Contents

		Pag
1	Introduction	11
1.1	Carbohydrate in brown seaweed	12
1.2	Phlorotannins	13
1.3	Macrocystis pyrifera	16
1.4	Extraction process of bioactive compounds	16
1.5	Previous work in Macrocystis pyrifera	17
1.6	Objectives	19
1.6.1	Main objective	19
1.6.2	Specific objectives	19
1.7	Summary of methodology and principal results	20
	Identification and efficient extraction method of phlorotannins from the	
2	brown seaweed Macrocystis pyrifera using an orthogonal experimental	
	design	21
2.1	Introduction	23
2.2	Materials and Methods	25
2.2.1	Algal Materials	25
2.2.2	Effect of the extraction solvent on TPC and TAA	25
2.2.3	Effect of drying temperature on TPC and TAA	25
2.2.4	Effect of extraction parameters on TPC and TAA using Taguchi orthogonal array	26
2.2.5	Determination of TPC	27
2.2.6	Determination of DPPH radical scavenging activity, total antioxidant activity (TAA)	27
2.2.7	Characterization of phlorotannin extract	28
2.2.7.1	Fourier transform infrared spectroscopy – FTIR	28
2.2.7.2	Carbohydrate analysis	28
2.2.7.3	High Precision Liquid Chromatography Mass Spectrometry (HPLC-ESI-MS/MS) Identification	29
2.2.8	Statistical analysis	30
2.3	Results and discussion	31
2.3.1	Raw material analysis	31
2.3.2	Selection of operational conditions: Effect of the extractant type and drying temperature	31
2.3.3	Optimized extraction of phlorotannins: Effect of extraction parameters	35
2.3.4	Characterization of phlorotannin extract	38
2.3.4.1	Fourier Transform Infrared (FTIR) spectrometry	38
2.3.4.2	Analysis of the carbohydrate present in the phlorotannins extract	39
2.3.4.3	HPLC-ESI-MS/MS Identification	40
2.4	Conclusions	43
3	Carbohydrate active enzymes from macroalgae-associated	
0	microorganisms: optimization of production using experimental design	44
3.1	Introduction	46
3.2	Material and methods	48
3.2.1	Isolation and cultivation of microbial strains associated with Macrocystis	48
3.2.2	Screening for carbohydrate active enzymes (CAE)	49
3.2.3	Microscopic analysis	49
3.2.4	DNA extraction of active microbial strains	50
3.2.5	Identification and sequencing of active microbial strains	50
3.2.6	Optimization in the production of CAE using experimental design	51
227	Evaluation of the CAE extract as pre-treatment in the extraction process of phlorotannins from	50
5.2.1	M. pyritera	52

