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The Andean orogenic belt, located in the Central Andes “Pampean flat-slab” segment in northern Chile (27–29°S),
is composed of two major tectonic regions: the Coastal Cordillera and the Frontal Cordillera. To understand their
internal tectonic styles, history of growth and the shortening absorbed by the upper crustal structure of this
segment, we combined regional geological mapping data, new ages obtained from radiometric U–Pb dating,
and a semibalanced and restored cross-section 225.18 km in length. The results as shown in the previous
Mesozoic extensional fault systems, established in northern Chile by the Gondwana breakup, have played a fun-
damental role in the orogenic buildup. The central structure is characterized by an asymmetric basin (Upper
Cretaceous–Paleocene) confined by a doubly vergent fault system composed of inverted faults related to the
edges of the Mesozoic Chañarcillo and Lautaro Basins. The U–Pb geochronological data obtained from
synorogenic volcano-sedimentary deposits and the angular unconformities recorded between the Cenozoic
geological units have revealed that the compressive deformation in this segment started at around ~80 Ma by
tectonic inversion in the eastern Coastal Cordillera and western Frontal Cordillera, however, the presence of
Paleocene and Miocene synorogenic successions at the footwall of the basement reverse faults of the Frontal
Cordillera suggests a migration of Andean deformation from the west to the east during the Paleocene–
Miocene by propagation of ramps involving inherited basement highs. The pre-compression restoration makes
it possible to estimate 40.94 km of minimum shortening, concentrated by inversion anticlines and fault-
controlled basement highs across the Frontal Cordillera.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

The Central Andes (Fig. 1) is an orogenic belt produced by crustal
shortening, thickening, and magmatism related to the subduction of
the oceanic Nazca Plate beneath continental South America (Ramos,
2009). The segmentation of the Nazca Plate beneath the Central Andes
(steep subduction segment (15–24°S) and the flat-slab or “Pampean”
subduction segment (28–33°S); Fig. 1) (Baraganzi and Isacks, 1976;
Bevis and Isacks, 1984; Cahill and Isacks, 1992; Isacks, 1988; Jordan
et al., 1983) has induced notable differences in the along-strike tectonic
style, as well as the presence or absence of active volcanism in this
orogenic belt. The tectonic styles and the geological processes related
to the flat-slab subduction segment in the Central Andes have been
better recorded on the eastern side of this orogenic belt (Fig. 1), as a
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result of the combination of a more advanced structural stage of evolu-
tion of this segment and an outstanding level of exposure due to the
aridity of the mountains at these latitudes. A significant amount of the
structural knowledge of this Andean segment has been derived from
the large Sierras Pampeanas (SP in Fig. 1) and the petroliferous basins
located in northwestern Argentina, between 24° and 33°S (e.g., the
Santa Bárbara System, the Cordillera Oriental, the Tucumán Basin, the
El Metán Basin, and others). These basins were initiated as NE and
NW back-arc rift systems during the Cretaceous crustal stretching of
the western South America, which occurred coeval with the opening
of the South Atlantic Ocean and finally were deformed by the Andean
compression during Cenozoic times (Grier et al., 1991; Kley and
Monaldi, 1998; Ramos, 2009; Iaffa et al., 2011, among others).

Previous studies of this segment have taken advantage of two-
dimensional (2-D) and three-dimensional (3-D) seismic information
and deep oil well data, which have made it possible to identify special
structural features, such as thick-skinned thrust systems, characterized
by steeper faults in the crystalline basement, basement-involved com-
pressive folds, reactivated faults, and shortening estimates of no more
than 150 km (Carrapa et al., 2011; Coutand et al., 2001; DeCelles et al.,
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Fig. 1. General geological map of northern Chile between ~27°S and 30°S, showing the distribution of the main geological units and tectonic features.

145F. Martínez et al. / Tectonophysics 667 (2016) 144–162
2011; Iaffa et al., 2011; Jordan et al., 1983; Kley andMonaldi, 1998; Kley
et al., 1999; Ramos et al., 2002). On the other hand, the timing of the
onset of Andean deformation in this segment has been traditionally be-
lieved to occur as a major compressive pulse during the Neogene time
on both, the Chilean andArgentinean sides (Jordan et al., 1983;Moscoso
and Mpodozis, 1988; Ramos et al., 2002), however, new studies carried
out on the western side have reported the oldest ages for the Andean
deformation (Late Cretaceous–Paleocene) and amore complex tectonic
evolution (Arriagada et al., 2006; Martínez et al., 2015; Peña et al.,
2013). This situation has opened a new debate on the chronology of de-
formation in the region.

In contrast to the eastern side, the tectonic styles of thewestern side
of the Central Andes in northern Chile (Fig. 1) have received little atten-
tion and have been poorly understood, so this represents a gap in the
complete understanding of the anatomy of the orogenic belt at this
latitude. This gap can be attributed to the lack of balanced cross-
sections, the lack of geophysical interpretation of the subsurface, and
the large metamorphic and igneous regions that make structural corre-
lations difficult. Only a few structural studies of this region have been
conducted (Amilibia et al., 2008; Arriagada et al., 2006, 2008;
Martínez et al., 2012, 2013, 2015). These studies, which relied predom-
inantly on surface data, have provided some background on the struc-
tural styles and ages of deformation recorded in some specific basins
of this region.

