de 20 millones de personas en el mundo (Olsen, 2002). El virus aislado fue un H1N1 (conocido hoy como H1N1 Clásico) y se mantuvo durante 80 años como el único subtipo identificado (Smith et al., 2009). En el año 1998 el panorama cambia, surgiendo nuevos subtipos de virus Influenza. El H3N2, fue aislado por primera vez en granjas de EUA (Choi et al., 2004) el cual poseía genes de origen porcino y humano (Doble-Recombinante). Posteriormente se identificó otro H3N2 que además contenía genes aviares (Triple-Recombinante o trH3N2) (Gramer, 2007). El virus trH3N2 se adaptó rápidamente a los cerdos volviéndose endémico y distribuyéndose por todo el mundo (Shin et al., 2006). La presencia de dos subtipos, el H1N1 clásico y trH3N2 produjo una tercera recombinación de virus, creando el subtipo H1N2 (Lekcharoensuk et al., 2006), en donde él H pertenecía al H1N1 Clásico y el N más los genes internos pertenecían al H3N2 (Vincent et al., 2009). Estos son los subtipos que hoy en día predominan en la población de cerdos del mundo con diferencias antigénicas entre regiones (Vincent et al., 2014).

En Chile se han realizado estudios serológicos que demuestran seropositividad de un 48% para Influenza A H1N1 y de un 22% para el subtipo H3N2 considerando 13 planteles de producción intensiva y animales positivos en todas las unidades de producción (maternidad, recria, crianza y engorda) (Pereda, 2013). Estas mediciones aún no han sido publicadas, pero se sospecha que los subtipos H1N1 y H3N2 han seguido circulando los últimos años en la industria porcina chilena.

Enfermedad

La transmisión de SIV se produce por contacto directo entre cerdos, a través de secreciones y aerosoles (Torremorell et al., 2012). También puede transmitirse la enfermedad de un plantel a otro por el movimiento de animales (Brown, 2000). Del mismo modo puede infectarse un rebaño a través de agua contaminada con heces de aves silvestres, o por contacto directo de los cerdos con los trabajadores de la granja, a través de su ropa en forma de fomites e incluso puede ir en los camiones que transportan los animales (Torremorell et al., 2012).
El virus de la influenza porcina entra al aparato respiratorio infectando desde el epitelio de la cavidad nasal, hasta llegar a las vías respiratorias bajas. La infección puede involucrar todas las vías aéreas en tan sólo unas horas. Los animales desarrollan posteriormente una neumonía bronco-intersticial que se caracteriza por lesiones pulmonares bruscamente demarcadas en los lóbulos apicales y cardíacos, con hiperemia, consolidación, y la presencia de exudados inflamatorios en las vías respiratorias. Histológicamente las superficies epiteliales son destruidas y se acumulan los restos celulares en el espacio intraluminal. Hay colapso de los espacios aéreos adyacentes, neumonía intersticial y enfisema (Fenner, 2011).

Los signos clínicos en los cerdos son similares a los de la gripe en humanos, con presencia de tos, descarga nasal, edema facial, fiebre, dificultad para respirar, conjuntivitis, letargo y disminución del apetito (Webster et al., 1992; Allerson et al., 2008). En algunas instancias se ha asociado también a enfermedades reproductivas como abortos debido a la fiebre que causa en hembras gestantes (OIE, 2010).

Diagnóstico

El virus puede obtenerse desde animales vivos infectados, a través de hisopos nasales y fluidos orales (Romagosa et al., 2012). Los fluidos orales están compuestos por saliva y otros componentes y en ellos se pueden encontrar agentes patógenos y anticuerpos, siendo método no invasivo, que no requiere mucho entrenamiento de los operarios y no utiliza equipamiento especializado (Romagosa et al., 2012). En la necropsia, se puede extraer desde muestras de tráquea y lóbulos pulmonares afectados (Vincent et al., 2009). Las muestras pueden someterse a aislamiento viral en células MDCK o en huevos embrionados de pollo para amplificar el virus. Los subtipos de la gripe pueden determinarse a través de las pruebas de inhibición de la hemaglutinación y de inhibición de la neuraminidasa o por medio de RT-PCR (OIE, 2010).

Bioseguridad

Es importante tener en cuenta, al trabajar con el Virus Influenza A que es un virus potencialmente riesgoso para la población humana y animal, además de tener la capacidad de propagarse fácilmente por contacto directo entre individuos y a través del aire. La CDC (Centro de Control y Prevención de Enfermedades) junto con la OMS (Organización Mundial
de la Salud) recomiendan laboratorios con nivel mínimo de bioseguridad 2; esta designación se basa en una combinación de características de diseño, construcción, medios de contención, equipos, prácticas y procedimientos de operación necesarios para evitar la propagación del agente (Anexo 1).

El acceso al laboratorio debe ser solo de personal autorizado, debe haber señaléticas de advertencia, que alerten del peligro biológico. La protección del personal debe incluir el uso de delantal, guantes protectores, mascarillas y gafas de seguridad si es necesario, para proteger los ojos de salpicaduras. Además, se debe considerar siempre el lavado de manos antes y después de la manipulación de material infeccioso.

La manipulación de las muestras y material infeccioso debe efectuarse dentro de una cámara de flujo laminar o cabina de bioseguridad, que tiene por función proteger al operador, las muestras y el ambiente, manteniendo un constante flujo y recambio de aire, asímismo de filtrarlo y limpiarlo.