3.2.8	Purification of carbohydrate active enzymes (CAE)	53
3.2.9	Characterization of M. pyrifera	53
3.2.9.1	Analysis of compositional chemistry of M. pyrifera	53
3.2.9.2	Analysis of the carbohydrate type present in M. pyrifera	54
3.2.9.3	Elementary analysis of M. pyrifera	54
3.2.10	Statistical analysis	55
3.3	Results	56
3.3.1	Characterization of M. pyrifera	56
	Isolation and screening macroalgae-associated microorganisms with carbohydrate active	
3.3.2	enzymes (CAE)	58
3.3.3	Microbial phylogenetic identification of selected isolates	60
3.3.4	Optimization of the CAE production by microbial strains	60
3.3.5	Evaluation of the carbohydrate active enzymes (CAE) in the extraction of phlorotannins	64
3.3.6	Purification of carbohydrate active enzyme (CAE)	65
3.4	Discussion	67
3.5	Conclusions	70
	Optimized carbohydrate and phlorotannin extraction from <i>Macrocystis</i>	
4	<i>pyrifera</i> : a carbohydrate active enzyme pretreatment does the trick	71
11	Introduction	/1 72
4.1	Materials and Methods	75 75
4.2	Characterization of algol Material	75
4.2.1	Selection of the enzymatic pretreatment for carbohydrate and phlorotannin extraction using the	70
4.2.2	Taguchi experimental design	77
423	Influence of the nature of the aqueous solvent in carbohydrate and phlorotannin extraction	77
1.2.5	Optimization conditions of carbohydrate and phlorotannin extraction using the Box-Behnken	,,
4.2.4	design	78
4.2.5	Determination of the concentration of the phlorotannins (TPC)	79
4.2.6	Determination of the total carbohydrate concentration	79
4.2.7	Determination of the radical scavenging activity, total antioxidant activity (TAA)	79
4.2.8	Determination of the carbohydrate species present	80
4.2.9	Statistical analysis	80
4.3	Results	81
4.3.1	Characterization of Macrocystis pyrifera	81
	Influence of the pretreatment with a carbohydrate active enzyme on the carbohydrate and	
4.3.2	phlorotannin extraction yield	83
	Influence of the nature of the aqueous solvent and extraction parameters on the carbohydrate and	
4.3.3	phlorotannin extraction yields	85
4.4	Discussion	93
4.5	Conclusions	96
5	Purification of phlorotannins from <i>Macrocystis pyrifera</i> using macroporous	
U	resins.	97
5.1	Introduction	99
5.2	Materials and methods	101
5.2.1	Preparation of phlorotannin extract	10
5.2.2	Adsorbents	10
5.2.3	Adsorption kinetics of phlorotannins	10
5.2.4	Adsorption of phlorotannins on the resins	103
5.2.5	Desorption of phlorotannins from the resins	103
5.2.6	Adsorption isotherms of phlorotannins	104
5.2.7	Thermodynamic parameters	104
5.2.8	Determining the phlorotannin content	105

5.3	Results	106
5.3.1	The adsorption kinetics of phlorotannins	106
5.3.2	The static adsorption and desorption of phlorotannins	107
5.3.3	The phlorotannin adsorption isotherm	108
5.3.4	Thermodynamic parameters	110
5.4	Discussion	112
5.5	Conclusion	114
6	Main conclusion	115
	Bibliography	116
	Apendices	124

List of Tables

		Pág.
1.1	Content of carbohydrate in macroalgae	12
1.2	Phlorotannins derived from brown seaweed	15
	Extraction parameters and levels of work evaluated using Taguchi	
2.1	orthogonal array design	27
	Chemical analysis of Macrocystis pyrifera harvested during	
2.2	different periods	31
	The influence of extraction parameters determined by Taguchi	
7 2	orthogonal array design on TPC and TAA from the extraction of Magno gratic muniform	26
2.3	Mucrocysus pyrijeru.	50
2.4	Variance analysis for TPC and TAA for Macrocystis pyrifera.	37
	Condition giving the maximal TPC and TAA from Macrocystis	
2.5	pyrifera.	38
	Average concentration of carbohydrates present in alga	
2.6	Macrocystis pyrifera and in its phlorotannin extract.	40
	Factors and levels varied according to Taguchi orthogonal array	
3.1	design L_9 , 3^4	52
3.2	Carbohydrate content in <i>M. pyrifera</i> (March, 2013).	57
33	Inductively coupled plasma optical emission spectrometry and organic elemental analysis of fresh <i>Macrocystis purifera</i> biomass	57
5.5	organie elemental analysis of nesh <i>Macrocysus pyrijera</i> olomass	51
	The influence of growth parameters determined by Taguchi	
34	orthogonal array design L_9 , 3^- on carbohydrate active enzymes for different isolated	61
5.4	Variance analysis for the production of carbohydrate active	01
3.5	enzymes for different isolates.	63
	analysis that maximizes the production of carbohydrate active	
	enzymes for different strains. <i>Bacillus sp., Rhodotorula sp.</i> and	
3.6	Alternaria sp.	64
	Purification of carbohydrate active enzyme from Bacillus sp.	
3.7	BAC, Rhodotorula sp. B and Alternaria sp. HN.	66
	Influence of parameters in the pretreatment of Macrocystis	
11	<i>pyrifera</i> using the Taguchi experimental design on carbohydrate	0.2
4.1	and philototannin extraction yields.	83
	Box-Behnken experimental design with independent variables,	
4.2	carbohydrates and phlorotannins from <i>Macrocystis pyrifera</i> .	84

