Interior Proximal Algorithm with Variable Metric for Second-Order Cone Programming: Applications to Structural Optimization and Support Vector Machines

Felipe Alvarez†, Julio López†∗ and Héctor Ramírez C.†

†Departamento de Ingeniería Matemática, Centro de Modelamiento Matemático (CNRS UMI 2807), FCFM, Universidad de Chile, Blanco Encalada 2120, Santiago, Chile

(Received 30 October 2008)

In this work, we propose an inexact interior proximal type algorithm for solving convex second-order cone programs. This kind of problems consists of minimizing a convex function (possibly nonsmooth) over the intersection of an affine linear space with the Cartesian product of second-order cones. The proposed algorithm uses a variable metric, which is induced by a class of positive definite matrices, and an appropriate choice of a regularization parameter. This choice ensures the well-definedness of the proximal algorithm and forces the iterates to belong to the interior of the feasible set. Also, under suitable assumptions, it is proven that each limit point of the sequence generated by the algorithm solves the problem. Finally, computational results applied to structural optimization and support vector machines are presented.

Keywords: Proximal method, second-order cone programming, variable metric, structural optimization, multiload model, support vector machines, robust classifier.

1. Introduction

In this paper, we consider the following convex second-order cone programming (SOCP) problem

\[\begin{align*}
 \text{(SOCP)} \quad & f^* = \min_{x \in \mathbb{R}^n} f(x) ; \\
 & Bx = d, \quad w^j(x) = A^j x + b^j \in L_+^m, \ j = 1, \ldots, J,
\end{align*} \]

where \(f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\} \) is a convex function (possibly nonsmooth), \(B \) is a full rank \(r \times n \) real matrix with \(r \leq n \), \(d \in \mathbb{R}^r \), \(A^j \) are full rank \(m_j \times n \) real matrices, \(b^j \in \mathbb{R}^{m_j}, \ j = 1, \ldots, J \). For an integer \(m \geq 2 \), the set \(L_+^m \) denotes the second-order cone (SOC) (also called the Lorentz cone or ice-cream cone) of dimension \(m \) defined as \(L_+^m = \{ y = (y_1, \bar{y}) \in \mathbb{R} \times \mathbb{R}^{m-1} : \|\bar{y}\| \leq y_1 \} \), where \(\| \cdot \| \) denotes the Euclidean norm. Since the norm is not differentiable at \(0 \), (SOCP) is not in the class of smooth convex programs. On the other hand, a Lorentz cone can be rewritten as the smooth nonconvex constraint \(L_+^m = \{ y = y_1, \bar{y} \in \mathbb{R} \times \mathbb{R}^{m-1} : y_1 \geq 0 \} \).

In recent years, SOCP have received considerable attention because of its wide range of applications in engineering, control and robust optimization (see for instance, \[18, \text{Definition 3.20}]\). It is known that \(L_+^m \), like \(\mathbb{R}_+^m \) and the cone \(S_+^m \) of \(m \times m \) real symmetric positive semidefinite matrices, belongs to the class of symmetric cones to which a Jordan algebra may be associated \[15\]. Using this

*Corresponding author. Email: jclopez@dim.uchile.cl.
connection, interior-point methods have been developed for solving linear programs with SOC constraints [26, 38].

In this work, we propose an inexact interior proximal point algorithm (PPA) with variable metric for solving a convex SOCP whose objective function is not required to be smooth. The standard (PPA) was introduced by Martinet [27] based on previous work by Moreau [28], and it was then further developed and studied by Rockafellar [37] for the problem of finding zeros of a maximal monotone operator. Later, several authors [11, 12, 14] have generalized (PPA) for convex programming with nonnegative constraints, replacing the quadratic regularization term by a Bregman distance or \(\phi \)-divergence distance. Recently, Auslender and Teboulle [6] have dealt with general types of constraints, including SOC and Semidefinite ones, via a unified proximal distance framework. In all these works, the pseudo-distances are used to force the iterates to stay in the interior of the feasible set.

The idea of PPA with variable metric was originally studied by Quian [31] for monotone operators, and by Bonnans et al. [8], for convex programming (see also [24]). Since then, this idea has been exploited in different articles [9, 10]. In [34], Oliveira et al. considered the matrix \(H(x) = \text{diag}(x_1^{-r}, \ldots, x_n^{-r}), r \geq 2 \), in order to define a variable metric on \(\mathbb{R}^n_+ \). For all \(x \in \mathbb{R}^n_+ \), they defined a new class of variable metric interior proximal point algorithm for the minimization of a continuous proper convex function on \(\mathbb{R}^n_+ \). This algorithm uses a regularization parameter appropriately chosen so that the iterates lie interior points. Moreover, the convergence to a Karush-Kuhn-Tucker (KKT) point is obtained.

In this paper we investigate a variable metric proximal type algorithm for solving convex SOCP problems, where the metric is induced by a general class of positive definite matrices, such that the iterates are strictly feasible. The outline of this paper is as follows. In Section 2, we recall some basic notions and properties associated with SOC. In Section 3, we present our algorithm with variable metric and prove its convergence properties. In Section 4, we present the notion of quasi-nonincreasing metrics and we prove the convergence of our method under some suitably chosen assumptions. In Section 5, we describe the case of the metric induced by the Hessian of the spectral logarithm, which is not covered by the analysis in section 4. Finally, in Section 6 we consider two different applications of Linear SOCP, we discuss MATLAB implementations of the proposed algorithms and we present some computational experiments; this is an intermediate step toward more general and possibly nonsmooth convex problems, which are not addressed in this paper from the numerical point of view.

Notation

For a closed proper convex function \(f \), its effective domain is defined by \(\text{dom} f = \{ x : f(x) < +\infty \} \) and \(\partial f \) denote its subdifferential [36]. The superscript \(\top \) denotes transpose operator and \(I_d \) denotes the identity matrix in \(\mathbb{R}^{d \times d} \). For a symmetric matrix \(M \), we denote its smallest and largest eigenvalues by \(\lambda_{\min}(M) \) and \(\lambda_{\max}(M) \), respectively. Given a matrix \(A \in \mathbb{R}^{p \times q} \), the smallest and largest singular value of \(A \) will be denoted by \(\sigma_{\min}(A) \) and \(\sigma_{\max}(A) \), respectively. If we have a finite number of matrices \(A^1, \ldots, A^J \) such that each \(A^j \in \mathbb{R}^{n_j \times n} \), we define \(\sigma_{\min}(A) = \min\{ \sigma_{\min}(A^j) : j = 1, \ldots, J \} \) and \(A := (A^1; \ldots; A^J) \in \mathbb{R}^{q \times n} \) whose rows are those of \(A^1 \) to \(A^J \), where \(q = \sum_{j=1}^J m_j \). We also denote by \(K := L^m_+ \times \ldots \times L^m_+ \). The set \(L^m_+ = \{ y = (y_1, \bar{y}) \in \mathbb{R} \times \mathbb{R}^{m-1} : \| \bar{y} \| < y_1 \} \) is the interior of the second-order cone \(K = L^m_+ \) and the set \(\partial L^m_+ = \{ y \in L^m_+ : y_1 = \| \bar{y} \| \} \) denotes its boundary. We denote by \(X^* \) the optimal solution set of (SOCP). Finally, we define by \(w(x) := (w^1(x), \ldots, w^J(x)) \in \mathbb{R}^q \), where \(w^j(x) = A^j x + b^j \) for \(j = 1, \ldots, J \).
2. Algebra preliminaries

Let us recall some basic concepts and properties about the Jordan algebra associated with the second-order cone \(L^m_n \) with \(m \geq 2 \) (see [15] for more details). The Jordan product of any pair \(v = (v_1, \bar{v}), w = (w_1, \bar{w}) \in \mathbb{R} \times \mathbb{R}^{m-1} \) is defined by \(v \circ w = (v_1 \bar{w} + w_1 \bar{v}) \). This can be written as \(v \circ w = \text{Arw}(v)w \), where

\[
\text{Arw}(v) := \begin{pmatrix} v_1 & \bar{v}^\top \\ \bar{v} & v_1 I_{m-1} \end{pmatrix}
\]

is the arrow matrix of \(v \). The bilinear mapping \((v, w) \mapsto v \circ w \) has as the unit element \(e = (1, 0, \ldots, 0) \in \mathbb{R}^m \), and is commutative but not associative in general. However, \(\circ \) is power associative, that is, for all \(w \in \mathbb{R}^m \), \(w^k \) can be unambiguously defined as \(w^k = w^p \circ w^q \) for any \(p, q \in \mathbb{N} \) with \(p + q = k \). If \(w \in L^m_+ \), then there exists a unique vector in \(L^m_+ \), which we denote by \(w^{1/2} \), such that \((w^{1/2})^2 = w^{1/2} \circ w^{1/2} = w \).

We next introduce the spectral factorization of vectors in \(\mathbb{R}^m \) associated with \(L^m_+ \). For any \(w = (w_1, \bar{w}) \in \mathbb{R} \times \mathbb{R}^{m-1} \), we can decompose \(w \) as

\[
w = \lambda_1(w)u_1(w) + \lambda_2(w)u_2(w),
\]

where \(\lambda_i(w) \) and \(u_i(w) \) are the spectral values and spectral vectors of \(w \) given by

\[
\lambda_i(w) = w_1 + (-1)^i \| \bar{w} \| \quad \text{and} \quad u_i(w) = \begin{cases} \frac{1}{2}(1, (-1)^i \bar{w}/\| \bar{w} \|), & \text{if } \bar{w} \neq 0, \\ \frac{1}{2}(1, (-1)^i \bar{v}), & \text{if } \bar{w} = 0, \end{cases}
\]

for \(i = 1, 2 \) and \(\bar{v} \) being any unit vector in \(\mathbb{R}^{m-1} \) (satisfying \(\| \bar{v} \| = 1 \)). Notice that \(\lambda_1(w) \leq \lambda_2(w) \) and set \(\lambda_{\text{min}}(w) = \lambda_1(w), \lambda_{\text{max}}(w) = \lambda_2(w) \). Some basic properties of these definitions are summarized below (see [15, 16]).

Proposition 2.1 For any \(w = (w_1, \bar{w}) \in \mathbb{R} \times \mathbb{R}^{m-1} \), we have:

(a) If \(\bar{w} \neq 0 \) then the decomposition (2.1)-(2.2) is unique.

(b) \(\| u_i(w) \| = 1/\sqrt{2} \) and \(u_i(w) \in \partial L^m_+ \) for \(i = 1, 2 \).

(c) \(u_1(w) \) and \(u_2(w) \) are orthogonal for the Jordan product: \(u_1(w) \circ u_2(w) = 0 \).

(d) \(u_i(w) \) is idempotent for the Jordan product: \(u_i(w) \circ u_i(w) = u_i(w) \) for \(i = 1, 2 \).

(e) \(\lambda_{\text{min}}(w), \lambda_{\text{max}}(w) \) are nonnegative (resp. positive) iff \(w \in L^m_+ \) (resp. \(w \in L^m_+ \)).

(f) The Euclidean norm of \(w \) can be represented as \(\| w \|^2 = \frac{1}{2}(\lambda_{\text{min}}(w)^2 + \lambda_{\text{max}}(w)^2) \).

The next result provides some interesting inequalities (see [4, Proposition 3.1]).

Proposition 2.2 Let \(v, w \in \mathbb{R}^m \), then \(\lambda_{\text{min}}(v+w) \leq \lambda_{\text{max}}(v) + \lambda_{\text{min}}(w) \leq \lambda_{\text{min}}(v+w) \leq \lambda_{\text{max}}(v) + \lambda_{\text{min}}(w) \leq \lambda_{\text{max}}(v+w) \leq \lambda_{\text{max}}(v) + \lambda_{\text{max}}(w) \).