Las superficies de trabajo se deben descontaminar después de cada jornada de trabajo y después de todo derrame de material potencialmente peligroso. Todos los materiales, muestras y cultivos contaminados deberán ser descontaminados antes de eliminarlos o de limpiarlos para volverlos a utilizar y para esto se debe contar con un equipo de autoclave o similar. El personal debe informar al jefe o encargado del laboratorio de inmediato si presenta síntomas relacionados a influenza que incluyen tos, dolor de garganta, vómitos, diarrea, dolor de cabeza, secreción nasal y dolores musculares.

Normativa del SAG

El Servicio Agrícola y Ganadero (SAG) no considera a la Influenza como una enfermedad de denuncia obligatoria, ya que es endémica en los planteles industriales. Sin embargo, si existe alguna denuncia por parte de los planteles, el SAG procede a tomar muestras para el diagnóstico.

Por otra parte, el control de la enfermedad incluye el uso de vacunas, las que pueden o no encontrarse autorizadas en nuestro país. Si no existiese autorización, los planteles deben solicitar la Autorización de Uso especial al SAG, en la cual adjunta todos los antecedentes requeridos para que el Servicio evalúe la pertinencia de la aplicación de ésta, señalando que
es por un tiempo determinado y por una cantidad de dosis específica exclusivas para quien
as solicita (SAG, 2015).

Justificación del estudio

Debido a que el virus Influenza es un problema para la industria porcina y también tiene un
potencial riesgo zoonótico, existe la necesidad de realizar estudios diagnósticos donde se
detecten y caractericen los virus circulantes en el país, para mantener así una constante
vigilancia epidemiológica y poder desarrollar vacunas locales para la prevención de la
enfermedad.
OBJETIVO GENERAL

Detectar y aislar el virus Influenza A desde porcinos de recría y crianza, pertenecientes a planteles de producción intensiva ubicados en la zona central de Chile.

OBJETIVOS ESPECÍFICOS

1. Determinar la presencia del virus Influenza A en muestras obtenidas de porcinos de recría y crianza, pertenecientes a planteles de producción intensiva ubicados en la zona central de Chile.

2. Aislar el virus Influenza A en células MDCK desde muestras obtenidas de porcinos de recría y crianza, pertenecientes a planteles de producción intensiva ubicados en la zona central de Chile.
MATERIALES Y MÉTODOS

Ubicación geográfica de los planteles

Los planteles del estudio están distribuidos en la zona central de Chile, donde se encuentra el mayor porcentaje de la producción porcina nacional. Todos los planteles incluidos en el estudio son considerados “Mono-sitios”; granjas en donde las distintas unidades productivas (maternidad, recría, crianza y engorda) se encuentran en el mismo lugar.

En total se muestrearon 6 granjas, las que fueron nombradas con letras desde la A a la F y ordenadas según su ubicación geográfica. El plantel A se encuentra ubicado más al norte en la comuna de San Esteban, Provincia de Los Andes V Región de Valparaíso. El plantel B en el valle de Mallarauco, Provincia de Melipilla, Región Metropolitana. El plantel C en Isla de Maipo, Provincia de Talagante en la Región Metropolitana. El plantel D en San Francisco de Mostazal, VI Región de Libertador Bernardo O’Higgins. El plantel E en Teno y el plantel F en la ciudad de Curicó, Provincia de Curicó VII Región Del Maule (Figura 1).

Unidad muestreal y toma de muestras

Las muestras fueron obtenidas desde cerdos comerciales de recría y crianza, en un rango de 30 a 100 días de vida, que hayan estado cursando con signos clínicos de enfermedad respiratoria (tos, descarga nasal, decaimiento, dificultad para respirar, etc.), desde 6 planteles de producción intensiva de la zona central de Chile. De estos planteles se obtuvo hisopos nasales (muestra individual) y fluido oral (muestra grupal).
Para el muestreo de hisopado nasal (HN) cada cerdo fue restringido de movimiento con la ayuda de un puro (herramienta de sujeción para cerdos), el cual era sostenido por un operario. Luego, el investigador introdujo un hisopo (BD BBLTM CultureSwabTM, Sparks, MD, USA) por ambas fosas nasales. La muestra de fluido oral (FO), se obtuvo utilizando cuerdas trenzadas de algodón (1 x corral), las que fueron colgadas desde las rejas de los corrales durante 20 minutos para que todos los cerdos del corral tengan acceso a morderla (Romagosa et al., 2012) (Anexo 2). Este procedimiento se realizó de la siguiente forma: cada corral con cerdos sospechosos de enfermedad respiratoria fueron muestreados con hisopos nasales de forma individual, y luego en el mismo corral se obtuvo la muestra de fluidos orales.

Los protocolos descritos en el presente estudio fueron realizados según las normas y directrices internacionales para el uso de animales en investigación biomédica que está certificado por el Comité de Bioética de la Facultad de Ciencias Veterinarias y Pecuarias de la Universidad de Chile (Anexo 3).

Procesamiento de las Muestras

Las muestras fueron procesadas en el Laboratorio de Virología Animal del Departamento de Medicina Preventiva Animal de la Facultad de Ciencias Veterinarias y Pecuarias de la Universidad de Chile.

Los hisopos nasales fueron depositados en criotubos con 2mL de medio SIV [Medio mínimo esencial (MEM), 0,1% tripsina tratada con TPCK (Tosyl phenylalanyl chloromethyl ketone), 1% antibiótico/antimicótico (Penicilina/Streptomicina + Anfotericina B) y 2% seroalbúmina bovina (BSA, por sus siglas en inglés) al 7%]. Los fluidos orales se centrifugaron por 10 minutos a 5.000 revoluciones por minuto (R.P.M) para decantar impurezas. El sobrenadante se depositó en criotubos de 2mL.