Our objective in this research was to combine the results of recent
studies (Martínez et al., 2012, 2013 and 2015) with new chronological
data to produce a complete tectonic framework of the orogenic belt in
northern Chile, from the Coastal Cordillera to the Frontal Cordillera
(Figs. 1 and 2). We combined these data with tectonic models proposed
for the Sierras Pampeanas in Argentina to obtain a regional
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Fig. 2. Satellite image of the Andean segment analyzed in northern Chile (27–28°S), showing the tectonic domain distribution and the location of the semibalanced cross-section (D–D′)
used in this study.
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representation of the current structure of the Central Andes along the
flat-slab segment. This paper describes the integration of regional map-
ping data with a regional semibalanced cross-section based on field ob-
servations. In addition, previously published radiometric ages from
basement blocks and eight new radiometric ages from Mesozoic to Ce-
nozoic deposits were used to obtain to complete a better chronology of
the compressional deformation of the orogenic belt in this region.

2. Geological setting

2.1. Coastal Cordillera

The basement of the Chilean Coastal Cordillera between 27° and
29°S consists of Devonian to Carboniferous metasedimentary rocks in-
truded by plutonic complexes, with K/Ar, Ar/Ar and U/Pb ages of
190–180, 150–140, 120–130, and 110–90 Ma (Bahlburg and
Breitkreuz, 1993; Bell, 1984; Dallmeyer et al., 1996; Grocott and
Taylor, 2002; Naranjo and Puig, 1984; Scheubert and Reutter, 1992)
(Fig. 2). These plutonic complexes are covered by volcanic and sedimen-
tary deposits related to the Early Jurassic and Early Cretaceousmagmat-
ic arc and extensional back-arc basins (Mpodozis and Ramos, 2008;
Oliveros et al., 2006). Different to those Cretaceous extensional systems
developed in northwest Argentina and related to purely crustal exten-
sion, the extensional system of the Chilean side is mainly associated
with a roll-back subduction geodynamic context established in western
South America during the Gondwana breakup (Aguirre-Urreta, 1993;
Franzese and Spalletti, 2001; Grocott and Taylor, 2002; Mpodozis and
Kay, 1990; Mpodozis and Ramos, 1990, 2008; Pindell and Dewey,
1982; Ramos, 2009).

The Jurassic successions include andesitic flows, basaltic andesitic
and volcanic breccias, and other volcanic successions that are part of
the La Negra and Punta del Cobre Formations (Fig. 3) (Lara and
Godoy, 1998; Marschik and Fontboté, 2001; Oliveros et al., 2006;
Taylor et al., 2007). To the east of the Coastal Cordillera, the stratigraphic
successions are defined as the Chañarcillo Basin infill (Fig. 4). In this
basin, the Jurassic Punta del Cobre Formation is partially overlapped
by approximately 4000 m of lower Cretaceous calcareous and
siliciclastic syn-rift deposits that define the Chañarcillo Group (Figs. 3
and 4) (Arévalo, 1999; Mourgues, 2004; Price et al., 2008; Segerstrom,
1960; Segerstrom and Parker, 1959; Segerstrom and Ruiz, 1962). The
Chañarcillo Group is unconformably covered by ~4000 m of Late Creta-
ceous (110.7 ± 1.7 and 99.7 ± 1.6 Ma U–Pb) (Macksaev et al., 2009)
conglomeratic and volcanoclastic successions defined as the Cerrillos
Formation (Arévalo, 1994, 2005a, 2005b; Jensen and Vicente, 1976;
Marschik and Fontboté, 2001; Segerstrom and Ruiz, 1962). Based on
its angular position over the Chañarcillo Group and the absence of: nor-
mal faults, internal progressive unconformities and drastic changes
of thickness, the Cerrillos Formation has been attributed as to be
the post-rift deposits of the Chañarcillo Basin (Martínez et al., 2013;
Fig. 3).

The Cerrillos Formation is unconformably overlapped by nearly
2000 m of Upper Cretaceous–Paleocene deposits corresponding to the
Hornitos Formation (Figs. 3 and 4) (Arévalo, 1994, 2005b; Arévalo and
Welkner, 2008; Peña et al., 2013; Segerstrom, 1960). This succession is
composed of intercalations of red sandstones, volcanic breccias, con-
glomerates, ignimbrites, and different volcanic flows that are intruded
by different Paleocene plutonic complexes (Figs. 3 and 4). This forma-
tion has been interpreted as consisting of synorogenic deposits, and its
accumulation was associated with the eastward-displaced magmatic
arc (at approximately 85 Ma), according to Mpodozis and Ramos
(1990) and Cornejo et al. (1993), and with volcano-sedimentary
accumulations during the tectonic inversion of the Chañarcillo Basin
(Martínez et al., 2013; Peña et al., 2013). Finally, Middle Miocene conti-
nental unconsolidated sediments (Atacama Gravels; Fig. 3) composed
of horizontal packages of sands and gravels (Mortimer, 1973; Willis,
1929) unconformably overlie the folded and faulted Cretaceous and
Paleocene deposits in this region and close the stratigraphic record
(Fig. 4).
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2.2. Frontal Cordillera