For each \(w = (w_1, \bar{w}) \in \mathbb{R} \times \mathbb{R}^{m-1} \), the trace and determinant of \(w \) with respect to \(L^m_+ \) are defined as

\[
\text{tr}(w) := \lambda_{\text{min}}(w) + \lambda_{\text{max}}(w) = 2w_1; \text{det}(w) := \lambda_{\text{min}}(w)\lambda_{\text{max}}(w) = w_1^2 - \| \bar{w} \|^2.
\]

These are the analogues of the trace and determinant of matrices. In order to avoid any misleading, the smallest and largest eigenvalue of a symmetric matrix \(M \) are denoted by bold symbols \(\lambda_{\text{min}}(M) \) and \(\lambda_{\text{max}}(M) \), respectively. A vector \(w = (w_1, \bar{w}) \in \mathbb{R} \times \mathbb{R}^{m-1} \) is said to be nonsingular if \(\text{det}(w) \neq 0 \). If \(w \) is nonsingular, then there exists a unique \(v = (v_1, \bar{v}) \in \mathbb{R} \times \mathbb{R}^{m-1} \) such that \(w \circ v = v \circ w = e \).
We call this v the inverse of w and denote it by w^{-1}. Direct calculations yields

$$w^{-1} = \frac{1}{w^2 - ||w||^2}(w, -\bar{w}) = \frac{1}{\det(w)}(\text{tr}(w)e - w).$$

Following [25], for any function $g : \mathbb{R} \to \mathbb{R} \cup \{ +\infty \}$ we consider the spectrally defined function $\Phi_g : \mathbb{R}^m \to \mathbb{R} \cup \{ +\infty \}$ given by

$$\Phi_g(w) = g(\lambda_{\min}(w)) + g(\lambda_{\max}(w)), \quad \text{if } \lambda_{\min}(w), \lambda_{\max}(w) \in \text{dom}(g)$$ \hspace{1cm} (2.4)

and $\Phi_g(w) = +\infty$ otherwise. If $\lambda_{\min}(w), \lambda_{\max}(w) \in \text{dom}(g)$ then $\Phi_g(w) = \text{tr}(g^{\text{soc}}(w))$ where g^{soc} is the corresponding SOC function defined by

$$g^{\text{soc}}(w) = g(\lambda_{\min}(w))u_1(w) + g(\lambda_{\max}(w))u_2(w), \quad w \in \mathbb{R} \times \mathbb{R}^{m-1}.$$

We have the following result (see [30, Lemma 2.10] and [16, Proposition 5.2]).

Proposition 2.3 Let g be continuously differentiable on $\text{int}(\text{dom}(g)) = \mathbb{R}^+$. Then Φ_g is continuously differentiable on $\text{int}(\text{dom}(\Phi_g)) = \mathbb{L}^m_++$ and for all $w \in \mathbb{L}^m_+$, $\nabla \Phi_g(w) = 2(g')^{\text{soc}}(w)$. If in addition g' is continuously differentiable in \mathbb{R}^+ then the Hessian of Φ_g at $w \in \mathbb{L}^m_+$ is given by the formula $\nabla^2 \Phi_g(w) = 2g''(w_1)I$ if $\bar{w} = 0$, and otherwise is given by

$$\nabla^2 \Phi_g(w) = 2 \left(\begin{array}{c} b \\ c \bar{w}^T/\|\bar{w}\| \\ c\bar{w}/\|\bar{w}\| aI_{m-1} + (b-a)\bar{w}\bar{w}^T/\|\bar{w}\|^2 \end{array} \right), \quad \bar{x}_2 \neq 0$$

where $a = \frac{g'c'(\lambda_1) - g'(\lambda_2)}{\lambda_2 - \lambda_1}$, $b = \frac{g'c'(\lambda_1) + g'(\lambda_2)}{2}$, and $c = \frac{g'c'(\lambda_2) - g'(\lambda_1)}{2}$. If $g''(t) > 0$ for all $t \in \mathbb{R}^+$, then $\nabla^2 \Phi_g(w)$ is positive definite for all $w \in \mathbb{L}^m_+$.

If for example, we consider the logarithm barrier function $g(t) = -\ln(t)$ with $\text{dom}(g) = \mathbb{R}^+\cup\{0\}$, then its spectrally defined function is given by

$$\Phi_{\ln}(w) = -\ln(w_1^2 - ||\bar{w}||^2) = -\ln(\det(w)) \quad \text{if } w \in \mathbb{L}^m_+; \quad +\infty \quad \text{otherwise.}$$

We get $\nabla \Phi_{\ln}(w) = -2w^{-1}$, $w \in \mathbb{L}^m_+$. Also, we have an explicit expression for the Hessian of Φ_{\ln} in $w \in \mathbb{L}^m_+$ given by $\nabla^2 \Phi_{\ln}(w) = 2Q_w^{-1}$, where

$$Q_w = \left(\begin{array}{c} ||w||^2 \\ 2w_1\bar{w}^T \\ 2w_1\bar{w} \det(w)I_{m-1} + 2\bar{w}\bar{w}^T \end{array} \right).$$ \hspace{1cm} (2.5)

As $g''(t) = 1/t^2 > 0$, it follows that Q_w is positive definite $\forall w \in \mathbb{L}^m_+$. The matrix Q_w is called the quadratic representation of w, which exists for any $w \in \mathbb{R}^m$. The next result gives some useful properties of Q_w (see [2, Theorem 3, Theorem 9]).

Theorem 2.4 Let $w \in \mathbb{R}^m$ be arbitrary.

1. If w is decomposed as in (2.1) then $\lambda^2_{\min}(w)$ and $\lambda^2_{\max}(w)$ are eigenvalues of Q_w. Furthermore, if $\lambda_{\min}(w)$ and $\lambda_{\max}(w)$ then each one has multiplicity 1. In addition, $\det(w)$ is an eigenvalue of Q_w, and has multiplicity $m-2$ when w is nonsingular and $\lambda_{\min}(w) \neq \lambda_{\max}(w)$.

2. If w is nonsingular, then $Q_w(\mathbb{L}^m_+) = \mathbb{L}^m_+$; likewise, $Q_w(\mathbb{L}^m_+^m) = \mathbb{L}^m_+^m$.

From this theorem, one has in particular that Q_w is nonsingular if and only if w is nonsingular. The following result is obtained from [38, Proposition 2.1].

Lemma 2.5 Let $w \in \mathbb{L}^m_+$. Then, there exists a matrix $Q_{w}^{1/2}$ which maps e to w
(that is \(Q_{w^{1/2}e = w}\), given explicitly by

\[
Q_{w^{1/2}} = \begin{pmatrix}
 w_1 & \bar{w}^\top \\
 \bar{w} & \text{det}(w)^{1/2}I_{m-1} + \frac{\bar{w}w^\top}{\text{det}(w)^{1/2}}
\end{pmatrix},
\]

(2.6)

This matrix is positive semidefinite and satisfies that \(Q_{w^{1/2}} = Q_{w}^{1/2}\). Moreover, when \(w \in \mathcal{L}^R_+\), \(Q_{w^{1/2}}\) turns out to be a positive definite matrix. If in addition \(\bar{w} \neq 0\), then the matrix \(Q_{w^{1/2}}\) can be written as follows:

\[
Q_{w^{1/2}} = Ar^w - \begin{pmatrix}
 0 & 0 \\
 0 & \langle w, w \rangle \left(I - \frac{\bar{w}w^\top}{\langle w, w \rangle}\right)
\end{pmatrix}.
\]

(2.7)

3. Proximal Algorithm with Variable Metric

Let \(\mathcal{F} = \{x \in \mathbb{R}^n : w^j(x) = A^j x + b^j \in \mathcal{L}_+^m, \ j = 1, \ldots, J\}\), \(B = \{x \in \mathbb{R}^n : B x = d\}\) and \(C = B \cap \mathcal{F}\). The feasible set of (SOCP) is \(\bar{C}\), the closure of \(C\) in \(\mathbb{R}^n\). From now on we suppose that the following assumptions hold true:

(A1) \(f_* > -\infty\).

(A2) \(\text{dom} f \cap C \neq \emptyset\) (Slater’s condition).

3.1. Algorithm PAVM

We denote by \(M = \text{diag}(M^1, \ldots, M^J)\) a block diagonal matrix with \(M^j \in \mathbb{R}^{m_j \times m_j}\), being symmetric and positive definite for each \(j = 1, \ldots, J\). We suppose that \(A\) has rank \(n\). Set \(\langle \cdot, \cdot \rangle_M := \langle A^\top MA \cdot, \cdot \rangle\), and let us define the following induced norms \(\|u\|_M := \langle u, u \rangle_M = \langle MAu, Au \rangle\) and \(\|u\|_M^2 := \langle (A^\top MA)^{-1}u, u \rangle\), \(\forall u \in \mathbb{R}^n\).

The Proximal Algorithm with Variable Metric (PAVM) for solving the problem (SOCP) is defined as follows:

For each \(k = 1, 2, \ldots\), take \(\delta_k > 0\) and \(\eta_k > 0\) with \(\sum_{k=1}^\infty \delta_k < \infty\) and \(\sum_{k=1}^\infty \eta_k < \infty\).

Step 0: Start with some initial point \(x^0 \in C\), \(g^0 \in \partial f(x^0)\) and block diagonal matrix \(M^0\). Set \(k = 0\).

Step 1: Given \(x^k \in C\), \(g^k \in \partial f(x^k)\) and an appropriate matrix \(M_k\) and suitable parameter \(\gamma_k > 0\), find \(x^{k+1}, g^{k+1} \in \mathbb{R}^n\) and \(\omega^{k+1} \in \mathbb{R}^n\) such that

\[
g^{k+1} = \partial f(x^{k+1}),
\]

(3.1)

\[
g^{k+1} + \gamma_k A^\top M_k A(x^{k+1} - x^k) + B^\top \omega^{k+1} = e^{k+1},
\]

(3.2)

\[
B x^{k+1} = d,
\]

(3.3)

where the associated error \(e^{k+1}\) satisfies the following conditions:

\[
\|e^{k+1}\| \leq \delta_k, \quad \|e^{k+1}\| \max(\|x^{k+1}\|, \|x^k\|) \leq \eta_k.
\]

(3.4)

Step 2: If \(x^{k+1}\) satisfies a prescribed stopping rule, then stop.

Step 3: Update \(M_{k+1}\). Replace \(k\) by \(k + 1\) and go to step 1.
Remark 3.1 Set $F_k(x) := f(x) + \frac{1}{2}\gamma_k \|x - x^k\|^2_{M_k}$. Since f is a closed proper convex function, it directly follows that F_k has bounded sublevel sets. Therefore, the optimal set of inf$\{F_k(x) : Bx = d\}$ is nonempty and compact, and (3.1)-(3.4) hold with $\epsilon_k^{k+1} = 0$. Thus the sequence generated by PAVM is well defined. The second condition on $\{\epsilon^k\}$ in (3.4), is similar to IPA1 in [6]. This is motivated by the inexact minimization of F_k. Notice that one may compute x^{k+1} by using the bundle method or by applying some iterations of a standard descent method for the unconstrained minimization of the strongly convex function F_k, depending on the regularity of f.

Remark 3.2 Note that the matrix M_k defines the shape of the level curves of the variable metric considered in our PAVM Algorithm while the regularization parameter γ_k decides indirectly the step length of the next iterate taking into account this choice of M_k. If we rescale our metric by using αM_k, for some $\alpha > 0$, instead of M_k, this is equivalent to keep M_k but replace γ_k with $\alpha \gamma_k$ in (3.2).

3.2. Strictly feasible iterates

The largest eigenvalue of a block diagonal matrix $M = \text{diag}(M^1, \ldots, M^J)$ is given by $\lambda_{\max}(M) = \max_{j = 1, \ldots, J}\{\lambda_{\max}(M^j) : j = 1, \ldots, J\}$. For any element $z \in \mathbb{R}^m$, we set $Q_z := \text{diag}(Q_{z^1}, \ldots, Q_{z^J})$, where $Q_{z^j} \in \mathbb{R}^{m_j \times m_j}$ is defined by (2.5). By virtue of Theorem 2.4, when $z \in \mathcal{L}^m_+$ we get $\lambda_{\max}(Q_z) = \lambda_{\max}^2(z)$, obtaining then

$$\lambda_{\max}(Q_z) = \max_{j = 1, \ldots, J}\{\lambda_{\max}(Q_{z^j})\} = \max\{\lambda_{\max}(z^j) : j = 1, \ldots, J\}. \quad (3.5)$$

Similarly $\lambda_{\max}(Q^{-1}_z M^{-1}) = \max\{\lambda_{\max}(Q^{-1/2}_z M^{-1/2} M^{-1/2}) : j = 1, \ldots, J\}$. Analogous definitions can be stated for the smallest eigenvalue $\lambda_{\min}(\cdot)$.