Cada muestra fue dividida en 3 alícuotas, una alícuota para RT-PCR de 300µl, otra de 1mL para aislamiento viral y como muestra de respaldo. Los tubos fueron posteriormente rotulados y congelados a -80°C hasta su diagnóstico.
Extracción de ARN y RT-PCR en tiempo real

Se procedió a extraer y purificar el ARN presente en las muestras, para luego amplificarlo mediante la técnica de RT-PCR. Esta etapa es necesaria para eliminar los componentes celulares, citoplasma y otros que puedan interferir con la reacción de PCR. Para esto se utilizó TRIzol® LS Reagent siguiendo el protocolo del fabricante (Anexo 4). Finalmente, se obtuvo un precipitado de ARN que fue disuelto en 50µl de agua ultra pura para luego ser utilizado en el RT-PCR.

El ARN de las muestras se amplificó mediante RT-PCR en tiempo real, previamente estandarizado y que corresponde al procedimiento estándar de Centro de Control y Prevención de las Enfermedades (CDC) para el diagnóstico de Influenza A. La región amplificada se encuentra en el segmento 7 o gen de la matriz (M) de Influenza A, y que utiliza los siguientes Partidores (Primers): Promotor INF A 5’-GAC CRA TCC TGT CAC CTC TGAC-3’, Reverso INF A 5’-AGG GCA TTY TGG ACA AAK CGT CTA-3’ y Sonda 5’ FAM- TGC AGT CCT CGC TCA CTG GGC ACG- BHQ1-3’. La amplificación fue realizada utilizando TaqMan® Fast Virus 1-Step Master Mix (Life Technologies) siguiendo el protocolo del fabricante (CDC, 2009) (Anexo 5).

En cada reacción se incluyeron controles positivos y negativos. En el caso del control positivo se utilizó una muestra de campo previamente identificada y aislada. Como control negativo fue utilizado el sobrenadante de células MDCK no infectado. Muestras con ciclo umbral (Cₜ, por sus siglas en inglés) Cₜ <35 fueron consideradas como positivas mientras que las que presenten Cₜ >35 fueron consideradas negativas.

Aislamiento Viral en Cultivos Celulares

Posterior al RT-PCR se intentó el aislamiento viral en todas las muestras. Se prepararon monocapas de MDCK ATCC® CCL-34™ utilizando frascos de cultivo rectangulares con cuello oblicuo de 25cm² Corning®. Para el crecimiento celular fue usado MEM al 10% SFB (Suero fetal bovino) con 1% antibiótico/antimicótico y se incubaron a 37°C con 5% de CO₂.

Una vez que las monocapas presentaron un 80% de confluencia fueron lavadas dos veces con PBS Corning ® (Buffer Fosfato Salino) + tripsina TPCK SIGMA®. Posteriormente, se inoculó 100 a 200µl de muestra (hisopo nasal o fluido oral). Luego, los frascos fueron
incubados por 45 minutos a 37°C y con 5% CO₂. Una vez alcanzados los 45 minutos, se agregó 6mL de medio SIV y luego el cultivo se incubó a 37°C y 5% de CO₂. Los cultivos inoculados con muestras provenientes de fluidos orales fueron lavados 2 veces más con PBS+TPCK antes de agregar el medio de cultivo, ya que contienen mayor cantidad de detritus.

Diariamente se evaluó la presencia de efecto citopático (CPE, por sus siglas en inglés) (destrucción de la monocapa) que produce el virus influenza en las células MDCK, observándose al microscopio a las 24, 48 y 72 horas post-inoculación. Los resultados que pueden obtenerse son: positivo, cuando el virus destruye la monocapa de forma evidente y progresiva, negativo cuando la monocapa se mantiene integra (Anexo 6).

Una vez obtenidos los cultivos positivos a CPE, se confirmó la presencia de Influenza A a través de RT-PCR en tiempo real, tal como fue descrito previamente.

Análisis Estadístico

Una vez realizados los RT-PCR y los aislamientos virales a la totalidad de las muestras, se analizaron los resultados de forma descriptiva. El estudio contempló en primera instancia la comparación entre tipo de muestras (fluido oral vs hisopo nasal), esto para evidenciar con cual se logró obtener mayor cantidad de muestras positivas. Esta comparación se realizó tanto para la técnica de RT-PCR en tiempo real, como para los aislamientos virales. Incluyó una comparación de porcentaje de muestras positivas a través de gráfico de barras además de la utilización de la prueba de Chi cuadrado para ver si las diferencias fueron estadísticamente significativas.

Finalmente se realizó una prueba de concordancia utilizando Kappa para determinar si los resultados obtenidos por RT-PCR en tiempo real y el aislamiento viral tienen algún grado de similitud en el número de muestras positivas. Cada una de las muestras se categorizó de acuerdo a los resultados obtenidos por ambas técnicas. Con estos resultados, fue completada la tabla de 2 x 2 que permite realizar el análisis de concordancia, la que fue realizada utilizando QUICKCALCS GraphPad Software online. A continuación se detallan las categorías de nivel de concordancia respecto al valor Kappa.
<table>
<thead>
<tr>
<th>Valor de Kappa</th>
<th>Nivel de concordancia</th>
<th>% de datos confiables</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00 - 0.20</td>
<td>Ninguna</td>
<td>0 - 4%</td>
</tr>
<tr>
<td>0.21 - 0.39</td>
<td>Mínima</td>
<td>4 - 15%</td>
</tr>
<tr>
<td>0.40 - 0.59</td>
<td>Débil</td>
<td>15 - 34%</td>
</tr>
<tr>
<td>0.60 - 0.79</td>
<td>Moderada</td>
<td>35 - 63%</td>
</tr>
<tr>
<td>0.80 - 0.99</td>
<td>Fuerte</td>
<td>64 - 81%</td>
</tr>
<tr>
<td>Mayor a 0.99</td>
<td>Casi perfecta</td>
<td>82 - 100%</td>
</tr>
</tbody>
</table>
RESULTADOS

Resultados por plantel

Se obtuvieron 265 muestras desde los 6 planteles descritos, con un total de 51 fluidos orales (FO) y 214 hisopos nasales (HN). En la Tabla 1. se puede ver la fecha en que se tomaron las muestras, la edad de los cerdos y el número de muestras obtenidas por plantel según tipo de muestra.