The Chilean Frontal Cordillera is composed mainly of late Paleozoic
granitic basement blocks, exposed along aNNE-vergent E–Wthrust sys-
tem (Fig. 2) (Godoy andDavidson, 1976). These granitic rocks aremain-
ly granodiorites, granites, and monzogranites that have K/Ar ages
ranging from 263 to 228 Ma (Jensen, 1976; Moscoso et al., 2010;
Mpodozis and Kay, 1990). Traditionally, they have been defined as the
Montosa Granitic Complex or the Montosa Unit, the Las Juntas Pluton,
and the Colorado and Chollay units (Farrar et al., 1970; Iriarte et al.,
1999; Jensen, 1976; Moscoso et al., 2010; Mpodozis and Kay, 1990;
Soffia, 1989; Zentilli, 1974).
The Frontal Cordillera is flanked on both the east and west sides by
thick continental and marine syn-rift successions that rest unconform-
ably on the Paleozoic basement (Figs. 8 and 13) (Charrier et al., 2007;
Jensen, 1976; Martínez et al., 2012; Reutter, 1974). These syn-rift
successions correspond to the Jurassic extensional Lautaro (western)
and the Lagunillas (eastern) Basins (Charrier et al., 2007; Jensen,
1976; Martínez et al., 2012; Oliveros et al., 2013; Reutter, 1974). They
are overlapped unconformably by younger Cenozoic volcano-
sedimentary deposits, which have been interpreted as Andean
synorogenic deposits locally intruded by Paleocene and Eocene plutons
(Jensen, 1976;Moscoso andMpodozis, 1988; Segerstrom, 1960) (Figs. 8
and 13).

Image of Fig. 3


Fig. 4. Geological map of the Chañarcillo Basin along the eastern Coastal Cordillera. The location is outlined in Figs. 1 and 2.
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The best stratigraphic relationships can be observed along the
Copiapó River section in the western Frontal Cordillera (Fig. 8). In this
sector, outcrops show an excellent record of the Mesozoic infill of the
Lautaro Basin, which is represented by a Late Triassic volcano-
sedimentary syn-rift succession, approximately 2100 m thick, that is
defined by the La Ternera Formation and includes intercalations of con-
glomerates, sandstones, lavas, basaltic andesites, and volcanic breccias
(Figs. 3 and 8) (Charrier, 1979; Jensen, 1976; Martínez et al., 2012;
Mpodozis and Cornejo, 1997; Reutter, 1974; Segerstrom, 1960;
Sepúlveda and Naranjo, 1982; Suárez and Bell, 1992) and nearly
3000 m of Early Jurassic (Sinemurian–Bajocian) marine (limestones)
and continental syn-rift successions (sandstones and shales) of the
E-W Geometry of the Tierra Amarilla
Anticlinorium

(b)

E
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Lautaro and Picudo Formations (Figs. 3 and 8) (Arévalo, 1994, 2005a;
Iriarte et al., 1999; Jensen, 1976; Jensen and Vicente, 1976; Martínez
et al., 2012; Segerstrom, 1960; Soffia, 1989).

Other outcrops located to the east of the Frontal Cordillera show the
complete Lagunillas Basin infill (Fig. 13). In this sector, the older de-
posits consist of the syn-rift volcano-sedimentary successions assigned
to the Upper Triassic La Ternera Formation, which are covered by
3000-m-thick deposits consisting of conglomerates, sandstones, and
calcareous intercalations that correspond to the Jurassic syn-rift succes-
sions of the Lautaro and Lagunillas Formations. The Mesozoic deposits
are unconformably covered by nearly 1000 m of Paleocene volcanic
and sedimentary deposits (conglomerates, red sandstones, andesites,
W
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Fig. 7. a) Oblique aspect of the Elisa de Bordos Master Fault and the Early Cretaceous deposits thrust over the Paleocene synorogenic successions (Hornitos Formation); b) detail of the angular unconformity between the Chañarcillo Group and the
Upper Cretaceous–Paleocene synorogenic deposits (Hornitos Formation); c) folding style recognizedwithin the Hornitos Fold System; d) onlaps and progressive unconformities observed on the synclines of the Hornitos Fold System; e) detail of the
wedge-shaped strata in the frontal limb of the Tierra Amarilla Anticlinorium. Note the progressive unconformities on the top of the strata. See location in Fig. 4.
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and volcanic breccias) that correspond to the synorogenic Quebrada
Seca Formation (Jensen, 1976; Moscoso et al., 2010; Soffia, 1989)
(Figs. 3 and 13). The Quebrada Seca Formation is unconformably over-
lain by approximately 200 m of tilted Lower Miocene lacustrine
conglomerates and sandstones, defined as the Potrerillos Formation
(Jensen, 1976), as well as volcanic successions consisting of rhyolitic ig-
nimbrite tuffs, lavas, dacitic flows, volcanic agglomerates, and breccias
of the Doña Ana Formation (Martin et al., 1997; Thiele, 1964). Finally,

Image of Fig. 8
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the stratigraphic record culminates with theMiddle Miocene unconsol-
idated sediments of the Atacama Gravels described previously
(Mortimer, 1973; Willis, 1929) (Figs. 3 and 13).

3. Methodology

3.1. Semibalanced cross-section

Several balanced cross-sections, supported by seismic, field, and oil
well data, have permitted interpretations of the tectonic style of the
thrust systems distributed along the Sierras Pampeanas of northwest-
ern Argentina on the eastern side of the Andean flat-slab segment
Fig. 10. a) Detail of the mesoscale synextensional normal fault and growth strata in the Lautaro
vation of the Calquis Fault. See locations in Fig. 8.
(Allmendinger et al., 1990; Jordan and Allmendinger, 1986; Kley et al.,
1999; Ramos et al., 2002; Zapata and Allmendinger, 1996). However,
on the Chilean side, there are few regional cross-sections that illustrate
the tectonic style that dominates the western regions. We have created
the first regional cross-section (D–D′) on the Chilean side, from the
Coastal Cordillera to the Frontal Cordillera (225.18 km in length)
(Figs. 1 and 2). We have also incorporated structural information from
a cross-section through the Sierras Pampeanas (Ramos et al., 2002) to
provide a more regional view of the Andean structure across the entire
orogen.

