Índice general

1.	. Introducción	1
	1.1. Motivación	1
	1.2. Objetivos	2
	1.2.1. General	2
	1.2.2. Específicos	2
	1.3. Metodología	3
	1.3.1. Revisión bibliográfica	3
	1.3.2. Comprender el funcionamiento de los software y revisión de los méto-	
	dos de resolución que utilizan	3
	1.3.3. Construcción del modelo	3
	1.3.4. Análisis de Resultados	4
	1.4. Organización del informe	4
2.	. Revisión bibliográfica	6
	2.1. Introducción	6
	2.2. Método de elementos discretos (DEM)	8
	2.3. Método de lattice boltzman (LBM)	10
	2.4. Método de volumenes finitos a escala de poros (PFV)	10
	2.5. <i>YADE</i>	11
	2.6. Acople DEM-PFV y ciclo de cálculo	13
	2.7. Distribución de esfuerzos en suelos granulares	15
	2.8. Comentarios y consideraciones	16
3.	. Validación del modelo	18
	3.1. Introducción	18
	3.2. Modelos de prueba \ldots	19
	3.3. Modelos acoplados	20
	3.4. Validación del modelo	21
	$3.4.1. Resultados \ldots \ldots$	22
	3.4.2. Ajuste a la teoría \ldots	24
4.	. Conductividad hidráulica, tamaño del grano, porosidad y confinamient	o 27
	4.1. Introducción	27
	4.2. Modelos de mayor tamaño	28

 4.3. Resultados de los modelos	28 28 30 31 33			
 5. Esfuerzos del esqueleto de suelo y efectos del flujo 5.1. Introducción 5.2. Modelos bimodales estratificados 5.3. Modelos uniformemente distribuidos 5.4. Modelos PSD (Particle size distribution) 5.4.1. Granulometrias bimodales 5.4.2. Granulometrias reales 	37 39 41 43 44 45			
6. Relación entre distribución de tensiones y el gradiente hidráulico crítico 6.1. Introducción 6.2. Distribución de tensiones 6.3. Aspectos computacionales	46 46 48 53			
 7. Conclusiones 7.1. Construcción del modelo	54 54 55 56			
Bibliografía	58			
Anexo I	60			
Anexo II				
Anexo III				
Anexo IV				
Anexo V				

Índice de cuadros

 2.1. Comparasción de los grados de libertad (gdl) y el tiempo de CPU entre FEM y PFV, para una iteración (Catalano, 2013)			
 3.1. Parametros de los modelos de validación. 3.2. Ecuaciones del tipo K = μg/μ Nφ(n)de, para el calculo de la conductividad hidráulica. 3.3. Ecuaciones del tipo K = a · db, para el calculo de la conductividad hidráulica. 4.1. Parametros de los modelos de polidispersos. 5.1. Descripción modelo bimodal 6 capas R1=4.6 Sd=0.17. 4.1. Resumen de los resultados de análisis de tensiones. 4.2. 41 6.1. Resumen de los resultados de análisis de tensiones. 4.3. 49 6.2. Resumen de los resultados de ajuste lineal. 5.3. 6.3. Resumen de las modelaciones. 	2.1.	Comparasción de los grados de libertad (gdl) y el tiempo de CPU entre FEM y PFV, para una iteración (Catalano, 2013).	17
5.2. Ecuaciones del tipo $K = a \cdot d^b$, para el calculo de la conductividad243.3. Ecuaciones del tipo $K = a \cdot d^b$, para el calculo de la conductividad hidráulica.254.1. Parametros de los modelos de polidispersos.285.1. Descripción modelo bimodal 6 capas R1=4.6 Sd=0.17.416.1. Resumen de los resultados de análisis de tensiones.496.2. Resumen de los resultados de ajuste lineal.53	3.1. 3 2	Parametros de los modelos de validación	22
3.3. Ecuaciones del tipo $K = a \cdot d^b$, para el calculo de la conductividad hidráulica. 25 4.1. Parametros de los modelos de polidispersos. 28 5.1. Descripción modelo bimodal 6 capas R1=4.6 Sd=0.17. 41 6.1. Resumen de los resultados de análisis de tensiones. 49 6.2. Resumen de los resultados de ajuste lineal. 53 6.3. Resumen de las modelaciones. 53	0.2.	hidráulica	24
4.1. Parametros de los modelos de polidispersos. 28 5.1. Descripción modelo bimodal 6 capas R1=4.6 Sd=0.17. 41 6.1. Resumen de los resultados de análisis de tensiones. 49 6.2. Resumen de los resultados de ajuste lineal. 53 6.3. Resumen de las modelaciones. 53	3.3.	Ecuaciones del tipo $K = a \cdot d^b$, para el calculo de la conductividad hidráulica.	25
5.1. Descripción modelo bimodal 6 capas R1=4.6 Sd=0.17. 41 6.1. Resumen de los resultados de análisis de tensiones. 49 6.2. Resumen de los resultados de ajuste lineal. 52 6.3. Resumen de las modelaciones. 53	4.1.	Parametros de los modelos de polidispersos.	28
6.1. Resumen de los resultados de análisis de tensiones.496.2. Resumen de los resultados de ajuste lineal.526.3. Resumen de las modelaciones.53	5.1.	Descripción modelo bimodal 6 capas R1=4.6 Sd=0.17	41
6.3. Resumen de las modelaciones	6.1. 6.2.	Resumen de los resultados de análisis de tensiones	$49 \\ 52$
	6.3.	Resumen de las modelaciones.	53