4.3	Analysis of variance for the pretreatment of <i>Macrocystis pyrifera</i> with carbohydrolase enzyme and subsequent extraction process of carbohydrates and phlorotannins.	87
4.4	Analysis of variance for the pretreatment of <i>Macrocystis pyrifera</i> with carbohydrolase enzyme and subsequent extraction process of carbohydrates and phlorotannins Physicochemical properties of six racins evaluated	90
3.1	Kinetia perometers of phloretennin adaption on VAD 7 VAD	101
5.2	16N, HP-20, XAD-4, XAD-2 and SP-850 at 25°C.	107
5.3	Isotherm parameters of phlorotannin adsorption on XAD-7, XAD-16N, HP-20, XAD-4, XAD-2 and SP-850 at 25, 35 and 45°C.	110
	Thermodynamic parameters for phlorotannin adsorption on	
5.4	different resins.	111

List of Figures

		Pag
1.1	Phlorotannins structure derived from brown seaweed.	14
2.1	Evaluation of the best extractant for total polyphenols (TPC) and total antioxidant activity (TAA) in <i>Macrocystis pyrifera</i> .	32
2.2 2.3	a) Drying curves for <i>Macrocystis pyrifera</i> at different drying temperatures, b) Evaluation of the different drying temperatures for <i>Macrocystis pyrifera</i> in terms of TPC and TAA FTIR spectra of standard phloroglucinol and water phlorotannin extracts from <i>Macrocystis pyrifera</i> .	34 39
24	 a) Peak 1, spectrum of mass and fragmentation obtained from HPLC-ESI MS/MS, b) chemical structure of phloroeckol, c) Peak 2, spectrum of mass and fragmentation obtained from HPLC-ESI MS/MS, d) chemical structure of tetramer phloroglucinol. 	41
3.1	Chemical analysis of <i>Macrocystis pyrifera</i> harvested in March 2013.	56
3.2	Screening of enzymatic activity of different isolates. a. Production of carbohydrate active enzymes, b. Production of alginate lyase and 1,3- β -D-glucanase. Microscopic characteristics of strain growth for 3 days at 25°C were examined under optical microscope. a) HN, b) BAC 1 and c)	59
3.3	В.	60
3.4	Production of specific carbohydrate active enzymes, alginate lyase, 1,3-β-D-glucanase and fucoidanase, for different selected isolates. Steps used for carbohydrate and phlorotannin extraction from	62
4.1	Macrocystis pyrifera	76
4.2	Composition of <i>Macrocystis pyrifera</i> harvested in May 2013. a) Chemical composition b) Type of carbohydrates.	82
4.3	Extraction yields of a) phlorotannins and b) carbohydrates from <i>Macrocystis pyrifera</i> using different aqueous extractants.	86
4.4	Antioxidant activity of the liquid phase obtained from each experimental condition of the Box-Behnken design.	88
4.5	Response surface (3-D) plots showing the effects of A) extraction time and temperature, B) extraction time and the alkaline solvent to raw material ratio, and C) extraction temperature and alkaline solvent-raw material ratio on the extraction yield of carbohydrates.	91
4.6	Response surface (3-D) plots showing the effects of A) extraction time and temperature, B) extraction time and the alkaline solvent to raw material ratio, and C) extraction temperature and the alkaline solvent to raw material ratio on the extraction yield of phlorotannins.	92

5.1	Adsorption kinetics of phlorotannins on: a) XAD-7, b) XAD-16N, c) SP-850, d) HP-20, e) XAD-4 and f) XAD-2 at 25°C.	106
5.2	The static adsorption and desorption capacities of different resins at 25°C.	108
5.3	Equilibrium adsorption isotherm of phlorotannin adsorption on: a) XAD-16N, b) HP-20 and c) SP-850 at 25°C, 35°C and 45°C	109