Tabla 1. Número de muestras obtenidas por plantel según tipo de muestra

<table>
<thead>
<tr>
<th>Planteles</th>
<th>Fecha</th>
<th>Edad (d)</th>
<th>Tipo de muestras</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Fluido oral</td>
<td>Hisopo nasal</td>
</tr>
<tr>
<td>Plantel A</td>
<td>01/12/2014</td>
<td>36 a 56</td>
<td>7</td>
</tr>
<tr>
<td>Plantel B</td>
<td>24/11/2014</td>
<td>45 a 54</td>
<td>8</td>
</tr>
<tr>
<td>Plantel C</td>
<td>24/07/2014</td>
<td>33 a 75</td>
<td>8</td>
</tr>
<tr>
<td>Plantel D</td>
<td>04/12/2014</td>
<td>50 a 67</td>
<td>7</td>
</tr>
<tr>
<td>Plantel E</td>
<td>11/03/2015</td>
<td>70-100</td>
<td>7</td>
</tr>
<tr>
<td>Plantel F</td>
<td>21/01/2015</td>
<td>55</td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>51</td>
</tr>
</tbody>
</table>

Los resultados obtenidos en cada uno de los planteles, tanto a la técnica RT-PCR en tiempo real y aislamiento viral se detallan a continuación.

Tabla 2. Muestras positivas por plantel, según técnica utilizada.

<table>
<thead>
<tr>
<th>Planteles</th>
<th>RT-PCR (+)</th>
<th>fo</th>
<th>hn</th>
<th>Aisl. Viral (+)</th>
<th>fo</th>
<th>hn</th>
<th>Ambas (++)</th>
<th>fo</th>
<th>hn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plantel A</td>
<td>7 (16,6%)</td>
<td>3</td>
<td>4</td>
<td>7 (16,6%)</td>
<td>2</td>
<td>5</td>
<td>4 (9,5%)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Plantel B</td>
<td>19 (39,58)</td>
<td>7</td>
<td>12</td>
<td>14 (29,16%)</td>
<td>0</td>
<td>14</td>
<td>10 (20,83%)</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Plantel C</td>
<td>7 (17,94%)</td>
<td>4</td>
<td>3</td>
<td>0 (0%)</td>
<td>0</td>
<td>0</td>
<td>0 (0%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Plantel D</td>
<td>2 (4%)</td>
<td>2</td>
<td>0</td>
<td>0 (0%)</td>
<td>0</td>
<td>0</td>
<td>0 (0%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Plantel E</td>
<td>22 (59,4%)</td>
<td>1</td>
<td>21</td>
<td>0 (0%)</td>
<td>0</td>
<td>0</td>
<td>0 (0%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Plantel F</td>
<td>2 (4,08%)</td>
<td>1</td>
<td>1</td>
<td>1 (2%)</td>
<td>0</td>
<td>1</td>
<td>1 (2%)</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
El virus fue detectado en todas las granjas en estudio mediante la técnica RT-PCR en tiempo real y es importante destacar que se obtuvieron muestras positivas en distintas épocas del año. Por otra parte, el aislamiento viral solo fue posible en 3 de los planteles.

Posterior al análisis predial, se realizó un análisis global, el cual consideró el total de muestras obtenidas en el estudio, donde se compararon los tipos de muestra utilizada (fluído oral vs hisopo nasal), para determinar cual muestra es mejor según la técnica utilizada. También se evaluó el grado de concordancia entre los resultados obtenidos por RT-PCR en tiempo real y aislamiento viral.

Resultados obtenidos por RT-PCR en tiempo real

Los resultados de RT-PCR en tiempo real de un total de 265 muestras, 59 muestras fueron positivas (22.26 % del total), esto incluye 18 fluidos orales y 41 hisopos nasales, mientras que 206 muestras fueron negativas a la presencia de Influenza A (77.74% del total), las que incluyen 33 fluidos orales y 173 hisopos nasales (Tabla 3).

<table>
<thead>
<tr>
<th>Tipo de muestra</th>
<th>Positivo</th>
<th>Negativo</th>
<th>Total N°</th>
<th>Total %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N°</td>
<td>%</td>
<td>N°</td>
<td>%</td>
</tr>
<tr>
<td>Fluído oral</td>
<td>18</td>
<td>35.29%</td>
<td>33</td>
<td>64.71%</td>
</tr>
<tr>
<td>Hisopo nasal</td>
<td>41</td>
<td>19.16%</td>
<td>173</td>
<td>80.84%</td>
</tr>
<tr>
<td>Total general</td>
<td>59</td>
<td>22.26%</td>
<td>206</td>
<td>77.74%</td>
</tr>
</tbody>
</table>

Tabla 3. RT-PCR en tiempo real
Los resultados indican que los fluidos orales tienen un mayor porcentaje (35,29%) de muestras positivas al RT-PCR comparado con el hisopo nasal en el que se obtuvieron solo 19,16% de las muestras totales positivas a Influenza A (Figura 2.).

![Gráfico de barras mostrando comparación de fluido oral y hisopo nasal]

Figura 2. Resultados de RT-PCR en tiempo real, según tipo de muestra.

