Tabla de contenido

1. IN	FROI	DUCCIÓN	1
1.1.	For	mulación del problema	1
1.2.	Hip	ótesis	4
1.3.	Obj	ietivos	4
1.3.	.1.	Objetivo general	4
1.3.	.2.	Objetivos específicos	4
1.4.	Ubi	cación y vías de acceso	4
1.5.	Met	todología	6
1.5.	.1.	Muestras	6
1.5.	.2.	Caracterización petrográfica de rocas	12
2. MA	RCO) GEOLÓGICO	13
2.1.	Pri	ncipales formaciones en la zona de estudio	13
2.2.	Ma	rco Tectónico y estructural	15
2.2.	.1.	Generalidades	15
2.3.	Evo	lución Tectono-estratigráfica	17
2.4.	Ma	rco estructural	17
3. MA	RCO) TEÓRICO	19
3.1.	Rec	conocimiento de minerales	19
3.2.	Geo	otermometría	29
3.2.	.1.	Geoquímica de Fluidos	29
4. RE	SUL	ΓΑΟΟ	34
4.1.	Geo	oquímica de Fluidos	34
4.2.	Geo	otermómetros	40
4.3.	Pet	rografía	41
4.3.	.1.	Quebrada Queuco	43
4.3.	.2.	Quebrada Pangue	49
4.3.	.3.	Quebrada Malla	56
4.3.	.4.	Quebrada Quepuca	63
4.3.	.5.	Quebrada Lomín	70
4.3.	.6.	Río Biobío	77
5. DIS	SCUS	SIONES	84
5.1.	Mir	ieralogía Secundaria	84

5.1.1.	Geotermometría	
5.1.2.	Temperatura asociación mineral	
5.2. Ge	oquímica/características del paleo-sistema	
5.3. Ge	oquímica de Fluidos	
5.3.1.	Clasificación	
5.3.2.	Geotermometría	
5.4.	Estructuras y Perfiles	
5.5.	Femporalidad	
6. CONCL	LUSIONES	
7. BIBLIC)GRAFÍA	

Índice de figuras

Figura 1: Vista en planta de la zona de interés, correspondiente al CFC. Se señalan la fisura principal estudiada por Sielfeld (2008) en color rojo, y las quebradas adyacentes a esta en color azul. También se encuentran marcadas las manifestaciones termales del Avellano y Trapa-Trapa
Figura 2: Mineralogía de alteración común asociada a distintas condiciones de temperatura
v pH, según Reves (1990)
Figura 3: Principales rutas v vías de acceso a la zona aledaña al volcán Callagui. El
recuadro en azul muestra la zona de estudio
Figura 4: Zona de estudio y ubicación de las localidades más cercanas al volcán Callaqui5
Figura 5: Modelo de elevación digital (DEM) de la zona de estudio en donde se observan
las quebradas y las muestras tomadas en cada uno de ellos
Figura 6: Vaso precipitado con muestra de roca, agua y Calgon para realizar la separación
de arcillas
Figura 7: a) Vaso con muestra en licuadora. b) Vasos con muestras en ultrasonido
Figura 8: a) Medición de la masa de las muestras en una balanza. b) Ubicación de muestras
Figura 9: Precipitación de la muestra en la parte inferior de los tubos de ensavo 10
Figura 10: a) Portamuestra de vidrio con muestra recién colocada b) Portamuestras con
muestras secas listos para análisis de DRX
Figura 11: a) Difractómetro Bruker D8 Advance b) Muestras de arcillas en portamuestra de
vidrio en el difractómetro
Figura 12: Disposición de las placas tectónicas en el margen Sudamericano. Extraído de
Lara et al. (2008)
Figura 13: Mapa geológico simplificado con las estructuras presentes entre los 37°20'-
38°40'S. Tambien se reconocen las distintas unidades y formaciones presentes en la zona y
se encuentra marcado con un cuadrado azul el Complejo Fisural Callagui, Extraido de
Sielfeld <i>et al.</i> (2016)
Figura 14: Espaciados basales de algunos grupos de filosilicatos. Tomado de Hillier (2003).
Figura 15: Espaciado basal entre capas repetidas de una arcilla en un difractograma.
Tomado de Moore & Reynolds (1997).
Figura 16: Diferencias de intensidades entre distintas variedades de la clorita
Figura 17: Difractogramas de algunas arcillas y sus <i>peaks</i> más característicos. Tomado de
Moore & Reynolds (1997)
Figura 18: Variación de la esmectita con etilenglicol. Tomado de Moore & Reynolds
(1997)
Figura 19: Ejemplos de difractogramas de I/S con y sin EG. Tomado de Moore &
Reynolds (1997)
Figura 20: Ejemplos difractogramas de muestras C/S con y sin EG. Tomado de Moore &
Reynolds (1997)