Proposition 3.3 Suppose that for every $k = 0, 1, \ldots$, the parameter γ_k satisfies

$$\gamma_k > \sqrt{2}(\sigma_{\min}(A))^{-1}\lambda_{\max}(Q_{w(x^k)})^{1/2}\lambda_{\max}(Q^{-1}_{w(x^k)} M^{-1}_{k})[(\|g\| + \delta_k)] \quad (3.6)$$

Then the sequence $\{\epsilon_k\}$ generated by PAVM is contained in C.

Proof By induction. This is true for $k = 0$. Now, assume that $x^k \in C$. By construction, x^{k+1} satisfies $Bx^{k+1} = d$. On the other hand, from the monotonicity of ∂f, it follows that $\langle g^{k+1} - g^k, x^{k+1} - x^k \rangle \geq 0$, which together with (3.2) yields

$$\langle \gamma_k A^T M_k A(x^{k+1} - x^k) + B^T \omega^{k+1}, x^{k+1} - x^k \rangle \leq \langle g^k, x^k - x^{k+1} \rangle + \langle \epsilon^{k+1}, x^{k+1} - x^k \rangle.$$

From (3.3) and the Cauchy-Schwarz inequality, it follows that

$$\gamma_k \langle M_k A(x^{k+1} - x^k), A(x^{k+1} - x^k) \rangle \leq \|g^k\| \|x^k - x^{k+1}\| + \|\epsilon^{k+1}\| \|x^{k+1} - x^k\| \leq [\|g^k\| + \delta_k] \|x^{k+1} - x^k\|, \quad (3.7)$$

where we used (3.4). As each M^j_k is a positive definite matrix, we have that

$$\langle M_k A(x^{k+1} - x^k), A(x^{k+1} - x^k) \rangle = \sum_{j=1}^{J} \langle Q_{w^j(x^k)}^{-1/2} M^j_k A^j (x^{k+1} - x^k), Q_{w^j(x^k)}^{-1/2} A^j (x^{k+1} - x^k) \rangle \geq \sum_{j=1}^{J} \lambda_{\min}(Q_{w^j(x^k)}^{-1/2} M^j_k Q_{w^j(x^k)}^{-1/2}) \|Q_{w^j(x^k)}^{-1/2} A^j (x^{k+1} - x^k)\|^2. \quad (3.8)$$
By Lemma 2.5, \(Q^{1/2}_{w(x^*)} \) is positive definite. Thus \(\| Q^{-1/2}_{w(x^*)} A_j (x^{k+1} - x^k) \| \geq \lambda_{\min}(Q^{-1/2}_{w(x^*)}) \| A_j (x^{k+1} - x^k) \| = \lambda_{\min}(Q^{-1/2}_{w(x^*)})^{1/2} \| A_j (x^{k+1} - x^k) \| \). Using this lower bound once in (3.8) it follows that \((M_k A(x^{k+1} - x^k), A(x^{k+1} - x^k)) \geq \sum_{j=1}^J \lambda_{\min}(Q^{-1/2}_{w(x^*)})^{1/2} \lambda_{\min}(Q^{1/2}_{w(x^*)} M_k Q^{1/2}_{w(x^*)}) \| Q^{-1/2}_{w(x^*)} A_j (x^{k+1} - x^k) \| \| A_j (x^{k+1} - x^k) \|. \) From (3.7) and the well-known property \(\lambda_{\max}(M^{-1}) = \lambda_{\min}(M)^{-1} \) for any symmetric nonsingular matrix \(M \), it follows that

\[
\gamma_k \sum_{j=1}^J \| Q^{-1/2}_{w(x^*)} A_j (x^{k+1} - x^k) \| \| A_j (x^{k+1} - x^k) \| \leq \lambda_{\max}(Q_{w(x^*)})^{1/2} \lambda_{\max}(Q^{-1}_{w(x^*)} M_k^{-1}) \| g^k \| + \delta_k \| x^{k+1} - x^k \|. \tag{3.9}
\]

Since \(A_j \) has full rank, we get \(\| A_j (x^{k+1} - x^k) \| \geq \frac{1}{\| A_j \|_{\text{spec}}} \| x^{k+1} - x^k \| \), where \(A_j^\dagger \) denotes the pseudoinverse of Moore-Penrose of \(A_j \) and \(\| A \|_{\text{spec}} = \sigma_{\max}(A) \) denotes the spectral norm of a given matrix \(A \). By the identity \(\sigma_{\max}(A_j^\dagger) = \left(\sigma_{\min}(A_j) \right)^{-1} \) (see for instance [21], page 421, exercise 7), we get from (3.9) that \(\gamma_k \sum_{j=1}^J \sigma_{\min}(A_j) \| Q^{-1/2}_{w(x^*)} A_j (x^{k+1} - x^k) \| \leq \lambda_{\max}(Q_{w(x^*)})^{1/2} \lambda_{\max}(Q^{-1}_{w(x^*)} M_k^{-1}) \| g^k \| + \delta_k \), which implies that

\[
\sum_{j=1}^J \| Q^{-1/2}_{w(x^*)} A_j (x^{k+1} - x^k) \| \leq \frac{1}{\gamma_k} \left(\sigma_{\min}(A) \right)^{-1} \lambda_{\max}(Q_{w(x^*)})^{1/2} \lambda_{\max}(Q^{-1}_{w(x^*)} M_k^{-1}) \| g^k \| + \delta_k \leq \frac{1}{\sqrt{2}}.
\]

For the last inequality we have used (3.6). On the other hand, it holds from Lemma 2.5 that \(Q^{-1/2}_{w(x^*)} w_j(x^k) = e_j \), which yields \(\| Q^{-1/2}_{w(x^*)} A_j (x^{k+1} - x^k) \| = \| Q^{-1/2}_{w(x^*)} (w_j(x^{k+1}) - w_j(x^k)) \| = \| Q^{-1/2}_{w(x^*)} w_j(x^{k+1} - e_j) \| \), and by virtue of Proposition 2.1(d) it follows that

\[
\| Q^{-1/2}_{w(x^*)} A_j (x^{k+1} - x^k) \| \geq \frac{1}{\sqrt{2}} \lambda_{\min}(Q^{-1/2}_{w(x^*)} w_j(x^{k+1} - e_j))
\]

for all \(j = 1, \ldots, J \). Therefore, for each \(j = 1, \ldots, J \), we get \(\| \lambda_{\min}(Q^{-1/2}_{w(x^*)} w_j(x^{k+1} - e_j)) \| < 1 \), which implies that

\[
-1 < \lambda_{\min}(Q^{-1/2}_{w(x^*)} w_j(x^{k+1} - e_j)) < 1
\]

for all \(j = 1, \ldots, J \). By using Weyl’s Theorem (cf. Proposition 2.2) in both inequalities, we get \(0 < \lambda_{\min}(Q^{-1/2}_{w(x^*)} w_j(x^{k+1})) < 2, \forall j = 1, \ldots, J \). This implies that \(Q^{-1/2}_{w(x^*)} w_j(x^{k+1}) \in L^m_{++} \), that is, \(w_j(x^{k+1}) \in Q_{w(x^*)}^{1/2}(L^m_{++}) \) for all \(j = 1, \ldots, J \). Therefore, by Theorem 2.4 and (3.3), it follows that \(x^{k+1} \in C \).
3.3. Boundedness and some related results

Let us recall a technical lemma which will be useful in the sequel (see [29]).

Lemma 3.4 (i) Let \(\{v_k\} \) and \(\{\alpha_k\} \) be nonnegative real sequences satisfying \(v_{k+1} \leq v_k + \alpha_k \) for all \(k \geq 0 \). Then the sequence \(\{v_k\} \) converges.

(ii) Let \(\{\lambda_k\} \) be a sequence of positive numbers, \(\{a_k\} \) a real sequence and \(b_n = \sigma_n^{-1} \sum_{k=0}^{n} \lambda_k a_k \), where \(\sigma_n = \sum_{k=0}^{n} \lambda_k \). If \(\sigma_n \to \infty \), one has \(\lim \inf a_n \leq \lim \inf b_n \leq \lim \sup b_n \leq \lim \sup a_n \).

Proposition 3.5 Let \(\{x^k\} \subset C \) be a sequence generated by PAVM under (3.6). Then the following hold:

(i) \(\{f(x^k)\} \) converges and \(\sum_{k=0}^{\infty} (\gamma_k \sum_{j=1}^{J} \|x^{k+1} - x^k\|_M^2) < \infty \).

(ii) If \(X^* \) is nonempty and bounded, then the sequence \(\{x^k\} \) is bounded.

Proof (i) From (3.2)-(3.3), and since \(g^{k+1} \in \partial f(x^{k+1}) \) we have \(f(x^k) + \langle \epsilon^{k+1}, x^{k+1} - x^k \rangle \geq f(x^{k+1}) + \gamma_k \sum_{j=1}^{J} \|x^{k+1} - x^k\|_M^2 \geq f(x^{k+1}) \). By (3.4), and using \(\langle \epsilon^{k+1}, x^{k+1} - x^k \rangle \leq \|\epsilon^{k+1}\| (\|x^k\| + \|x^{k+1}\|) \leq 2\|\epsilon^{k+1}\| \max\{\|x^{k+1}\|, \|x^k\|\} \), we obtain

\[
f(x^{k+1}) + \gamma_k \sum_{j=1}^{J} \|x^{k+1} - x^k\|_M^2 \leq f(x^k) + 2\eta_k. \tag{3.10}
\]

Thus \(0 \leq f(x^{k+1}) - f_* \leq f(x^k) - f_* + 2\eta_k \). Hence, using Lemma 3.4(i) we deduce that the sequence \(\{f(x^k)\} \) converges. From (3.10) we get
\[
\sum_{k=0}^{N} \left(\gamma_k \sum_{j=1}^{J} \|x^{k+1} - x^k\|_M^2 \right) \leq f(x^0) - f(x^{N+1}) + 2 \gamma_k \sum_{k=0}^{N} \eta_k \leq f(x^0) - f_* + 2 \sum_{k=0}^{N} \eta_k. \]

Letting \(N \to +\infty \), we obtain the result.

(ii) Summing (3.10) over \(k = 0, \ldots, l \), one has \(f(x^{l+1}) - f(x^0) \leq 2 \sum_{k=0}^{l} \eta_k \). Since \(\sum_{k=0}^{\infty} \eta_k \) exists, it follows that for some \(\bar{\eta} \geq 0 \) we have \(f(x^{l+1}) \leq f(x^0) + 2\bar{\eta} < \infty \), for all \(l \geq 0 \). As \(X^* \) is bounded, \(f \) is level bounded over \(C \). Thus, one has that \(\{x^k\} \) is a bounded sequence.

Remark 3.6 As consequence of above proposition, it follows that \(\{g^k\} \) is bounded when the function \(f \) is defined everywhere.

The next result gives is similar to [12, Lemma 3.2].

Lemma 3.7 Let \(\{x^k\} \) be a sequence generated by (PAVM). Then for all \(x \in C \cap \text{dom } f \) the following inequality holds

\[
\frac{2}{\gamma_k} (f(x^{k+1}) - f(x)) \leq \|x - x^k\|_M^2 - \|x - x^{k+1}\|_M^2 - \|x^{k+1} - x^k\|_M^2 + 2\gamma_k \langle \epsilon^{k+1}, x^{k+1} - x^k \rangle. \tag{3.11}
\]

Proof For any \(x \in C \), because \(g^{k+1} \in \partial f(x^{k+1}) \), we have \(f(x^{k+1}) + \langle g^{k+1}, x - x^{k+1} \rangle \leq f(x) \). Using (3.2)-(3.3) and the inequality above, we get

\[
f(x^{k+1}) - f(x) \leq \langle \epsilon^{k+1}, x^{k+1} - x^k \rangle - \gamma_k \langle A^T M_k A(x^{k+1} - x^k), x^{k+1} - x^k \rangle. \tag{3.11}
\]

Since \(M_k \) is symmetric, we have \(\|x - x^k\|_M^2 = \|x - x^{k+1}\|_M^2 + \|x^{k+1} - x^k\|_M^2 + 2\langle A^T M_k A(x^{k+1} - x^k), x - x^{k+1} \rangle \). Then the result follows directly from (3.11).
4. Quasi-nonincreasing metrics

We consider the following hypotheses on the matrices M_k^j:

(H-i) The sequences $\{M_k^{j-1}\}$ are bounded, for each $j = 1, \ldots, J$.