We created the cross-section (D–D′) using the 2D MOVE software,
integrating the geological information shown in Figs. 4, 8, and 13,
Formation; b) inversion anticline with “harpoon geometry” illustrating the partial reacti-

Image of Fig. 9
Image of Fig. 10


Fig. 11. a) Buttressing of the Jurassic syn-rift series against the Master Calquis Fault along the western Lautaro Basin; b) extensional progressive unconformities identified within the
Lautaro Formation; c) panoramic view of the southwestward-vergent El Chancho Thrust along the Copiapó River in the Lautaro Basin. See location in Fig. 8.
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reported in previous studies (Martínez et al., 2012, 2013, 2015).We also
filled in the gap between the geological maps in Figs. 4 and 8 using the
geological information reported by Peña et al. (2013). The cross-section
was first designed by hand and by honoring stratigraphic thicknesses
and dip attitudes. However, in some placeswhere the surface geological
information is insufficient, the ramp cutoff angles and some stratigraph-
ic thickness were assumed. Given the assumptions made, we consid-
ered this a semibalanced cross-section, because this can be a critical
issue for some experts. We then performed a step-by-step restoration
to a final pre-shortening state. Line lengths were used to restore the
thin-skinned faults and folds, and area preservation was used to restore
the basement faults. Forwardmodelingwas carried out to test the com-
plete configuration of the interpreted structures. Based on trial and
error, we used a hypothetical basal detachment positioned at 10 km
depth, and finally, we attempted to reproduce and quantify the geome-
try and shortening observed at the surface. However, this could be
deeper according to the intracrustal density discontinuities under the
Sierras Pampeanas in Argentina interpreted by Alvarado and Ramos
(2011).

3.2. U–Pb LA-ICPMS geochronology

Eight zircon samples were prepared and separated using standard
preparation methods in the Geology Department of the University of
Chile, using the Gemeni table, a Frantz magnetic separator, and heavy
liquid procedures. Final grain selection was undertaken by hand, using
a binocular microscope. The mineral samples were sent for analyses to
the Laboratory of Isotopic Studies (LEI) of the Geoscience Center of the
National Autonomous University of Mexico (UNAM).

The analytical work was undertaken using a Resonetics Resolution
M50 193-nm laser Excimer connected to a Thermo Xii Series
Quadrupole Mass Spectrometer, following analytical procedures and
technical details described by Solari et al. (2010). The laser ablation di-
ameter was fixed at 34 μm. Ages were calculated using Isoplot v. 3.7
(Ludwing, 2008). Intrusive ages were calculated using the algorithm
of the TuffZirc program, and mean ages were calculated using Isoplot
v. 3.7 (Ludwing, 2008). The results are summarized in tables in the Sup-
plementary Data 1.

4. Tectonic styles

4.1. The Coastal Cordillera

Western section: In the study area, this section is characterized by an
extensive exposure of outcrops of Lower Jurassic and Lower Cretaceous
granitic rocks (Brown et al., 1993; Grocott and Taylor, 2002) (Fig. 2).
Previous studies (Arévalo and Welkner, 2008; Dallmeyer et al., 1996;
Grocott and Taylor, 2002; Taylor et al., 1998) have reported a structural
style of NW- andNE-trending fault zones characterized by steep normal
faults with a minor left-lateral strike slip component, identified by
kinematic indicators (Grocott and Taylor, 2002). However, these fault
systems are not clearly exposed in our study area.

Eastern section: At the eastern limit of the Coastal Cordillera, specif-
ically in the Chañarcillo Basin (Figs. 2 and 4), the main structure is a
large sinuous eastward-vergent anticline, called the Tierra Amarilla
Anticlinorium by Segerstrom and Ruiz (1962). This fold extends along
a NNE strike from the Copiapó River Valley to the Algarrobal Creek
(Fig. 4). The fold has a long wavelength with an asymmetrical
eastward-vergent geometry, characterized by an almost sub-
horizontal western back limb and an inclined frontal limb (45–80°E,
Fig. 5), which is truncated by the Elisa de Bordos Master Fault toward
the east (Figs. 4 and 5). This fold involves the syn-rift deposits of the

Image of Fig. 11


Fig. 12. a) Frontal view of the Iglesia Colorada Fault and the Montosa Horst in the western Frontal Cordillera. Observe the triangular zone between the Iglesia Colorada and the Pauna–La Estancilla Fault; b) panoramic view of the Colorado–El León
Anticline toward the east of the Montosa Horst; c) footwall syncline associated with thrusting of the Pauna–La Estancilla Fault. See location in Figs. 8 and 13.
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Fig. 13. Geological map of the Lagunillas Basin along the eastern Chilean Frontal Cordillera. The location is outlined in Fig. 1 and 2.
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Cretaceous Chañarcillo Group and the Punta del Cobre Formation, as
well as the post-rift volcano-sedimentary successions of the Cerrillos
Formation. It is locally affected by Paleocene intrusive bodies in its
frontal limb (Fig. 4). Along the anticline, large variations in the strat-
igraphic thickness of the Chañarcillo Group are noted between the
frontal (N~2000 m) and back limbs (b1000 m). This situation defines
a typical stratigraphic wedge that is thicker toward the Elisa de
Bordos Fault (Fig. 6) (Martínez et al., 2013). Additionally, a series
of synextensional features is preserved within the Chañarcillo
Group, such as extensional growth strata and synsedimentary
normal faults (Fig. 7e).