Figura 21: Diagrama de Piper (1944) para los análisis realizados en el presente estudio. Se
incluyen, a modo de comparación, aquellos realizados por Hauser (1997), Hauser (2000),
Risacher y Hauser (2008) y Olivares (2011)
Figura 22: Diagrama ternario propuesto por Giggenbach (1988), para clasificar aguas
termales en base a sus aniones principales. Se observan aquellas muestras tomadas por
Olivares (2011), llamadas AVE-2 y EMA-01, a modo de comparación
Figura 23: Diagrama propuesto por Giggenbach (1991), basado en las concentraciones de
Cl-Li-B presentes en fluidos termales. Se incluyen muestras tomadas por Olivares (2011),
llamadas AVE-2 y EMA-01
Figura 24: Diagrama propuesto por Giggenbach & Glover (1992), basado en las
concentraciones de Li-Rb-Cs en fluidos termales
Figura 25: Gráfico correspondiente a la relación entre los isótopos estables de oxígeno e
hidrógeno presentes en las muestras de aguas termales. Se incluyen aquellos datos tomados
por Olivares (2011), así como la LMM y LML
Figura 26: Geotermómetro propuesto por Giggenbach (1988), el cual combina los
geotermómetros de Na-K y K-Mg. Se incluyen aquellas muestras tomadas por Olivares
(2011), identificadas como AVE-2 y EMA-01
Figura 27: Mapa geologico de la zona de estudio. Se encuentran señalados tanto los puntos
de muestreo como las diferentes quebradas y los nombres que se les dieron en el presente
trabajo. También se señalan las localidades de Ralco, El Avellano y Trapa Trapa, donde los
últimos dos fueron los puntos de muestreo de aguas termales. Por último, aquellas muestras
de color rojo fueron tomadas por C. Betancourt, mientras que las de color azul fueron
tomadas por V. Vicencio en una campaña previa
Figura 28: Afloramiento asociado a la muestra CQCB-03. Se observa el tono grisáceo,
común en los afloramientos de esta estructura, al igual que un diaclasado con una leve
orientación preferencial
Figura 29: Muestra de mano correspondiente al punto CQCB-02. Se reconoce el origen
ígneo intrusivo félsico de la muestra, al igual que algunas vetillas de menor tamaño
Figura 30: Fotomicrografías tomadas en microscopio petrográfico. En las fotos A (Nícoles
Paralelos) y B (Nícoles Cruzados) se observan cloritas y epidotas alterando a la mineralogía
primaria, mientras que en la C (Nícoles Paralelos) y D (Nícoles Cruzados) se observa un
vetilla rellena por epidota y cuarzo
Figura 31: Fotomicrografías tomadas mediante SEM-BSE. A la izquierda se observa clorita
y epidota en equilibrio reemplazando a la mineralogía primaria, mientras que a la derecha
se observa nuevamente la vetilla de epidota y cuarzo de la Figura 30
Figura 32: DRX de la muestra CQCB-02 con las distintas fases minerales identificadas y
sus respectivos peaks
Figura 33: Afloramiento asociado a la muestra CQCB-25. Al igual que en otros
afloramientos, se reconoce un diaclasado levemente orientado
Figura 34: Muestra de mano correspondiente al afloramiento CQCB-25. Se reconoce un
mineral blanco de alteración, identificado como wairakita mediante DRX
Figura 35: Fotomicrografías tomadas en microscopio petrográfico. En las imágenes A
(Nícoles Paralelos) y B (Nícoles Cruzados) se observan prehnitas y wairakitas rellenando