(H-ii) For each $j = 1, \ldots, J$, there exists a nonnegative sequence $\{\nu_k^j\}$ such that $$(M_k^j - M_{k+1}^j + \nu_k^j I) \in S^m_{+}$$ and $\sum_{k=1}^{\infty} \nu_k^j < \infty$.

Remark 4.1 Since each M_k^j is positive definite, (H-i) is equivalent to saying that there exists a $\eta_j > 0$ such that $\lambda_{\min}(M_k^j) > \eta_j$, for all $k \in \mathbb{N}$ and $j = 1, \ldots, J$.

Notice that (H-ii) implies that sequences $\{M_k^j\}$ are bounded.

Lemma 4.2 Let $\{x^k\}$ be a sequence generated by the PAVM under

$$\gamma_k \geq \sqrt{2} (\sigma_{\min}(A))^{-1} \lambda_{\max}(Q_w(x^k))^{1/2} \lambda_{\max}(Q_w^{-1}(x^k)M_k^{-1})||g^k|| + \delta_k + \beta_k \quad (4.1)$$

for some $\beta_k \geq \beta > 0$. Assume that (H-i) holds. Then $\sum_{k=0}^{\infty} ||x^{k+1} - x^k||^2 < \infty$ and in particular, $\lim_{k \to +\infty} ||x^{k+1} - x^k|| = 0$

Proof As each M_k^j is positive definite and each A^j is full rank, one has $||x^{k+1} - x^k||^2/M_k^j \geq \lambda_{\min}(M_k^j)||A^j(x^{k+1} - x^k)||^2 \geq \lambda_{\min}(M_k^j)\lambda_{\min}(A^j)^2 ||x^{k+1} - x^k||^2$, whence $||x^{k+1} - x^k||^2/M_k^j = \sum_{j=1}^{J} ||x^{k+1} - x^k||^2/M_k^j \geq \sum_{j=1}^{J} \lambda_{\min}(M_k^j)\lambda_{\min}(A^j)^2 ||x^{k+1} - x^k||^2$. Now, by the boundedness of the sequence $\{M_k^j\}$ for each $j = 1, \ldots, J$, there exists $\eta_j > 0$ such that $\lambda_{\min}(M_k^j) > \eta_j$, for all $j = 1, \ldots, J$. Taking $\eta = \beta \min_{j=1,\ldots,J} \eta_j \lambda_{\min}(A^j)^2$, we obtain $\sum_{k=0}^{\infty} \left(\gamma_k \sum_{j=1}^{J} ||x^{k+1} - x^k||^2/M_k^j \right) \geq J \eta \sum_{k=0}^{\infty} ||x^{k+1} - x^k||^2$, and the result follows from Proposition 3.5(iii). □

From now on we define: $\sigma_n = \sum_{j=0}^{n-1} \gamma_j^{-1}$, for all $n \in \mathbb{N}$.

Lemma 4.3 Let $\{x^k\}$ be the sequence generated by algorithm (PAVM). Assume that (H-ii) holds. For any $x \in C \cap \text{dom } f$ the following hold:

$$-2\sigma_n f(x) + \sum_{k=0}^{n-1} \frac{2}{\gamma_k} f(x^{k+1}) \leq ||x - x^0||^2_{M_0} - ||x^n - x||^2_{M_n} - \sum_{k=0}^{n-1} \left(||x^{k+1} - x^k||^2_{M_k} - \frac{2}{\gamma_k} (x^{k+1} - x^k) - J \nu_k^j ||A^j(x^{k+1} - x^k)||^2 \right). \quad (4.2)$$

Proof Since $(M_k^j - M_{k+1}^j + \nu_k^j I) \in S^m_{+}$, one has $||x^{k+1} - x||^2/M_k^j + \nu_k^j ||A^j(x^{k+1} - x)||^2 \geq ||x^{k+1} - x||^2/M_{k+1}^j$. By using this inequality in the estimate of Lemma 3.7, we have

$$\frac{2}{\gamma_k} (f(x^{k+1}) - f(x)) \leq ||x - x^k||^2_{M_k} - ||x^{k+1} - x||^2_{M_{k+1}} - ||x^{k+1} - x^k||^2_{M_k}$$

$$+ \frac{2}{\gamma_k} (x^{k+1} - x^k) + \sum_{j=1}^{J} \nu_k^j ||A^j(x^{k+1} - x)||^2. \quad (4.3)$$
Summing for \(k = 0, \ldots, n - 1 \) the result follows immediately.

Theorem 4.4 Let \(\{x^k\} \) be the sequence generated by algorithm (PAVM) under (4.1) for some \(\beta_k \geq \beta > 0 \). Assume that (H-ii) holds and that \(\mathcal{X}^* \) is nonempty and bounded. If \(\lim_{n \to \infty} \sigma_n = +\infty \), then the following hold:

(i) The sequence \(\{f(x^k)\} \) converge to \(f_* \).

(ii) The limit points of \(\{x^k\} \) belong to \(\mathcal{X}^* \).

(iii) The sequence \(\{\|x^k - u\|_M^2\} \) converge for all \(u \in \mathcal{X}^* \).

(iv) Furthermore, if (H-i) holds then \(\{x^k\} \) converges to some \(x^* \in \mathcal{X}^* \).

Proof (i) Let \(\theta_{k+1}(x) = \langle e^{k+1}, x^{k+1} - x \rangle \) and \(\vartheta_j^{k+1}(x) = \nu_k^j \sigma(A^j (x^{k+1} - x)) \) for \(j = 1, \ldots, J \). Using (3.4), one has \(\theta_{k+1}(x) \leq \vartheta_{k+1} \) where \(\vartheta_{k+1} = \eta_k + \|x\| \delta_k \), which satisfies \(\sum_{k=0}^{\infty} \theta_{k+1} < \infty \) and as \(\gamma_k \geq \beta \), \(\sum_{k=0}^{\infty} \theta_{k+1} \gamma_k^{-1} < \infty \). On the other hand, by boundedness of \(\{x^{k+1}\} \) (see Proposition 3.5), there exists \(\tau > 0 \) such that \(\|A^j (x^{k+1} - x)\| \leq \sigma_{\max}(A^j)(\tau + \|x\|) \), for all \(j = 1, \ldots, J \) and therefore \(\sum_{k=0}^{\infty} \sum_{j=1}^{J} \vartheta_j^{k+1}(x) \leq \infty \). Then, dividing (4.2) by \(\sigma_n \) and invoking to Lemma 3.4(ii), we get from (4.2) that \(\liminf f(x^n) \leq f(x) \) for each \(x \in \mathcal{C} \) so that \(\liminf f(x^n) = f_* \), which together with the fact that \(f(x^n) \geq f_* \) implies that \(\liminf f(x^n) = f_* \). Hence, using the Proposition 3.5 it follows that the sequence \(\{f(x^k)\} \) converges to \(f_* \).

(ii) From Proposition 3.5 we have that \(\{x^k\} \) is bounded. Since \(f \) is lsc, passing to the limit and reminding that \(\{x^k\} \subset \mathcal{C} \), it follows that each limit point is an optimal solution.

(iii) For all \(u \in \mathcal{X}^* \), from inequality (4.3) we obtain

\[
\|x^{k+1} - u\|_M^2 \leq \|x^k - u\|_M^2 + \frac{2}{\beta} (\nu^k_k \sigma(A^k) \|x^k - u\|) + \frac{\lambda^k_k}{\gamma_k^k} \|x^k - u\|_M^2.
\]

By part (i), we get

\[
\|x^{k+1} - u\|_M^2 \leq \|x^k - u\|_M^2 + \frac{2}{\beta} \eta_{k+1} + \frac{\lambda^k_k}{\gamma_k^k} \|x^k - u\|_M^2.
\]

Then, from the nonnegativity of \(\|x^k - u\|_M^2 \), we can apply Lemma 3.4 for establishing the convergence of \(\|x^k - u\|_M^2 \) for all \(u \in \mathcal{X}^* \).

(iv) From part (iii) we obtain that the sequences \(\{\|x^k - u\|_M^2\} \) converge to some \(c(u) \in \mathbb{R}^+, \forall u \in \mathcal{X}^* \) and for each \(j = 1, \ldots, J \). Let \(x^\infty \) be a limit point of \(\{x^k\} \). Take a subsequence \(\{x^{k_i}\} \) of \(\{x^k\} \) such that \(x^{k_i} \to x^\infty \in \mathcal{X}^* \) (by (ii)). From hypothesis (H-ii), \(\{M^j_i\} \) is bounded, for each \(j = 1, \ldots, J \). Passing onto a subsequence, if necessary, we can suppose that \(M^j_i \to \overline{M}^j_i \), for each \(j = 1, \ldots, J \). Then \(\|x^{k_i} - x^\infty\|_M^2 \to 0 \). So that \(c(x^\infty) = 0 \). Moreover, since \(\|x^k - x^\infty\|_M^2 \geq \lambda_{\min}(M^i_k) \sigma_{\min}(A^j)^2 \|x^k - x^\infty\|^2 \) and (H-i) holds true, we get that \(x^k \to x^\infty \).

The following result yields a global rate of convergence estimate, which is similar to the one obtained for proximal-type algorithms in convex minimization problems.

Proposition 4.5 Let \(\{x^k\} \) be the sequence generated by (PAVM). Assume hypotheses (H) hold and that \(\mathcal{X} \neq \emptyset \). Then, there exists \(\tau > 0 \) such that for all
\(u \in \mathcal{X}^* \), we have
\[
f(x^n) - f(u) \leq \frac{\|u - x^0\|_M^2}{2\sigma_n} - \frac{\|u - x^n\|_M^2}{2\sigma_{n}} - \frac{1}{2\sigma_n} \sum_{k=0}^{n-1} \gamma_k (\sigma_k + \sigma_{k+1}) \|x^{k+1} - x^k\|_M^2 + \\
\frac{1}{2\sigma_n} \sum_{k=0}^{n-1} \left(\frac{2\eta_k + \|u\|\delta_k}{\gamma_k} + 4\sigma_k \eta_{k+1} + \sum_{j=1}^{J} \nu_j^2 \sigma_{\max}(A^j)(\tau + \|u\|)^2 \right). \tag{4.4}
\]

Proof Let \(u \in \mathcal{X}^* \). Setting \(x^k \) for \(x \) in (3.11), multiplying the resulting inequality by \(\sigma_k \) and using the fact that \(\sigma_{k+1} = \frac{1}{\gamma_k} + \sigma_k \) (with \(\sigma_0 = 0 \)), we get
\[
\sigma_{k+1}f(x^{k+1}) - \sigma_k f(x^k) - \frac{1}{\gamma_k} f(x^{k+1}) \leq \sigma_k (\epsilon^{k+1} - \epsilon^{k}) - \sigma_k \gamma_k \|x^{k+1} - x^k\|_M^2.
\]

Summing the last inequality over \(k = 0, \ldots, n-1 \), noting \(\sigma_0 = 0 \) and using (3.10), one has
\[
\sigma_n f(x^n) - \frac{1}{\gamma_k} f(x^{k+1}) \leq 2 \sum_{k=0}^{n-1} \sigma_k \eta_k - \sigma_n \gamma_k \|x^{k+1} - x^k\|_M^2. \tag{4.5}
\]

Adding twice (4.5) to (4.2), we have
\[
2\sigma_n (f(x^n) - f(u)) \leq \frac{\|u - x^0\|_M^2}{2\sigma_n} - \frac{\|u - x^n\|_M^2}{2\sigma_n} - \sum_{k=0}^{n-1} \|x^{k+1} - x^k\|_M^2 \]
\[
- 2 \sum_{k=0}^{n-1} \sigma_k \gamma_k \|x^{k+1} - x^k\|_M^2 - \sum_{k=0}^{n-1} \sum_{j=1}^{J} \nu_j^2 \sigma_{\max}(A^j)(\tau + \|u\|)^2.
\]

Because \(\langle \epsilon^{k+1} - \epsilon^{k+1}, u \rangle \leq \eta_k + \|u\|\delta_k \), \(\|A^j(x^{k+1} - u)\| \leq \sigma_{\max}(A^j)(\tau + \|u\|) \), for some \(\tau > 0 \), the above inequality can be written as
\[
2\sigma_n (f(x^n) - f(u)) \leq \frac{\|u - x^0\|_M^2}{2\sigma_n} - \frac{\|u - x^n\|_M^2}{2\sigma_n} - \sum_{k=0}^{n-1} \gamma_k (\sigma_k + \sigma_{k+1}) \|x^{k+1} - x^k\|_M^2
\]
\[
+ \sum_{k=0}^{n-1} \left(\frac{2(\eta_k + \|u\|\delta_k)}{\gamma_k} + 2\sigma_k \eta_{k+1} + \sum_{j=1}^{J} \nu_j^2 \sigma_{\max}(A^j)(\tau + \|u\|)^2 \right).
\]

Dividing by \(2\sigma_n \), we get the desired inequality. \(\blacksquare \)

Remark 4.6 Ignoring the negative terms in the estimate of proposition above we obtain
\[
f(x^n) - f(u) \leq \frac{\|u - x^0\|_M^2}{2\sigma_n} + \frac{1}{\sigma_n} \sum_{k=0}^{n-1} \left(\frac{\eta_k + \|u\|\delta_k}{\gamma_k} + 2\sigma_k \eta_{k+1} + \sum_{j=1}^{J} \nu_j^2 \sigma_{\max}(A^j) \right) \frac{\|A^j\|}{2}(\tau + \|u\|)^2.
\]
The following result is a direct extension of [19, Theorem 3.1] to our algorithm. For simplicity we suppose that \(\eta_k = \| k \| = 0 \), \(\forall k \geq 1 \).