Based on this structural and stratigraphic relationship, the Tierra
Amarilla Anticlinorium could be an inversion anticline (Yamada and
McClay, 2003) linked to reactivation of the NNE high-angle Elisa de
Bordos Master Fault (Martínez et al., 2013) (Fig. 5). Although the
inversion anticline is the main structural style in the region, other
minor westward-vergent thrusts or backthrusts have also been
recognized as internally affecting the syn-rift deposits of the Creta-
ceous Chañarcillo Group. However, these are interpreted as accom-
modation faults that formed during the growth of the inversion
anticline.
4.2. Frontal Cordillera

Western section: Through this section, two tectonic styles are recog-
nized. The first is located immediately to the east of the Elisa de Bordos
Fault (Figs. 4 and 5) and is represented by a narrow thin-skinned fold
system (Hornitos Fold System), approximately 33 km in length
(Martínez et al., 2013; Peña et al., 2010), involving mainly the Upper
Cretaceous–Paleocene synorogenic deposits of the Hornitos Formation.
The folds are characterized by NNE asymmetric synclines andminor an-
ticlines related to thrust faults (Figs. 4, 5, and 7). Along this compressive
system, most of the folds are located in the western sector (Fig. 5). In
this sector, the asymmetric synclines are almost continuous, and the
thrust faults run parallel to the beds (Figs. 4, 5, and 7). Furthermore,
the synclines show well-developed growth strata, and several Paleo-
cene and Eocene plutonic bodies are intruded along the fold axis
(Fig. 7d) and generally obscure the structures.Wehave related this fold-
ing style with an eastward-vergent thrust that fed slip into the Hornitos
folds with a flat-ramp geometry (Fig. 5).

The second tectonic style is represented by the structures of the
Lautaro Basin (Figs. 8 and 9). The main structure consists of a long-
wavelength, westward-vergent, asymmetric anticline approximately

Image of Fig. 13
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20 km length that involves the Triassic and Jurassic syn-rift deposits
(e.g., the La Ternera and Lautaro Formations). Along this fold, dramatic
thickness changes and inherent extensional features (Figs. 10 and
11b) are observed in the Mesozoic syn-rift deposits, which form a typi-
cal wedge shape toward the western limit of the Lautaro Basin (Figs. 9
and 10). The anticline is confined to the hanging-wall block of the
NNE-striking Calquis Fault (Figs. 8, 9, and 10), with an overturned
frontal limb truncated to the west by the latter (Fig. 11a) and a semi-
horizontal back limb. The NNE-striking Calquis Fault is a high-angle
fault (70–80°) that marks the western limit of the Lautaro Basin
(Figs. 8, 9, and 11). The footwall fault consists of a thin, westward-
tilted, Upper Triassic syn-rift deposit of the La Ternera Formation,
which is associated with a blind westward-vergent short-cut fault
(Fig. 9).

The geometry of the deformation in the Lautaro Basin suggests that
the deformation is the result of the partial tectonic inversion of the
Lautaro Basin and especially of the buttressing of Mesozoic syn-rift de-
posits against the western limit of the basin or the Calquis Fault
(Figs. 9 and 11a) (Martínez et al., 2012). According to this interpreta-
tion, the uplift and westward tilting of the footwall of the Calquis Fault
can be associated with blind footwall short-cut structures affecting the
syn-rift packages of the La Ternera Formation (Fig. 9). To the east of
this sector, along the central section of the Lautaro Basin, a NE–SW
eastward-vergent thrust system can be identified. This thrust system
is composed of the Jorquera Fault, the El Chancho Thrust Fault, and
the Pauna–La Estancilla Fault (Fig. 8). The Jorquera Fault is a thick-
skinned structure that extends over 5 km and carries a thin sheet of Pa-
leozoic rocks over the Triassic and Jurassic syn-rift deposits of the
Lautaro and La Ternera Formations along the Jorquera River (Fig. 8).
The thin-skinned El Chancho Thrust (Fig. 11c), exposed to the east of
the Jorquera Fault, places the syn-rift deposits of the La Ternera Forma-
tion over the upper section of the Jurassic syn-rift deposits of the
0
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Fig. 14. Geological cross-section of the Lagunillas Basin and the easte
Lautaro Formation. The Pauna–La Estancilla Fault is a westward-
dipping reverse fault that extends 35 km to the Copiapó River. Along
the river (Fig. 12a and c), this fault is recognized as a thin-skinned struc-
turewith a hangingwall formed by the volcanoclastic successions of the
La Ternera Formation and a footwall composed of the folded siliciclastic
successions of the Lautaro Formation (Fig. 12a and c).

Eastern region: Large NNE-striking basement reverse faults (e.g., the
Iglesia Colorada Fault, the Vizcachas Fault, the El Potro Fault, and the
Mondaquita Fault; Figs. 8 and 13) affect large Permo-Triassic granitic
blocks, as well as the Meso-Cenozoic deposits of the Lagunillas Basin.
The structure consists of doubly vergent (E–W) basement reverse faults
with moderate and high angles at the surface (50–70°) and basement-
cored folds (e.g., theMontosaHorst and the Colorado–El LeónAnticline)
(Figs. 8 and 13) (Godoy andDavidson, 1976; Jensen, 1976;Moscoso and
Mpodozis, 1988; Reutter, 1974). The hangingwalls of these faults reach
up to 5500masl, forming themost prominent topographic highswithin
the region. The Montosa Horst (Figs. 8 and 13) is limited on its western
side by the westward-vergent Iglesia Colorada Fault (Fig. 12a) and on
the eastern side by the eastward-vergent Vizcachas Fault (western
edge of the Lagunillas Basin; Fig. 15), indicating a pop-up geometry.
The footwall faults are characterized by a footwall syncline fold (Iglesia
Colorada Fault; Fig. 12c) and by an overthrust anticline (Fig. 15) that in-
volve both syn-rift Mesozoic (e.g., Lautaro Formation) and synorogenic
Cenozoic deposits (Quebrada Seca Formation) (Figs. 8 and 13).