espacios, mientras que en las C (Nícoles Paralelos) y D (Nícoles Cruzados) se observa una amígdala con calcita y epidota. Por último en las imágenes E (Nícoles Paralelos) y F Figura 36: Fotomicrografías tomadas mediante SEM-BSE. La imagen A corresponde a cloritas de la muestra CQCB-24, la imagen B son wairakitas encontradas en una microfractura de la muestra CQCB-25 y las imágenes C y D son cuarzos y espesartina encontrados en una amígdala de la muestra CQCB-21......53 Figura 37: DRX de la muestra CQCB-24 con las distintas fases minerales identificadas y Figura 38: Afloramiento correspondiente a la muestra CQCB-19. Se pueden observar una vetilla rellena por esencialmente cuarzo con leves cantidades de epidota. Así mismo, se Figura 39: Muestra de mano CQCB-18. Al igual que en el afloramiento, se observan Figura 40: Fotomicrografías tomadas en microscopio petrográfico. En las imágenes A (Nícoles Paralelos) y B (Nícoles Cruzados) se observa cuarzo y cloritas rellenando una amígdala. En las imágenes C (Nícoles Paralelos) y D (Nícoles Cruzados) se observa una vetilla rellenada con cuarzo y epidota. En las imágenes E (Nícoles Paralelos) y F (Nícoles Figura 41: Fotomicrografías tomadas mediante SEM-BSE. Las imágenes A y B corresponden a feldespatos alterados a clorita y epidota respectivamente. La imagen C corresponde a una clinoptilolita rellenando espacios y la imagen D es una biotita reemplazada por clorita......60 Figura 42: DRX de la muestra CQCB-19 con las distintas fases minerales identificadas y Figura 43: Afloramiento correspondiente a las muestras CQCB-11A, CQCB-11B y CQCB-Figura 44: Muestra de mano CQCB-09. Se observa bastante alterada y con el mineral Figura 45: Fotomicrografías tomadas en microscopio petrográfico. En las imágenes A (Nícoles Paralelos) y B (Nícoles Cruzados) se observa laumontita y calcita reemplazando a minerales primarios. En las imágenes C (Nícoles Paralelos) y D (Nícoles Cruzados) se observa calcita rellenando espacios. En las imágenes E (Nícoles Paralelos) y F (Nícoles Figura 46: Fotomicrografías tomadas mediante SEM-BSE. Las imágenes A y B corresponden a clorita y calcita rellenando espacios en la muestra CQCB-13, mientras que Figura 47: DRX de la muestra CQCB-12 con las distintas fases minerales identificadas y Figura 48: Afloramiento correspondiente a la muestra CQCB-07. Se observa un diaclasado relativamente aleatorio......71 Figura 49: Muestra de mano COCB-07. Se logran distinguir fenocristales de feldespatos y algunas amígdalas.....71