Índice de figuras

2.1.	Distribución del agua en el planeta.	6
2.2.	Esquema de medio permeable al cual se le induce un flujo debido a la extrac-	
	ción de gas natural, agua o petroleo.	7
2.3.	Esquema de interacción entre partículas y algoritmo de detección de contacto	
	(YADE formulation 2010)	9
2.4.	Ciclo de cálculo, esquema de actualización de información del modelo.	14
2.5.	Radjai et al, (1996). (a) Distribución probabilística de esfuerzos normales nor-	
	malizada (b) Distribución probabilística de esfuerzos tangenciales normalizada.	15
2.6.	(a) Distribución esfuerzo muestra 3D (b) zoom a la malla de esfuerzos. $\ . \ .$	16
9 1	Madalas da Devalas da tamaño manaño mara contidad da esfanos es sin fueida	10
ა.1. ვე	Distribución de presión en el fluie y líneas de corriente, todos los valence se	19
J.Z.	Distribución de presión en el nujo y inteas de corriente, todos los valores se	91
22	En al gréfice superior se aprecia al ajuste lineal del logaritme del diémetre ve	21
0.0.	logaritmo de la conductividad hidróulica, cada punto de color rojo correspondo	
	al resultado de una simulación. En el gráfico de abajo se muestra el residuo	
	entre los valores obtenidos y la curva propuesta	24
34	Resumen de permeabilidades obtenidas mediante el acople DEM-PEV compa-	41
0.1.	radas con ambos set de ecuaciones mencionados y con ensavos de laboratorios	
	realizados con microesferas de vidrio.	26
		-0
4.1.	Conductividad hidráulica vs Sd, para distintos tamaños de radio promedio, los	
	diámetros se muestran en la parte superior en [m]. Presión de confinamiento	
	2.7 [KPa]	29
4.2.	d_{20} vs Sd, para distintos valores de la presión de confinamiento [Pa]	29
4.3.	Curva granulométrica para distintos valores de Sd	30
4.4.	Conductividad hidráulica vs Sd, Tensión de confinamiento de 2.7 [KPa]	30
4.5.	Conductividad hidráulica vs Sd, Tensión de confinamiento de 27.4 [KPa]	31
4.6.	Porosidad vs Sd, para distintos valores de la presión de confinamiento, tal	
	como lo muestra la leyenda en la parte superior	32
4.7.	Conductividad hidráulica vs Sd, para distintos tensiones de confinamiento [Pa].	32
4.8.	Conductividad hidráulica vs Sd, para distintos tensiones de confinamiento [Pa].	34
4.9.	Conductividad hidráulica vs Sd, para distintos tensiones de confinamiento [Pa].	35

5.1.	(a) Modelo Bimodal estratificado de 6 capas y $R=4.6$ (con cada capa uniformemente distribuida Sd=0.17), (b) Modelo uniformemente distribuido para	
	un $R_{mean} = 3 \ [mm], R = 5,15, R_1 = 1,57 \ \text{Sd}=0.68 \ \text{y}$ (c) Modelo Bimodal PSD Sd=0.51 y un B=5	38
5.2.	Porcentaje de esfuerzo promedio de los granos finos (G_{fm}) y de los granos	40
59	gruesos (G_{gm}) en funcion del tiempo expresado en numero de iteraciones	40
0.0. 5 4	Porcentaje de transmision de Fuerzas promedios en función de R	40
5.4. 5.5	Porcentaje de transmisión de Fuerzas promedios en función de R y R1	$\frac{42}{43}$
5.5. 5.6	Criterio de estabilidad de Kenney and Lou para las granulometrías himodales	40
0.0.	modeladas.	44
5.7.	Porcentaie de transmisión de Fuerzas promedios en función de R.	44
5.8.	Granulometrias Bimodales	45
6.1.	Granulometrías realizadas.	47
6.2. 6.3.	Granulometrías reales simuladas computacionalmente	48
	lizado por D15.	50
6.4.	Pendientes de las envolventes de la zona inferior de dispersión de datos	52
1.	Distribución de fuerzas promedio de granos finos y gruesos para Sd=0.17	63
2.	Distribución de fuerzas promedio de granos finos y gruesos para Sd=0.34	64
3.	Distribución de fuerzas promedio de granos finos y gruesos para Sd= 0.51	64
4.	Distribución de fuerzas promedio de granos finos y gruesos para Sd=0.68	65
5.	Distribución de fuerzas promedio de granos finos y gruesos para $Sd=0.75$.	65
6.	Distribución de fuerzas promedio de granos finos y gruesos para $R=1$ y Sd=0.0	66
(.	Distribución de fuerzas promedio de granos finos y gruesos para R=1.5 y	67
0	Su=0.03	07 67
0. 0	Distribución de fuerzas promedio de granos finos y gruesos para $R-2$ y Su -0.17	07
9.	Sd-0.51	68
10	Distribución de fuerzas promedio de granos finos y gruesos para $B=5.4$ y	00
10.	Sd=0.68	68
11.	Criterio de estabilidad de Kennev and Lou (1985), para granulometrÃas de	
	Skempton y Brogan (1994).	69
12.	Motor de la simulación.	70
13.	Código para crear una granulometría PSD	71