Contents

1 Introduction

1.1 Carbohydrate in brown seaweed
1.2 Phlorotannins
1.3 Macrocystis pyrifera
1.4 Extraction process of bioactive compounds
1.5 Previous work in Macrocystis pyrifera
1.6 Objectives

1.6.1 Main objective
1.6.2 Specific objectives

1.7 Summary of methodology and principal results

2 Identification and efficient extraction method of phlorotannins from the brown seaweed *Macrocystis pyrifera* using an orthogonal experimental design

2.1 Introduction
2.2 Materials and Methods

2.2.1 Algal Materials
2.2.2 Effect of the extraction solvent on TPC and TAA
2.2.3 Effect of drying temperature on TPC and TAA
2.2.4 Effect of extraction parameters on TPC and TAA using Taguchi orthogonal array
2.2.5 Determination of TPC
2.2.6 Determination of DPPH radical scavenging activity, total antioxidant activity (TAA)
2.2.7 Characterization of phlorotannin extract

2.2.7.1 Fourier transform infrared spectroscopy – FTIR
2.2.7.2 Carbohydrate analysis

2.2.7.3 High Precision Liquid Chromatography Mass Spectrometry (HPLC-ESI-MS/MS) Identification
2.2.8 Statistical analysis
2.3 Results and discussion

2.3.1 Raw material analysis
2.3.2 Selection of operational conditions: Effect of the extractant type and drying temperature
2.3.3 Optimized extraction of phlorotannins: Effect of extraction parameters
2.3.4 Characterization of phlorotannin extract

2.3.4.1 Fourier Transform Infrared (FTIR) spectrometry
2.3.4.2 Analysis of the carbohydrate present in the phlorotannins extract
2.3.4.3 HPLC-ESI-MS/MS Identification
2.4 Conclusions

3 Carbohydrate active enzymes from macroalgae-associated microorganisms: optimization of production using experimental design

3.1 Introduction
3.2 Material and methods

3.2.1 Isolation and cultivation of microbial strains associated with Macrocystis
3.2.2 Screening for carbohydrate active enzymes (CAE)
3.2.3 Microscopic analysis
3.2.4 DNA extraction of active microbial strains
3.2.5 Identification and sequencing of active microbial strains
3.2.6 Optimization in the production of CAE using experimental design

3.2.6.1 Evaluation of the CAE extract as pre-treatment in the extraction process of phlorotannins from
3.2.7 *M. pyrifera*
5.3 Results
5.3.1 The adsorption kinetics of phlorotannins 106
5.3.2 The static adsorption and desorption of phlorotannins 107
5.3.3 The phlorotannin adsorption isotherm 108
5.3.4 Thermodynamic parameters 110
5.4 Discussion 112
5.5 Conclusion 114
6 Main conclusion 115
 Bibliography 116
 Apendices 124
List of Tables

1.1 Content of carbohydrate in macroalgae ... 12
1.2 Phlorotannins derived from brown seaweed .. 15

 Extraction parameters and levels of work evaluated using Taguchi orthogonal array design
 2.1 Chemical analysis of *Macrocystis pyrifera* harvested during different periods 27

 The influence of extraction parameters determined by Taguchi orthogonal array design on TPC and TAA from the extraction of *Macrocystis pyrifera*. 36

2.4 Variance analysis for TPC and TAA for *Macrocystis pyrifera*. 37

 Condition giving the maximal TPC and TAA from *Macrocystis pyrifera*. 38

2.5 Average concentration of carbohydrates present in alga *Macrocystis pyrifera* and in its phlorotannin extract. 40

 Factors and levels varied according to Taguchi orthogonal array design L₉, 3⁴ 52

 Inductively coupled plasma optical emission spectrometry and organic elemental analysis of fresh *Macrocystis pyrifera* biomass 57

 The influence of growth parameters determined by Taguchi orthogonal array design L₉, 3⁴ on carbohydrate active enzymes for different isolated. 61

 Variance analysis for the production of carbohydrate active enzymes for different isolates. 63

 Optimum level for each factor predicted by the statistical analysis that maximizes the production of carbohydrate active enzymes for different strains. *Bacillus sp.*, *Rhodotorula sp.* and *Alternaria sp.* 64