Figura 50: Fotomicrografías tomadas en microscopio petrográfico. En las imágenes A (Nícoles Paralelos) y B (Nícoles Cruzados) se observa calcita reemplazando parcialmente a feldespato potásico. En las imágenes C (Nícoles Paralelos) y D (Nícoles Cruzados) se observa clorita rellenando espacios entre cristales de cuarzo y óxidos de hierro......73 Figura 51: Fotomicrografías tomadas mediante SEM-BSE. En la imagen A se observa clorita rellenando espacios entre cuarzo y óxidos de hierro. En la imagen B se observan cristales de heulandita......74 Figura 52: DRX de la muestra COCB-07 con las distintas fases minerales identificadas y Figura 53: Afloramiento del que se extrajo la muestra CQCB-06. Se puede reconocer las fracturas por la cual emergen fluidos termales actualmente......77 Figura 54: Manifestación termal de la cual se obtuvieron los sedimentos fluviales de la Figura 55: Fotomicrografías tomadas en microscopio petrográfico. En las imágenes A (Nícoles Paralelos) y B (Nícoles Cruzados) se observan epidotas y cloritas reemplazando totalmente la mineralogía primaria. En las imágenes C (Nicoles Paralelos) y D (Nicoles Cruzados) se observa una vetilla rellena por anhidrita. En las imágenes E (Nicoles Paralelos) y F (Nicoles Cruzados) se observa una amígdala rellena por clorita con un borde de cuarzo......80 Figura 56: Fotomicrografías tomadas mediante SEM-BSE. En las imágenes A y B se observan vetillas rellenas por epidota y clorita respectivamente. En la imagen C se observa una amígdala rellenada por calcita con un borde de clorita y en la imagen D se observa una Figura 57: DRX de la muestra CQCB-05 con las distintas fases minerales identificadas y Figura 58: Fotomicrografia de la muestra CQCB-20A, donde se observa marcado con azul Figura 59: Fotomicrografia de la muestra CQCB-21 en la cual se observa epidota tipo 2 Figura 60: Fotomicrografia de la muestra CQVV-25 en la cual se observa epidota tipo 3 Figura 64: Correlacion entre el porcentaje de C/S y la cristalinidad de la clorita en el plano Figura 65: Comparación grafica entre las diferentes muestras a las cuales se aplicó el Figura 66: Comparación grafica entre las diferentes muestras a las cuales se aplicó el geotermómetro de clorita de Jowett (1991)......93 Figura 67: Correlación entre las temperaturas obtenidas mediante el geotermómetro de Cathelineau (1988) y la cristalinidad de la clorita en el plano (001)......94

Figura 68: Representaciónes gráficas de los geotermómetros de cloritas para las muestras CQCB-01 y CQCB-02, propuestos por Bourdelle et al. (2013) e Inoue et al. (2009).......96 Figura 69: Representaciónes gráficas de los geotermómetros de cloritas para las muestras CQCB-08, CQCB-13 y CQCB-18, propuestos por Bourdelle et al. (2013) e Inoue et al. Figura 70: Representaciónes gráficas de los geotermómetros de cloritas para las muestras CQCB-24 y CQVV-28, propuestos por Bourdelle et al. (2013) e Inoue et al. (2009).........98 Figura 71: Comparación de la IC en el plano (001) para cada muestra 102 Figura 72: Comparación entre la IC y la ChC para la mayoría de las muestras estudiadas salvo excepciones como las muestras CQCB-11B o CQCB-08......103 Figura 73: Rangos de temperatura asociados a la formación de la alteración en cada una de las muestras estudiadas. Se incluyen las temperaturas calculadas a partir de las cristalinidades de la clorita y la illita......107 Figura 74: Mapa geológico de la zona de estudio. Se reconocen las muestras tomadas y la temperatura asociada a su mineralogía secundaria......108 Figura 75: Diagrama de estabilidad para el sistema Na-Ca-K-Mg-Al-Si-H₂O en función de Figura 76: Diagrama de estabilidad para el sistema Na-Ca-K-Mg-Al-Si-H₂O en función de las actividades del Mg y del SiO₂.....113 Figura 77: Comparación entre los geotermómetros de Na-K para la manifestación de El Avellano. Se reconocen dos tendencias marcadas con rojo y azul......114 Figura 78: Comparación entre los geotermómetros de Na-K para la manifestación de Trapa-Figura 79: Comparación entre distintos geotermómetros de cationes, incluyendo los de K-Figura 80: Comparación entre distintos geotermómetros de cationes, incluyendo los de K-Mg, para la manifestación de Trapa-Trapa.....116 Figura 81: Perfil de la zona de estudio. Se observan las distintas estructuras y formaciones presentes en ésta, al igual que la zonas de recarga meteórica y algunas de las muestras Figura 82: Perfiles a lo largo de las quebradas Pangue y Quepuca. Se incluyen las temperaturas asociadas a cada muestra, al igual que sus cristalinidades de illita y/o clorita. Figura 83: Ejemplo de un tubo de rayos X. Extraído de "The Physics of Radiology, 4th ed." Figura 85: Ejemplo de un difractograma modificado de Moore & Reynolds (1997). 198 Figura 86: Principales minerales de alteración y rangos de temperatura a los que son Figura 87: Dependencia lineal entre la temperatura de un sistema geotermal y la cantidad de Figura 88: Clasificación a partir de la IC con las respectivas temperaturas asociadas a ella.