Theorem 4.7 Let \(\{x^k\} \) be the sequence generated by PAVM algorithm under (4.1) for some \(\beta_k \geq \beta > 0 \). Assume that hypotheses (H) hold, that \(X^* \) is nonempty and bounded and that \(\eta_k = \| e_k \| = 0 \), \(\forall k \geq 1 \). If \(\lim_{n \to \infty} \sigma_n = +\infty \) then \(\sigma_n(f(x_n) - f^*) \to 0 \).

Proof By Theorem 4.4-(iv), \(x^k \) converges to some \(x^* \in X^* \). We denote by \(\zeta_k = f(x^k) - f(x^*) \). From (3.10) we have

\[
\zeta_k - \zeta_{k+1} = f(x^k) - f(x^{k+1}) \geq \gamma_k \| x^{k+1} - x^k \|^2_{M_k}.
\]

Setting \(x^* \) for \(x \) in (3.11), we obtain

\[
\zeta_{k+1} = f(x^{k+1}) - f(x^*) = -\gamma_k (A^\top M_k A(x^{k+1} - x^k), x^{k+1} - x^*)
\]

\[
= -\gamma_k (A^\top M_k A(x^{k+1} - x^k), x^k - x^*) - \gamma_k \| x^{k+1} - x^k \|^2_{M_k}
\]

\[
\leq -\gamma_k (A^\top M_k A(x^{k+1} - x^k), x^k - x^*).
\]

But \(\| (A^\top M_k A(x^{k+1} - x^k), x^k - x^*) \| \leq \| x^{k+1} - x^k \|_{M_k} \| x^* - x^k \|_{M_k} \), so from the inequality above one has \(\zeta_{k+1} \leq \gamma_k \| x^{k+1} - x^k \|_{M_k} \| x^* - x^k \|_{M_k} \) or equivalently \(\| x^{k+1} - x^k \|_{M_k} \geq \frac{\zeta_{k+1}}{\gamma_k \| x^* - x^k \|_{M_k}} \). Using this inequality in (4.6), we have \(\zeta_k \geq \zeta_{k+1} + \frac{\zeta_{k+1}}{\gamma_k} \| x^* - x^k \|_{M_k}^{-1} = \zeta_{k+1} \left(1 + \frac{\zeta_{k+1}}{\gamma_k} \| x^* - x^k \|_{M_k}^{-2}\right)^{-1} \), whence

\[
\zeta_k^{-1} \leq \zeta_{k+1}^{-1} \left(1 + \frac{\zeta_{k+1}}{\gamma_k} \| x^* - x^k \|_{M_k}^{-2}\right)^{-1}.
\]

On the other hand, setting \(x^* \) for \(x \) in the estimate of Lemma 3.7 we obtain

\[
f(x^{k+1}) \leq f(x^{k+1}) + \frac{\gamma_k}{2} \| x^{k+1} - x^k \|_{M_k}^2 \leq f(x^*) + \frac{\gamma_k}{2} \| x^* - x^k \|_{M_k}^2,
\]

which yields to

\[
0 \leq \frac{\zeta_{k+1}}{\gamma_k} \| x^* - x^k \|_{M_k}^{-2} \leq \frac{1}{2}.
\]

Moreover, the function \((1 + t)^{-1}\) is convex for \(t > -1 \), hence \((1 + t)^{-1} \leq 1 - \frac{2}{3} t\), for \(t \in [0, \frac{1}{2}] \). This last inequality together with (4.7) implies that \(\zeta_k^{-1} \leq \zeta_{k+1}^{-1} \left(1 - \frac{2}{3} \frac{\zeta_{k+1}}{\gamma_k \| x^* - x^k \|_{M_k}} \right) \). Summing this for \(k = 0, \ldots, n - 1 \), we get \(\zeta_n \geq \zeta_0 \geq \frac{2}{3} \sum_{k=0}^{n-1} \frac{\zeta_{k+1}}{\gamma_k \| x^* - x^k \|_{M_k}} \), obtaining \(\zeta_n = f(x^n) - f(x^*) \leq \frac{\gamma_k}{2} \sum_{k=0}^{n-1} \frac{1}{\gamma_k \| x^* - x^k \|_{M_k}} \). By Theorem 4.4-(iv), we have that \(\| x^* - x^k \|_{M_k} \to \infty \). Therefore, using the Silverman-Toeplitz Theorem (see for instance [23, pag. 76]), the series \(\sigma_n^{-1} \sum_{k=0}^{n-1} (\gamma_k \| x^* - x^k \|_{M_k}^2)^{-1} \to \infty \) also. In consequence, the result follows.
5. PAVM-Log Algorithm

5.1. Metric induced by the Hessian of the spectral Log

In this section we consider the following choice for the variable metric matrix:

\[M_k = 2Q_{w(x_k)}^{-1}. \]

(5.1)

This a block diagonal matrix, where each block is given by the inverse of the \(m \times m \) matrix \(Q_{w(x)} \) defined in (2.5). This choice is a natural extension to SOC of the algorithm proposed by Oliveira et al. [34]. Notice that (4.1) reduces to

\[\gamma_k \geq \frac{\sqrt{2}}{2} (\sigma_{\min}(A))^{-1} \lambda_{\max}(Q_{w(x)})^{1/2} (\|g^k\| + \delta_k) + \beta_k. \]

(5.2)

The algorithm PAVM-Log for solving the problem (SOCP) is as follows:

Step 0: Start with some initial point \(x^0 \in C \). Set \(k = 0 \)

Step 1: Given \(x^k \in C \), \(g^k \in \partial f(x^k) \) and \(\gamma_k \) satisfying (5.2), solve

\[g^{k+1} \in \partial f(x^{k+1}), \]

(5.3)

\[g^{k+1} + 2\gamma_k A^T Q_{w(x)}^{-1} A(x^{k+1} - x^k) + B^T \omega^{k+1} = \epsilon^{k+1}, \]

(5.4)

\[Bx^{k+1} = d, \]

(5.5)

for some \(\omega^{k+1} \in \mathbb{R}^r \), where

\[\|\epsilon^{k+1}\| \leq \delta_k, \quad \|\epsilon^{k+1}\| \text{max}(\|x^{k+1}\|, \|x^k\|) \leq \eta_k. \]

(5.6)

Step 2: If \(x^{k+1} \) satisfies a prescribed stopping rule, then stop.

Step 3: Replace \(k \) by \(k + 1 \) and go to step 1.

Remark 5.1 By virtue of Proposition 3.5, when \(X^* \) is nonempty and bounded, then \(\{\gamma_k\} \) can be chosen to be bounded: it suffices to take the equality in (5.2).

5.2. On the convergence of PAVM-Log

First, notice that Lemma 4.3 and Theorem 4.4 do not apply to PAVM-Log because (H-ii) fails for (5.1). A similar situation occurs for the interior proximal algorithm proposed by Oliveira et al. in [34], based on the logarithm barrier on the positive orthant. Following the ideas in [22], the authors of [34] deal with the convergence of their algorithm by showing that any cluster point of the iterates satisfies the Karush-Kuhn-Tucker (KKT) stationary conditions of the optimization problem. In our case, the corresponding KKT conditions for (SOCP) are given by (see [2]):

\[(KKT) \quad g + B^T \omega = A^T s, \quad B x = d, \quad w(x) \in K, \quad s \in K, \quad w(x) \circ s = 0, \]

where \(K = L_{m1}^{n1} \times \ldots \times L_{mJ}^{nJ} \), \(\omega \in \mathbb{R}^r \), \(g \in \partial f(x) \) and \((x, s) \in \mathbb{R}^n \times \Pi_{j=1}^{J} \mathbb{R}^{m_j} \) a pair of primal-dual solutions. Unfortunately, the analysis of [22, 34] relies on some
componentwise comparison arguments which are not valid for spectral values. This technical problem also arises for several algorithms for SOC and SDP optimization problems. Nevertheless, in our case we have been able to establish some partial results in the general case and a convergence result when the objective function is linear. To do so, we will need the following technical lemma.

Lemma 5.2 For any \(s \in \mathbb{R}^m \), we have that \(s \in \mathcal{L}_{++}^m \) iff \(\langle s, y \rangle > 0 \), \(\forall y \in \mathcal{L}_{++}^n \), \(y \neq 0 \).

Proof For any \(s = (s_1, s) \in \mathcal{L}_{++}^m \) and \(y = (y_1, y) \in \mathcal{L}_{++}^n \) with \(y \neq 0 \), we know that \(\|s\| < s_1 \) and \(\|y\| \leq y_1 \). Then \(\langle s, y \rangle = s_1y_1 + s^\top y \geq s_1y_1 - \|s\| \|y\| \geq s_1y_1 - \|s\| y_1 = y_1(s_1 - \|s\|) > 0 \), where the first inequality follows from the Cauchy-Schwarz inequality. Now, we suppose that \(\langle s, y \rangle > 0 \), \(\forall y \in \mathcal{L}_{++}^n \) with \(y \neq 0 \). Taking \(y = e \) we deduce that \(s_1 > 0 \). If \(s = 0 \), the result follows. On the other hand, if \(s \neq 0 \), we set \(y = (1, -\frac{\|s\|}{y_1}) \). It is clear that \(y \in \mathcal{L}_{++}^n \) and \(y \neq 0 \). Hence, \(0 < \langle s, y \rangle = s_1 - \|s\| = \lambda_{\min}(s) \). This means that \(s \in \mathcal{L}_{++}^m \).

Proposition 5.3 Suppose that \(f \) is defined in all \(\mathbb{R}^n \) and assume that \(\mathcal{X}^* \) is nonempty and bounded. Let \(\{x^k\} \) be sequence generated by PAVM-Log, then:

(i) If a cluster point \(\bar{x} \) of the sequence \(\{x^k\} \) belong to \(C \) (i.e. \(\bar{x} \) is strictly feasible), then \(\bar{x} \) is optimal for (SOCP).