The eastward-vergent Colorado–El León Anticline is a basement-
cored fold characterized by a low-angle back limb and a steeper frontal
limb that involves syn-rift Mesozoic deposits (e.g., the La Ternera and
Lagunillas Formations) (Figs. 12, 13, and 14) that can be related to an
eastward-vergent blind thrust. To the east of the Colorado–El León An-
ticline, the Mondaquita–El Potro Fault System is exposed (Fig. 13). This
fault is a westward-vergent basement thrust that represents the east-
ernmost fault system in the study area. The Mondaquita–El Potro Fault
El C
olorado Anticline

PF
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Fig. 11c

53.22 km

rn flank of the Chilean Frontal Cordillera. See location in Fig. 13.
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Fig. 15. a) Detail of the Paleocene packages overthrust by the eastward-vergent Vizcachas Fault recognized to the east of theMontosa Horst; b) aspect of the thick-skinned Vizcachas Fault
and the Granitic Montosa Complex along the hanging-wall fault.
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System carries a wide (~8 km) basement block over the Upper Jurassic
syn-rift deposits of the Lagunillas Formation and truncates the frontal
limb of the El Colorado–El León Anticline (Figs. 12 and 13).

5. Semibalanced cross-section and crustal shortening

In the cross-section D–D′, the structure of the Cretaceous Chañarcillo
Basin is represented by a partially inverted half-graben, and the Tierra
Amarilla Anticlinorium is produced from its partial reactivation
(Fig. 16). The thin-skinned anticline and syncline of the Hornitos Fold
Systemare reproduced and interpreted by a flat-ramp–flat-rampgeom-
etry. We suggest that the motion of the hanging wall of this system
could have transported the upper section of the Elisa de Bordos Fault to-
ward the east (Fig. 16). We also suggest that the geometry of the Tierra
Amarilla Anticlinorium was acquired initially from the partial reactiva-
tion of the Elisa de Bordos Fault but was then transported by the prop-
agation of an eastward-vergent thin-skinned thrust system developed
in the footwall of the Elisa de Bordos Fault. To model the structures of
the Chañarcillo Basin and the Hornitos Fold System, we used two de-
tachments: a basal detachment positioned at a depth of approximately
7 km,which can be projectedwithin some ductile units below thewest-
ern Coastal Cordillera, and an upper detachment located above the foot-
wall of the Elisa de Bordos Fault (Fig. 16).

Thewestern edge of the Lautaro Basin is interpreted as an eastward-
vergent inverted half-grabenwith a basal detachment located at a depth
of approximately 10 km. This western edge consists of a reactivated
master fault (the Calquis Fault), which is accompanied by a subsidiary
footwall short-cut fault that affects the eastern side of the Hornitos
Fold System. Based on the restoration and forwarding of the structures
recognized in this sector, we propose that both the thin- and thick-
skinned faults exposed along the central section of the Lautaro Basin
are reproduced mainly by eastward-vergent ramps, as illustrated in
Fig. 16, and that these ramps are responsible for the uplift and
overthrust of the Triassic syn-rift deposits. However, the El Chancho
Thrust and Pauna–La Estancilla Fault constitute special situations be-
cause the drastic thickness change expressed by the Triassic syn-rift de-
posits in the footwall of both faults indicates that they could having
propagated from the inherent normal faults (Fig. 16).

To the east of the Lautaro Basin, the configuration of the Chilean
Frontal Cordillera is explained by the shortening of previous basement
highs that were uplifted by large eastward-vergent ramps and other
westward-vergent reverse faults (e.g., the Mondaquita Fault) (Fig. 16).
Based on the positions of the syn-rift deposits along these structures,
we suggest that the eastward-vergent thick-skinned system truncated
the previous Mesozoic extensional systems developed in the region.
Finally, we believe that the structure of this Andean segment can be
explained by the tectonic inversion of the Mesozoic basins, followed
by the eastward propagation of basement thrusts and folds (e.g., the
Colorado–El León Anticline) (Fig. 16). The palinspastic restoration of de-
formation indicates an estimated 40.94 km of minimum shortening
(Fig. 16), produced mostly by the eastward-vergent ramps across the
Frontal Cordillera.

6. Ages of rocks and Andean deformation

Research carried out to the east of our study area, along the Pampean
subduction segment (e.g., the Cordillera Oriental, the Santa Bárbara Sys-
tem, and the Sierras Pampeanas) indicates that Andean deformation
took place mainly during the Neogene (Jordan et al., 1983;
Allmendinger et al., 1997; Ramos et al., 2002; Carrera et al., 2006;
Carrapa et al., 2011, among others). Other researchers have indicated
that immediately to the north, at the southern edge of the Puna Plateau,
the deformation started during the Late Cretaceous–Paleocene
(Somoza, 1998; Cobbold et al., 2007; DeCelles et al., 2011).