Índice de tablas

Tabla 1: Equipo utilizado para mediciones en terreno.
Tabla 2: Peaks más característicos de algunas arcillas. Tomado de Moore & Reynolds
(1997)
Tabla 3: Principales <i>peaks</i> de los minerales de alteración más comunes y sus respectivas
intensidades entre parentesis
Tabla 4: Peaks de I/S en función del porcentaje de illita
Tabla 5: Peaks de C/S en función del porcentaje de clorita. Tomado Moore & Reynolds
(1997)
Tabla 6: Geotermómetros de Na-K aplicados en las aguas estudiadas. 31
Tabla 7: Geotermómetros de K-Mg y otros aplicados a las aguas estudiadas. 32
Tabla 8: Parámetros obtenidos en terreno de las dos manifestaciones termales analizadas. 34
Tabla 9: Resultados obtenidos de los analizas de cationes en las dos muestras tomadas 34
Tabla 10: Resultados obtenidos de los analizas de aniones en las dos muestras tomadas y el
balance iónico
Tabla 11: Resultados de isótopos de las dos muestras analizadas
Tabla 12: Clasificación de las muestras en función a su química. Se incluyen las muestras
correspondientes a estudios previos
Tabla 13: Geotermómetros de Na-K propuestos por varios autores aplicados a ambas
muestras
Tabla 14: Geotermómetros de Mg-K propuestos por Giggenbach (1988) y Fournier (1991).40
Tabla 15: Geotermómetros de sílice propuestos por Fournier (1977)
Tabla 16: Otros geotermómetros de cationes propuestos por diversos autores
Tabla 17: Tabla con las muestras tomadas en la Quebrada Queuco y sus respectivas
coordenadas. Se indica el protolito al igual que la mineralogía de alteración
Tabla 18: Análisis químico semi-cuantitativo y desviación estándar (σ) para 10 cloritas y 5
epidotas en la muestra CQCB-01, mediante SEM-EDS
Tabla 19: Análisis químico semi-cuantitativo y desviación estándar (σ) para 12 cloritas y 9
epidotas de la muestra CQCB-02, mediante SEM-EDS
Tabla 20: Fórmula química aproximada de las epidotas presentes en las tres muestras de la
Quebrada Queuco, calculada a partir de los promedios de la química obtenidos mediante
SEM-EDS
Tabla 21: Índices de cristalinidad para cloritas e illitas de las tres muestras de la Quebrada
Queuco. Estas fueron calculadas a partir de la DRX
Tabla 22: Muestras tomadas en la Quebrada Pangue y sus respectivas coordenadas. Se
indican los protolitos y la mineralogía de alteración identificada
Tabla 23: Porcentajes de clorita o illita en los interestratificados de C/S e I/S.
Tabla 24: Análisis químico semi-cuantitativo y su desviación estándar (σ) para 7 cloritas y
5 cuarzos en la muestra CQCB-24, mediante SEM-EDS
Tabla 25: Análisis químico semi-cuantitativo y su desviación estándar (σ) para 10
predictes A wairakitas y 2 epidotas en la muestra COCB-25, mediante SEM EDS 54