 Purification of carbohydrate active enzyme from *Bacillus sp.* BAC, *Rhodotorula sp.* B and *Alternaria sp.* HN. 66

 Influence of parameters in the pretreatment of *Macrocystis pyrifera* using the Taguchi experimental design on carbohydrate and phlorotannin extraction yields. 83

 Box-Behnken experimental design with independent variables, and their levels used for optimizing the extraction conditions of carbohydrates and phlorotannins from *Macrocystis pyrifera*. 84
Analysis of variance for the pretreatment of *Macrocystis pyrifera* with carbohydrolase enzyme and subsequent extraction process of carbohydrates and phlorotannins.

4.3 Analysis of variance for the pretreatment of *Macrocystis pyrifera* with carbohydrolase enzyme and subsequent extraction process of carbohydrates and phlorotannins 87

5.1 Physicochemical properties of six resins evaluated.

5.2 Kinetic parameters of phlorotannin adsorption on XAD-7, XAD-16N, HP-20, XAD-4, XAD-2 and SP-850 at 25°C. 107

5.3 Isotherm parameters of phlorotannin adsorption on XAD-7, XAD-16N, HP-20, XAD-4, XAD-2 and SP-850 at 25, 35 and 45°C. 110

5.4 Thermodynamic parameters for phlorotannin adsorption on different resins. 111
List of Figures

1.1 Phlorotannins structure derived from brown seaweed. 14

2.1 Evaluation of the best extractant for total polyphenols (TPC) and total antioxidant activity (TAA) in *Macrocystis pyrifera*. 32

2.2 a) Drying curves for *Macrocystis pyrifera* at different drying temperatures, b) Evaluation of the different drying temperatures for *Macrocystis pyrifera* in terms of TPC and TAA 34

2.3 FTIR spectra of standard phloroglucinol and water phlorotannin extracts from *Macrocystis pyrifera*. 39

2.4 a) Peak 1, spectrum of mass and fragmentation obtained from HPLC-ESI MS/MS, b) chemical structure of phloroeckol, c) Peak 2, spectrum of mass and fragmentation obtained from HPLC-ESI MS/MS, d) chemical structure of tetramer phloroglucinol. 41

3.1 Chemical analysis of *Macrocystis pyrifera* harvested in March 2013. 56

3.2 Screening of enzymatic activity of different isolates. a. Production of carbohydrate active enzymes, b. Production of alginate lyase and 1,3-β-D-glucanase. 59

3.3 Microscopic characteristics of strain growth for 3 days at 25°C were examined under optical microscope. a) HN, b) BAC 1 and c) B. 60

3.4 Production of specific carbohydrate active enzymes, alginate lyase, 1,3-β-D-glucanase and fucoidanase, for different selected isolates. 62

3.5 Steps used for carbohydrate and phlorotannin extraction from *Macrocystis pyrifera* using different aqueous extractants. 76

4.1 Composition of *Macrocystis pyrifera* harvested in May 2013. a) Chemical composition b) Type of carbohydrates. 82

4.2 Extraction yields of a) phlorotannins and b) carbohydrates from *Macrocystis pyrifera* using different aqueous extractants. 86

4.3 Antioxidant activity of the liquid phase obtained from each experimental condition of the Box-Behnken design. 88

4.4 Response surface (3-D) plots showing the effects of A) extraction time and temperature, B) extraction time and the alkaline solvent to raw material ratio, and C) extraction temperature and alkaline solvent-raw material ratio on the extraction yield of carbohydrates. 91

4.5 Response surface (3-D) plots showing the effects of A) extraction time and temperature, B) extraction time and the alkaline solvent to raw material ratio, and C) extraction temperature and the alkaline solvent to raw material ratio on the extraction yield of phlorotannins. 92
Adsorption kinetics of phlorotannins on: a) XAD-7, b) XAD-16N, c) SP-850, d) HP-20, e) XAD-4 and f) XAD-2 at 25°C.

The static adsorption and desorption capacities of different resins at 25°C.

Equilibrium adsorption isotherm of phlorotannin adsorption on: a) XAD-16N, b) HP-20 and c) SP-850 at 25°C, 35°C and 45°C.