Para determinar diferencias estadísticas entre fluido orales e hisopos nasales en la detección mediante RT-PCR en tiempo real, se realizó un prueba de Chi cuadrado utilizando una tabla de contingencia (QUICKCALCS GraphPad Software online) (Tabla 4). En la prueba de Chi cuadrado se obtuvo un p < 0,05, por tanto las muestras son consideradas distintas. Es decir, el tipo de muestra influye en los resultados, y se considera que estadísticamente el fluido oral es mejor muestra que el hisopo nasal para el RT-PCR en tiempo real en condiciones de infección natural.

<table>
<thead>
<tr>
<th>Tipo de muestra</th>
<th>Positivo RT-PCR</th>
<th>Negativo RT-PCR</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluido oral</td>
<td>18</td>
<td>33</td>
<td>51</td>
</tr>
<tr>
<td>Hisopo nasal</td>
<td>41</td>
<td>173</td>
<td>214</td>
</tr>
<tr>
<td>Total</td>
<td>59</td>
<td>206</td>
<td>265</td>
</tr>
</tbody>
</table>

Hipótesis nula= las muestras son iguales P = 0,0128
Resultados obtenidos por Aislamiento Viral

Los resultados obtenidos tras realizar aislamiento viral en células MDCK muestran que de un total de 265 muestras, 22 fueron positivas al aislamiento viral (8,30% del total) incluyendo 20 hisopos nasales y 2 fluidos orales, mientras que 243 (91,70% del total) muestras fueron negativas incluyendo 194 hisopos nasales y 49 fluidos orales (Tabla 5). Todos los aislamientos fueron corroborados a través de RT-PCR en tiempo real confirmando la presencia del virus.

Tabla 5. Aislamiento viral en células MDCK

<table>
<thead>
<tr>
<th>Tipo de muestra</th>
<th>Positivo</th>
<th>Negativo</th>
<th>Total N°</th>
<th>Total %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N°</td>
<td>%</td>
<td>N°</td>
<td>%</td>
</tr>
<tr>
<td>Fluido Oral</td>
<td>2</td>
<td>3,92%</td>
<td>49</td>
<td>96,08%</td>
</tr>
<tr>
<td>Hisopo nasal</td>
<td>20</td>
<td>9,35%</td>
<td>194</td>
<td>90,65%</td>
</tr>
<tr>
<td>Total general</td>
<td>22</td>
<td>8,30%</td>
<td>243</td>
<td>91,70%</td>
</tr>
</tbody>
</table>

Los resultados indican que hisopo nasal tiene mayor porcentaje de muestras positivas al aislamiento viral (9,35%), mientras que el fluido oral tuvo un menor porcentaje (3,92%) de las muestras positivas al aislamiento del virus Influenza A (Figura 3.).

![Figura 3. Resultados de aislamiento viral en células MDCK, según tipo de muestra.](image-url)
Para determinar si las diferencias observadas fueron estadísticamente significativas, se realizó una prueba de Chi cuadrado utilizando una tabla de contingencia (Tabla 6). En la prueba de Chi cuadrado se obtuvo un p > 0,05, por tanto las muestras son consideradas iguales para este método de diagnóstico. Es decir, el tipo de muestra no influye en los resultados, y se considera que estadísticamente el fluido oral es similar a la muestra que el hisopo nasal para el aislamiento viral en células MDCK para este estudio.

Tabla 6. Tabla de Contingencia de Chi Cuadrado.

<table>
<thead>
<tr>
<th>Tipo de muestra</th>
<th>Positivo Aislamiento</th>
<th>Negativo Aislamiento</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluido oral</td>
<td>2</td>
<td>49</td>
<td>51</td>
</tr>
<tr>
<td>Hisopo nasal</td>
<td>20</td>
<td>194</td>
<td>214</td>
</tr>
<tr>
<td>Total</td>
<td>22</td>
<td>243</td>
<td>265</td>
</tr>
</tbody>
</table>

Hipótesis nula= las muestras son iguales P = 0,2071

Concordancia entre técnicas

La prueba de Kappa de Cohen (Tabla 5) reportó un valor de 0,284, que se encuentra dentro del rango 0,21- 0,40, que considera que existe una asociación mínima, por lo que podríamos inferir que los resultados obtenidos por RT-PCR en tiempo real no son concordantes a los obtenidos por aislamiento viral.

Tabla 7. Tabla de contingencia de 2 x 2 para análisis Kappa de Cohen.

<table>
<thead>
<tr>
<th></th>
<th>+ aislamiento</th>
<th>- aislamiento</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ RT-PCR</td>
<td>15</td>
<td>44</td>
<td>59</td>
</tr>
<tr>
<td>- RT-PCR</td>
<td>7</td>
<td>199</td>
<td>206</td>
</tr>
<tr>
<td>Total</td>
<td>22</td>
<td>243</td>
<td>265</td>
</tr>
</tbody>
</table>

Kappa= 0,284
DISCUSIÓN

Influenza A es una enfermedad que afecta tanto a la población humana como a la animal, comprobándose una estrecha relación en la evolución del virus por medio de la transmisión entre porcinos, personas y aves; ocurriendo recombinaciones genéticas que hacen que surjan nuevas cepas o subtipos (Yadav y Rawal 2015). A partir de la pandemia de H1N1 ocurrida el año 2009, nuestro entendimiento de las dinámicas de evolución y diversidad del virus influenza en los cerdos se ha incrementado, por lo que se ha hecho necesario profundizar en su estudio (Vincent et al., 2014; Nelson et al., 2015). La presente investigación tuvo por objetivo detectar y aislar virus de Influenza A en la población de cerdos de la zona central de Chile, donde se concentra la gran mayoría de los planteles de producción intensiva.