(ii) The dual sequence \(\{s^{k+1}\} \) defined by

\[
\begin{align*}
s^{k+1} := 2\gamma_k & Q^{-1}_{w(x^k)}(w(x^k) - w(x^{k+1})),
\end{align*}
\]

satisfies

\[
\lim_{k \to +\infty} Q^{1/2}_{w(x^k)}s^{k+1} = 0.
\]

(iii) Any cluster point \((\bar{x}, \bar{s}, \bar{g}, \bar{\omega}) \) of \(\{(x^k, s^k, g^k, \omega^k)\} \) satisfy:

\[
\begin{align*}
\bar{g} + B^\top \bar{\omega} &= A^\top \bar{s}, \\
B\bar{x} &= d, \\
w(\bar{x}) &\in \mathcal{K}, \\
\lambda_{\max}(\bar{s}) &\geq 0 \text{ and } w^j(\bar{x})^\top \bar{s} = 0, \quad j = 1, \ldots, J.
\end{align*}
\]

Proof (i) Since \(\mathcal{X}^* \) is nonempty and bounded and \(f \) is defined everywhere, the sequences \(\{(x^{k+1}, s^{k+1}, \gamma_k)\} \) are bounded. Thus, there exists a subsequence \(\{(x^{k_j+1}, s^{k_j+1}, \gamma_{k_j})\} \) and a point \((\bar{x}, \bar{g}, \bar{\gamma}) \) such that \((x^{k_j+1}, g^{k_j+1}, \gamma_{k_j}) \to (\bar{x}, \bar{g}, \bar{\gamma}) \) as \(j \to +\infty \). Moreover, since \(B \) is onto, the subsequence \(\omega^{k_j} \) of \(\{\omega^k\} \) defined in (5.4) can be written as \(\omega^{k_j} = (BB^\top)^{-1}B(\epsilon_{k_j} - g^{k_j} + A^\top s^{k_j+1}) \). As \(\bar{x} \in \mathcal{C} \), we get that \(\lim_{j \to +\infty} \omega^{k_j+1} = -BB^\top -BB \bar{g} \), we have used Lemma 4.2. Therefore, from (5.3) it follows that \(0 \in \partial f(\bar{x}) + \text{Im}(B^\top) \). This condition implies that \(\bar{x} \) is an optimal solution of (SOCP).

(ii) From definition of \(s^{k+1} \) one has \(\gamma_k \|s^{k+1} - x^k\|^2_{M_k} = 2\gamma_k \langle Q^{-1}_{w(x^k)}(w(x^k) - w(x^{k+1})), w(x^k) - w(x^{k+1}) \rangle = \frac{1}{2\gamma_k} \langle s^{k+1}, Q_{w(x^k)}(x^{k+1}) \rangle \). By Remark 5.1, the sequence \(\{\gamma_k\} \) can be chosen to be bounded and the conclusion follows from Proposition 3.5.

(iii) By construction of sequence \(\{x^k\} \), any cluster point \(\bar{x} \in \mathbb{R}^n \) satisfy \(B\bar{x} = d \) and \(w(\bar{x}) \in \mathcal{K} \). From (5.4) and (5.7) it follows that \(A^\top \bar{s} = \bar{g} + B^\top \bar{\omega} \), with \(\bar{s} \) a limit point of the dual sequence \(s^{k+1} \). Moreover, from (5.8) we get \(\lim_{k \to +\infty} Q^{1/2}_{w(x^k)}s^{k+1} = 0 \), that is, \(Q^{1/2}_{w(x^k)}\bar{s} = 0 \). Now, if \(\bar{s} = (\bar{s}^1, \ldots, \bar{s}^J) \) with \(\bar{s}^j \in \mathbb{R}^{m_j} \) for \(j = 1, \ldots, J \), it follows that \(Q^{1/2}_{w(x)}\bar{s}^j = 0 \), for \(j = 1, \ldots, J \) (recall
that $Q^{1/2}_{w(x)} = \text{diag}(Q^{1/2}_{w'(1)}, \ldots, Q^{1/2}_{w'(J)})$. From (2.7) we obtain that

$$0 = w^j(\bar{x}) \circ \tilde{s}^j - \left(\left(w^j(\bar{x}) - \det(w^j(\bar{x}))^{1/2} \right) \left(\tilde{s}^j - \frac{w^j(\bar{x})^T \tilde{x}^j}{\|w^j(\bar{x})\|_2} \right) \right): j = 1, \ldots, J,$$

where we used that $\tilde{s}^j = (\tilde{s}^j_1, \tilde{s}^j_2) \in \mathbb{R} \times \mathbb{R}^{m_j-1}$. By the definition of product “\circ”, the first component in the equation above implies that $w^j(\bar{x})^T \tilde{s}^j = 0$, for $j = 1, \ldots, J$.

It only remains to prove that $\lambda_{\text{max}}(\tilde{s}^j) \geq 0$ for all $j = 1, \ldots, J$. If $w^j(\bar{x}) \in L^{m_j}_+$ for some $j \in \{1, \ldots, J\}$, then $Q^{1/2}_{w'(j)}$ is nonsingular by [2, Corollary 4] and hence the limit (5.8) implies that $\tilde{s}^j = 0$ and in particular $\lambda_{\text{min}}(\tilde{s}^j) = \lambda_{\text{max}}(\tilde{s}^j) = 0$. Consider now the case when $w^j(\bar{x}) \in \partial L^{m_j}_+ \setminus \{0\}$ for some $j \in \{1, \ldots, J\}$. We argue by contradiction, that is, we suppose that $\lambda_{\text{min}}(\tilde{s}^j) \leq \lambda_{\text{max}}(\tilde{s}^j) < 0$. In that case, by virtue of Proposition 2.1(e) we get $-\tilde{s}^j \in L^{m_j}_+$ and as $w^j(\bar{x}) \in L^{m_j}_+$ by Lemma 5.2, it follows that $w^j(\bar{x})^T \tilde{s}^j < 0$, which is a contradiction.

\[\blacksquare\]

Remark 5.4 Notice that, as $w(\bar{x}) \in K$ and $w(\bar{x})^T \tilde{s} = 0$, if $\tilde{s} = (\tilde{s}^1, \ldots, \tilde{s}^J) \in K$ then we get that $w(\bar{x}) \circ \tilde{s} = 0$ by virtue of [2, Lemma 15]. Hence in order to verify that the cluster point $(\bar{x}, \tilde{s}, \tilde{g}, \tilde{\omega})$ satisfies (KKT) it only remains to prove that $\lambda_{\text{min}}(\tilde{s}^j) \geq 0$, which amounts to $\tilde{s}^j \in L^{m_j}_+$, for all $j = 1, \ldots, J$. We conjecture that this is true for a general (SOCP).

The following result gives a very special case where we have been able to establish that any cluster point $(\bar{x}, \tilde{s}, \tilde{g}, \tilde{\omega})$ of $\{(x^k, \tilde{s}^k, \tilde{g}^k, \tilde{\omega}^k)\}$ satisfies (KKT) by showing that $\tilde{s} \in K$.

Proposition 5.5 Under the assumptions and notations of Proposition 5.3, if in addition f is supposed to be linear, i.e. $f(x) = c^T x$, and the following inclusion holds for each $j = 1, \ldots, J$

$$A^j(\text{Ker} \mathcal{B}) \supseteq L^{m_j}_+,$$

then $\tilde{s} \in K$. In consequence, any limit point of $\{x^k\}$ satisfies the KKT conditions.

Proof Let $\tilde{s} = (\tilde{s}^1, \ldots, \tilde{s}^J)$ be a limit point of $\{s^k\}$. Recall that for $j = 1, \ldots, J$, $C_j = \{x \in \mathbb{R}^n : A^j x + b^j \in L^{m_j}_+\}$, $\mathcal{F} = \prod_{j=1}^{J} C_j$, $\mathcal{B} = \{x \in \mathbb{R}^n : \mathcal{B} x = d\}$ and $C = \mathcal{B} \cap \mathcal{F}$. It is well known that \mathcal{X}^* be nonempty and bounded iff (see [5, 36])

$$f_\infty(d) > 0, \quad \forall d \in C_\infty, \; d \neq 0. \quad (5.11)$$

Now, note that the recession function of f is given by $f_\infty(d) = c^T d$, for all $d \in \mathbb{R}^n$, and the recession set of feasible set is given by $C_\infty = \{d \in \mathbb{R}^n : A^j d \in L^{m_j}_+, j = 1, \ldots, J, \; B d = 0\}$. Then condition (5.11) can be rewritten as $c^T d > 0$, $\forall d \neq 0$; $A^j d \in L^{m_j}_+, j = 1, \ldots, J, \; B d = 0$. On the other hand, from (5.9) we get that $c^T d = (A^T \tilde{s} - B^T \tilde{\omega})^T d$, with $\tilde{\omega}$ limit point of $\{\omega^{k+1}\}$. Thus $\tilde{s}^T A d > 0$, $\forall d \neq 0$; $A^j d \in L^{m_j}_+, j = 1, \ldots, J, \; B d = 0$. Then (5.10) implies that $\sum_{j=1}^{J} v_j^T \tilde{s}^j = \tilde{v}^T \tilde{s} > 0$, for all $v \in K$ with $v \neq 0$. Fix $j \in \{1, \ldots, J\}$ such that $v_j \neq 0$, then Lemma 5.2 implies that $\tilde{s}^j \in L^{m_j}_+$. As this holds for any $j = 1, \ldots, J$, it follows from Proposition 5.3 that any limit point of x^k satisfies the KKT conditions of (SOCP), that is, $\bar{x} \in \mathcal{X}^*$. \[\blacksquare\]
6. Computational experiments on some specific applications

6.1. Preliminaries

We will discuss some computational results on some specific instances of two classes of SOCP: multiload models in truss structural optimization, and robust classification by hyperplanes under data uncertainty. Our goal is to show how our algorithm PAVM-Log works in practice and verify empirically that it produces correct results. On purpose we have chosen two well-known applications that can be formulated as a Linear SOCP (LSOCP). This allows us to compare our results with those obtained by SeDuMi 1.1R2 toolbox for MATLAB, which implements a primal-dual interior point method for solving LSOCPs (see [35]). Since by construction our algorithm forces \(x^k \) to be strictly feasible, we use SeDuMi’s result as a benchmark for the optimal value so that a small difference between \(f(x^k) \) and that benchmark will ensure the correctness of our solution, up to some relative error tolerance of course. The computer codes were all written in MATLAB 7.3, Release 2006b. The experiments were performed on a Toshiba Tecra laptop with an Intel Pentium M 740 CPU 1.73GHz processor and 512MB of RAM, running Microsoft Windows XP.

6.2. Truss structural optimization

A truss is a mechanical structure composed of thin elastic bars, connecting some pairs of nodal points in \(\mathbb{R}^d \) (\(d = 2, 3 \)). Given a load (distribution of external forces) the truss deforms until the reaction forces compensate the external load, storing a certain amount of potential energy, named the compliance. This measures the stiffness of the truss, that is, its ability to withstand the load; the less is compliance, the more rigid is the truss with respect to the load; see, for instance, [1, 7].

Let \(n = d \cdot N - s \) be the number of degrees of freedom of a ground structure consisting of \(N \) nodes, where \(s \) is the number of fixed directions. Let \(m \geq n \) be the number of potential bars. We denote by \(x_i = a_i \ell_i \geq 0 \) the volume of the \(i \)-th bar, where \(a_i \) is its cross-sectional area and \(\ell_i \) its length. We assume that external loads \(f \in \mathbb{R}^n \) apply only at nodal points and bars are subject to axial tension or compression. The mechanical response of the truss is described by the elastic equilibrium system \(K(x)u = f \), where \(u \in \mathbb{R}^n \) is the nodal displacements vector and \(K(x) = \sum_{i=1}^{m} x_i K_i \). Here, \(x \geq 0 \) is the volume vector and \(K_i \in \mathbb{R}^{n \times n} \) is the specific stiffness matrix of the \(i \)-th bar, and is given by \(K_i = \frac{E_i}{\ell_i} \zeta_i \zeta_i^T \), where \(E_i \) is the Young modulus for the material of the \(i \)-th bar and \(\zeta_i \in \mathbb{R}^n \) is a vector that contains the cosines and sines describing the orientation of \(i \)-th bar.