Tabla 26: Fórmula química aproximada de las epidotas presentes en las muestras CQCB-24
y CQCB-25 de la Quebrada Pangue, calculada a partir de los promedios de la química
obtenidos mediante SEM-EDS
Tabla 27: Índices de cristalinidad para cloritas e illitas de las muestras de la Quebrada
Pangue, salvo la muestra CQCB-22. Estas fueron calculadas a partir de la DRX
Tabla 28: Muestras tomadas en la Quebrada Malla y sus respectivas coordenadas. Se
indican los protolitos al igual que la mineralogía de alteración
Tabla 29: Porcentajes de clorita o illita en los interestratificados de C/S e I/S
Tabla 30: Análisis químico semi-cuantitativo y su desviación estándar (σ) para 4 cloritas,
12 epidotas y 2 cuarzos de la muestra CQCB-18, mediante SEM-EDS
Tabla 31: Análisis químico semi-cuantitativo y su desviación estándar (σ) para 4
cloritas/esmectitas y 4 clinoptilolitas de la muestra CQCB-19, mediante SEM-EDS
Tabla 32: Fórmula química aproximada de la epidota presente en la muestra CQCB-18 de
la Quebrada Malla, calculada a partir de los promedios de la química mediante SEM-EDS.
Tabla 33: Índices de cristalinidad para cloritas e illitas de las muestras alteradas de la
Ouebrada Malla. Estas fueron calculadas a partir de la DRX
Tabla 34: Muestras tomadas en la Quebrada Quepuca y sus respectivas coordenadas. Se
indican los protolitos al igual que la mineralogía de alteración
Tabla 35: Análisis químico semi-cuantitativo y su desviación estándar (σ) para 7
laumontitas y 15 cloritas de las muestras COCB-09 y COCB-13, mediante SEM-EDS68
Tabla 36: Porcentajes de clorita/esmectita e ilita/esmectita de las muestras de la Quebrada
Quepuca
Tabla 37: Índices de cristalinidad para cloritas e illitas de las muestras de la Quebrada
Quepuca. Estas fueron calculadas a partir de la DRX
Tabla 38: Muestras tomadas en la Quebrada Lomín y sus respectivas coordenadas. Se
indican los protolitos al igual que la mineralogía de alteración
Tabla 39: Análisis químico semi-cuantitativo y su desviación estándar (σ) para 8 cloritas y
5 heulanditas de las muestras CQCB-08 y CQCB-20A, mediante SEM-EDS
Tabla 40: Porcentajes de clorita/esmectita e ilita/esmectita de las muestras de la Quebrada
Lomín
Tabla 41: Índices de cristalinidad para cloritas e illitas de algunas muestras de la Quebrada
Lomín. Estas fueron calculadas a partir de la DRX
Tabla 42: Muestras tomadas en el valle del río Biobío y sus respectivas coordenadas. Se
indican los protolitos al igual que la mineralogía de alteración
Tabla 43: Análisis químico semi-cuantitativo y su desviación estándar (σ) para 3 cloritas y
5 epidotas de la muestra CQVV-25, mediante SEM-EDS
Tabla 44: Análisis químico semi-cuantitativo y su desviación estándar (σ) para 17 cloritas y
3 cuarzos de la muestras CQVV-28, mediante SEM-EDS
Tabla 45: Porcentajes de clorita/esmectita e ilita/esmectita de las muestras del valle del río
Biobío
Tabla 46: Índices de cristalinidad para cloritas e illitas de algunas muestras del valle del río
Biobío. Estas fueron calculadas a partir de la DRX