Los resultados obtenidos indican que SIV es un patógeno frecuentemente encontrado en planteles de producción intensiva en Chile, ya que en todas las unidades muestreadas se logró identificar este agente, por tanto podría considerarse endémico. Además, se debe considerar que el virus estuvo presente desde la V a la VII región, lo que quiere decir que está altamente distribuido a nivel geográfico. El carácter endémico de SIV en Chile no ha sido previamente reportado, ya que solo existen descripciones serológicas y genéticas puntuales, sin considerar la distribución del virus (Pereda, 2013; Nelson et al., 2015). La alta diseminación del virus en los planteles porcinos nacionales concuerda con lo que se describe en todo el mundo (Vincent et al., 2014). Los diferentes niveles de detección observados en las granjas se pueden deber a factores prediales como el momento es que se tomaron las muestras respecto de la aparición de los signos clínicos y el nivel de infección de los animales que puede estar relacionado con el tipo de virus, nivel de inmunidad materna entre otros (Corzo et al., 2012; Torremorell et al., 2012).

Por otro lado, es importante mencionar que la mayoría de los muestreos fueron realizados durante la temporada primavera-verano, y aun así el virus fue detectado. Históricamente, se ha descrito a SIV como un patógeno más frecuente en otoño-invierno, aunque recientemente Corzo et al., 2013 ha demostrado la presencia constante del virus a través del año, lo que concuerda con los resultados obtenidos.
Respecto a los resultados de RT-PCR en tiempo real, esta se consideró la técnica más sensible ya que el 22,3% de las muestras totales fueron positivas y en todos los plantíos hubo al menos dos muestras positivas. El RT-PCR en tiempo real ha sido recomendado como la técnica de elección para cuadros de Influenza A por su excelente sensibilidad, no tan solo en porcinos si no que para cualquier especie animal (CDC, 2009). De acuerdo al tipo de muestra, el fluido oral resultó ser la muestra con la que se obtuvo mejores resultados (35.3% de las muestras fueron positivas). El fluido oral, corresponde a una muestra grupal en donde están representados la mayoría de los animales de un corral, por lo que debería existir una mayor probabilidad de detectar el virus. Estadísticamente ambos tipos de muestras fueron consideradas diferentes cuando el RT-PCR tiempo real es usado, siendo el fluido oral una muestra que aumenta la sensibilidad de la técnica. Esta mayor sensibilidad ha sido comprobada a nivel experimental determinando que la probabilidad de detectar SIV en granjas con prevalencias de la enfermedad >18% es de un 99% y cuando esta disminuye a un 9% la probabilidad se reduce a un 69% (Romagosa et al., 2012). Cabe destacar que nuestro muestreo de hisopos nasales está diseñada para detectar al menos un animal positivo con una prevalencia >10%. Así probablemente en el plantel D por ejemplo, que no tiene hisopo nasal, pero si fluido oral, la prevalencia de SIV sea menor al 10%.

Los resultados de aislamiento viral mostraron solo un 8,3% de positivos totales, siendo el hisopo nasal la muestra con mayor éxito, logrando el aislamiento de 20 virus (9,35% de los hisopos nasales), mientras que el fluido oral solo fue exitoso en 2 ocasiones (3,92% de los fluidos orales). El mayor éxito del aislamiento en hiposo nasal puede estar relacionado a que esta es una muestra mucho más limpia que el fluido oral, la que comúnmente contamina el cultivo y se ha demostrado es capaz de reducir la infectividad de SIV rápidamente (Decorte et al., 2015). También podría explicarse por un efecto dilución del fluido oral, sin embargo, está descartado de acuerdo a los estudios previamente realizados que indican que la muestra de fluido oral para la técnica de RT-PCR tiene una alta sensibilidad (Romagosa et al., 2012). Sin embargo, las diferencias detectadas no resultaron ser estadísticamente significativas.

A nivel predial, se observa una gran variación en el nivel de detección del virus entre predios encontrándose desde 2 a 23 muestras positivas, representando diferencias desde un 4% hasta
un 47,9% de muestras positivas en cada granja. El número de muestras positivas debería estar directamente relacionado con la prevalencia de la infección viral, y esto a su vez con la presentación clínica (Neira et al., 2016).

El análisis estadístico mediante Kappa entre RT-PCR en tiempo real y aislamiento viral mostró que los resultados entre estas 2 técnicas tienen una “mínima” concordancia (Kappa=0,284). Este resultado se ve reflejado en el bajo número de muestras positivas a las 2 técnicas: tan solo 15 de un total de 66 muestras positivas, equivalente al 22,72 %. Estos resultados coinciden con los obtenidos en otros estudios que demuestran de que a pesar de detectar mediante RT-PCR el virus en el 100% de animales infectados (experimentalmente mediante hisopos nasales), el aislamiento del virus desde las mismas muestras es difícil de lograr, y es aún más difícil desde muestras de fluido oral (Decorte et al., 2015). Eso se debe a que la técnica de RT-PCR en tiempo real detecta material genético y este puede estar presente en un virus no viable o no infeccioso, por lo tanto será negativo al aislamiento.