Optimal solutions with respect to compliance using a single load model may be unstable, even under small perturbations in the principal load. An alternative is to consider a multiload model instead of the single load one, by minimizing a weighted average of the compliances associated with \(k \) different loading scenarios \(f_1, \ldots, f_k \in \mathbb{R}^n \) (see [1, 3]), namely

\[
\min_{x \in \mathbb{R}^m, u_j \in \mathbb{R}^n} \frac{1}{2} \sum_{j=1}^{k} \lambda_j f_j^T u_j; \quad K(x)u_j = f_j, \quad j = 1, \ldots, k,
\]

\[
\sum_{i=1}^{m} x_i = V, \quad x_i \geq 0, \quad i = 1, \ldots, m,
\]

where \(\lambda_j > 0, j = 1, \ldots, k \), denote suitable weights on the individual compliance values, for a given volume \(V > 0 \) of material. As it is shown in [26] (see also [7,
\[\min_{x \in \mathbb{R}^m, t_{ij} \in \mathbb{R}, y_{ij} \in \mathbb{R}} \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{k} \lambda y_{t_{ij}}; \quad x_i = V, \quad f_j = \sum_{i=1}^{m} y_{ij} \sqrt{\eta_i}, \quad j = 1, \ldots, k, \quad (x_i + t_{ij}, 2y_{ij}, x_i - t_{ij}) \in \mathcal{L}_+^3, \quad i = 1, \ldots, m, \quad j = 1, \ldots, k. \]

(6.2)

Since the objective function in (6.2) is linear, the proximal step in PAVM-Log corresponds to the unconstrained stationary condition for a quadratic function, which amounts to solving exactly \((\delta_k = \eta_k = 0)\) a linear system of the form:

\[
2\gamma_k A^\top Q_{w(z^*)}^{-1} A z^{k+1} + B^\top \omega^{k+1} = 2\gamma_k A^\top Q_{w(z^*)}^{-1} A z^k - \frac{1}{2} (0, 1, 0_m)
\]

\[
B z^{k+1} = \bar{f}
\]

(6.3)

for some \(\omega^{k+1} \in \mathbb{R}^{kn+1}\), where \(z = (x, t, y) \in \mathbb{R}^{(2k+1)m}\) stands for the decision variable with \(x = (x_1, \ldots, x_m), t = (t_{11}, t_{21}, \ldots, t_{m1}, \ldots, t_{1k}, t_{2k}, \ldots, t_{mk})\) and \(y = (y_{11}, y_{21}, \ldots, y_{m1}, \ldots, y_{1k}, y_{2k}, \ldots, y_{mk})\), and

\[
w^{ij}(z) = (z_i + z_{jm+i}, 2z_{(k+j)m+i}, z_i - z_{jm+i}) = (x_i + t_{ij}, 2y_{ij}, x_i - t_{ij}).
\]

Condition (5.2) reduces to \(\gamma_k \geq \frac{\sqrt{m}}{2} \max_{i=1,\ldots,m, j=1,\ldots,k} \{\lambda_{\max}(w^{ij}(z^k))\} + \beta_k\). To speed up convergence we implemented the following relaxed version: we take the regularization parameter as the smaller of the form

\[
\gamma_k(\ell) = \frac{1}{2\ell} \left[\frac{\sqrt{m}}{2} \max_{i=1,\ldots,m, j=1,\ldots,k} \{\lambda_{\max}(w^{ij}(z^k))\} + \beta_k \right], \quad 0 \leq \ell \leq \ell_{\max}, \quad (6.4)
\]

in such a way that the updated proximal point be strictly feasible. More precisely, denote by \(z(\ell)\) the proximal point corresponding to the regularization parameter \(\gamma_k(\ell)\), that is, \(z(\ell)\) is the solution of (6.3)

\[
2A^\top Q_{w(z^*)}^{-1} A \Delta z^k + B^\top \bar{\omega}^{k+1} = \frac{1}{2} (0, 1, 0_m)
\]

\[
B \Delta z^k = 0
\]

for some \(\bar{\omega}^{k+1} \in \mathbb{R}^{kn+1}\). Then we set \(z^{k+1} = z(\ell^*_k) = z^k + \gamma_k(\ell^*_k)^{-1} \Delta z^k\) where \(\ell^*_k = \max\{0, \ldots, \ell_{\max} : z(\ell) \in C\}\).

Finally, as the stopping rule we take

\[
\frac{\|z^{k+1} - z^k\|}{\|z^{k+1}\|} \leq \text{Tol},
\]

(6.5)

where Tol is a prescribed relative tolerance.

In our experiments we consider three instances of classic examples of multiload truss optimization: the Michel 2x1, the 2D Cantilever and the Dome (see [1, 3]). In Table 1 we summarize some information on the sizes of these problems.

The loads applied on the structures Michel 2x1 and 2D Cantilever are modeled as two scenarios, one with only horizontal loads and the other one with only vertical loads, with values between 1 and 10 and weights \(\lambda = (\frac{1}{2}, \frac{1}{2})\). In the case of the Dome,
we consider one vertical load and two orthogonal loads which are applied just on
the top, with values between 10 and 20, and \(\lambda = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}) \). In all cases, \(V = 1 \). The
starting point \(z^0 \) is given by \(y_j^0 = \gamma_i (\Gamma_1^{\top} \Gamma_1)^{-1} f_j \), \(x_i^0 = 1/m \) and \(t_i^0 = \frac{y_i^0}{\gamma_i^2 + 2.5} \),
for \(i = 1, \ldots, m \) and \(j = 1, \ldots, k \). We take \(\beta_k = 0.1 \) and \(\delta_k = \eta_k = 0 \). In (6.4) we
take \(\ell_{\text{max}} = 10 \). In the stopping rule (6.5), we use Tol= \(10^{-2} \) and Tol= \(10^{-3} \).

Table 2 reports the results of our experiments and provide some comparisons
with SeDuMi 1.1R2 toolbox for MATLAB. The second and fifth columns show the
number of proximal iterations to fulfill (6.5), the third and sixth columns provide the relative difference between the value of the objective function (compliance) at the output solution obtained by PAVM-Log algorithm, and the optimal compliance given by SeDuMi, denoted by \(c_{\text{pavm}} \) and \(c_{\text{sdm}} \) respectively. The last column shows the CPU time required by SeDuMi.

For the 2D Cantilever, the largest problem, PAVM-Log provides output solutions
with an optimality gap of 0.6% or 1.5% when compared with the benchmark given
by SeDuMi. In the case of the Dome, the same difference varies between 2.0% and
5.2%. With the exception of the Michell 2x1, SeDuMi is faster than PAVM-Log.
In fact, PAVM-Log’s CPU time increases considerably for medium-size problems.

6.3. Support vector machines under uncertainty

Let us consider the following general binary classification problem: from some
training data points in \(\mathbb{R}^n \), each of which belongs to one of two classes, the
goal is to determine some way of deciding which class new data points will be
in. Suppose that the training data consists of two sets of points whose elements
are labeled by either 1 or -1 to indicate the class they belong to. If there ex-
ists a strictly separating \((n - 1)\)-dimensional hyperplane between the two data
sets, namely \(H(w, b) = \{ \mathbf{x} \in \mathbb{R}^n : w^\top \mathbf{x} - b = 0 \} \), then the standard Support
Vector Machine (SVM) approach is based on constructing a linear classifier ac-
cording to the function \(f(x) = \text{sgn}(w^\top \mathbf{x} - b) \). As there might be many hyperplanes
that classify the data, in order to minimize misclassification one picks the hy-
perplane which maximizes the separation (margin) between the two classes, so
that the distance from the hyperplane to the nearest data point is maximized. In
fact, if we have a set \(\mathcal{T} = \{ (\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_m, y_m) \} \) of \(m \) training data points in
\(\mathbb{R}^n \times \{ -1, 1 \} \), the maximum-margin hyperplane problem can be formulated as the
following Quadratic Programming (QP) optimization problem [13]:

\[
\min_{w, b} \frac{1}{2} \|w\|^2; \quad y_i (w^\top \mathbf{x}_i - b) \geq 1, \quad i = 1, \ldots, m.
\]
If this problem is feasible then we say that the training data set T is \textit{linearly separable}. The linear equations $\mathbf{w}^\top \mathbf{x} - b = 1$ and $\mathbf{w}^\top \mathbf{x} - b = -1$ describe the so-called \textit{supporting} hyperplanes.

Following [32, 33], suppose that \mathbf{X}_1 and \mathbf{X}_2 are random vector variables that generate samples of the positive and negative classes respectively. In order to construct a maximum margin linear classifier such that the false-negative and false-positive error rates do not exceed $\eta_1 \in (0, 1)$ and $\eta_2 \in (0, 1]$ respectively, let us consider the following Quadratic Chance-Constrained Programming (QCCP) problem:

$$\min_{\mathbf{w}, b} \frac{1}{2} \|\mathbf{w}\|^2; \text{Prob}\{\mathbf{w}^\top \mathbf{X}_1 - b < 0\} \leq \eta_1, \text{Prob}\{\mathbf{w}^\top \mathbf{X}_2 - b > 0\} \leq \eta_2. \quad (6.7)$$

In other words, we require that the random variable \mathbf{X}_i lies on the correct side of the hyperplane with probability greater than $1 - \eta_i$ for $i = 1, 2$. Assume that for $i = 1, 2$ we \textit{only know} the mean $\mu_i \in \mathbb{R}^n$ and covariance matrix $\Sigma_i \in \mathbb{R}^{n \times n}$ of the random vector \mathbf{X}_i. In this case, for each $i = 1, 2$ we want to be able to classify correctly, up to the rate η_i, even for the \textit{worst distribution} in the class of distributions which have common mean and covariance $\mathbf{X}_i \sim (\mu_i, \Sigma_i)$, replacing the probability constraints in (6.7) with their \textit{robust} counterparts

$$\sup_{\mathbf{X}_i \sim (\mu_i, \Sigma_i)} \text{Prob}\{\mathbf{w}^\top \mathbf{X}_1 - b < 0\} \leq \eta_1, \sup_{\mathbf{X}_2 \sim (\mu_2, \Sigma_2)} \text{Prob}\{\mathbf{w}^\top \mathbf{X}_2 - b > 0\} \leq \eta_2.$$

By virtue of an appropriate application of the multivariate Chebyshev inequality, this worst distribution approach leads to the following QSOCP, which is a deterministic formulation of (6.7) (see [32] for all details):

$$\min_{\mathbf{w}, b} \frac{1}{2} \|\mathbf{w}\|^2; \mathbf{w}^\top \mu_1 - b \geq 1 + \kappa_1 \|S_1^\top \mathbf{w}\|, \ b - \mathbf{w}^\top \mu_2 \geq 1 + \kappa_2 \|S_2^\top \mathbf{w}\|, \quad (6.8)$$

where $\Sigma_i = S_i S_i^\top$ (for instance, Cholesky factorization) for $i = 1, 2$, and η_i and κ_i are related via the formula $\kappa_i = \sqrt{\frac{1 - \eta_i}{\eta_i}}$. Notice that similarly to the standard hard-margin SVM formulation (6.6), problem (6.8) can be written as a LSOCP:

$$\min_{t, \mathbf{w}, b} t; t \geq \|\mathbf{w}\|, \mathbf{w}^\top \mu_1 - b \geq 1 + \kappa_1 \|S_1^\top \mathbf{w}\|, \ b - \mathbf{w}^\top \mu_2 \geq 1 + \kappa_2 \|S_2^\top \mathbf{w}\|. \quad (6.9)$$

Note that any feasible hyperplane must separate the means, hence the natural condition $\mu_1 \neq \mu_2$ is necessary for (6.8) to be feasible. Since $\kappa_i \to 0$ when $\eta_i \to 1$, the problem (6.8) can be made feasible whenever $\mu_1 \neq \mu_2$ by choosing appropriate values for η_1 and η_2. By choosing $\eta_1 = \eta_2$ this formulation can be used for classification with \textit{preferential bias} towards a particular class; for instance, in the case of medical diagnosis one can allow a low η_1 and a relatively high η_2 (see [32, Section 4]). Finally, we can mention that these problems can be unfeasible for some values of η_1 or η_2, for instance when we take $\eta_i \to 0$, we get $\kappa_i \to \infty$.