In contrast, Andean deformation along the western slope of the
Central Andes in northern Chile is believed to have begun during the
Oligocene–Eocene (Jensen, 1976; Moscoso and Mpodozis, 1988; Soffia,
1989) but could have begun as early as 90–70 Ma in the Domeyko Cor-
dillera and the Salar de Atacama Basin (Amilibia et al., 2008; Arriagada
et al., 2006; Bascuñan et al., 2015; Charrier et al., 2013; Mpodozis
et al., 2005; Steinman, 1929). Some studies have identified younger U–
Pb ages in our study area and have suggested that compressional defor-
mation occurred during the Late Cretaceous–Paleocene (60–65 Ma)
(Maksaev et al., 2009; Martínez et al., 2013; Peña et al., 2013). Because
of the wide range of ages proposed for the initiation of Andean deforma-
tion, we obtained newU–Pb ages from the synorogenic deposits to inter-
pret the different deformation ages. We also obtained U–Pb ages from
volcanic Triassic syn-rift deposits, as well as the basement rocks, to refine
the chronology of the stratigraphic units exposed in the region (Supple-
mentary Data 1 and Fig. 2). The chronological record obtained in this
study was complemented using ages from previous studies (Arévalo,
2005b; Maksaev et al., 2009). All these data were employed to interpret
the uplift and deformation age of the eastern Coastal Cordillera and the
Frontal Cordillera.

The new U–Pb ages obtained from the plutonic complexes of the
Frontal Cordillera (Supplementary Data 1 and Fig. 17) are 245.5 ±
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2 Ma (DATA 1; Chollay Unit), 249.6 ± 1.1 Ma (BWD; Montosa Granitic
Complex), and 259.3 ± 1.7 Ma (Bz; El Colorado Unit). These ages are
younger than those determined previously using the K–Ar method
(Farrar et al., 1970; Iriarte et al., 1999; Moscoso et al., 2010; Mpodozis
and Kay, 1990; Zentilli, 1974), indicating that the Frontal Cordillera plu-
tonic complex is Late Permian–Middle Triassic. A new U–Pb age of
213.2± 1.3Ma (YB-195)was obtained from a lithic andesitic tuff corre-
sponding to the syn-rift deposits of the La Ternera Formation, indicating
that the age of this formation is Late Triassic (Figs. 2 and 17). To deter-
mine the age of the deformation, the ignimbrites and tuffs exposed in
the lower and upper sections of the synorogenic Cenozoic deposits of
the Hornitos and Quebrada Seca Formations were obtained. A new
U–Pb age of 78.2 ± 0.6 Ma (YB-191) was obtained for the base of the
Hornitos Formation on the footwall of the Calquis Fault. Similar and
older ages (80 Ma) have been reported by Peña et al. (2013) for the
western flank of the Hornitos Fold System and by Martínez et al.
(2015) for the basement reverse faults located in the eastern Frontal
Cordillera. Younger ages of 68.9 ± 1.5 Ma (YB-82) and 54.9 ± 0.5 Ma
(AT-08) were determined for the intrusive bodies located along the
fold axis, which could possibly have been emplaced through these
structures (Figs. 2 and 17). A younger age of 60.5 ± 1.0 Ma (IC-10)
was obtained for the upper section of the volcano-sedimentary deposits
of the Quebrada Seca Formation, which are overthrust by the Vizcachas
Fault along the eastern edge of the Montosa Horst (Figs. 2 and 16).

Based on all of the new data considered in this study, we concluded
that Andean deformation started in the Late Cretaceous. This conclusion
is supported by the angular unconformity between the 78-Ma
synorogenic Hornitos Formation and the Triassic syn-rift deposits. Sim-
ilar stratigraphic relationships were observed by Martínez et al. (2015)
between Upper Cretaceous and lower Paleocene synorogenic deposits
exposed along the basement-cored anticlines in the eastern Frontal
Cordillera. Furthermore, the age of 60 Ma for the synorogenic deposits
of the Quebrada Seca Formation suggests that deformation had migrat-
ed to the eastern Chilean Frontal Cordillera by that time. This last inter-
pretation is confirmed by the Miocene ages of ~20.1 ± 0.9 Ma
determined using the K–Ar method (Fig. 2) (Moscoso et al., 2010) for
the volcanic and sedimentary deposits of the Doña Ana Formation,
which unconformably overlies the Quebrada Seca Formation between
the El Potro and Mondaquita faults. Based on the data and observations
presented here, we propose that the growth of the orogenic belt in the
flat-slab subduction segment (27–29°S) migrated eastward from the
Late Cretaceous to the Miocene (Supplementary Data 2), although An-
dean deformation continues to occur toward the eastern side of the
Frontal Cordillera, specifically, in the Sierras Pampeanas of Argentina.
7. Discussion