Un resultado inesperado, es aquel en el cual se aísla el agente pero la muestra es negativa a RT-PCR en tiempo real, lo cual se observó en los planteles A y B en 3 y 4 ocasiones respectivamente. Cabe destacar que en estos planteles se obtuvo mayor éxito de aislamiento 21 de 22 aislados totales respectivamente, y existió también un gran número de RT-PCR en tiempo real positivos. Una muestra positiva a aislamiento y negativa a RT-PCR en tiempo real, puede explicarse por varias razones; la principal, la presencia de falsos negativos a RT-PCR en tiempo real. En este estudio se propuso como punto de corte el Ct 35, muestras con Ct entre 35 y 40 típicamente son consideradas como sospechosas y existe la posibilidad de que haya virus viable en ellas, los que serían capaces de propagarse en células. Cuatro de estas muestras presentaron Cts menores a 37 por lo cual es altamente factible de que esta sea la razón. Por otro lado, menos probable es que haya existido una inhibición de la reacción de RT-PCR en tiempo real o una contaminación del cultivo celular, ambas razones podrían explicar aquellas 3 muestras en esa condición. Esto puede estar relacionado a varios factores.
CONCLUSIONES

1. El virus Influenza A fue detectado en todos los planteles muestreados en esta memoria de título, esto sugiere que SIV es endémico en los planteles porcinos de producción intensiva ubicados entre la V a VII región de la zona central de Chile.

2. Fue posible detectar SIV tanto en las estaciones más frías otoño-invierno, como también en épocas de primavera-verano, esto sugiere que el virus se encuentra presente en los predios durante todo el año.

3. Utilizando la técnica de RT-PCR en tiempo real obtuvimos muestras positivas en todos los planteles, tanto en muestras de fluido oral como hisopo nasal. Los resultados indican que la muestra de fluido oral es mejor que el hisopo nasal en la detección de SIV en este estudio. Por lo tanto se puede considerar que RT-PCR es una herramienta efectiva en la detección del virus, tiene una alta capacidad diagnóstica y puede utilizarse de forma segura para el diagnóstico de SIV.

4. En el aislamiento viral se logró aislar con éxito SIV solo desde 3 planteles, con un menor número de muestras positivas en comparación con el RT-PCR en tiempo real, lo que demuestra que es una técnica que tiene menor éxito, debido a la complejidad que esta presenta. En este caso, la muestra de hisopo nasal permitió obtener un mayor número de virus que la muestra de fluido oral, aunque sin obtenerse diferencias estadísticamente significativas.

5. El análisis de concordancia indica que el aislamiento viral y el RT-PCR en tiempo real tienen una concordancia mínima, por lo que estas técnicas deben usarse para objetivos distintos y complementarios. Así, para la detección del virus en un plantel es recomendable usar la RT-PCR en tiempo real, preferentemente con muestras de fluido oral. El aislamiento viral, preferentemente con muestras de hisopo nasal, es la elección para obtener el virus y mantenerlo infectivo, por ejemplo para el desarrollo de vacunas.
BIBLIOGRAFÍA

KIM, C.J.; WEBBY, R.J.; CHOI, Y.K. 2006. Isolation and characterization of novel H3N1

WEBSTER, R.G.; PEIRIS, J.S.; GUAN, Y. 2009. Dating the emergence of pandemic

PARK, B.K. 2007. Isolation and phylogenetic analysis of H1N1 swine influenza virus

dated swine influenza subtypes. In: AASV 33rd Annual Meeting. Kansas City, Missouri,
USA. March 2 to 5, 2002. 113-117.

TREANOR, J.J. 2010. Influenza Viruses, Including Avian Influenza and Swine Influenza
Capítulo 165. Pag: 2265-2288.

ZHANG, Y. 2009. Characterization of an influenza A virus isolated from pigs during an
outbreak of respiratory disease in swine and people during a county fair in the United States.

Experimental inoculation of pigs with pandemic H1N1 2009 virus and HI cross-reactivity
with contemporary swine influenza virus antisera. Influenza Other Respir Viruses. 4(2):53-
60.

CERTIFICADO N° 54

Santiago 25 de agosto del 2015

El Comité de Bioseguridad de la Facultad de Ciencias Veterinarias y Pecuarias de la Universidad de Chile, ha revisado el proyecto de memoria titulado: "Detección y Aislamiento del virus Influenza en cerdos de producción intensiva", del alumno Sr. Raúl Arce R., y que corresponde a su proyecto de memoria para optar al título de Médico Veterinario. Profesor Guía Dr. Víctor Neira.

En el proyecto se estipulan entre otras, las siguientes medidas de Bioseguridad:

1.- El Personal recibirá vacunación contra virus influenza. Se utilizará vestimenta y equipos adecuados para realizar el trabajo en el laboratorio.

2.- Uso de gabinete de bioseguridad clase 2, desinfección de mesones en forma adecuada.

3.- Los desechos biológicos serán eliminados en autoclave.

El proyecto de memoria de título fue revisado por el comité en base a las especificaciones contenidas en el "Manual de Normas de Bioseguridad" editado por CONICYT versión 2008 y que previenen los riesgos para las personas, los animales y el medio ambiente.

BETTÉ LAPIERRE ACEVEDO
Coordinadora
Comité de Bioseguridad
ANEXO 2

Procedimiento de muestreo

Hisopo nasal

El equipamiento necesario para la toma de muestras son: guantes, puro o lazo para sostener al animal, hisopos nasales estériles y un marcador.

1. Sujetar al cerdo, apoyarlo contra una pared, y evitar que levante sus extremidades anteriores. Los cerdos más pequeños, pueden tomarse en los brazos mientras se les toma la muestra. Se seleccionan los cerdos que aparentemente presenten signos de enfermedad respiratoria (tos, descarga nasal, decaimiento).

2. Introducir el hisopo en cada fosa nasal con un ángulo de 45° latero-medial hacia el tabique nasal, luego se endereza y se inserta cuidadosamente lo más rostral posible.

3. Gire el hisopo de las agujas del reloj y en sentido contrario a la entrada y salida (puede presentar sangrado temporal).