So far we have assumed that the mean-covariance pairs (μ_i, Σ_i) are known. However, in many practical situations we only have the training data set $T = \{(x_1, y_1), \ldots, (x_m, y_m)\}$. Assuming that T consists of two samples of independent observations of the random vectors \mathbf{X}_1 for $y = 1$ and \mathbf{X}_2 for $y = -1$, the idea is to replace (μ_i, Σ_i) with a statistical estimator $(\hat{\mu}_i, \hat{\Sigma}_i)$; this can be done by computing the sample mean and covariance for each class from the available observations.
Finding an initial condition of the problem (6.8) may be difficult. Therefore, we consider the following soft-margin SVM formulation:

$$\min_{w,b,\xi} \frac{1}{2} \|w\|^2 + \nu(\xi_1 + \xi_2): \ w^T \mu_1 - b \geq 1 - \xi_1 + \kappa_1 \|S_1^T w\|, \ b - w^T \mu_2 \geq 1 - \xi_2 + \kappa_2 \|S_2^T w\|, \ \xi_1 \geq 0, \ \xi_2 \geq 0,$$

(6.10)

where $\nu > 0$ is a sufficiently large penalty parameter. This is based on Cortes and Vapnik approach [13] for training data that are no linearly separable. If (6.8) is feasible then at the optimum for (6.10) we obtain $\xi_1 = \xi_2 = 0$; otherwise, we detect unfeasibility. Let us denote the decision variable by $z = (w, b, \xi_1, \xi_2) \in \mathbb{R}^{n+3}$. Set

$$w^i(z) = (\xi_i + (-1)^{i+1}(\mu_i^T w - b) - 1, \kappa_i S_i^T w) \in \mathcal{L}_+^{n+1},$$

for $i = 1, 2$. As we have also the positivity constraints $\xi_i \geq 0$, we adapt the idea of Souza et al [34] to this situation, that is, for those constraints we consider the Hessian of the logarithm barrier function $\psi(\xi_1, \xi_2) = -\log(\xi_1) - \log(\xi_2)$.

Notice that the objective function is quadratic. Then, the proximal step in PAVM-Log corresponds to the unconstrained stationary condition for a quadratic function, which amounts to solving exactly (6.11) for the regularization parameter, we take $\lambda \approx 10000, \beta_k = 0.12, \delta_k = \eta_k = 0$. In the relaxed version (6.11) for the regularization parameter, we take $\ell_{\max} = 10$.

Tables 4 and 5 report the results of our experiments and provide some comparisons with SeDuMi 1.1R2 toolbox for MATLAB. In this tables, the first and second columns show the error rates, the third and sixth columns show the number of ite-
rations to fulfill the stopping rule (6.5), the fourth and seventh columns report the CPU time by using our implementation in MATLAB of this specialized version of PAVM-Log, the fifth and eighth columns provides the relative difference between the value of the objective function at the output solution obtained by PAVM-Log algorithm, and the optimal given by SeDuMi, denoted by \(\text{val}_{\text{pavm}} \) and \(\text{val}_{\text{sdm}} \) respectively. Finally, the last column shows the CPU time required by SeDuMi toolbox using its default configuration. The value × in the table represents infeasibility of the problem. If such a case occurs, CPU times correspond to the time required by PAVM-Log algorithm to reach the prescribed tolerance obtaining an infeasible solution (i.e. when \(\xi_1 \neq 0 \) or \(\xi_2 \neq 0 \)).

Table 3. Numerical comparisons with SeDuMi applied to data set: Setosa vs Versicolor.

<table>
<thead>
<tr>
<th>(\eta_1)</th>
<th>(\eta_2)</th>
<th># Main iter.</th>
<th>CPU Time</th>
<th>(\frac{\text{val}{\text{pavm}} - \text{val}{\text{sdm}}}{\text{val}_{\text{sdm}}})</th>
<th># Main iter.</th>
<th>CPU Time</th>
<th>(\frac{\text{val}{\text{pavm}} - \text{val}{\text{sdm}}}{\text{val}_{\text{sdm}}})</th>
<th>CPU time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7</td>
<td>0.1</td>
<td>27</td>
<td>0°.027</td>
<td>0.006623</td>
<td>82</td>
<td>0°.050</td>
<td>0.006441</td>
<td>0°.210</td>
</tr>
<tr>
<td>0.5</td>
<td>0.1</td>
<td>11</td>
<td>0°.031</td>
<td>0.013009</td>
<td>31</td>
<td>0°.031</td>
<td>0.002217</td>
<td>0°.180</td>
</tr>
<tr>
<td>0.3</td>
<td>0.1</td>
<td>13</td>
<td>0°.010</td>
<td>×</td>
<td>35</td>
<td>0°.032</td>
<td>×</td>
<td>0°.050</td>
</tr>
<tr>
<td>0.1</td>
<td>0.1</td>
<td>7</td>
<td>0°.014</td>
<td>×</td>
<td>20</td>
<td>0°.022</td>
<td>×</td>
<td>0°.070</td>
</tr>
<tr>
<td>0.1</td>
<td>0.3</td>
<td>12</td>
<td>0°.022</td>
<td>0.019774</td>
<td>23</td>
<td>0°.029</td>
<td>0.014521</td>
<td>0°.130</td>
</tr>
<tr>
<td>0.3</td>
<td>0.3</td>
<td>11</td>
<td>0°.022</td>
<td>0.043908</td>
<td>34</td>
<td>0°.032</td>
<td>0.030113</td>
<td>0°.160</td>
</tr>
<tr>
<td>0.3</td>
<td>0.5</td>
<td>18</td>
<td>0°.027</td>
<td>0.021844</td>
<td>51</td>
<td>0°.045</td>
<td>0.017778</td>
<td>0°.200</td>
</tr>
</tbody>
</table>

Table 4. Numerical comparisons with SeDuMi applied to data set: Versicolor vs Virginica.

<table>
<thead>
<tr>
<th>(\eta_1)</th>
<th>(\eta_2)</th>
<th># Main iter.</th>
<th>CPU Time</th>
<th>(\frac{\text{val}{\text{pavm}} - \text{val}{\text{sdm}}}{\text{val}_{\text{sdm}}})</th>
<th># Main iter.</th>
<th>CPU Time</th>
<th>(\frac{\text{val}{\text{pavm}} - \text{val}{\text{sdm}}}{\text{val}_{\text{sdm}}})</th>
<th>CPU time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>0.3</td>
<td>7</td>
<td>0°.022</td>
<td>0.015485</td>
<td>10</td>
<td>0°.030</td>
<td>0.010218</td>
<td>0°.170</td>
</tr>
<tr>
<td>0.7</td>
<td>0.3</td>
<td>8</td>
<td>0°.022</td>
<td>0.005198</td>
<td>11</td>
<td>0°.023</td>
<td>0.005053</td>
<td>0°.180</td>
</tr>
<tr>
<td>0.5</td>
<td>0.3</td>
<td>8</td>
<td>0°.017</td>
<td>0.003034</td>
<td>28</td>
<td>0°.033</td>
<td>0.001307</td>
<td>0°.220</td>
</tr>
<tr>
<td>0.3</td>
<td>0.3</td>
<td>7</td>
<td>0°.007</td>
<td>0.004301</td>
<td>19</td>
<td>0°.024</td>
<td>0.001517</td>
<td>0°.210</td>
</tr>
<tr>
<td>0.1</td>
<td>0.3</td>
<td>12</td>
<td>0°.015</td>
<td>×</td>
<td>24</td>
<td>0°.031</td>
<td>×</td>
<td>0°.020</td>
</tr>
<tr>
<td>0.7</td>
<td>0.5</td>
<td>7</td>
<td>0°.014</td>
<td>0.019001</td>
<td>12</td>
<td>0°.022</td>
<td>0.015555</td>
<td>0°.150</td>
</tr>
</tbody>
</table>

In these experiments, we can observe that output solutions are optimal up to a gap whose range varies from 0.1% to 3.0% when compared with the benchmark given by SeDuMi, for different values of \(\eta_i \). In all cases, PAVM-Log CPU time is much less than SeDuMi’s. Due to the small size of the problems to be solved, we can decrease the error tolerance without much computational cost.

Table 5. Numerical comparisons with SeDuMi applied to data set: Setosa vs Versicolor.

<table>
<thead>
<tr>
<th>(\eta_1)</th>
<th>(\eta_2)</th>
<th># Main iter.</th>
<th>CPU Time</th>
<th>(\frac{\text{val}{\text{pavm}} - \text{val}{\text{sdm}}}{\text{val}_{\text{sdm}}})</th>
<th># Main iter.</th>
<th>CPU Time</th>
<th>(\frac{\text{val}{\text{pavm}} - \text{val}{\text{sdm}}}{\text{val}_{\text{sdm}}})</th>
<th>CPU time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7</td>
<td>0.1</td>
<td>259</td>
<td>0°.173</td>
<td>0.005144</td>
<td>944</td>
<td>0°.608</td>
<td>0.004195</td>
<td>0°.210</td>
</tr>
<tr>
<td>0.1</td>
<td>0.3</td>
<td>60</td>
<td>0°.044</td>
<td>0.004389</td>
<td>259</td>
<td>0°.179</td>
<td>0.004317</td>
<td>0°.130</td>
</tr>
<tr>
<td>0.3</td>
<td>0.5</td>
<td>143</td>
<td>0°.092</td>
<td>0.008224</td>
<td>492</td>
<td>0°.319</td>
<td>0.004222</td>
<td>0°.200</td>
</tr>
</tbody>
</table>

Table 6. Numerical comparisons with SeDuMi applied to data set: Versicolor vs Virginica.

<table>
<thead>
<tr>
<th>(\eta_1)</th>
<th>(\eta_2)</th>
<th># Main iter.</th>
<th>CPU Time</th>
<th>(\frac{\text{val}{\text{pavm}} - \text{val}{\text{sdm}}}{\text{val}_{\text{sdm}}})</th>
<th># Main iter.</th>
<th>CPU Time</th>
<th>(\frac{\text{val}{\text{pavm}} - \text{val}{\text{sdm}}}{\text{val}_{\text{sdm}}})</th>
<th>CPU time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7</td>
<td>0.3</td>
<td>14</td>
<td>0°.039</td>
<td>0.004017</td>
<td>19</td>
<td>0°.045</td>
<td>0.003424</td>
<td>0°.180</td>
</tr>
<tr>
<td>0.3</td>
<td>0.7</td>
<td>136</td>
<td>0°.092</td>
<td>0.006096</td>
<td>412</td>
<td>0°.301</td>
<td>0.002556</td>
<td>0°.140</td>
</tr>
<tr>
<td>0.7</td>
<td>0.5</td>
<td>19</td>
<td>0°.029</td>
<td>0.011935</td>
<td>31</td>
<td>0°.051</td>
<td>0.006506</td>
<td>0°.150</td>
</tr>
</tbody>
</table>

Tables 5 and 6 provide the computational results with smaller tolerances for some values of \(\eta_i \) applied to the first data set, obtaining with PAVM-Log an optimality gap whose range varies from 0.3% to 0.7% with reasonable CPU time.
6.4. Concluding remarks on the numerical tests

The previous numerical results show that PAVM-Log algorithm can be applied to solve approximately LSCOP problems. As one should have expected, we see that SeDuMi is much faster in terms of CPU time than PAVM-Log for medium-size LSOCOP test problems. For very small size problems, both algorithms are comparable with optimality gap less than 1%. The comparison with SeDuMi in terms of CPU time is not completely fair because of our rather straightforward implementation of PAVM-Log. Even so, it is natural that in the linear case an interior point method which is based on self-dual embedding and uses a primal-dual predictor-corrector scheme, performs better than our purely primal proximal-point strategy.

It is worth pointing out that PAVM-Log algorithm is not intended to compete with numerical methods for Linear SOCP such as SeDuMi, which is an efficient method in particular for large scale problems. But PAVM-Log might be considered as an alternative for small-size problems and, more importantly, for nonsmooth Convex SOCP for which is not clear how to extend SeDuMi-like approach. Indeed, convex problems can be addressed by conventional local algorithms since all critical points are global minimizers. The regularized proximal subproblem being strongly convex, we expect local algorithms to perform efficiently enough to find good approximate solutions at reasonable execution time. When the objective function is nonsmooth, we can work with the so called bundle methods [20, 24].

In this direction, the computational results presented here should be considered just as an intermediate step toward more general and possibly nonsmooth convex problems, which are not addressed in this paper from the numerical point of view. In fact, PAVM-Log algorithm as presented here is only schematic. There are a lot of theory aspects and implementation issues which should be addressed before performing and evaluating carefully designed computational experiments in the nonsmooth convex case, and this goes beyond the scope of this paper.

Acknowledgments

The authors are grateful to the anonymous referees for their comments on the original manuscript. Their suggestions were very useful to improve this work. The authors also wish to thank Prof. Paulo J. S. Silva for stimulating conversations and helpful comments. This work was partially supported by FONDECYT under grants 1050706 and 1070297, FONDAP in Applied Mathematics, BASAL project and the Millennium Scientific Institute on Complex Engineering Systems funded by MIDEPLAN-Chile. The second author was also supported by CONICYT.

References