Like other flat-slab segments along the Andean Cordillera (such as
the Bucaramanga and Peruvian flat-slab segments) (Ramos, 2009), the
tectonic style above the flat-slab subduction segment in northern
Chile is dominated mainly by thick-skinned deformation related to the
tectonic inversion of former Mesozoic basins and the development of
new thrust systems. For approximately three decades, the crustal struc-
ture of theflat-slab segment in northern Chilewas interpreted as a set of
basement blocks bounded by high-angle faults, comparable to those ob-
served in other regions, such as the Sierra de Perijá in Colombia, the
Venezuelan Mérida Andes, and the Laramide Belt of the western
United States and Canada (Jordan and Allmendinger, 1986, 1983;
Moscoso and Mpodozis, 1988; among others). However, our structural
interpretation, which is based on field observations and geologicalmap-
ping along the Mesozoic basins in northern Chile, shows the tectonic
styles (e.g., inversion anticlines, short-cut faults, basement-cored folds,
and basement thrust faults) that are the result of the tectonic inversion
of Early Jurassic (Lautaro Basin)–Early Cretaceous (Chañarcillo Basin)
half-grabens and the generation of new thrust systems.
This hybrid tectonic process (tectonic inversion and generation of
new thrusts) has played a fundamental role in the growth of the oro-
genic belt and can be recognized in the Mesozoic basins mainly by the
folding style of the thick syn-rift successions along their master faults.
This folding style is characterized by long-wavelength eastward- and
westward-vergent anticlines, interpreted as large-scale inversion anti-
clines, exposed in the eastern Coastal Cordillera and thewestern Frontal
Cordillera, which define a doubly vergent fault system. Similar tectonic
frameworks based on doubly vergent fault systems have been identified
in neighboring regions (e.g., the Sierras Pampeanas and Bermejo Basin
in Argentina and the Malargüe Thrust Fold Belt) from 2-D seismic pro-
files (Orts et al., 2012) and have been defined as a special type of
thick-skinned triangle zone (Zapata and Allmendinger, 1996). In these
regions, the compressional reactivation of normal faults, major suture
zones, and mylonitic shear zones has formed thrust systems composed
of doubly vergent thrusts and folds. The development of other thrust
systems by tectonic inversion has also been suggested for the Salar de
Atacama Basin and the Domeyko Cordillera in northern Chile, and it
has been suggested that this development was associated with the clo-
sure of the Tarapacá Basin (Amilibia et al., 2008; Mpodozis et al., 2005).

In contrast to other regions located to the north of the flat-slab seg-
ment (e.g., the Subandean fold–thrust belt), the tectonic vergence along
this segment is preferentially determined using the deformation ages
only. Based on the age of the volcano-sedimentary synorogenic
deposits, we suggest that compressional deformation started at approx-
imately 78 Ma (Late Cretaceous) with the tectonic inversion of the
Chañarcillo and Lautaro Basins andwas followed by the eastward prop-
agation of basement ramps during the Paleocene–Miocene times, some
of which cut inherited basement highs. We further suggest that the
crustal thickness in this region is a function of shortening along these
large ramps (Fig. 16). In contrast, on the Argentinean side, the reactiva-
tion of suture zones that separate Paleozoic basement terranes related
to ancient collisional episodes (Ramos et al., 2002) and the propagation
of eastward and westward reverse-dipping faults are proposed to ex-
plain the uplift of large basement blocks exposed to the east of the
Chilean Frontal Cordillera in the Sierras Pampeanas (Supplementary
Data 2).

These results confirm that the Andean deformation in the Chilean
Frontal Cordillera did not occur during the late Miocene–Pliocene, as
suggested in previous studies (Moscoso and Mpodozis, 1988; Ramos
et al., 2002), however, important reactivations were recorded by some
structures in this region. The chronological record described for Andean
deformation at this latitude (Supplementary Data 2) has also been de-
termined from synorogenic deposits exposed in other thrust systems
along the Andean Cordillera, such as: the Colombian Eastern Cordillera,
the Marañon Basin in Peru, and the Salar de Atacama Basin in northern
Chile (Arriagada et al., 2006; Cobbold et al., 2007;Mpodozis et al., 2005),
however, recent analyses of exhumation timing carried out in the
Neuquén Basin in Argentina also have indicated an important episode
of Andean deformation during the Late Cretaceous (Balgord and
Carrapa, 2014; Folguera et al., 2015), which is mainly associated with
a rapid trenchward continental shifting (Semperé et al., 1997; Cobbold
et al., 2007; Folguera et al., 2015). Because the older deformation is re-
corded in the Eastern Coastal Cordillera, we suggest that it represents
the “main piston” that triggered the tectonic inversion of the
intracontinentalMesozoic basins. Startingwith this episode, the Andean
deformation progressively migrated toward the east (e.g., the Sierras
Pampeanas) where the crustal shortening was mainly accommodated
by large reverse faults that uplifted huge basement blocks near the
Chile–Argentina frontier (Ramos et al., 2002; Fig. 16b).

8. Conclusions

We conclude that the tectonic style recognized along the “Pampean”
flat-slab subduction segment in northern Chile is dominated by the in-
teraction of inverted structures and basement-involved compressive
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faults. The reactivation of former Mesozoic extensional master faults
produced large NNE-striking asymmetric anticlines exposed along the
Coastal Cordillera and Frontal Cordillera, forming a doubly vergent
fault system. These findings confirm the premise that the tectonic styles
observed in this region are mainly controlled by the region's previous
crustal Mesozoic history, as in other regions of the Central Andes. On
the other hand, the oldest ages of deformation determined here
(~80 Ma) allowed us to propose that the Andean orogenesis in the
“Pampean” flat-slab segment was initiated by tectonic inversion
processes during the so-called “Peruvian” tectonic phase in the Coastal
Cordillera and, which migrated progressively to the eastern sector
during the Paleocene to Miocene time (~60–20 Ma). This evidence
demonstrates that the age of the structure in this region is not purely
Neogene and did not occur in a single compressive pulse as it was indi-
cated by previous works. Even, there are recent data that point to a Late
Cretaceous age for the initial growth of the Frontal Cordillera. The Paleo-
cene to Miocene Andean deformation was characterized by eastward-
vergent propagation of basement-involved reverse faults that uplifted
inherent basement highs along the Frontal Cordillera. We suggest that
this resulted in the largest crustal shortening (40.94 km) of this Andean
segment. Finally, we suggest that inversion structures and doubly
vergent fault systems can be expected to exist in other regions in north-
ern Chile, especially in regions where former Mesozoic basins are
present.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.tecto.2015.11.019.
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