4. Rotular las muestras, y almacenar a temperatura de refrigeración (4°C) en un cooler hasta su posterior procesamiento.
Fluidos orales

Para tomar las muestras de fluidos orales se necesitarán: guantes estériles, cuerdas de algodón, bolsas de plástico herméticas, tubos de 50 ml, tijeras y marcador permanente.

1. Amarrar las cuerdas con un nudo en una zona limpia del corral lejos del alimento y de los bebederos. Para corrales de 25 o más cerdos pueden utilizarse 2 cuerdas en el mismo corral y posteriormente mezclar su contenido.

2. Las cuerdas deben permanecer entre 20 a 30 minutos para asegurarse de que la mayoría de los cerdos del corral muerdan la cuerda y se absorban sus fluidos orales.

3. Retirar las cuerdas utilizando los guantes, depositar la cuerda en las bolsas de plástico herméticas y exprimirla de manera que el líquido se acumule en una esquina de la bolsa.
4. Por último, pasar el contenido de la bolsa a los tubos Falcon, se recomienda un mínimo de 2,5 ml de muestra por corral. Luego rotular y almacenar a 4°C.
CERTIFICADO N° 20-2015

En relación con los procedimientos propuestos para el uso de animales experimentales, tenida a la vista la metodología del Proyecto: “Deteccción, Aislamiento y Caracterización del Virus Influenza A en porcinos de sistemas de producción intensiva en la Zona Central de Chile”, Dicho proyecto corresponde será financiado por ZOETIS FAVET-1, donde el Investigador Responsable será el Dr. Víctor Neira R., y sus detalles contenidos en el Formulario para obtención de certificado de Comité de Bioética de la Facultad de Ciencias Veterinarias y Pecuarias de la Universidad de Chile, este Comité certifica que el Proyecto satisface lo estipulado en la guía de principios directrices internacionales para el uso de animales en investigación biomédica, elaboradas por el Consejo para las Organizaciones Internacionales de las Ciencias Biomédicas, adecuada y adoptada por este Comité, y se ajusta a la legislación chilena vigente sobre la materia, incluida la Norma NCh 324-2011.

A este respecto este Comité entiende que el Investigador Responsable trabajará muestras de hisopado nasal de cerdos provenientes de granjas comerciales, donde todos los animales continuarán sus ciclos productivos normales.

Dra. Tamara Tadich
Director
Comité de Bioética Animal

Dr. Santiago Urcelay V.
Presidente
Comité de Bioética Animal
ANEXO 4

Protocolo Extracción RNA utilizando TRIzol® Reagent

1. Se le adiciona 300µl de TRIzol® Reagent a 150µl de muestra dejando incubar durante 5 minutos a temperatura ambiente para permitir una completa disociación del complejo nucleoproteína.
2. Añadir 60µl de cloroformo, y realizar vortex.
3. Incubar en frío durante 15 minutos, luego centrifugar a 12.000g durante 15 minutos a 4°C.
4. Se observará que la mezcla se separará en una fase inferior roja de fenol-cloroformo, una interfase, y una fase acuosa superior incolora en la cual permanece el RNA. Esta última se transferirá a un tubo nuevo.
5. Para precipitar el RNA se agregará a la fase acuosa 150µl de Isopropanol al 100%, dejando incubar en hielo por 10 minutos e inmediatamente centrifugar a 12.000g durante 10 minutos a 4°C.
6. Lavar RNA eliminando el sobrenadante del tubo, dejar solo precipitado de RNA que será lavado con 300µl de etanol al 75%. (up down).
7. Realizar vortex a la muestra y enseguida centrifugar a 7.500g durante 5 minutos a 4°C.
8. Descartar el lavado y dejar secar por aireación para continuar con la resuspensión del RNA.
ANEXO 5

Preparación de la Mezcla Maestra para RT-PCR en tiempo real

N= número de muestras

<table>
<thead>
<tr>
<th>Reactivos</th>
<th>Volumen de reactivo por reacción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agua libre de Nucleasas</td>
<td>N x 5,5 µl</td>
</tr>
<tr>
<td>Primer Promotor</td>
<td>N x 0,5 µl</td>
</tr>
<tr>
<td>Primer Reverso</td>
<td>N x 0,5 µl</td>
</tr>
<tr>
<td>Sonda</td>
<td>N x 0,5 µl</td>
</tr>
<tr>
<td>SuperScript™ III RT/Platinum® Taq Mix</td>
<td>N x 0,5 µl</td>
</tr>
<tr>
<td>2X PCR Master Mix</td>
<td>N x 12,5 µl</td>
</tr>
<tr>
<td>Total Volumen</td>
<td>N x 20 µl</td>
</tr>
</tbody>
</table>

Programación de Tiempo y Temperatura del Termociclador

Transcripción Reversa (RT)	50°C por 30 minutos
Activación de la Taq Polimerasa	95°C por 2 minutos
Amplificación PCR (45 ciclos)	
Denaturación	95°C por 15 segundos
Annealing y extensión	55°C por 30 segundos*

* Los datos de fluorescencia son recopilados durante la etapa de incubación a 55 °C.
ANEXO 6

Aislamiento viral en células MDCK y efecto citopático (400x). Fotos tomadas en el Laboratorio Virología de Favet.

Confluencia de 80% monocapa de células MDCK.

Efecto citopático temprano a las 24 hrs post inoculación del virus Inf A.

Destructión de monocapa de células MDCK por acción del virus Inf A. se observa desprendimiento de células y células con aspecto fusiforme.

Efecto citopático transcurridas 72 hrs. El virus destruye completamente la monocapa de células MDCK y se forman cúmulos de células que flotan en el medio de cultivo.